
The infrared sector of quantum fields
on cosmological space-times



ISBN : 978-90-393-50867

Cover Illustration: A picture of the nebula N44C, image credit: NASA and The Hubble
Heritage Team (STScI/AURA). Merged with the silhouette of the windows of the Little
Gidding church (chosen as a reference to the poem of Eliot) .



The infrared sector of quantum fields
on cosmological space-times

De infrarode sector van kwantum velden op
kosmologische ruimte-tijden

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de
rector magnificus, prof.dr. J.C. Stoof, ingevolge het besluit van het college voor

promoties in het openbaar te verdedigen op maandag 6 juli 2009 des ochtends te 10.30
uur

door

Tomas Mauricio Janssen

geboren op 11 mei 1981
te Rio de Janeiro, Brazilie



Promotor: Prof.dr. G. ’t Hooft

Co-promotor: Dr. T. Prokopec



We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

Through the unknown, unremembered gate
When the last of earth left to discover

Is that which was the beginning;
At the source of the longest river
The voice of the hidden waterfall
And the children in the apple-tree
Not known, because not looked for

But heard, half-heard, in the stillness
Between two waves of the sea.
Quick now, here, now, always –

A condition of complete simplicity
(Costing not less than everything)

And all shall be well and
All manner of thing shall be well

When the tongues of flame are in-folded
Into the crowned knot of fire

And the fire and the rose are one.

- T.S. Eliot

Four Quartets: Little Gidding





Contents

1 Introduction 1

2 Cosmology 6

2.1 Horizons, scales and the Hubble parameter . . . . . . . . . . . . . . . . . . 10
2.2 Overview of the universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Quantum fields on a curved background space-time 15

3.1 Quantum field theory on a Minkowski background . . . . . . . . . . . . . . 16
3.2 Quantum field theory on a curved background . . . . . . . . . . . . . . . . 19

3.2.1 Simple cosmological particle creation . . . . . . . . . . . . . . . . . 20
3.2.2 Adiabatic approximation . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Semi-classical Einstein equations, the effective action and back-reaction . . 23
3.4 Ultraviolet behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Conformal coupling and the trace anomaly . . . . . . . . . . . . . . . . . . 31

4 de Sitter space 33

4.1 de Sitter propagators and vacua . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 The massless minimally coupled case . . . . . . . . . . . . . . . . . . . . . 41

5 Infrared divergencies in cosmology 43

5.1 Infrared divergence in de Sitter and back-reaction . . . . . . . . . . . . . . 48
5.2 The relevance of massless scalar fields . . . . . . . . . . . . . . . . . . . . . 49

6 Resolving the infrared divergencies using a momentum cut-off 51

6.1 Finite Space Mode Sum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.1.1 Accelerating case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2 Decelerating case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.3 Final result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7 The stress energy tensor 65

7.1 Calculation of the stress-energy tensor . . . . . . . . . . . . . . . . . . . . 66
7.1.1 The infinite space contribution . . . . . . . . . . . . . . . . . . . . . 66
7.1.2 The ∆N correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.1.3 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.1.4 Resolving the divergencies of the digamma functions . . . . . . . . 70
7.1.5 The leading order contribution in the accelerating case . . . . . . . 71
7.1.6 The leading order contribution in the decelerating case . . . . . . . 72

8 The one loop effective potential 75

8.1 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.1.1 Large field limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
8.1.2 Logarithmic corrections . . . . . . . . . . . . . . . . . . . . . . . . 79
8.1.3 Late times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
8.1.4 Numerical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



9 The case of the graviton 85

9.1 The quadratic gravitational and matter action . . . . . . . . . . . . . . . . 86
9.2 The propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
9.3 One-loop effective action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

9.3.1 Infinite space contribution . . . . . . . . . . . . . . . . . . . . . . . 96
9.3.2 Renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.3.3 Correction terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

10 Conclusions 106

A Conventions and definitions 110

References 112

Samenvatting 119

Publications 122

Dankwoord 123

Curriculum Vitae 124



1 Introduction

One of the fascinating consequences of Einstein’s general theory of relativity is that
space-time itself is in fact a dynamical object. This dynamical nature has led to many
important insights of which with little doubt the most important is the understanding of
the gravitational attraction. According to the general theory of relativity, a massive
object curves the space-time around it. In this curved space-time test particles will not
any more move in straight lines, but instead follow the geodesics of the geometry. It
turns out that an observer far away will now see the test particles falling towards the
massive object, to a first approximation in exact accordance with Newton’s law of
gravity.
The dynamical nature of space-time has led to many other conclusions as well. When
higher order corrections to Newton’s law are taken into account, the theory correctly
describes the precession of the perihelion of Mercury. This phenomenon could not be
explained by Newton’s theory alone and required for example an additional hypothetical
planet, named Vulcan, extremely close to the sun. Since this planet was never found,
the general theory of relativity not only reproduces Newtonian gravity, but actually
improves it.
Another important example is the discovery by Hubble’s observations on galaxy redshift
in 1923 that all galaxies appear to move away from us, with a velocity proportional to
their distance. While one could of course postulate that, for some unknown reason, there
is this large scale motion of galaxies, centered around us, this can be most naturally
understood from the dynamical nature of space-time. The fact that the galaxies appear
to move away, is actually due to the expansion of the universe. This expansion is in fact
an expansion of space-time itself, and Einstein’s general theory of relativity explains how
this expansion depends on the energy density of all matter and radiation in the universe.
Hubble’s observations and the general theory of relativity give an exact agreement.
Given the fact that space-time is dynamical it is an immediate question how this would
affect other known theories. In particular we will be interested in how quantum fields
will react to a dynamical background. The problem to construct a unified, fundamental,
theory that includes both general relativity and quantum fields turns out to be
extremely challenging [1, 2] and see e.g. [3] for an overview of the problems. The two
most promising candidates for such a unified theory today are string theory (see e.g. [4]
for an introduction) and loop quantum gravity (for a review see e.g. [5]). While these
approaches are extremely interesting, it is also possible to consider the interplay between
quantum field theory and general relativity in a perturbative manner [6], without
knowledge of the underlying unified theory. In such an approach we consider the
quantum fields to be propagating on a classical, dynamical, background space-time.
Questions of this nature were already asked by Schrödinger in 1932 [7]. But the real
breakthrough came with the work of Parker at the end of the 1960’s [8, 9]. What Parker
studied was a scalar field in a cosmological space-time. In this work it was realized that
the expansion of space-time causes the particle number of the theory to be
non-constant. Although not many particles where created in the case Parker studied, his
work did show explicitly that interesting and non-trivial effects could occur when one
considers quantum fields on a cosmological space-time. Following the work of Parker,
Grishchuk showed in 1974 that similar effects are present for gravitational waves [10].
In the same year Hawking showed that due to the dynamical nature of space-time
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during the collapse of a black hole, a black hole is actually not black, but emits
radiation [11]. From that time onward an enormous amount of research has been done
on the study of quantum fields on a dynamical background space-time [6, 18, 19, 17].
It was however not until the work of Starobinsky [25] in 1979, Mukhanov and Chibisov
in 1981 [13] and subsequent works by Hawking [14, 12] and others that it was realized
that cosmological particle production might actually lead to readily observable effects.
The creation of particles in the early universe might be sufficient to leave an imprint in
the form of temperature fluctuations and polarization on the remnant radiation from the
early universe, known as the cosmic microwave background [15]. The experimental
discovery of the temperature fluctuations in the microwave background by the WMAP
satellite [16] provide good evidence that the fascinating effects first found by Parker in
theory, might be truly realized in nature.
The property of curved space-time that leads to these effects is the fact that one works
on a time dependent background. Amongst other things this leads to the lack of
Poincaré symmetry [17, 18, 19]. Poincaré invariance in Minkowski space-time plays an
interesting role, since it leads to a unique definition of the vacuum of the theory and
therefore also to a natural notion of particles [20, 21]. When, on the other hand, one
considers quantum fields on a curved background, a state which at a certain time
appears to be the vacuum, will in general not be the vacuum at later times. Moreover,
two inertial observers will in general not agree on the question, whether a certain given
state is the vacuum of the theory. The concepts vacuum state or single particle state are
therefore not uniquely and unambiguously defined in curved space-time.
It is this effect that has led to many interesting applications of quantum field theory on
curved space-time, including the cosmological particle creation and the Hawking effect
described above. Let us look now at those two examples in somewhat more detail,
starting with the Hawking effect [11], that describes particle emission by black holes. To
analyze this effect one considers a spherically symmetric distribution of matter, that is
initially sufficiently distended, such that space-time is well described by Minkowski
space-time. Therefore initially, the standard flat space description of the vacuum is
meaningful. However after a sufficient amount of time, the gravitational attraction has
caused the matter to collapse into a black hole. The geometry will now be described by
the Schwarzschild metric [22], and more importantly, the system will not anymore be in
its vacuum state. The fact that the system is not anymore in its vacuum state, implies
that particles have been created out of the vacuum. In fact one can show that near the
horizon of a black hole a thermal spectrum of particles is produced. A heuristic
explanation of the physics involved is the following [6]. Due to the Heisenberg
uncertainty relation, there is a constant creation and subsequent annihilation of virtual
particles. Since pairs are created with all wavelengths, it can happen that a pair is
created with a wavelength roughly the Schwarzschild radius of the black hole. It is in
such a case that one particle might escape the black hole, while its partner stays trapped
within the Schwarzschild radius. The presence of a horizon around the black hole has
prevented the annihilation of the pair and consequently there is particle emission by the
black hole. Notice however that since the whole notion of a particle is not well defined
on a curved background, this heuristic argument should not be taken too literally.
Something similar happens on cosmological space-times where the expansion of the
universe leads to the existence of cosmological horizons [15]. These cosmological
horizons imply that if two points are sufficiently separated, and the expansion of the
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universe is sufficiently fast, these points are not anymore causally connected. In other
words a signal sent between these two points cannot catch up with the expansion of the
universe. We can thus apply the heuristic argument presented for the black hole in a
similar way here (with the same caution concerning the notion of particles!). If a virtual
particle-antiparticle pair is created with a sufficiently long wavelength, the expansion of
the universe prevents its subsequent annihilation [23]. Thus we are led to conclude –
and this can also be shown in a rigorous way – that in expanding space-times there is a
constant creation of long wavelength particles. The production of particles in the context
of cosmology is more then just an interesting theoretical observation. It is nowadays
believed that during a phase of a nearly exponential expansion in the early universe,
known as inflation [26, 12, 27] and see e.g. [24] for a review , it is precisely these
particles that provide the otherwise almost perfectly homogeneous universe with small
inhomogeneities [13, 28]. These initial inhomogeneities will then, through their coupling
to gravity, cause a fluctuation in the gravitational potential. These gravitational
potentials become frozen during during inflation and thus remain practically unaltered.
During the early phases of the universe following inflation, the energy density is
dominated by radiation. The internal pressure of this radiation fluid prevents matter
from falling in these gravitational potentials. As soon as the universe becomes
dominated by matter however, the Jeans length becomes much less than the Hubble
radius. Matter can now fall into the gravitational potentials and, due to gravitational
collapse, eventually form all the structure we see in the universe today. Nowadays there
are several ways of experimentally studying these inhomogeneities. First of all, we can
directly study the large scale structures of the universe today, through baryon acoustic
oscillations [29, 30], Lyman-α clouds studies [31] and the 21 cm transition in neutral
hydrogen [32]. At the moment however, the most precise measurements still come from
the cosmic microwave background[16]. The presence of the cosmic microwave
background allows us to look at the structure of the very early universe. The
inhomogeneities due to particle creation have left a tiny (O(10−5)) imprint on the
temperature of the cosmic microwave background, because photons that need to climb
out of the gravitational potentials lose a bit of energy (and thus become colder). Theory
predicts several features of the spectrum of these photons. First of all, the spectrum is
expected to be nearly scale invariant. Second of all one expects the presence of acoustic
oscillations and thirdly the fluctuations are expected to be nearly Gaussian. The
spectrum of these fluctuations has been precisely measured and the results confirm these
predictions based on particle production on super Hubble scales during inflation [16].
The constant creation of particles in the infrared however also presents a possible
problem. The creation of particles constantly adds (or subtracts) a little bit of energy to
the universe. However, one should also take into account that due to the expansion of
the universe this energy is red-shifted, but a priori it is not clear which of these two
effects dominates. To study this question in more detail, one needs to specify a
particular ground state. Unfortunately in an expanding space-time, there is no unique
state with minimal energy at all times, as in Minkowski space-time and obviously the
result will depend on the choice of state. In cosmology, the state that minimizes the
energy in the asymptotic past, and resembles the Minkowski space-time vacuum is
known as the Bunch-Davies vacuum [33]1. If we now assume that the state of the

