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Skyrmions in square-lattice antiferromagnets
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The ground states of square-lattice two-dimensional antiferromagnets with anisotropy in an external magnetic
field are determined using Monte Carlo simulations and compared to theoretical analysis. We find a phase in
between the spin-flop and spiral phase that shows strong similarity to skyrmions in ferromagnetic thin films. We
show that this phase arises as a result of the competition between Zeeman and Dzyaloshinskii-Moriya interaction
energies of the magnetic system. Moreover, we find that isolated (anti-)skyrmions are stabilized in finite-sized
systems, even at higher temperatures. The existence of thermodynamically stable skyrmions in square-lattice
antiferromagnets provides an appealing alternative over skyrmions in ferromagnets as data carriers.
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Introduction. Skyrmions have been the topic of intense
research in ferromagnetic materials [1-9] as well as numerous
other systems [10-15]. Skyrmions in ferromagnets have
promising characteristics that make them suitable for data
storage and transfer: They can be driven by low critical cur-
rents [16,17], and they are able to move past pinning sites [18].

Skyrmions in antiferromagnetic (AFM) thin films are
perhaps more suitable as data carriers than their ferromagnetic
counterparts. Firstly, antiferromagnets are more prevalent in
nature than ferromagnets, allowing for a wider range of
material properties. Secondly, skyrmions in an antiferromagnet
are less sensitive to magnetic fields. Thirdly, they move
faster, and in the direction of the charge current (while
skyrmions in ferromagnets experience a Magnus force with a
significant component perpendicular to their trajectory [19]),
which makes it easier to control them [20]. For these reasons,
skyrmions have been investigated in many different antifer-
romagnetic systems, ranging from doped bulk materials [21],
Bose-Einstein condensates [22], and various triangular lattice
antiferromagnets [23,24] to nanodisks [25]. Isolated AFM
skyrmions [26,27], as well as moving skyrmions in AFMs,
have been considered theoretically [20,28,29].

In this paper we study thermodynamically stable in-
homogeneous magnetization textures in square-lattice an-
tiferromagnets (SLA’s) with Dzyaloshinskii-Moriya (DM)
interactions. The DM interactions that we consider arise
either from bulk inversion asymmetry (symmetry class C,,)
or from structural inversion asymmetry along the thin-film
normal direction. An example of the latter is an interface
between a magnetic metallic system and a nonmagnetic metal
with strong spin-orbit coupling. For ferromagnetic systems,
tunable interface-induced DM couplings have indeed been
demonstrated [30-36]. Such interfaces typically also give rise
to perpendicular anisotropies, which we therefore also take
into account. Finally, we also consider an external magnetic
field normal to the thin film. Previous work by Bogdanov
et al. [26] considered the same system at zero temperature and
in the continuum limit. These authors identified three phases:
an antiferromagnetic phase, a spin-flop phase, and a phase
where inhomogeneous structures persist. While examples of
structures in the latter phase were given, no further phase
boundaries were identified within this phase. One of our main
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results is that we find a distinct phase pocket that bounds a
2g skyrmionic phase and separates it from a spiral (1¢g) phase.
Furthermore, while in infinite systems skyrmions are not found
as thermodynamically stable regions of the phase diagram,
we confirm the existence of stable skyrmions in finite-sized
systems below the Curie temperature.

The paper is organized as follows: First, we present the
system under study, by defining the Hamiltonian that is used
in Monte Carlo (MC) simulations. After that, we discuss
the various spin textures and their characteristics that arise
in SLA’s. We also construct the phase diagram from MC
simulations, complemented by analytical results based on
a continuum model. We dedicate the last two sections to
the interaction energies of skyrmions, and to skyrmions in
finite-sized systems, respectively, after which we conclude
with a discussion and summary of our results.

Model. We are interested in the equilibrium spin configura-
tions in films of SLA materials. For this purpose, we consider
a square lattice of length L in the xy plane with Heisenberg
spins S; of unit length at position r. Nearest neighboring spins
are coupled through an antiferromagnetic Heisenberg term
J > 0 and a Dzyaloshinskii-Moriya term D and are affected
by anisotropy K and an external magnetic field B in the Z
direction. The effective Hamiltonian that is used in our MC
simulations is given by

H=J) S Srsz+Sep) + KD (Sc-80>—BY S -2

—D ) (Se X Seax-§ = Sr % Spuy - ). (D

For theoretical analysis, we consider a continuous field
description of the discrete Hamiltonian in Eq. (1) (see also
Ref. [9]). Because of the antiferromagnetic nature of these
materials, it is natural to define sublattices with magnetization
m,; and m, organized in a checkerboard configuration and
put the lattice constant to unity. For antiferromagnets with
large Heisenberg interaction we expect slowly varying periodic
structures and the staggered magnetization 1 = (m; — m;,)/2
to be large while the total magnetization m = (m; + my)/2 is
expected to be much smaller, i.e., || & 1 and |m| < |1] [37].
We also assume that the spatial derivatives of m can be
neglected and that the contribution of the total magnetization
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to the anisotropic term is negligible compared to that of
the staggered magnetization. This results in the following
Hamiltonian density