1The Bunch-Davies vacuum is originally defined only in de Sitter space-time. As we shall see there is a
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universe is the Bunch-Davies vacuum, we find that for a large class of cosmological
models, the two point function (or equivalently the propagator) of a massless
non-conformally coupled field, diverges in the infrared [34]. In particular this divergence
is found if the pressure driving the universe’s expansion is negative. This is precisely due
to the effect described above. The constant creation of infrared modes causes a pile-up
of these modes at large scales. The fact that the two point correlation diverges in the
infrared implies that these infrared modes add an infinite amount of energy to the
expectation value of the stress-energy tensor [6]. Notice that for a proper understanding
of the conditions wether an infrared divergence occurs, one has to take several effects
into account. We like to point out here that also the propagator for a massless, free
scalar field in D = 2 space-time dimensions is infrared divergent even in Minkowski
space-time [35]. For D > 2 this divergence disappears because of the phase-space
suppression. The number of modes in a shell with thickness dk and radius k scales as
kD−2dk and thus for D > 2 this decreases as k decreases. The cosmological particle
production described above counteracts this phase-space suppression. To see whether
this particle production is enough to compensate the phase-space suppression, one has
to explicitly calculate the two-point correlation.
It is not difficult however to understand why the infrared divergence is only prominent
for massless non-conformally coupled fields. A mass would, just like in flat space-time,
automatically regulate any infrared divergence and thus remove the effect. While for
conformally coupled fields, particles are created out of the vacuum, their production rate
is suppressed by the expansion of the universe. This suppression is sufficient to make the
infrared finite [23]. Many familiar fields thus present no problems, since for example
massless gauge fields and massless fermions are conformally coupled. Some examples of
massless non-conformally coupled fields are a massless scalar, the graviton and a
massless antisymmetric tensor field [36]. For this thesis we shall mostly consider the
massless scalar field. Understanding the physics of that field can then be translated to
the more complicated cases, like the graviton.
Since the presence of an infrared divergence of the two point correlations is dependent on
the choice of the ground state and the ground state in curved space-time is not uniquely
defined, a natural solution to the infrared problem is to consider a different ground state.
In this thesis we shall present a method to change the ground state in such a way that
the infrared divergencies are resolved. In section 6 we shall do this by working on a
spatially compact manifold [38, 37]. Physically one can see this as putting the universe
in a co-moving box, with periodic boundary conditions. If the radius of this manifold is
large enough, this approach in effect simply puts an infrared cut-off in the integral over
the modes contributing to the two point correlator.
While this approaches make the two point correlations infrared finite, there still is
particle production. This production of particles will give a contribution to the stress
energy tensor and although the result will be finite, this effect is cumulative. At the
same time, the expansion of the universe will cause these modes to redshift and
therefore the contribution of one mode to the energy density will decrease in time. One
has to study each case separately to resolve which effect is dominant.
Supposing that there is a growing contribution to the two point correlation function due
to these modes, interesting physical effects can be considered. Although any effect due

natural extension of the Bunch-Davies vacuum to any cosmological space-time with constant deceleration.
We shall use the term Bunch-Davies vacuum to describe a state in this general sense.
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to particle production is initially small, the growth might make it large after a sufficient
amount of time. This fact has been studied by several authors in the context of
cosmological inflation [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54]. The fascinating
idea here is that, on the one hand one has either a cosmological constant, or an inflaton
field causing the universe to expand exponentially fast (such a geometry is known as a
de Sitter geometry), while on the other hand the growing infrared contributions
counteract this exponential expansion. If one then waits long enough, the growing
contributions eventually might end inflation naturally and – when inflation is driven by
a cosmological constant – in addition explain the smallness of the cosmological constant.
In de Sitter space however, at one loop order, the production of particles and their
redshift cancels each other, leading not to a significant effect. However, at higher loop
order, the interactions between different infrared modes become relevant and it is these
interactions that do appear to exhibit the secular growth. Detailed calculations show
that this appears to happen at two-loop order for gravitons [48] and at three-loop order
for a massless minimally coupled scalar with quartic self interactions [54].
Apart from these effects, which are all computed during inflation, the growth of
correlations might also be relevant in the context of dark energy [55, 56], or see [57] for a
recent review. The reason for this is that although the growth is small, it is cumulative.
Therefore it only becomes relevant at late enough times. This is exactly what one wants
for dark energy, which has only very recently become the dominating contribution to the
energy density of the universe. If the energy density in these correlations has an
equation of state compatible with a dark energy component, the delayed effect we obtain
through the cumulative growth might then give insight in the ’why now?’ or cosmic
coincidence problem of dark energy (for a review see e.g. [58]): why is the energy
density in dark energy and in dark matter today of the same order of magnitude?
In this thesis we shall not go deeper into these higher loop calculations, instead we shall
use the infrared divergence free propagator calculated in section 6 to calculate one loop
effects in a much more general class of cosmological models than just the inflationary
models considered before. In section 7 we shall calculate the expectation value of the
stress energy tensor of a massless free scalar field. The calculation of the propagators
and the stress energy tensor is based on references [71] and [38]. In section 8, which is
based on [73], we shall consider the one-loop effective action for a massless scalar field
with a quartic self interaction. Finally in section 9, which is based upon [74], we shall
calculate the one loop effective action for a theory which contains both graviton and
scalar matter fluctuations.
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2 Cosmology

The field of cosmology deals with the dynamics of the universe on the largest of
scales [15]. Since the universe is electrically neutral, on the largest scales the only
relevant force is the gravitational interaction. This implies that the dynamics of the
universe on the largest scales is determined by the Einstein equations [22]

Rµν −
1

2
gµνR = 8πGNTµν , (1)

here R and Rµν are the Ricci scalar and tensor defined in (431) respectively, gµν is the
metric and GN is Newton’s constant. The energy momentum tensor Tµν describes the
influence of all the matter in the universe on the geometry. The Einstein equations (1)
follow from the variation with respect to the metric of the action

S =

∫

d4x
√
−g 1

16πGN
R + SM (2)

where SM is the action associated to the matter content and g is the determinant of the
metric. We find that we recover the Einstein equations if we make the identification

Tµν = − 2√−g
δSM
δgµν

. (3)

Because of the Bianchi identity, which follows from the symmetries of the curvature
tensors imposed by general coordinate invariance, ∇µ(Rµν − 1

2
gµνR) = 0, with ∇µ the

covariant derivative, we find that the energy momentum tensor is covariantly conserved

∇µTµν = 0. (4)

Because of the complexity of the Einstein equations it is unfortunately a hopeless
endeavor to try to solve (1) for all but the simplest models (and even if we had a
solution, it would still be far from obvious how to construct physical observables!).
Fortunately it turns out that observations show that the universe becomes spatially
homogeneous on the largest of scales. Measurements of the large scale structure of the
universe [59] show that at scales larger than roughly 200 Mpc the relative fluctuations in
the energy density δρ

ρ
are less than 0.1, while these fluctuations in the cosmic microwave

background [16], which probes scales of roughly the Hubble radius or 4300 Mpc, are
10−4. This leads then to the so-called cosmological principle, which states that on the
largest scales the universe is homogeneous and isotropic. Imposing this additional
symmetry on the Einstein equations, will make it possible to construct exact
cosmological solutions.
The cosmological principle implies that we can model all the constituents of the universe
with a homogeneous fluid. If such a fluid has an energy density ρ and a pressure p, it
has an energy momentum tensor given by

T µν = (ρ+ p)uµuν + gµνp, (5)

where uµ is the fluid’s four velocity. We can always choose our frame to be the rest
frame of the fluid, where we have uµ = a−1δµ0 . We furthermore will assume that the fluid
obeys an equation of state

p = wρ (6)
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with w constant. Typical values for w are 0 for non-relativistic dust and w = 1/3 for a
gas of radiation. Because of the cosmological principle, space-time itself should also
become spatially homogeneous on the largest of scales. The most general metric obeying
this constraint is the Friedmann-Lemâıtre-Robertson-Walker metric, defined by the line
element

ds2 = gµνdx
µdxν

= −dt2 + a(t)2
( dr2

1 − kr2
+ dθ2 + sin(θ)2dφ2

)

.
(7)

Here (r, θ, φ) are spherical coordinates, a(t) is called the scale factor and it specifies the
expansion of the universe. k specifies the curvature of space-time. If k > 0, spatial
sections are positively curved, if k < 0 spatial sections are negatively curved and if k = 0
spatial sections are flat. In the following we shall choose k = 0, conform observations
and the predictions of cosmic inflation [24]. In that case the spatial part of the metric is
simply Euclidean and we can thus write the line element as

ds2 = −dt2 + a(t)2d~x2 (8)

If we make the coordinate transformation to so-called conformal time η, defined by

dt = adη, (9)

the metric (8) becomes conformal to the Minkowski metric

gµν = a(η)2ηµν . (10)

In the following a dot will always indicate a derivative with respect to time t, while a
prime will indicate a derivative with respect to conformal time η. By taking derivatives
of the scale factor we construct two important parameters

H(t) ≡ ȧ

a
; ε(t) ≡ − Ḣ

H2
(11)

H is known as the Hubble parameter and specifies the expansion of space-time. The
parameter ε specifies the acceleration of space time, if ε > 1, the expansion of the
universe is decelerating, while for ε < 1 it is accelerating.
Let us now consider the Einstein equations (1) for the specific case at hand where the
energy momentum tensor and metric are given by (5) and (10). The Christoffel
connection is given by

Γαµν = Ha
(

δ0
µδ

α
ν + δ0

νδ
α
µ + δα0 ηµν

)

(12)

and the curvature invariants, given for later use in D space-time dimensions, we find
from (431)

Rα
µβν = −H2a2

(
(

δαν ηµβ − δαβηµν

)

+ ε
(

δαν δ
0
µδ

0
β − δα0 δ

0
νηµβ − δαβ δ

0
νδ

0
µ + δ0

βδ
α
0 ηµν

)
)

Rµν =H2a2

(

(D − 1)ηµν − ε
(

ηµν − (D − 2)δ0
µδ

0
ν

)
)

R =H2(D − 2ε)(D − 1)

(13)
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With these expressions we can rewrite the Einstein equations in terms of H and ε.
Because of the extra symmetry imposed by the cosmological principle, there are only
two independent Einstein equations, known as the Friedmann equations (we set D = 4)

H2 =
8πGN

3
ρ

(1 − ε)H2 = −4πGN

3
(ρ+ 3p).

(14)

The conservation equation (4) reduces to the single requirement

ρ̇+ 3H(ρ+ p) = 0, (15)

which is, because of the Bianchi identity, not independent of (14). Notice that if the
universe is filled with more than one fluid, each with energy ρi and pressure pi, ρ and p
in (14) and (15) should be read as

∑

i ρi and
∑

i pi.
If the universe is filled with only one fluid, which obeys the equation of state (6) (with w
constant and w 6= −1), we can find from (14) and (15) the following scalings

ρ ∝ a−3(1+w)

a ∝ t
2

3(1+w)

(16)

Moreover we find that ε is a constant, given by

ε =
3

2
(1 + w) (17)

which allows us to write

H(t) =
H0

1 + εH0t
; a(t) =

(

1 + εH0t
) 1
ε

, (18)

where we chose our initial conditions such that H(0) = H0 and a(0) = 1. In the
conformal coordinates (10), if ε is constant, we find

H(η) =
H0

(
− (1 − ε)H0η

) −ε
1−ε

; a(η) =
1

(
− (1 − ε)H0η

) 1
1−ε

(19)

where the constants are chosen such that for ε = 0 we have H(η) = H0 and a(η) = − 1
H0η

.
Since a and H are positive in an expanding universe, these choices imply that

−∞ <η < 0 if ε < 1

0 <η <∞ if ε > 1.
(20)

Furthermore, we find using (19) that

(1 − ε)Hη = −1

η
. (21)

In many cases, we shall consider a matter content given by a scalar field Φ(x), with a
potential V (Φ(x)). If we want to preserve the spatial homogeneity of the background,
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we need to assume that the scalar field is spatially homogeneous, thus Φ(x) = Φ(t). The
matter action is given by

SM =

∫

d4x
√
−g
(

− 1

2
∂µΦ∂

µΦ − V (Φ)
)

. (22)

We find that the energy momentum tensor is given by

Tµν = ∂µΦ∂νΦ − gµν

(1

2
∂µΦ∂

µΦ + V (Φ)
)

(23)

Because of the homogeneity of the field, we find that the energy and pressure are given
by

ρΦ =
1

2
Φ̇2 + V (Φ)

pΦ =
1

2
Φ̇2 − V (Φ).

(24)

The conservation equation (15) becomes

Φ̈ + 3HΦ̇ +
dV (Φ)

dΦ
= 0, (25)

which is nothing but the equation of motion for the scalar field Φ. We like to end this
section with a list of possible scenarios, ordered with respect to the value of ε.

• ε < 0: in such a case the expansion of the universe is extremely fast, in the sense
that the scale factor, measured with respect to t = 0 will go to infinity in finite
time (see 18). Such an expansion requires w < −1, which breaks the weak energy
condition (ρ ≥ 0 and ρ+ p ≥ 0). Such matter is sometimes called phantom matter.

• ε = 0: in this case the expansion of the universe is exponential in time. A
geometry of this type is known as de Sitter space. The expansion can be driven by
matter which has w = −1, which is known as a cosmological constant.

• 0 < ε < 1: in those cases the expansion of the universe is accelerating. This
requires that w < −1/3 and thus breaks the strong energy condition (ρ+ p ≥ 0
and (ρ+ 3p ≥ 0).

• ε = 1: the acceleration of the expansion is in this case zero, and w = −1/3.

• ε = 3/2: this implies w = 0, or in other words, the pressure of the fluid is zero.
This is the equation of state for non-relativistic matter.

• ε = 2: this implies w = 1/3 and thus the trace of the stress-energy tensor is zero.
This is the equation of state for relativistic matter. Notice that for ε = 2 the Ricci
scalar is zero.

• ε = 3: in this case w = 1 and we see from (24) that this can be obtained by a free
scalar field, whose energy is given purely by its kinetic energy

• ε→ ∞: in this limit the scale factor becomes a constant and this can thus be seen
as the limit to Minkowski space-time.
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2.1 Horizons, scales and the Hubble parameter

In cosmology there are several length scales that play an important role. First of all
there is the distance between two points [60]. If an observer in the coordinates (8) at a
certain time t0 measures a certain spatial distance between two points to be λ, an
observer at a different time will measure a distance

a(t)

a(t0)
λ, (26)

with a the scale factor. We call λ/(a(t0)) the co-moving distance. This scaling is easily
understood, as the universe expands, the distance between two points increases with the
scale factor. Since all physical scales grow in this way, also the wavelength of radiation
grows in time. If the scale factor today is a(t0), we define the redshift z(t) of a photon
emitted at time t < t0 as

1 + z(t) =
a(t0)

a(t)
(27)

Since the redshift causes the radiation to lose energy as the universe expands, we
conversely find that in the early universe the radiation was more energetic, or hotter.
The second length scale we would like to mention is the causal horizon. This horizon is,
just as in Minkowski space-time due to the fact that in a finite time, a signal can
propagate only a finite distance. A signal sent at some time t∗, will at a later time t
have travelled a distance

`H(t) = a(t)

∫ t

t∗

dt′

a(t′)
. (28)

If we choose t∗ to be some initial time, `H(t) gives the size of the causally connected
universe at time t. Let us foremost state what this length is not. It is not the ’size’ of
the universe. If we take two points, separated at time t by a distance less then `H(t) it
also does not mean that these two points will be able to communicate in the future.
What it does mean is that these points have been in causal contact in the past. Taking
the constant ε expressions for H and a we find from (18)

`H(t) = a(t)
( 1

a(t)H(t)(ε− 1)
− 1

a(t∗)H(t∗)(ε− 1)

)

. (29)

Notice that for t > t∗ this expression is always positive, since aH grows in time if ε < 1
while it decreases in time for ε > 1. This therefore means that in an accelerated
expanding universe, the co-moving causal horizon is bounded by 1

a(t∗)H(t∗)(1−ε) . Thus two
points, at time t∗ separated by a larger distance than that, will not be able to
communicate in the future. The reverse is true in a decelerating universe. At a certain
time t� t∗, only those points with a co-moving distance less than 1

a(t)H(t)(1−ε) have been
in causal contact in the past. The third length scale we would like to introduce is the
Hubble radius, given by the inverse Hubble parameter

rH(t) =
1

H(t)
. (30)

The meaning of this parameter is not always clear from the literature. First of all we
saw from (29) that in an accelerating universe, the co-moving Hubble radius, rH/a is
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apart from a factor (1 − ε) the distance over which causal physics can act in the future,
while in a decelerating universe it is the distance over which causal physics has acted
starting from the (infinite) past. The most important interpretation for the Hubble
radius however comes from its influence on the dynamics. We shall see in many cases
that one can distinguish between super-Hubble and sub-Hubble physics. To see this we
look at the equation of motion of a free scalar field in a cosmological background [60]

Φ̈ + 3HΦ̇ −
~∇2

a2
Φ = 0 (31)

If the spatial gradients ~∇2 are small, we find that in a constant ε background Φ̇ ∝ HΦ.

This approximation therefore makes sense if the spatial gradients
~∇2

a2
Φ � r−2

H Φ, thus if
the fluctuations in Φ are super-Hubble. In this limit we can easily solve the equation of
motion and obtain that Φ(t) = c1 + c2

∫
dt
a3

, with c1 and c2 constants. In the opposite
limit, thus if fluctuation in Φ are sub-Hubble, we find after a simple rescaling by a that
aΦ(η) = c3

∫
d3k√

2k(2π)3
exp(i(~k · ~x± kη)), where η is conformal time, defined in (9). In

both limits physics is completely different. On sub-Hubble scales, we essentially have a
harmonic oscillator with a time dependent frequency and the field Φ fluctuates. On
super-Hubble scales however, the field stops fluctuating. This property of the field has
important consequences for the generation of cosmological perturbations, as we shall
briefly describe below [28].
To finish this discussion of scales, we note the important distinction between
accelerating and decelerating space-times, that in a decelerating space-time, the Hubble
radius grows faster in time than physical length scales, while in an accelerating
space-time, it grows slower. This means that in an accelerating space-time, length scales
that are initially sub-Hubble, become super-Hubble after some time and vice versa for
decelerating space-times.

2.2 Overview of the universe

In this section we give a short chronological overview of the standard big bang model.
We will however not go into details on the experimental evidence for this model. Nor
will we give much explicit calculations. This can all be found in the following
introductions and reviews [15, 61, 60, 24, 62, 63]. Although much of the following relies
heavily on assumptions regarding high energy physics, we shall for definiteness assume
the standard picture that the universe starts out at very high temperatures and cools
during its expansion.
A proper chronological overview should of course start at the beginning. However in the
case of the big bang model we do not know what happens at the beginning. If one takes
the limit to the infinite past of (18), one finds that the scale factor is 0 and the Hubble
parameter is infinite. However, since the Hubble parameter is a measure for the energies
involved, general relativity is expected to break down in this regime and we need to
consider a quantum theory of gravity, which is expected to become relevant at the
Planck scale mp = 1/

√
GN ∼ 1019GeV [64]. More in particular, the effective coupling we

expect for quantum gravity will be GNH
2, with H the Hubble parameter. Therefore if

H � mp we can expect quantum gravity effects to be irrelevant. Thus we simply do not
know what happens extremely close to the big bang. As the universe expands however,
quantum gravity effects will become less and less relevant.
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It is highly speculative what is the state of the universe at these high energies. It might
be that all gauge fields (and fermions) of the standard model are unified in one
representation of a large grand unified symmetry. During the expansion of the universe,
the universe cools down. When the temperature reaches approximately kBT ∼ 1016GeV
at t ∼ 10−35 seconds, any grand unified symmetry is typically assumed to be broken and
the universe is thought to enter a phase of inflation [25, 26, 27]. The mechanism that is
responsible for this phase is still not known, but the idea is the following. During the
period of inflation, the universe is dominated by a fluid which has an equation of state
parameter w ≈ −1. From (15) we see that this implies that ρ̇ ≈ 0. We call a quantity
that strictly has the property ρ̇ = 0 a cosmological constant. If w = −1 we find from
(17) that ε = 0 and thus H is constant and we can easily solve the Friedmann equation
(14) to find that the scale factor grows exponentially with time

a = eHt. (32)

Such a geometry is known as de Sitter geometry and we shall study it in much more
detail in section 4. The fluid responsible for this expansion is usually taken to be a
scalar field, known as the inflaton. We see from (24) that for a scalar field w is close to
−1 if the potential energy of the scalar field dominates over the kinetic energy. This can
typically be achieved if the scalar field potential is such that that the field rolls slowly
down the potential. This approach is therefore known as ’slow roll’ inflation.
If the expansion of the universe is accelerating (ε < 1), we see from (18) that physical
scales grow faster than the Hubble volume. This implies that during inflation the
universe becomes extremely homogeneous, in the sense that any initial sub-Hubble
fluctuation is stretched far beyond Hubble scales. A similar thing happens to the
curvature k of the universe. If k is not strictly zero, a sufficient amount of inflation will
make any initial curvature insignificant. The length of inflation is typically measured in
e-foldings

N = ln
(ae
ab

)

, (33)

where the scale factor at the beginning and the end of inflation are indicated by ab and
ae respectively. To make the universe flat enough, typical estimates imply that inflation
should last at least for about N = 60 e-foldings [24]. After at least 60 e-foldings inflation
ends, for example because of the inflaton reaching a minimum of its potential where
V = 0. The energy density of all normal matter has become negligible due to the fast
expansion. Although during inflation the universe becomes very homogeneous, there are
always inhomogeneities due to vacuum fluctuations of the various matter and
gravitational fields. If these fluctuations cross the Hubble radius they stop fluctuating
(for a review on this subject see e.g. [60]), as we saw from (31). It is important to note
here that we can distinguish between two types of fluctuations. First of all there are
scalar fluctuations. These can be simply seen as fluctuations in the energy density. By
the Einstein equation, a fluctuation in the energy density can then be related to a
fluctuation in the gravitational potential. Apart from scalar perturbations, there are
tensor perturbations. These are due to fluctuating gravitons. Their effect on the
geometry is a quadrupolar distortion of space (for a review on graviton perturbations
see e.g. [65]).
When inflation ends, the inflaton will typically start to oscillate quickly. During these
oscillations the inflaton decays to relativistic particles and thus the universe is again
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filled with radiation. This process is known as reheating. After reheating the universe is
essentially a spatially homogeneous mixture of radiation (w = 1/3) and normal matter
(w = 0). At high temperatures, the energy density in radiation is much larger, and we
can effectively describe the universe to be dominated by radiation. At t ∼ 10−8 seconds,
or kBT ∼ 100GeV the universe undergoes an electroweak phase transition at which the
gauge symmetry SU(2)L ×U(1)Y is broken to U(1)EM (the SU(3)c symmetry of QCD is
unaffected). During this process the W and Z gauge bosons and the fermions acquire
their mass, while the photon remains massless. Probably between inflation and the
electroweak phase transition, the symmetry between baryons and anti-baryons is broken
during the process of baryogenesis. The precise mechanism for baryogenesis however is
still unknown. As the universe cools further down it undergoes the QCD transition at
kBT ∼ 160MeV . At this scale one enters the strongly coupled regime of QCD. At this
point therefore the initial quark-gluon plasma disappears and quarks become confined
through gluon exchange in mesons and baryons. Properties of the QCD transition have
been studied at the RHIC (Relativistic Heavy Ion Collider) [66] and will be studied in
the future at the LHC (Large Hadron Collider).
At temperatures between kBT ∼ 1MeV and kBT ∼ 0.05MeV , or from t ∼ 1 second to
t ∼ 5 minutes, the light nuclei (D, He, Li,...) are formed by the process of
nucleosynthesis. The universe is however still hot enough to prevent atoms to form. The
Compton scattering of the radiation from electrons and nuclei tightly couples the
radiation and matter fluids. During radiation domination, physical scales grow less fast
than the Hubble radius. This implies that during radiation domination, the fluctuations
that crossed the Hubble radius during inflation re-enter the Hubble volume. The scalar
perturbations, being simply perturbations in the energy density, will cause the
homogeneous fluid to obtain inhomogeneities in its energy density, or temperature. The
tensor perturbations however, cause the fluid to obtain a magnetic (or ’B mode’)
polarization [65].
We see from (16) that the energy density in radiation dilutes faster than the energy
density in matter. This means that at a certain moment the universe will become
matter dominated. This happens when the temperature is kBT ∼ 1eV , or at a redshift
z ∼ 3230. As the universe reaches a temperature of roughly kBT ∼ 0.3eV , at a redshift
of z ∼ 1090, hydrogen atoms can form effectively. Scattering of the radiation from atoms
is much less efficient and thus the radiation and matter fluids effectively decouple. From
this point onwards, the photons from the radiation fluid travel freely. Since the universe
is homogeneous, this means we are still able to see these photons as a homogeneous
background radiation. Because of the redshift due to the expansion of the universe, their
wavelength is nowadays in the microwave region (λ ∼ 2 mm)and therefore this fluid of
photons is known as the cosmic microwave background radiation (CMBR). The CMBR
has been experimentally found [67] and extensively studied [68, 16], and is indeed
extremely homogeneous. The spectrum of the CMBR is, also consistent with predictions,
an almost perfect black body spectrum with a temperature of 2.725 K. While very
homogeneous, the temperature of the CMBR does have inhomogeneities on a relative
scale of 10−5. The scenario described to generate small inhomogeneities in the energy
density produces an almost scale invariant spectrum of scalar density perturbations and
thus of the gravitational potentials causing the temperature fluctuations in the CMBR.
These predictions have been extensively studied and are completely consistent with the
observations of the inhomogeneities in the CMBR [16]. The Planck satellite, which is
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currently scheduled to be launched later this year, will further improve these
measurements and might also be able to detect the B-mode polarization [69], thus
possibly confirming the existence of primordial gravitational waves.
Eventually at a redshift of z = 10 − 30 (or T ∼ 100K) the initial inhomogeneities,
imprinted on the fluid, begin to form stars, galaxies and clusters of galaxies, by
gravitational collapse thus forming the large scale structures of the universe as we see it
today.
Observations of distant supernovae have shown however that this is not the end of the
story [55]. There is also a dark energy component in the universe. This dark energy has
an effective equation of state w ≈ −1, and might therefore be described by a nonzero
cosmological constant. From (16) it is clear that if one waits long enough, the energy
density of such a fluid will eventually dominate and it is nowadays believed that the
energy density of our universe today is made up of 72% dark energy, 23% dark matter
and 4.6 % normal, baryonic matter [16]. The remaining energy density is mostly in
neutrinos.
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3 Quantum fields on a curved background

space-time

One of the great problems in fundamental theoretical physics today is with little doubt
the merging of general relativity with quantum field theory [1, 2]. Although there are
several promising candidates for such a theory, most notably string theory and loop
quantum gravity, it is currently not known which of these gives an accurate description
of nature.
While this certainly is a fundamental problem, this does not prevent one from studying
interesting physics [6]. As long as one considers processes that occur at energies smaller
than the typical energy scale where quantum gravity effects become important it is
perfectly consistent to treat all processes perturbatively. Since this scale is set by the
Planck scale

mp =
1√
GN

∼ 1019GeV, (34)

we can describe most ’everyday’ processes despite our lack of knowledge of the
underlying theory. One is in such a case effectively using general relativity as a low
energy effective action for the unknown quantum theory of gravity. The principle idea
here is that in physics we always find a separation of scales. Each theory we know of, is
expected to be valid only for a certain range of scales. New physical effects then emerge
at higher energy scales, but as long as the processes one is considering are at lower
energies, one can neglect these effects. Examples are abundant, for example classical
mechanics is perfectly fine on macroscopic scales where ~ is irrelevant, or Newtonian
gravity works excellent for weak gravitational fields. The fact that quantum gravity is
not renormalizable is a problem that only presents problems near the Planck scale. This
is similar to the Fermi theory for the weak interaction [20, 21]. This theory allows for
the direct coupling of four fermions, in order to explain β-decay. While the theory is not
renormalizable, it does produce correct answers for processes at energies below the W
mass: MW ≈ 80.4GeV . For higher energies, the propagation of the vector bosons
becomes important and taking this into account makes the theory renormalizable.
This approach necessarily fails for questions that are non-perturbative. This includes for
example important fundamental questions like the nature of space-time singularities
(including the Big Bang), or the origins of the microstates that contribute to the black
hole entropy.
Many of the problems of formulating quantum field theory on a curved background
space-time have to do with the lack of Poincaré symmetry [6, 18], which is a natural
consequence of the non-trivial time dependence of the background. When formulating
quantum field theory on Minkowski space-time, Poincaré invariance, in particular
invariance under time translations, allows one to define a unique vacuum state. In the
sense that the notion of a lowest energy state is unique. Given this state the
annihilation and creation operators then define uniquely the notion of particles. As we
shall see this is in general not possible on a curved background. That is, one can
certainly define a ground state, which at a certain time is the state of lowest energy, but
this ground state will typically not be the state of lowest energy anymore at any later
time. Notice that in this thesis we shall use both the concepts vacuum state and ground
state interchangeably. We use these concepts to indicate the state |0〉, defined in (48),
which is (in general) not the state of minimal energy.
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While this presents all kinds of difficulties, it is also the source of many interesting
phenomena like Hawking radiation and the generation of primordial density
fluctuations. Because of the troubles with the notion of particles, we will eventually
study quantum fields on curved space-time through the correlators associated to the
field. From the correlators we can find, without needing the notion of particles, for
example the contribution of quantum corrections to the energy density. To see how this
all comes about, lets start with the basis: ordinary quantum field theory on a Minkowski
background.