JI/a1\? a\>
R N - 8m’| — B KI?
H 2[<ax) +<ay> * m} e+ K
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Since spins are normalized to unity, such that |m;| = 1, the
staggered and total magnetization must satisfy m? + 1> =
1 and m-1=0, and minimizing the Hamiltonian density
results in m = —1 x (1 x h)/(8J). Substitution leads to a
Hamiltonian density that is only dependent on the staggered
magnetization:

J[ [\ a1\ 2 B2
H==||— — —[2=1]+kP?
2[<ax> +<ay>]+16f[z J+ Kt
al al al al
DllL.—= -1, —=+1,—=2—1,—=). 3
+ <Z8x 3x+Z3y y8y> )

Our simulations focus on systems for which the DM coupling
and the coupling to the magnetic field are of the order of the

antiferromagnetic spin-flop

real

staggered

fourier

(a) (b)

PHYSICAL REVIEW B 94, 054402 (2016)

Heisenberg coupling but assume that anisotropy strength is
small. For small fields all higher order interactions like dipole-
dipole interactions are negligible in antiferromagnets because
the net magnetization is small. Note that the continuous field
description is only valid for small fields and small DM coupling
where modulations are large compared to the lattice distance.

Phases. We find that systems described by the Hamiltonian
given by Eq. (1) have four distinct phases at zero
temperature: the antiferromagnetic and spin-flop phase
are both homogeneous, whereas the spiral and 2q phases
are modulated, i.e., inhomogeneous phases with 1 and 2
dominating wave modes, respectively.

There are two homogeneous phases: the antiferromagnetic
phase in which the staggered magnetization points along
the z axis and the spin-flop phase in which the staggered
magnetization lies in the xy plane. The spiral phase emerges
for large enough DM coupling for which the staggered
magnetization shows the same characteristics as ferromagnetic
spins in a spiral state. Finally, there is a bounded region for
which the 2¢ phase emerges, which has a similar texture to
the spiral phase but in which the width of the spirals varies
in length periodically. Configurations of these phases in real
space, in terms of the staggered magnetization, and the norm
of their Fourier modes are shown in Fig. 1. The Fourier modes
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FIG. 1. Various types of configurations encountered in MC simulations of the model described by the Hamiltonian in Eq. (1). The
antiferromagnetic (a), spin-flop (b), spiral (c), and 2¢g phase (d) are shown from left to right in typical real spin configuration (top) and staggered
magnetization (middle) for an antiferromagnetic system of size L = 32 at zero temperature. The arrows represent the local magnetization in
the xy plane and the background color shows the magnetization pointing up (red) or down (purple). The norm of the Fourier modes (bottom),
as defined in Eq. (4), of these configurations show the distinctive modes that define the phases.
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FIG. 2. The complete B-D phase diagram for antiferromagnetic materials with (a) easy-axis anisotropy K /J = —0.1 and (b) easy-plane
anisotropy K /J = 0.1 at zero temperature. The gray data points display parameter values at which Monte Carlo simulations were performed.
From these simulations, the phases were determined, shown as different colors. The red data points show the boundary of the 2¢g phase, as
obtained from these MC simulations for fixed values of B/J. The analytical solutions for the phase transitions as given by Eqgs. (5) and (6) are

shown as solid black lines.
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Phase diagram from simulations. In one elementary move
of our MC simulations, a random spin is selected and replaced
by a new spin vector, drawn uniformly from a spherical cap
around the original spin vector. The size of this cap is chosen
such that the acceptance rate in the Metropolis algorithm
is roughly 50%. The time step is defined such that each
spin makes an elementary move once per unit of time. At
each temperature typically 4500 time steps are taken before
measurements are done. During annealing, the temperature is
reduced from well above the critical temperature to well below
it in 200 temperature steps. These measurements result in data
obtained over a wide range of parameters and temperatures.

We consider the Fourier transform of the spin vectors as
defined by Eq. (4) below. All four phases can be characterized
by Fourier peaks. We define the homogeneous, spiral, and 2¢g
phases as having 1, 2, or 4 nonzero-mode peaks, respectively.
To construct the phase diagram from Monte Carlo simulations
based on the discrete Hamiltonian from Eq. (1) we first anneal
10 different systems of size L = 32 at some parameter values
J, D, B, and K. From these states the one with the lowest
energy is chosen, and the process is repeated for different
parameter values. For all these prospective ground states the
phase and the area in the phase diagram for which they have
the lowest energy is determined. From this the B-D phase
diagram can be constructed for various values of anisotropy
K. The phase diagrams are qualitatively different for systems
with easy-axis (K < 0) or easy-plane (K > 0) anisotropy, as
can be seen in Fig. 2.