3.1 Quantum field theory on a Minkowski background

For concreteness we shall consider a massive, real, scalar field φ, with the action given
by

S =
1

2

∫

d4x
(
− ∂µφ∂µφ−m2φ2

)
(35)

and equation of motion
(
2 −m2

)
φ = 0. (36)

Here the d’Alembertian is 2 = ηµν∂µ∂ν and ηµν is the Minkowski metric, which in 4
space-time dimensions is given by

ηµν = diag(−1, 1, 1, 1). (37)

We define the momentum conjugate to φ

π =
∂L

∂(∂tφ)
= ∂tφ (38)

We quantize the field by imposing the commutation relation

[φ(t, ~x), π(t, ~x′)] = iδ3(~x− ~x′) (39)

and all other commutators are equal to zero. To circumvent problems with the
normalization, we assume that space is described by a three dimensional torus, with
circumference L and volume V = L3. To solve for the scalar field, we expand it in
creation, a†~k, and annihilation, a~k, operators

φ(t, ~x) =
∑

~k

(

a~kψ~k(t, ~x) + a†~kψ
∗
~k
(t, ~x)

)

(40)

where the wavevector ~k is restricted to values 2π
L
~n, with ~n = {n1, n2, n3} and ni integer.

To find the mode functions ψ~k(t, ~x), we consider the following complete set of solutions

u~k(t, x) =
1√
2ωV

ei(
~k·~x−ωt) ; v~k(t, x) =

1√
2ωV

ei(
~k·~x+ωt). (41)

where ω =
√

||k||2 +m2. u~k is known as the positive frequency solution and vk as the
negative frequency solution, since the eigenvalues of u and v with respect to the time
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translation operator i∂t are positive and negative respectively. The normalization of (41)
has been chosen such that the scalar product defined as

(φ1, φ2) = −i
∫

t

d3x
(

φ1∂tφ
∗
2 − (∂tφ1)φ

∗
2

)

, (42)

where t denotes a spacelike hypersurface, is

(u~k, u~p) = δ~k~p ; (v~k, v~p) = −δ~k~p ; (u~k, v~p) = 0 (43)

We can now define our mode solution to be

ψ~k(t, x) = α(~k)u~k(t, x) + β(~k)v~k(t, x), (44)

where α and β do not depend on time. In order for ψ~k to have unit norm, we need

|α|2 − |β|2 = 1, (45)

such that (44) and its complex conjugate define a complete orthonormal basis.
The definition of the scalar product (42) implies that

a~k = (φ, ψ~k) (46)

Combining (40) with (39) and using the fact that ψ forms an orthonormal basis we find
that

[a~k, a
†
~p] = δ~k~p, (47)

and all other commutators zero. Notice that the requirement that ψ~k(t, ~x) has unit
norm, the condition (45) and the normalization of the commutator (47) are all
equivalent. We define the ground state |0〉 to be the state that is annihilated by all a~k.

a~k
∣
∣0〉 = 0 ∀ ~k. (48)

Notice that this state will not necessarily be the state with lowest energy. From the
ground state we can construct excited (’particle’) states by applying the creation
operator a†~k.

a†~k

∣
∣0〉 =

∣
∣1~k〉 ; ; a†~ka

†
~p

∣
∣0〉 =

∣
∣1~k1~p〉 (~k 6= ~p) (49)

To take the correct statistics into account (remember we are considering bosonic
particles)

a†~k

∣
∣n~k〉 =

√
n + 1

∣
∣(n+ 1)~k〉

a~k
∣
∣n~k〉 =

√
n
∣
∣(n− 1)~k〉

(50)

such that the operator N~k = a†~ka~k has an eigenvalue equal to the number of excitations
with momentum k. Now an important point is that this definition of both the vacuum
and of the notion of a particle is not unique. The reason is simply that the coefficients α
and β are not uniquely fixed by the requirement (45) and therefore the mode function
(44) is not unique. We can see this even more clearly by calculating the
Hamiltonian [70]

H =
1

2

∫

d3x
(

φ̇2 + (~∇φ)2 +m2φ2
)

, (51)
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such that

H
∣
∣n〉 = (|α|2 + |β|2)ω(N +

1

2
)
∣
∣n〉

= (1 + 2|β|2)ω(N +
1

2
)
∣
∣n〉.

(52)

So we see explicitly that a single ’particle’ adds an energy (1 + 2|β|2)ω to the
Hamiltonian and the vacuum (48) has an energy of ( 1

2
+ |β|2)ω. Now |β|2 can run from

zero to infinity, consistent with (45), so we see that depending on our choice for the
mode functions (44), we consider different types of excitations. Naturally, also the
interpretation of the ground state changes. Now it is important to stress that none of
these choices are incorrect. If we want however our ground state to be the state of
minimal energy, or the vacuum, we see that we must choose α = 1 and β = 0. Notice
that so far we are considering pure states. If one wants to expand this for statistical
field theory, one can employ a description using the density matrix.
Now the important thing of Minkowski space-time is that it is also this particular choice
of the ground state that is invariant under Poincaré transformations. The condition that
the ground state defined by (48) is invariant under the Poincaré group implies that all
inertial observers will agree what the ground state is. And moreover they will agree on
what a single excitation is. The reason for this is that in Minkowski space-time the set
of inertial observers is invariant under the Poincaré group. The algebra of the Poincaré
group is given by

[Pµ, Pν ] = 0

[Mµν , Pρ] = ηµρPν − ηνρPµ

[Mµν ,Mρσ] = ηµρMνσ − ηµσMνρ + ηνσMµρ − ηνρMµσ.

(53)

Here Pµ is the generator of space-time translations and Mµν is the generator of Lorentz
transformations. In particular we consider infinitessimal time translations

t′ → t+ δ, (54)

with δ small. Under this transformation we find that the mode (44) transforms as

ψ~k(t
′) → α(~k)(1 − iωδ)u~k(t) + β(~k)(1 + iωδ)v~k(t). (55)

The field φ is after the transformation given by

φ(t′) =
∑

~k

(

a~kψ~k(t
′) + a†~kψ

∗
~k
(t′)
)

. (56)

The change in the modes ψ can be expressed equivalently in a change in the annihilation
and creation operators, so we can write

φ(t′) =
∑

~k

(

a′~kψ~k(t) + a†
′

~k
ψ∗
~k
(t)
)

, (57)

such that we find up to first order in δ

(

1 − |β(~k)|2

|α(~k)|2
)

a~k =

(
(

1 − |β(~k)|2

|α(~k)|2
)

+
(

1 +
|β(~k)|2

|α(~k)|2
)

iδω

)

a′~k + 2iδω
β(~k)∗

α(~k)
a†

′

~k
. (58)
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We thus find that the ground state |0〉 defined by a(~k)|0〉 = 0 is only the ground state
after the transformation, defined by a′~k|0

′〉 = 0, if β = 0. If β is nonzero, creation and
annihilation operators will be mixed and thus the definition of the ground state is
changed. Thus we find that the unique Poincaré invariant vacuum state is given by

α = 1 ; β = 0. (59)

Let us emphasize again that this is not the unique ground state of Minkowski space,
there is not such a thing. However it is the agreed ground state for all inertial observers,
which minimizes the energy. Thus if we choose our mode functions to be the positive
frequency solutions, we obtain the same vacuum, independent of the Lorentz frame
where t is the time coordinate. To make this somewhat more clear, suppose we have two
observers A and B, both in their own coordinate frame xµA and xµB. Both observers
define a vacuum state by αA = αB = 1 and βA = βB = 0. The importance of Poincaré
invariance is that when observer A concludes that a certain state |0〉 is in fact the
vacuum, observer B will make the same conclusion. The ground state defined by (59) is
moreover the state of minimum energy. Single excitations then add an energy ω to the
vacuum. Notice also that only for this choice the modes (44) are eigenfunctions of the
energy operator i∂0, with eigenvalue ω.
The above discussion dealt with inertial observers. It turns out that non inertial
observers, even in Minkowski space-time, do not see the same vacuum state. This effect
is known as the Unruh effect [6].

3.2 Quantum field theory on a curved background

In a curved space-time this analysis breaks down. The lack, in general, of invariance
under time translations means that inertial observers will typically see different vacua
and there is no way of making a unique, well motivated choice for α and β. Moreover,
the lack of a time-like Killing vector makes the notion of energy dependent on the time
slicing. It is therefore not possible to unambiguously define a state of minimum energy
globally.
This lack of symmetry makes it impossible to define a unique state of minimum energy
and hence makes the notion of the vacuum, and of the concept of a particle ambiguous.
Therefore we will eventually abandon the whole notion of particles and consider only the
correlators. An insightful way to show what goes on is to consider a space-time which
has asymptotically flat regions in the past and the future. In these asymptotic regions,
we can without any trouble define the positive frequency solutions, like in Minkowski
space. We indicate the positive and negative frequency solution in the past, or in region
with uin~k and vin~k , analogous to (41). In the future or out region we use uout~k

and vout~k
. We

choose our modes to be pure positive frequency in their respective region

ψin~k = uin~k ; ψout~k
= uout~k

(60)

and we normalize our modes in the same way as (43). Although these modes are defined
by their properties in some asymptotic region, they are necessarily solutions to the field
equations on the whole space-time. Now since (41) forms a complete set of solutions, we
can always write

ψin~k =
∑

~j

α~j~kψ
out
~j

+ β~j~k(ψ
out
~j

)∗ (61)
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and from the normalization of u and v it follows that

∑

~k

(

α~j~kα
∗
~k~̀
− β~j~kβ

∗
~k~̀

)

= δ~j~̀, (62)

such that
ψout~k

=
∑

~j

α∗
~j~k
ψin~j − β~j~k(ψ

in
~j

)∗. (63)

The field operator now may be expanded both in terms of the in or the out modes.

φ =
∑

~k

(
a~kψ

in
~k

+ a†~k(ψ
in
~k

)∗
)

=
∑

~k

(
b~kψ

out
~k

+ b†~k(ψ
out
~k

)∗
)
.

(64)

The in vacuum is defined by a~k|0〉in = 0 while the out vacuum is defined by b~k|0〉out = 0.
We can calculate the annihilation operators

a~k = (φ, ψin~k ) =
∑

~j

(
α∗
~j~k
b~j − β∗

~j~k
b†~j

)

b~k = (φ, ψout~k
) =

∑

~j

(
α~j~ka~j + β~j~ka

†
~j

)
,

(65)

where the scalar product is the generalized form of (42)

(φ1, φ2) = −i
∫

Σ

√−gΣdΣ
µ
(

φ1∂µφ
∗
2 − (∂tφ1)φ

∗
2

)

. (66)

Here dΣµ = nµdΣ and nµ is a timelike unit vector, normal to the hypersurface Σ, with
metric gΣ. Equation (65) describes the so-called Bogoliubov transformation. It describes
how the creation and annihilation operators for different mode decompositions are
related. We see that if the description of the modes in one region in terms of the modes
in another region mixes positive and negative frequencies, (i.e. β~j~k 6= 0), the vacuum
described by one set of modes is not the same as the vacuum described by the other set
of modes. In particular, if we start in the vacuum |0〉in, an observer in the out region
will see

in〈0|b†~kb~k|0〉in =
∑

~j

|β~j~k|2 (67)

particles. An example of a Bogoliubov transformation we have already seen in (58).

3.2.1 Simple cosmological particle creation

Let us now consider as an example a spatially flat FLRW space-time. We consider a
scalar field with an action

S =
1

2

∫

d4x
√
−g
(

− ∂µφ∂µφ−m2φ2 − ξRφ2
)

(68)
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and the metric is given by (8). The scalar field obeys the equation of motion
(

2 −m2 − ξR
)

φ = 0 (69)

Here 2 denotes the covariant d’Alembertian

2 =
1√−g∂µg

µν√−g∂ν . (70)

With the metric (8) the equations of motion become

( ∂2

∂t2
+ 3H

∂

∂t
− ∂2

a2∂~x2
+m2 + ξR

)

φ = 0. (71)

If we now write

φ =
1

a3/2
ei
~k·~xχ (72)

the equation of motion reduces to

( ∂2

∂t2
+ ω2(t)

)

χ = 0, (73)

where

ω2(t) =
k2

a2
+m2 + ξR+

3

4
(2ε− 3)H2 (74)

Thus we see that we have a very similar mode function as in Minkowski space. Only
now the frequency has become time dependent. To make a sensible definition of the
ground state in the in and out regions, we assume that in those regions the scale factor
is constant. This automatically makes ω constant. We shall from now on work on an
infinite volume and replace the sums with integrals

1

V

∑

~k

→
∫

d3~k

(2π)3

V δ~k~p → (2π)3δ3(~k − ~p)

(75)

We write our field in terms of its annihilation and creation operators

φ =
1

a3/2

∫
d3k

(2π)3

(

a~kψ~k,+a
†
~k
ψ∗
~k

)

(76)

the positive frequency modes in the past and future are

ψ~k(t→ −∞) ≡ ψin~k =

√
1

2ωin
ei(

~k·~x−ωint)

ψ~k(t→ +∞) ≡ ψout~k
=

√
1

2ωout
ei(

~k·~x−ωoutt)

=

∫
d3~k′

(2π)3

(

α∗
~k′~k
ψin~k′ − β~k′~k(ψ

in
~k′

)∗
)

,

(77)

where in the last line we used the fact that the modes form a complete set of solutions
to write the out modes in terms of the in modes, similar to (61) and we defined
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ωin =≡ ω(t→ −∞) and ωout =≡ ω(t→ +∞). As an example, suppose that the scale
factor a(t) is constant everywhere, but changes discontinuously at t = 0. So we have
a = ain at t < 0 and a = aout at t > 0. Notice that the Hubble parameter is zero in both
the in and out regions. We can determine the Bogoliubov coefficients by requiring first
of all that at t = 0 the decomposition (77) is correct and require that
∫
|αk′k|2 − |βk′k|2 = 1 to find

α~k′~k =
1

2

(√ ωin
ωout

+

√
ωout
ωin

)

(2π)3δ3(~k′ − ~k)

β~k′~k =
1

2

(√ ωin
ωout

−
√
ωout
ωin

)

(2π)3δ3(~k′ + ~k).

(78)

If the scalar field was initially in its vacuum state |0〉in, the number of particles observed
by an observer in the out region is2

in〈0|N~k|0〉in =

∫
d3k′

(2π)3
|β~k′~k|2 =

1

4

(ωin − ωout)
2

ωinωout
. (79)

As a particular case, suppose that aout = (1 +
√

2)ain. Now we have

in〈0|N~k|0〉in =
k4

(k2 +m2a2
in)(k

2 + (3 + 2
√

2)m2a2
in)

∼ 0 (k → 0)

∼ 1 (k → ∞)

(80)

In other words, an observer in the new vacuum will see approximately one excitation for
each large value of ~k. In the infrared (small ~k) however an observer in the out region
will not see any excitations if there were none initially. An interesting observation is
that (79) is invariant under the interchange of ωin and ωout. So if we had chosen
aout = (1 +

√
2)−1ain, we would have obtained the same result.

3.2.2 Adiabatic approximation

In the previous example, the rate of change in the background is infinite at the matching
point t = 0. This large change caused the excitation of modes for all large values of k.
More generally, if the rate of change in the background is characterized by H (such that
in the previous example H → ∞), then only modes will be excited with ω . H . Now if
we do not have asymptotically flat regions, but if the expansion rate is slow enough, one
could still envision a state where particle production is minimal. Such a state would be
the one ’closest’ to Minkowski space and the notion of a well-defined vacuum and
particle becomes at least approximately meaningful. One remarkable thing of such an
adiabatic approximation is that, as long as the rate of change in the geometry is small,
particle production is exponentially suppressed, independent of the total amount of
change. To be more precise, we require that

ω̇

ω
� ω (81)

2This result corresponds to the ρ→ ∞ limit of the similar example presented in [6]
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and we suppose we have rewritten the equations of motion in the form (73). We
consider the WKB-type solution for the modes

ψ =
ei
~k·~x

√
2W

e−i
∫ tW (t′)dt′ . (82)

from which it follows that

W 2(t) = ω2(t) − 1

2

(Ẅ

W
− 3

2

(Ẇ

W

)2)

. (83)

Thus we see that to the lowest order in the adiabatic approximation we have
W0(t) = ω(t) from which we can solve (83) by subsequent iterations. It is clear that this
is a derivative expansion and around the classical solution (a simple exponential) and
thus it is an expansion in powers of ~. Moreover we see that if ω is constant, this
solution reduces to the standard Minkowski solution. Now if we write the A’th order
adiabatic approximation (thus the solution for ψ after A iterations) for the mode
function as ψA, we can always choose coefficients αA and βA, such that

ψ = αAψA + βAψ
∗
A. (84)

is an exact solution to the field equation. Now αA and βA must consequently be
constant up to adiabatic order A, since ψA is a solution to the field equations of this
order and ψ also must be a solution. Now we can at a certain time t0 choose

αA(t0) = 1 + O(∂A+1
t )

βA(t0) = 0 + O(∂A+1
t ).

(85)

The vacuum defined by ψ is now said to be the adiabatic vacuum. It is the state
obtained by an expansion, based on the limit (81) around the Minkowski vacuum. In
that sense it is ’close’ to the Minkowski vacuum, if the adiabatic condition (81) holds.
The adiabatic vacuum defined by (85) is not unique, since we could have chosen a
different time t0 to match the exact solution to the adiabatic solution. However, suppose
that we would have done the matching at some different time t1, the mode (84) would
only differ from the one defined at t0 at higher adiabatic order. And therefore, the β
Bogoliubov coefficient will be 0 + O(∂A+1

t ). Since this coefficient determines the
production of particles,we find that particle production is suppressed if the adiabatic
condition (81) holds. Since the adiabatic approximation is an expansion in powers of ~,
we thus find that particle creation is essentially a nonperturbative effect that cannot be
correctly described by the adiabatic approximation. Notice that for a typical ω, like
(74), with ω̇ finite, the adiabatic approximation will be fulfilled for the high k modes.
Notice however that this does not mean that the ultraviolet sector of the theory reduces
simply to the equivalent theory in Minkowski space-time, as we shall see in section 3.4.

3.3 Semi-classical Einstein equations, the effective action and

back-reaction

So far we have looked at the dynamics of the quantum fields propagating on a certain
curved space-time. Let us now look at the dynamics of space-time itself. At the classical
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level, the dynamics of the geometry are given by the variation with respect to the metric
of the action (2)

S =

∫ √
−gdDx 1

16πGN

(

R− (D − 2)Λ
)

+ SM , (86)

where SM is the action associated with the matter fields and D is the number of
space-time dimensions. The variation with respect to the metric leads to the Einstein
equation

Rµν −
1

2
Rgµν +

D − 2

2
Λgµν = 8πGNTµν , (87)

such that the energy momentum tensor is defined as

Tµν = − 2√−g
δSM
δgµν

. (88)

The semi-classical approach to quantum field theory on a curved background now is to
consider all our matter fields to be quantum fields. These fields then propagate on a
certain classical background metric. However, there is no reason not to consider the
graviton field as a quantum field as well. Thus we promote all fields to operators and
expand them around a certain classical background value (indicated with a superscript
(b))

R(b)
µν −

1

2
R(b)g(b)

µν +
D − 2

2
Λg(b)

µν

+ 〈0|δR̂µν −
1

2
δR̂δĝµν +

D − 2

2
Λδĝµν |0〉 = 8πGN

(

T (b)
µν + 〈0|δT̂µν|0〉

)

,

(89)

where 〈0| . . . |0〉 indicates the expectation value with respect to some state |0〉 and hats

indicate that we are considering quantum operators. δR̂µν = R̂µν −R
(b)
µν etc. Thus we see

that the left hand side (LHS) of the Einstein equation obtains quantum corrections due
to graviton fluctuations and the right hand side (RHS) of the Einstein equation obtains
corrections due to matter fluctuations. Of course, because of general coordinate
invariance there are gauge issues in quantizing the graviton, implying that the
distinction between what is the background and what is a small perturbation is
coordinate dependent. However in principle one can do this and deal with the gauge
issues in a standard way by adding a gauge fixing term to the action. Of course a
quantum theory for the graviton, being a quantum theory for gravity, will be
non-renormalizable. However, when we consider processes at a certain energy E, higher
order quantum effects will be suppressed by the Planck mass as E/mp. Thus while the
theory is not renormalizable, it does make sense as a perturbative effective theory for
energies much smaller than the Planck scale.
Nothing prevents us from considering the graviton fluctuations as part of the matter
sector of the theory (or at least the non geometric sector) and write the so-called
semi-classical Einstein equation

R(b)
µν −

1

2
R(0)g(b)

µν +
D − 2

2
Λg(b)

µν = 8πGN〈Tµν〉. (90)

All quantities on the left hand side are now pure geometric and of course constructed
from the classical background metric g

(b)
µν and 〈Tµν〉 includes all matter, including the
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background and quantum fluctuations, coming from both the matter fields and the
graviton. In the following we will omit the superscript (b).
The semi-classical approach can also be successfully implemented in electromagnetism.
Then one couples a classical electromagnetic field to the expectation value of the
current, i.e. ∇µF

µν = 〈Jν〉. Before discussing the implications of (90), we shall look
somewhat closer on the meaning of 〈Tµν〉. Being a stress energy tensor, we should be
able to construct a quantity Γ[gµν ], known as the effective action, such that [6]

〈Tµν〉 = − 2√−g
Γ[gµν ]

δgµν
. (91)

Notice that the effective action will typically also depend on the background field. To
give a meaning to Γ[gµν ], we consider the generating functional used in path integral
quantization. To be somewhat more precise, we shall consider as an example the
functional for a scalar field ϕ. For definiteness we consider here the standard in-out
formalism.

Z[J, gµν ] = out〈0|0〉in

=

∫

D[ϕ] exp
(

iSM [ϕ] + i

∫ √−gdDxJ(x)ϕ(x)
)

.
(92)

Here |0〉out and |0〉in are the asymptotic vacuum states of the theory and J is an
external current that can produce particles in this vacuum. By taking n functional
derivatives of Z and then putting J to zero, we can find the expectation value of n-point
functions. In the specific case of Minkowski space-time, we of course have that, without
an external current, the in and out vacua are the same, such that we can choose

Z[0, gµν ]Mink = 1. (93)

However, we have seen that in curved space-time asymptotic states are in general not
equivalent. We consider the variation of Z[0, gµν ]

δZ[0, gµν ] =

∫

D[ϕ](iδSM) exp
(

iSM [ϕ]
)

= iout〈0|δSM |0〉in
(94)

Notice that if we consider the variation with respect to ϕ, this quantity is zero by the
equation of motion. However if we consider the variation with respect to the metric this
is not the case, since the Einstein-Hilbert action is not part of SM . We find

− 2√−g
δZ[0, gµν ]

δgµν
= iout〈0|Tµν |0〉in. (95)

After performing the functional integral over all paths for Z[0, gµν ], we essentially obtain
again the exponential of an action, but now with all quantum effects included. Thus we
define the effective action as

Γ[gµν ] = −i ln(Z[0, gµν]) (96)

such that from (91) we find

− 2√−g
δΓ[gµν ]

δgµν
=

out〈0|Tµν |0〉in
out〈0|0〉in

≡ 〈Tµν〉. (97)
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We now briefly sketch how the generating functional Z[0, gµν] can be calculated using
the background field method. We consider a scalar field operator ϕ(x), with the action
S[ϕ]. We now can in general define the background field Φ as

〈Ψ1|ϕ(x)|Ψ2〉 ≡ Φ(x) (98)

where Ψ1 and Ψ2 are two vectors in the Hilbert space. The quantum field φ is now the
difference between the background field and the field operator

ϕ(x) ≡ Φ(x) + φ(x) (99)

Now we assume that the background field is such that it is a stationary solution for the
effective action

δΓ[Φ]

δΦ(x)
=

〈

Ψ1

∣
∣
∣
∣
∣

δS[ϕ]

δϕ(x)

∣
∣
∣
∣
∣
Ψ2

〉

= 0 .

(100)

This might at first seem to be a pointless definition. The field ϕ of course obeys its own
equation of motion, making the RHS automatically zero. However with Γ given by the
path integral as in (92) we can expand ϕ around the background solution. The resulting
integral can now be expanded as a perturbation series in ~. The integrals over the
quantum field φ in the resulting series are then Gaussian and can be performed. The
result is given by (putting explicitly the factors of ~)

Γ[Φ] = S[Φ] +
i~

2
ln

{

det
[δ2S[Φ]

δΦδΦ

]
}

− ~
2

8

∫

dDw dDx dDy dDz

× δ4S[Φ]

δΦ(w)δΦ(x)δΦ(y)δΦ(z)

[

δ2S[Φ]

δΦ(w)δΦ(x)

]−1[

δ2S[Φ]

δΦ(y)δΦ(z)

]−1

+
~

2

12

∫

dDu dDv dDw dDx dDy dDz
δ3S[Φ]

δΦ(u)δΦ(v)δΦ(w)

[

δ2S[Φ]

δΦ(u)δΦ(x)

]−1

×
[

δ2S[Φ]

δΦ(v)δΦ(y)

]−1[

δ2S[Φ]

δΦ(w)δΦ(z)

]−1
δ3S[Φ]

δΦ(x)δΦ(y)δΦ(z)
+O(~3) . (101)

Here the exponent −1 denotes the functional inverse,

∫

dDy
∂2S[Φ]

δΦ(x)δΦ(y)

[

δ2S[Φ]

δΦ(y)δΦ(z)

]−1

= δD(x−z) . (102)

Multiplying by i (times ~ which we henceforth will set back to one) shows that this is
simply the propagator in the presence of background Φ,

i

[

δ2S[Φ]

δΦ(x)δΦ(x̃)

]−1

≡ i∆(x; x̃) , (103)
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Figure 1: Feynman graphs corresponding to (105) (we assumed that V (Φ) = λ
4!
Φ4)

where the propagator i∆(x; x̃) depends also on the background field(s). Let us look
slightly more carefully on what this expansion means. We focus on the O(~) correction.
We use that

det(A) = eTr ln(A), (104)

where the trace here includes both the integration over space-time and the trace over
possible Lorentz indices.
Suppose we have an action for the scalar field,

S[Φ] = 1
2

∫
dDx

√−g
(

− ∂µΦ∂µΦ − m2

2
Φ2 − V (Φ)

)

. We can then write the contribution

O(~) as

−i~
2

Tr ln(∆) =
i~

2

(

Tr ln(1 + ∆FV
′′(Φ)) − Tr ln(∆F )

)

(105)

where ∆F is the propagator associated with the free field with V (Φ) = 0 and a prime
denotes a derivative with respect to Φ . If we now assume that V ′′(Φ) is small, the first
term of (105) can be expanded to give

i~
∞∑

n=1

(−1)n−1

2n

∫

d4z1d
4zn∆F (z1; z2)V

′′(Φ(z2))∆F (z2; z3) × . . .