Analytical phase diagram. We also construct the phase
diagram by using a number of ansatze for the various phases.
The parameters in these ansatze are obtained from minimizing
the Hamiltonian density from Eq. (3) for these phases. For
the antiferromagnetic phase we assume 1 = (0,0, 1), resulting

in an energy density Har = K. The spin-flop phase is char-
acterized by 1 = (cos ¢, sin ¢,0) with energy density Hsg =
—B?/(16J). For the spiral phase, 1 is dominated by a rotation
along the direction of the wave in the (1,1) direction such
that1 = (sin(q - r) cos 8, sin(q - r) sin 6, cos(q - r)). Averaging
over the length of one modulation and minimizing with
respect to q leads to an energy density Hsp = —B?/(32J) —
D?/(2J) + K /2. A phase transition between the antiferro-
magnetic and spiral, and the spin-flop and spiral phase occurs
along the lines

B =4/—(JK £ D?), 5)

for easy-axis anisotropy. For easy-plane anisotropy, we assume
for the spiral phase that the length is also variable, i.e.,
1 =I(sin(q - r)cos @, sin(q - r) sin 6, cos(q - r)). Following the
same procedure, we find that / = /B2 +8D? —8JK/B
minimizes the energy. The energy density for the spiral is
Hsp = —(B? + 8D? — 8JK)?/(32B2J). In the case of easy-
plane anisotropy, the phase transition between the spiral and
spin-flop phase is then given by

B =2y/2(1 ++2)y/D? — JK. ©)

From simulations we find, as is explained further below, that
the 2g phase lies in a K-independent regime of moderate
values for D/J. With a very small modulated structure like
these, assumptions such as very small total magnetization m do
not hold any longer, and so the continuous field description in
Eq. (3) does not apply. These fast varying structures, including
many higher-order Fourier modes, as can be seen in Fig. 1(d),
mean a simple ansatz, to reliably calculate energy densities for
the 2¢g phase, could not be found.

We have constructed similar phase diagrams for various
strengths of anisotropy K /J € 0, +0.02, & 0.04, £ 0.1. The
critical strengths By at D = 0 and Dy at B = 0 at which the
transitions take place are obtained from Egs. (5) and (6),
yielding By ~ 4+/|JK| and Dy ~ +/JK, consistent with
results in Ref. [22]. These become larger for increasing
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FIG. 3. The energy contributions E£/J to the ground state of the
interactions with coupling parameters J, D, B, and K are shown
as a function of D/J at parameter values J = —1, B = 3.2, and
K = Ofor a system of size L = 32. The system undergoes two phase
transitions at D/J = 0.76 and D/J = 0.84 between the spin-flop,
2q, and spiral phase, respectively. These are depicted as vertical gray

lines. The discrete jumps in various energy contributions suggest
first-order phase transitions.

strengths of anisotropy. In the simulations, the size of the
system limits the longest wavelength of the magnetization
texture. For larger anisotropy, simulations in finite systems are
therefore in better agreement with analytical calculations. An
interesting point is that the 2¢ phase is always sandwiched
between the spin-flop and spiral phase, at constant values of
DM interaction. Its size is relatively insensitive to the strength
of anisotropy. This implies that the size of modulations in the
2g phase in antiferromagnets is related to the pitch length
p ~ J/D, which is a measure for the length of modulation.
Therefore, p only has a limited range of values, unlike the size
of skyrmions in ferromagnets.

Interaction energies. To investigate further the stability of
the 2g phase in this model, we look at the energy contributions
E of all interactions in the model along a line with fixed
B/J = 3.2, through the 2g phase in the phase diagram.
With increasing DM interaction and no anisotropy, there is
a transition from the spin-flop phase to the 2g phase at
D/J = 0.76. If the DM interaction is increased further, the
spiral phase is entered at D/J = 0.84, as can be seen in Fig. 3.
At the phase transition the contributions of the external field B
and the DM interaction D to the total energy make distinctive
jumps. While the spin-flop state minimizes the energy by
having a net magnetization along the external field direction,
the spiral mode makes optimal use of the DM interaction. The
24g phase gives a compromise between the two, and so a finite
area between the two emerges in which neither of them is
optimal, and the 2¢q phase prevails.