. . .× V ′′(Φ(zn))∆F (zn − z1)V
′′(Φ(z1)).

(106)

Thus we see that we have one closed loop of fields, with n V ′′ insertions. The second
term of (105) has no external Φ lines and can thus be interpreted as the contribution to
the vacuum due to a closed loop. Thus for example if V (Φ) = λ

4!
Φ4, we have the

expansion in graphs as shown in figure 1.
The O(~2) terms can be seen in a similar way to yield the two loop diagrams in figure 2,
with insertions. Notice also that for the free field, that we shall discuss often in the
following, the first graph of figure 1 is simply all there is. Notice that the legless
diagrams in figures 1 and 2 do not contribute to the equations of motion in Minkowski
space-time, since they effectively decouple from anything else. In curved space-time this
is not the case. These diagrams explicitly depend on the metric and thus enter the
Einstein equation through the variation with respect to the metric.
The scheme described above obviously depends upon the states |Ψ1〉 and |Ψ2〉 in (98).
For the familiar, in-out effective field equations the state |Ψ2〉 is the free vacuum in the
infinite past, while |Ψ1〉 is the free vacuum in the infinite future. However as we have
seen before, it might not always make sense to talk about asymptotic vacuum states
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Figure 2: Feynman graphs corresponding to the O(~2) contribution of (101)
.

when considering fields on curved background space-time. In such a case, one can use
the Schwinger-Keldysh effective field equations [75, 76]. In this case one chooses the two
states to be the same, |Ψ1〉 = |Ψ2〉, and they are taken to be free vacuum either in the
infinite past or at some finite time[77]. This is especially convenient for cosmological
settings in which the initial singularity precludes reaching the infinite past and in which
particle creation makes it typically not possible to select a natural vacuum for the
infinite future.
We shall consider in subsequent chapters how to explicitly calculate this formal
expression. But for now we shall suppose one has calculated (101) either exactly, or in a
certain approximation. What then can we learn from the semi-classical Einstein equation
(90)? We see that to calculate 〈Tµν〉 we need to calculate the propagator, on a certain
curved, classical background, such that equation (90) is satisfied. However, how to do
this in general is not known. Using the Schwinger-deWitt proper time expansion one
can study the propagator in the adiabatic regime[6]. This works excellent to determine
the ultraviolet divergent structure of the propagator, but it fails for the ultraviolet finite
contributions, while it is precisely these contributions which are sensitive to the effects
of particle creation! This is in agreement with what we saw in section 3.2.2, where we
found that the adiabatic approximation does not capture the effect of particle creation.
Because of the lack of any general construction, we shall in practice consider the
classical Einstein equation (87), calculate the metric and, using that specific metric,
calculate 〈Tµν〉. However, by the semi-classical Einstein equations, the metric will
subsequently change, making the calculation of 〈Tµν〉 inconsistent! This phenomenon is
known as back-reaction. Typically however the classical background will only change
insignificantly, because of the smallness of quantum effects in general, and the additional
suppression by GN in this particular case. In those cases we can then approximately
neglect back-reaction. However, as we shall see later, there are also cases where the
difference between the background Tµν and the quantum corrected 〈Tµν〉 is initially
small, but grows in time. In these examples, if one waits long enough, one cannot
neglect the back-reaction. Since, as soon as back-reaction becomes significant, we do not
even have an approximate solution to the semi-classical Einstein equations (90), all
calculations in this direction remain on a certain level speculative, however it certainly
is possible to try to qualify in what sort of ’direction’ the metric is changing. Especially
if the back-reaction is still small, the background metric can be treated to change
adiabatically. In such a case firm predictions can be made.
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3.4 Ultraviolet behavior

In Minkowski space it is well known that the expectation value of any product of field
operators, when evaluated at the same point, is infinite. Physically this can be
attributed to an infinite amount of fluctuating ultraviolet modes [20]. These divergences
need then to be regulated using for example a momentum cut-off or by employing
dimensional regularization. Because dimensional regularization respects all symmetries
of the background space-time, we shall use that approach in this thesis. After
regularization we can then absorb the divergencies in the renormalized parameters of the
theory. Apart from divergencies that lead to the renormalization of the couplings of the
theory, one also finds an infinity due to the vacuum energy. This energy is due to the
fact that the hamiltonian (52) is nonzero, even if N = 0. When calculating an
expectation value, one integrates over all these ’zero point energies’ and the final answer
diverges. In terms of Feynman diagrams, this contribution is the contribution to figures
1 and 2 with no external lines. In Minkowski space any process involving external fields
decouples from these diagrams and thus this energy is unobservable. The zero point
energy will lead to an infinite but field independent extra term to the potential of the
field. In Minkowski space-time physics is only sensitive to energy differences and thus we
are free to shift the ’zero point’ of the energy, to simply subtract this vacuum energy. In
practice this can be done by normal ordering, where one by hand puts in any
expectation value the annihilation operators to the right of the creation operators.
In curved space-time the situation is similar, but there are some important differences.
Intuitively it is clear that, if space-time is smooth enough, the ultraviolet modes should
be almost insensitive to space-time curvature. We also saw that for high enough k the
adiabatic approximation makes sense. To consider precisely how insensitive the
ultraviolet is to space-time curvature, we consider the metric in Riemann normal
coordinates around a point x0

gµν(x) = ηµν +
1

3
Rµανβ(x0)(x− x0)

α(x− x0)
β + O(x− x0)

3. (107)

Thus we see that the higher the momenta are that we consider, the more we can treat
the metric in the mode equation as flat. Indeed we then find that we can locally define a
Fock space that will resemble (in the sense of the adiabatic approximation) Minkowski
space-time. However, as we have seen, the notion of states in a Fock space becomes
ambiguous in general curved space-times. If we want to make more general statements,
we need to consider field observables. In particular we shall consider the expectation
value of the stress energy tensor. Since this object describes how energy couples to
gravity and since all energy gravitates, all relevant information concerning divergences is
stored in this object. We consider as an example the stress energy tensor for a scalar
field with an action given by (68)

Tµν ≡ − 2√−g
δS

δgµν

= ∂µφ∂νφ− 1

2
gµν

(

gαβ∂αφ∂βφ+ (m2 + ξR)φ2
)

+ ξ
(

Rµν −∇µ∇ν + gµν2
)

φ2,

(108)

where the last part comes from the variation of Rφ2 with respect to the metric. The
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expectation value with respect to the vacuum state |0〉 can be written as

〈0|Tµν |0〉 =
(

δρµδ
σ
ν (1 − 2ξ) − 1

2
gµνg

ρσ(1 − 4ξ)
)

〈0|∂ρφ∂σφ|0〉

− 2ξ
(

δρµδ
σ
ν − gµνg

ρσ
)

〈0|φ∇ρ∂σφ|0〉 +
(

ξRµν −
1

2
(m2 + ξR)gµν

)

〈0|φ2|0〉

=

(
(

δρµδ
σ
ν (1 − 2ξ) − 1

2
gµνg

ρσ(1 − 4ξ)
)

∂ρ∂̃σ

− 2ξ
(

δρµδ
σ
ν − gµνg

ρσ
)

∇ρ∂σ −
1

2
(m2 + ξR)gµν + ξRµν

)

i∆(x; x̃)
∣
∣
∣
x=x̃

,

(109)

where ∂̃µ ≡ ∂
∂x̃µ

and ∆(x; x̃) is the (time ordered) Feynman propagator, obeying

√
−g
(

2 −m2 − ξR
)

i∆(x; x̃) = iδD(x− x̃), (110)

where δD is the D-dimensional delta function. Now, if we consider 〈0|Tµν |0〉 in Riemann
normal coordinates, we first of all expect it to have all the properties present in flat
space, in other words, ultraviolet divergences, which lead to a renormalization of the
coupling constants and an infinite vacuum energy. Now while in flat space the vacuum
energy is unobservable, this is not true on a general curved space. The vacuum energy
couples to the metric through the volume factor

√−g in the action, and thus couples to
gravity. The vacuum energy thus needs to be taken into account and will lead to a
renormalization of the cosmological constant. However, we also see that extra effects
will occur. The propagator obeys a second order differential equation and will therefore
in general contain two derivatives of the metric. The stress energy tensor (109) will thus
in general depend on terms containing up to four derivatives of the metric. Now in
Riemann normal coordinates the first derivative of the metric is zero, but higher order
derivatives are nonzero and will depend on space-time curvature as can be seen from
(107). Thus we see that independent of how high the momenta of the modes under
consideration are –or how ’local’ one probes space-time– the expectation value of the
stress-energy tensor will always depend on the structure of space-time. This property of
the expectation value of the stress energy tensor (109) will lead to additional terms in
the effective action, not present in Minkowski space-time. In principle these terms are
just as sensitive to the ultraviolet divergences as the other coupling constants in the
theory, and we thus expect that we also need to renormalize them. Because of general
covariance, the most general action corresponding to those terms (thus terms with up to
four derivatives of the metric) is

∫

dDx
√
−g
(

a0 + a1R+ a2R
2 + a3R

µνRµν + a4R
µνρσRµνρσ

)

(111)

The constants a0 and a1 are renormalizations of the cosmological constant and Newton
constant respectively. In four dimensions one can show that the so-called Gauss-Bonnet
term √−gG2 ≡ √−g

(

R2 − 4RµνRµν +RµνρσRµνρσ

)

(112)
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is a topological invariant and does not contribute to the equations of motion. We can
use this to eliminate a4. However, we still in general need to renormalize the couplings
a2 and a3. This can be done using similar techniques as in flat space and we find that,
with the inclusion of those terms, the theory will be renormalizable, provided that the
theory was renormalizable in Minkowski space-time.

3.5 Conformal coupling and the trace anomaly

We consider the action (68) for a scalar field but generalize it to D space-time
dimensions

S = −1

2

∫

dDx
√
−g
(

gµν∂µφ∂νφ+ ξRφ2 +m2φ2
)

(113)

and perform a conformal transformation of the metric

gµν(x) → ḡµν(x) = Ω2(x)gµν(x). (114)

We shall first perform the calculation and afterwards comment on the implications of
such a transformation. Under the transformation (114) we find that

ḡµν = Ω−2gµν
√
−ḡ = ΩD√−g
Γ̄αµν = Γαµν +

(

δαν ∂µ + δαµ∂ν − gαβgµν∂β

)

ln(Ω)

R̄µν = Rµν +
(

(2 −D)∂µ∂ν − gµν2
)

ln(Ω)

+ (D − 2)
(

(∂µ ln(Ω))(∂ν ln(Ω)) − gαβgµν(∂α ln(Ω))(∂β ln(Ω))
)

R̄ = Ω−2
(

R − 2(D − 1)2 ln(Ω) − (D − 2)(D − 1)gµν(∂µ ln(Ω))(∂ν ln(Ω))
)

.

(115)

Because the scalar field has a mass dimension of D−2
2

, we rescale it as

φ → φ̄ = Ω
2−D

2 φ (116)

and thus the kinetic term of the scalar rescales, up to a total derivative, as

−1

2

√
−ḡḡµν(∂µφ̄)(∂νφ̄) =

√
−g
(

− 1

2
gµν(∂µφ)(∂νφ)

− D − 2

4
φ2
(

2 ln(Ω) +
D − 2

2
gµν(∂µ ln(Ω))(∂ν ln(Ω))

)
)

.

(117)

This means that the action (113) rescales as

S̄ = − 1

2

∫

dDx
√
−g
(

gµν(∂µφ)(∂νφ) + ξRφ2 + Ω2m2φ2

+
(D − 2

2
− 2(D − 1)ξ

)

φ2
(

2 ln(Ω) +
D − 2

2
gµν(∂µ ln(Ω))(∂ν ln(Ω))

)
) (118)
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and we see that the action is invariant, S̄ = S, if m2 = 0 and ξ = D−2
4(D−1)

. If this is the
case, we call such a scalar field conformally coupled to gravity. One important
implication of this lies in cosmology, where we know that we can write ḡµν = a(η)2ηµν .
Thus the metric is after a conformal transformation equivalent to the metric of
Minkowski space-time. Now if the scalar field is conformally coupled, that means that
the rescaled field behaves exactly the same as a scalar field would do in flat space-time.
The conformally coupled scalar thus does not ’feel’ the expansion of space-time, apart
from some trivial rescaling.
Another property of conformally coupled fields is that the trace of their energy
momentum tensor is zero. This can be seen from

S̄ = S +

∫
δS̄

δḡµν
δḡµνdDx

= S −
∫ √−gT̄µν ḡµν

δΩ

Ω
dDx.

(119)

Thus if S = S̄, we must have that T̄µν ḡ
µν = 0. This property however turns out not to

be conserved under quantum corrections. For a conformally coupled scalar one finds
that after renormalization the trace of the stress energy tensor has acquired a
contribution [6]

〈0|T µµ|0〉 = − 1

2880π2

(

RαβµνR
αβµν − RµνR

µν − 2R
)

. (120)

Especially the appearance of 2R is potentially interesting and several authors have
looked at the implications of such a term on the cosmological evolution [78, 79, 80]. As a
final remark we like to point out that the conformally coupled scalar is not the only
conformally coupled field. Other examples include the photon field in 4 dimensions or
the massless fermion field in D dimensions.
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4 de Sitter space

de Sitter space is of special interest for mainly two reasons. First of all it is interesting
because of the high amount of symmetry. In fact de Sitter space is the unique maximally
symmetric space with positive curvature. The equivalent maximally symmetric space
with negative curvature is known as anti de Sitter space. A maximally symmetric space
has 10 Killing vectors, which is also the number of Killing vectors of Minkowski space.
This high amount of symmetry makes it relatively easy to work on de Sitter space and
many insights on quantum field theory on curved backgrounds, come from calculations
performed on this background [13, 6, 43, 81, 82, 83, 84, 85, 10, 9, 40, 86, 33, 42]. The
second reason of interest for de Sitter space is the fact that during inflation, see section
2, the universe can be very well approximated by de Sitter space [24].
D-dimensional de Sitter space can be represented by the hyperboloid [87]

ηABX
AXB =

1

H2
(121)

embedded in D + 1-dimensional Minkowski space-time, with metric ηAB, where the
indices A and B run from 0 to D. Here H is a constant, which we shall see can be
related to the Hubble parameter (11). The isometry group of de Sitter space, SO(1, D),
is manifest in this embedding. We shall use flat coordinates, which cover only half of the
de Sitter manifold, given by (i = 1, 2, . . . , D − 2, D − 1)

X0 =
1

H
sinh(Ht) +

H

2
xix

ieHt,

Xi = eHtxi,

XD =
1

H
cosh(Ht) − H

2
xix

ieHt,

−∞ < t, xi <∞.

(122)

In these coordinates the metric can be seen to be a special case of the spatially flat
FLRW metric (8) with the scale factor a given by

a = eHt (123)

and thus indeed H is the Hubble parameter, ȧ
a
.

We can write the metric in conformal form by changing coordinates to conformal time η
defined as adη = dt:

gµν = a2ηµν , a = − 1

Hη
, η < 0 . (124)

This metric covers only half of the de Sitter manifold. The other half is covered by η > 0
and corresponds to a contracting universe.
For this metric we find the Ricci tensor and scalar to be

Rµν = (D − 1)H2gµν ; R = D(D − 1)H2 (125)

And since H is a constant, we see this is a solution to the Einstein equation with a
cosmological constant Λ

Rµν −
1

2
Rgµν +

D − 2

2
Λgµν = 0, (126)
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if

H2 =
Λ

D − 1
. (127)

We define the de Sitter invariant distance function

1 − 1

2
Y (X; X̃) = H2ηABX

AX̃B . (128)

In the conformal coordinates (122) this function reads

y(x; x̃) =
∆x2(x; x̃)

ηη̃

∆x2(x; x̃) = −(η − η̃)2 + ||~x− ~̃x||2,
(129)

where a = a(η) and ã = a(η̃). The function y = y(x; x̃) is related to the geodesic length
` = `(x; x̃) between points x and x̃ as,

y(x; x̃) = 4 sin2

(
1

2
H`(x; x̃)

)

. (130)

The distance function y can be used to characterize the causal relation between points.
If y < 0, points x̃ are time-like separated to x, and if y > 0, they are space-like
separated. For y = 0 they are light-like separated. We define the antipodal point x̄ of x
by the map η → −η.

x̄µ = (−η, ~x) (131)

Notice that, since η in (124) is strictly negative, this point is not covered by the
coordinates. If y = 4, x̃ lies on the lightcone of an (unobservable) image source at the
antipodal point x̄, see figure 3.
Let us now consider a nonminimally coupled massive scalar field on this background.
The equation of motion (

2 −m2 − ξR
)

φ = 0 (132)

can be written in conformal coordinates as
( ∂2

(∂η)2
+ ω(η)2

)

χ = 0 (133)

with

χ(~k, η) =

∫

dD−1xe−i
~k·~xaD/2−1φ

ω(η)2 = k2 + a2

(

m2 +
(

ξ − D − 2

4(D − 1)

)

R

) (134)

The equation of motion can be exactly solved and the mode functions can be written in
terms of

u(k, η) =

√

−πη
4

H(1)
ν (−kη)

ν2 =
1

4
− ω2 − k2

(aH)2

=
(D − 1

2

)2

−
(m2

H2
+D(D − 1)ξ

)

,

(135)
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Figure 3: The causal structure in the conformal coordinates (124). The coordinates cover
only the region η < 0. The wavy line at η = 0 indicates future infinity. The lightcone of
the point x is given by y = 0. If y = 4, the point x̃ lies on the light cone of an unobservable
image source at the antipodal point x̄.
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as
ψ(~k, η) = α~ku(

~k, η) + β~ku
∗(~k, η). (136)

Here H
(1)
ν (z) is the Hankel function of the first kind. It is related to the better known

Bessel and Neumann functions as

H(1)
ν (z) ≡ Jν(z) + iNν(z) =

i

sin(νπ)

{

e−iνπJν(z) − J−ν(z)
}

. (137)

The mode functions allow us to decompose the field as

φ =

∫
dD−1k

(2π)D−1
a1−D

2

(

b(~k)ei
~k·~xψ(~k, η) + b†(~k)e−i

~k·~xψ∗(~k, η)
)

(138)

where we indicated the annihilation and creation operators with b and b† to avoid
confusion with the scale factor. To fix the vacuum, we see that in de Sitter space time
we have

lim
η→−∞

ω′

ω
= 0, (139)

where a prime denotes a derivative with respect to conformal time. From (139) and (81)
we find that in the infinite past the adiabatic vacuum defines a natural initial state. We
take the lowest order WKB approximation and then the positive frequency adiabatic
vacuum is for η → −∞

ψA(η → −∞) =
1√
2k
e−ikη (140)

In this same limit we find for the mode functions (136)

ψ(η → −∞) =
1√
2k

(

αe−ikηe−iπ( 1
4
+ 1

2
ν) + βeikηeiπ( 1

4
+ 1

2
ν)
)

+ O
(1

η

)

. (141)

Therefore we see that (up to an irrelevant phase factor) the vacuum that has the correct
form in the asymptotic past has α = 1 and β = 0. This choice is known as the
Bunch-Davies vacuum and, as we shall show later, it is a de Sitter invariant vacuum.
Notice that the limits we took are equivalent to the k → ∞ limit. Thus the reduction in
this regime to the adiabatic vacuum means that the ultraviolet modes are equivalent as
in Minkowski space-time.

4.1 de Sitter propagators and vacua

In this section we shall construct the Feynman propagator for a scalar field on de Sitter
space. First we shall solve the Klein-Gordon equation with a δ source and look at the
divergent structure. After that we shall consider the integral over the mode functions.
From the discussion, the dependence of the propagator on the choice of α and β will
become clear.
The time ordered Feynman propagator is given by

i∆(x; x̃) ≡ 〈0
∣
∣T
(

φ(x)φ(x̃)
)∣
∣0〉

≡ 〈0
∣
∣θ(t− t̃)φ(x)φ(x̃) + θ(t̃−t)φ(x̃)φ(x)

∣
∣0〉,

(142)
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where

θ(x) = 1 ; x > 0

= 0 ; x < 0
(143)

is the Heaviside step function and T indicates the time ordering. It satisfies the
following Klein-Gordon equation

√
−g(2 −m2 − ξR)ı∆(x; x̃) = ıδD(x− x̃), (144)

and δD(x− x̃) is the D-dimensional Dirac delta function. If the state |0〉 is invariant
under the de Sitter group, it follows that also the propagator should be invariant under
the de Sitter group. If this is the case, it can, up to a pole prescription, only depend
[81, 82] on the space-time points x and x̃ via the de Sitter invariant distance function y
given in (129). We rewrite the left hand side of (144) in terms of y:

aD−2

[

(
− (∂0y)

2 + (∂iy)
2
)( d

dy

)2

+
[(

− ∂2
0y + ∂2

i y
)
−
(
D − 2

)(a′

a

)
(∂0y)

] d

dy
− a2µ2

]

ı∆(y)

(145)

where i∆(y) = i∆(x; x̃) and
µ2 ≡ m2 + ξR (146)

The several terms in (145) evaluate to

a−2
[

− (∂0y)
2 + (∂iy)

2
]

=H2y(4 − y)

a−2
[(

− ∂2
0y + ∂2

i y
)
−
(
D − 2

)(a′

a

)
(∂0y)

]

= −H2D(y − 2)
(147)

The δ-function in (144) is only sourced by the most singular term in i∆ for y → 0.
Putting everything together we find for the non-singular terms that

[

y(4 − y)
( d

dy

)2 −
(
D(y − 2)

) d

dy
− µ2

H2

]

ı∆(y) = 0. (148)

Since in de Sitter space, the term µ2/H2 is a constant, we see that the Klein Gordon
equation has reduced to an ordinary differential equation in terms of y. The resulting
equation is a hypergeometric equation with a general solution [71]

ı∆(y) = A 2F1

[D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
y

4

]

+B 2F1

[D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y

4

]
,

(149)

where

ν2 =
(D − 1

2

)2

− µ2

H2
(150)

is the D-dimensional generalization of (135). The hypergeometric function has a branch
point if the argument is 1 or ∞̃ and it has a branch cut along the interval (1,∞), where
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it is continuous from below. 3 We see therefore that (149) has in general two singular
regions. First of all, if the points x and x̃ are null separated, we have y → 0 and the
second hypergeometric function is singular. This is of course expected, since for y → 0
we expect the two-point function to be similar to the Minkowski result. If we require
that in this limit the most singular solution reduces to the standard Minkowski result,
we can fix the constant B. The most singular term for y → 0 from (149) is

B
(y

4

)1−D/2 Γ(D/2)Γ(D/2 − 1)

Γ(D−1
2

+ ν)Γ(D−1
2

− ν)
. (151)

The correct time-ordered ε pole prescription for y turns out to be, as we shall see from
(164)

y++(x, x̃) =
1

ηη̃

(

−
(
|η − η̃| − ıε

)2
+ r2

)

(152)

Now since

∂2 1

(ηη̃y++)D/2−1
=

4πD/2

Γ(D
2
− 1)

ıδD(x− x̃) (153)

and the δ function in (144) is sourced by the action of
√−g2 on (151), we find that the

δ function is correctly sourced if

B =
Γ(D−1

2
+ ν)Γ(D−1

2
− ν)

Γ(D/2)

HD−2

(4π)D/2
. (154)

The constant A however is in principle unfixed. For non-zero A we see that the
propagator has an additional singularity if y = 4, or in other words, if x̃ is null related to
the antipodal point of x, see figure 3. The propagator therefore appears to give a
response to an image source located at the antipodal point of x. The vacuum of a mode
decomposition that leads to such an additional singularity is known as an α-vacuum.
The appearance of the image charge is outside the lightcone [88] and hence the
’unphysical’ singularity is unobservable, and moreover, the image charge itself is not
covered by the coordinates. Despite of this, several authors have argued that the
interpretation of such a state as a vacuum state leads to unacceptable
physics [89, 90, 91]. However the situation changes when one considers excited states
[92, 93]. Notice that excited states, with β k independent require an infinite amount of
energy and are thus very unlikely. Excited states with a k dependent β necessarily break
de Sitter invariance.
Let us now consider the construction of the propagator by performing the integral over
the modes. We consider the propagator in terms of the field (142). Using the mode

3For a proper definition of (149) we need a certain ε prescription for y. This prescription shall be
given explicitly later in this section.
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functions (136) we obtain

i∆(x; x̃) =
π

4

√

ηη̃(aã)1−D
2

∫
dD−1k

(2π)D−1
eik(~x−

~̃x)

×
{

θ(η − η̃)

(

|α|2H(1)
ν (−kη)H (1)

ν (−kη̃)∗ + |β|2H(1)
ν (−kη)∗H(1)

ν (−kη̃)
)

+ θ(η̃ − η)

(

|α|2H(1)
ν (−kη)∗H(1)

ν (−kη̃) + |β|2H(1)
ν (−kη)H (1)

ν (−kη̃)∗
)

+

(

αβ∗H(1)
ν (−kη)H (1)

ν (−kη̃) + α∗βH(1)
ν (−kη)∗H(1)

ν (−kη̃)∗
)}

.

(155)

In performing the integral we shall assume that α and β are k independent. This in
general does not have to be the case. However, if we require that our state is de Sitter
invariant, this must be the case. The reason for this is given in [94]. The argument is
that, if we consider the Bogolibov transformation between the Bunch-Davies vacuum
(α = 1, β = 0) and any other vacuum, the number of particles created with momentum
k is |βk|2. Since the de Sitter group includes boosts, an immediate consequence of de
Sitter invariance is that, if we have any quanta of any given momentum k, we need the
same amount of quanta for every k, and thus Nk cannot depend on k. Moreover we have
the normalization as before

|α|2 − |β|2 = 1 (156)

and thus we immediately deduce that both α and β cannot be k dependent.
Now recall the D = 4 angular integral,

∫
d3k

(2π)3
ei
~k·~rf(‖~k‖) =

1

2π2

∫ ∞

0

dk k2 sin(kr)

kr
f(k) . (157)

Here and henceforth we define r ≡ ‖~x−~̃x‖. Generalizing to D spacetime dimensions we

have dD−1k = kD−2dk dΩD−2, k = ‖~k‖, where

dΩD−2 = sinD−3(θD−3)dθD−3 sinD−4(θD−4)dθD−4 . . . dφ, (158)

where θD−3, θD−4, . . ., and φ are the angles on the sphere S
D−2. Making use of

∫

dΩD−2 =
2π

D−1
2

Γ
(
D−1

2

) =
2(4π)

D
2
−1Γ

(
D
2

)

Γ (D−1)
, (159)

and Eq. (8.411.7) in [95] gives,

∫
dD−1k

(2π)D−1
ei
~k·~rf(‖~k‖) =

1

2D−2π
D−1

2

∫ ∞

0

dk kD−2
JD−3

2
(kr)

(1
2
kr)

D−3
2

f(k) . (160)

To perform the integral, we rewrite the Hankel functions in terms of the modified Bessel
function of the second kind (also known as the Macdonald function).