Skyrmions. An important question is whether the objects in
the 2¢g phase as shown in Fig. 1 can be called skyrmions, as they
are not fully isolated topological objects. For a ferromagnet,
the (anti)skyrmion is defined as a topological object for which
the winding number w of the magnetization is nonzero:

1
w = —/dxdyn - (0ym x dym). (7)
4
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In the case of the antiferromagnet, the winding number w of
the staggered magnetization can be defined instead. Although
the staggered magnetization in an antiferromagnet behaves
similarly as the normal magnetization in a ferromagnet
there are some distinctive differences. The antiferromagnet is
symmetric under the n — —n transformation, such that there
is no difference between a skyrmion and an antiskyrmion, and
neither the up or down regime in terms of the staggered mag-
netization is favored over long distances. Thus there can be no
lattice of isolated thermally-activated topological objects like
in a ferromagnetic system, without breaking this symmetry.

In finite-size systems with open boundaries, skyrmions can,
however, be stable as the boundaries break the sublattice
symmetry. We find that skyrmions in finite-sized systems
persist even if the temperature is increased up to the Curie
temperature. To show this, we investigate a single skyrmionina
small system of size L = 8 with open boundariesat D/J =1,
B/J =4, and K =0, deep in the 2q phase [see inset of
Fig. 4(a)]. The system size is chosen as the maximum size
at which at most one skyrmion forms. Starting well above the
critical temperature we anneal the system as discussed above.
Due to sublattice symmetry, the system gets trapped in a state
with either a skyrmion or an antiskyrmion in the center. From
the susceptibility yx, = (w?) — (w)? of the winding number
of the staggered magnetization, which is at a minimum at
the critical temperature ,Bc’l =kpT,/J, we find B. =~ 3.9.
Results from 10* annealings allow for an accurate picture
of the expected number of skyrmions in this system at a
certain temperature. In particular, we determine the probability
density p(w,T) for a value w of the winding number at
temperature T'. Results for y,, and p(w,T) are shown in Fig. 4.
Within margins of error, the system contains roughly half of the
time (49.54 4 1.0%) a skyrmion instead of an antiskyrmion,
as expected from symmetry arguments for temperatures below
the critical temperature. Notice that the winding number is not
exactly an integer due to edge effects. In short, this shows
that (anti)skyrmions as stable isolated topological objects can
exist in finite-sized systems at temperatures below the Curie
temperature. Moreover, the finite size turns out to stabilize
skyrmionic structures well outside the parameter range where
the 2g phase is stable [38].

Discussion and conclusion. In summary we have shown
that certain types of antiferromagnetic thin films have four
phases at zero temperature including a 2¢g phase which was
not reported before. With Monte Carlo simulations and Fourier
analysis, we constructed a phase diagram. The 2q phase has
close relations to skyrmions in ferromagnetic systems, but
due to symmetries a lattice of topologically isolated objects is
not expected. We have shown however, that in finite-sized
systems and at nonzero temperatures (anti-)skyrmions can
be thermodynamically stable configurations. The existence
of thermodynamically stable skyrmions in SLAs provides an
appealing alternative over skyrmions in ferromagnets as data
carriers.

To address finite-size effects and effects of periodic bound-
aries, we verified that for smaller systems of size L = 16
the phase diagram is not significantly different. At very low
B and D finite-size effects are stronger as long-wavelength
modulated states do not fit into the small systems anymore.
For parameters yielding the 2¢g phase, we verified that the
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FIG. 4. (a) Susceptibility of the winding number of the staggered magnetization x,, as a function of temperature k3T /J, for a system of
size L = 8 with couplings D/J =1, B/J =4, and K = 0. These parameters are chosen such that a single skyrmion emerges (see inset). The
arrows represent the local Néel vector in the xy plane and the background color shows the z component as positive (red) or negative (purple).
A vertical line is drawn at the temperature kg7 /J = 0.25 at which point the susceptibility is minimal. (b) Probability density p(w,T) of the
winding number w of the staggered magnetization as a function of temperature. Below k37T /J =~ 0.25, indicated by a vertical line, the system

chooses a configuration with either a skyrmion or an antiskyrmion.

conclusions presented above, which were obtained for systems
of size L = 32, still hold if the system size is increased to
L = 128. We also verified that helical boundaries with a shift
up to half a period of the 2¢g phase only result in a rotation of
the g vector but otherwise do not affect the phase diagram.
Since stabilizing the 2¢g phase requires large fields B ~ J,
the best candidates for experimental verification are antifer-
romagnets with low critical temperature 7, ~ J/kp so that
the required fields can be more easily achieved. A possibility
for experimental observation would be a monolayer of an
antiferromagnetic compound that is probed by a scanning

tunneling microscope, similar to the experiments with Fe [9]
in which temperature and fields have similar energy scales.
In future work we intend to study quantum fluctuations
of the ground states in the phase diagram and how the
antiferromagnetic textures interact with spin and heat current.
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