H(1)
ν (z) =

2

π
e−

iπ
2

(ν+1)Kν(−iz) (161)
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Now we can show using several relations from [95] that, if the integral converges, we
have
∫ ∞

0

kλ+1Kν(ak)Kν(bk)Jλ(ck)dk =

√
πcλΓ(λ+ 1 + ν)Γ(λ+ 1 − ν)

23/2Γ(3/2 + λ)
2−λ−1/2 1

(ab)λ+1

× 2F1

(

λ+ 1 + ν, λ+ 1 − ν, λ+
3

2
,
1 − u

2

)

,

(162)

where u = a2+b2+c2

2ab
, provided that

Re(a) > 0 ; Re(b) > 0 ; c > 0. (163)

The integral (155) can be evaluated to yield

i∆(x; x̃) =
(

(aη)(ãη̃)
)1−D/2Γ(D−1

2
+ ν)Γ(D−1

2
− ν)

(4π)D/2Γ(D/2)
{

|α|22F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y++(x, x̃)

4

)

+ |β|22F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y−−(x̄, ¯̃x)

4

)

− α∗βeiπ(D−1
2

+ν)
2F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y+−(x̄, x̃)

4

)

− αβ∗e−iπ(D−1
2

+ν)
2F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y−+(x, ¯̃x)

4

)
}

.

(164)

Here a bar indicates the antipodal point x̄ = (η, ~x) = (−η, ~x) and the y functions with
the different ε prescriptions are given by (152) and

y+−(x, x̃) =
1

ηη̃

(

−
(
η − η̃ + ıε

)2
+ r2

)

y−+(x, x̃) =
1

ηη̃

(

−
(
η − η̃ − ıε

)2
+ r2

)

y−−(x, x̃) =
1

ηη̃

(

−
(
|η − η̃| + ıε

)2
+ r2

)

(165)

Thus we see that the first two lines of (164) are divergent when x̃ lies on the light-cone
of x, while the third and fourth lines are divergent when x̃ lies on the light-cone of the
antipodal point of x.
Since

∂2 1

(ηη̃y−−)D/2−1
= − 4πD/2

Γ(D
2
− 1)

ıδD(x− x̃) (166)

and because of the normalization (156), we find, similar to the discussion that led to the
determination of B in (154), that when x̃ lies on the light cone of x, the δ-function in
(144) is correctly sourced. While the sourcing of the δ-function is fixed, the small scale
behavior is in general dependent on α and β. However, if we require that there is no
additional singularity, we need α = 1 and β = 0. However, for any other choice, we will
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Figure 4: The causal structure as in figure 3, but with a schematic representation of the
four different contributions to (164).

have not only a change in the small scale behavior, but also the additional image source
at the antipodal point. The presence of such a source indeed seems inevitable as soon as
the state under consideration is not precisely the Bunch-Davies vacuum.
The hypergeometric functions in (164) have been written somewhat suggestively. This is
done such that each contribution to the full time ordered propagator can be thought of
as the propagation of Bunch-Davies type states between different combinations of x, x̃
and their antipodal points. We can see this nicely in figure 4.

4.2 The massless minimally coupled case

In the massless minimally coupled (MMC) case (m = ξ = 0), the above construction
breaks down. In this case the parameter ν is equal to D−1

2
and we see that the

propagator (149) (or (164)) reduces to a constant, which is of course a trivial solution to
the MMC Klein-Gordon equation. From (148) we find that the second independent
solution now is given by

y1−D/2
2F1

(

1 − D

2
,
D

2
, 2 − D

2
,
y

4

)

, (167)

which is singular both for y = 0 and for y = 4. So if we demand that the propagator
obeys the de Sitter invariant differential equation (148), we are forced to accept that the
only possible nontrivial state has two singular regions. And thus we can define nothing
like a Minkowski-like adiabatic state. It was shown by Allen [82] that this propagator
cannot correspond to a de Sitter invariant Fock vacuum |0〉. In other words, the
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’propagator’ (167) cannot be a correct propagator. What physically goes wrong can be
seen more clearly from the mode functions. If we consider the small argument expansion
of the Bessel function,

Jν(z) =
∞∑

n=0

(−1)n(1
2
z)ν+2n

n!Γ(ν+n+1)
, (168)

we can easily find the small argument expansion for the Hankel function using (137).
We now consider contributions to (155) of the form

k
D−1

2 JD−3
2

(kr)H
(1)
D−3

2

(−kη)H (1)
D−3

2

(−kη̃)∗. (169)

We find that

k
D−1

2 JD−3
2

(kr) =
(r

2

)D−3
2 kD−2

Γ(D−1
2

)

(

1 + O(k2)
)

H
(1)
D−3

2

(−kη)H (1)
D−3

2

(−kη̃)∗ =
(ηη̃

4

) 1−D
2 Γ((D − 1)/2)

π2
k1−D

(

1 + O(k2)
)

(170)

and thus the contribution (169) is for small k proportional to 1
k
. We thus find that the

MMC scalar in de Sitter space is logarithmically infrared divergent. This divergence
should be taken care of and we shall consider this question in the next sections in much
more detail. The basic idea will however always be to in some way suppress the long
wavelength contributions to the propagator. This can be immediately translated to a
k-dependence of the coefficients α and β. But we showed in the paragraph before (156)
that any k dependence of α and β necessarily breaks de Sitter invariance. Thus we
indeed find that for the MMC scalar, a physically viable, infrared finite state necessarily
breaks de Sitter invariance.
We like to point out however, that there is no necessity, from a physical point of view, to
demand invariance under the full de Sitter group [44]. Indeed, while de Sitter space
provides an excellent framework to study properties of inflation, it is never truly realized
in nature. In de Sitter space the Hubble parameter is per definition globally constant,
therefore it follows that if the universe was once de Sitter it will always be de Sitter.
From the fact that the universe is not de Sitter today, it follows that it was never de
Sitter. The deviation of the inflationary universe from de Sitter space is even measurable
through the deviation of the spectral index of scalar cosmological perturbations, ns,
from exact scale invariance [24, 16]. Here the spectral index is defined as

ns − 1 ≡ d ln(P )
d ln(k)

, with P the spectrum of the perturbations. Scale invariance implies
ns = 1. There thus appears to be no reason to demand invariance under the full de
Sitter group. The only symmetry present in the universe are the symmetries of a general
FLRW metric: spatial translations and rotations. The boosts present in the de Sitter
group that where crucial in the argument that α and β are k-independent are therefore
no symmetries of a realistic FLRW geometry. Violating this requirement, for example to
fix the infrared problem as noted above, is therefore in a realistic setting allowed.
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5 Infrared divergencies in cosmology

We shall now focus on the main subject of this thesis, the infrared divergencies present
in many cosmological models. Before going into a more rigorous derivation, we give a
simple heuristic description of the physics of cosmological particle production. We
consider a simple application of the energy-time uncertainty relation [23, 43] (notice
however that the precise meaning of both energy and time is ambiguous in curved
space-time) that states that a virtual particle-anti particle pair with energy E and
momenta ±k can exist a time δt given by

∫ t+δt

t

dt′E(t′, k) . 1. (171)

While in flat space δt is very small, it can grow large in curved space-time. The reason
is that the energy of the virtual pair decreases due to the expansion of the universe. If
the redshift is sufficiently fast, δt can grow very large. In particular if the field is
massless it can in principle become infinite if the momentum k of the pair is small
enough. If we define the energy as

E =
k

a
(172)

and we consider a FLRW space-time with constant ε (11), we find from (171)

k

a(t)H(t)(1 − ε)

(

1 − a(t)H(t)

a(t+ δt)H(t+ δt)

)

. 1. (173)

If the expansion of space-time is accelerating, aH is a growing function in time and we
see that δt can grow to infinity if at time t we have that

k

a(t)H(t)(1 − ε)
. 1. (174)

In other words, there is a continuous production of particles, with a physical wavelength,
a/k much larger than the Hubble radius due to the Heisenberg uncertainty relation.
Although intuitively appealing, the above argument is only of limited use. Since the
whole notion of a particle is not well-defined in curved space, it is not obvious how to
interpret the single particle uncertainty relation (171). Moreover, because of the lack of
a time-like Killing vector, the notion of energy is also not properly defined. However, for
a given coordinate frame, the above discussion at least gives a reasonable intuitive idea.
For a proper analysis on what happens in the infrared, we need to consider the
propagator. Since a propagator is essentially a correlation function of the field between
two points, we can interpret a growth of the propagator at large distances, as an excess
of long wavelength modes. Thus we expect that the super-Hubble particle production
described above leads to an enhancement of the infrared contribution to the propagator.
For concreteness we once again consider a scalar field φ in D dimensions, with a mass m
and conformal coupling ξ, whose action is given in (68). The background metric is, at
this point, a completely general FLRW metric and we work in conformal coordinates
(10). The equations of motion are exactly equivalent as in de Sitter (133) with (134).
However, the crucial difference is that, unlike in de Sitter, we cannot solve the massive
equations. To see this, we write (133) as

(

∂2
η + k2 +

1
4
− ν2

η2

)

χ = 0 (175)
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with

ν2 =
((D − 1 − ε

2

)2

− (D − 1)(D − 2ε)ξ − m2

H2

)

(Haη)2 (176)

and we immediately see the difference with the de Sitter case. There the parameter ν
was constant, while here it is in general not. Clearly if ν is not constant, (175) is in
general not analytically solvable. In a general FLRW space-time, ε and H have a
non-trivial time dependence, making it next to impossible to find a solution. Therefore
we restrict ourselves to the simpler case, where ε is a constant. Using (21) we find that

ν2 =
(D − 1 − ε

2(1 − ε)

)2

− (D − 1)(D − 2ε)

(1 − ε)2
ξ − m2

(1 − ε)2H2
(177)

Unfortunately, the presence of the mass still makes it impossible to solve (175)
analytically for most values of ε. Exceptions are ε = 0 where we recover the de Sitter
result, and ε = 2, where the solution can be written in terms of the 1F1 confluent
hypergeometric function. We shall not consider these two exceptions, and will from now
on consider only massless scalar fields, in a background where ε is constant. As we
explained in section (2) this is in many cosmological models a very reasonable
constraint, valid if the expansion of the universe is driven by a single fluid, with a
constant equation of state parameter w. Thus ν is given by

ν2 =
(D − 1 − ε

2(1 − ε)

)2

− (D − 1)(D − 2ε)

(1 − ε)2
ξ (178)

In this case the positive frequency solution for the mode functions can be written in the
same functional form as in the de Sitter case and is given by

u(~k, η) =

√

−πη
4

H(1)
ν (−~kη), (179)

allowing us to write, similar as before

φ =

∫
dD−1~k

(2π)D−1
a1−D

2

(

b(~k)ei
~~k·~xψ(~k, η) + b†(~k)e−i

~k·~xψ∗(~k, η)
)

ψ(~k, η) = αu(k, η) + βu∗(~k, η).

(180)

We impose the canonical quantization conditions

[b(k), b†(k̃)] = (2π)D−1δD−1(k − k̃)

[φ(x), aD−2∂ηφ(x̃)] = iδD−1(x− x̃)
(181)

and we remark that the conjugate momentum to φ is aD−2∂ηϕ. We find that we obtain
the following condition on the mode functions

ψ∂ηψ
∗ − ψ∗∂ηψ = i, (182)

which implies for α and β (180)

|α|2 − |β|2 = 1. (183)
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The state that asymptotically reduces to the adiabatic vacuum is once again given by
α = 1 and β = 0. We shall consider the propagator (142) associated to this state.
Making use of (160) we find that the propagator is given by

i∆(x; x̃) =

√
ηη̃ (aã)1−D

2

2Dπ
D−3

2

∫ ∞

0

dk kD−2
JD−3

2
(kr)

(1
2
kr)

D−3
2

×
{

θ(η − η̃)H (1)
ν (−kη)H (1)

ν (−kη̃)∗+ θ(η̃ − η)H (1)
ν (−kη)∗H(1)

ν (−kη̃)
}

. (184)

Thus we see that the integral we have is completely similar to the one we encountered in
the de Sitter case. Therefore, if the integral converges, we can use (162) to evaluate the
propagator. We are at this point primarily interested in the infrared behavior. Using
(168) we find that if ν > 0 for small k, the leading order contribution to the integrand is
given by

22ν−DΓ(ν)2

π(D+1)/2Γ(D−1
2

)

(
(aη)(ãη̃)

)1−D
2
√

ηη̃

∫

dk(
√

ηη̃k)D−2−2ν . (185)

Thus we see that the integrand is infrared divergent for all

ν ≥ D − 1

2
. (186)

Similar we find that if ν < 0 we have an infrared divergence if

ν ≤ −D − 1

2
. (187)

Looking at (178) we recover the result that the minimally coupled scalar (ξ = 0) in de
Sitter (ε = 0) is divergent for any D. For the specific case of ξ = 0 and D = 4, we see
that the propagator is infrared divergent for all

0 ≤ ε ≤ 3

2
; ξ = 0 (188)

In terms of the equation of state parameter (6) we find from (17) that this implies
w ≤ 0. In other words, as soon as the pressure contributing to the expansion of the
universe becomes negative, the two point correlator is infrared divergent. Notice that
this is a larger range of values than expected from the discussion based on the
uncertainty relation (171), there the argument only holds for ε < 1.
For nonzero ξ, we find that there are infrared divergencies if

ε− ≤ ε ≤ ε+, (189)

where

ε± =
1

D(D − 2)

(

(D − 1)(D − 2 + 4ξ)

±
√

(D − 1)
(

(D − 1)(D − 2) − 4ξ
)(

D − 2 − 4(D − 1)ξ
))

.

(190)

From this equation we find that for all ξ < D−2
4(D−1)

(conformal coupling) there is an
infrared divergence. The smaller ξ is, the larger the range of values for ε for which there
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Figure 5: The range of values of ε where there is an infrared divergence versus ξ. The
upper red curve is ε+ and the lower blue curve is ε− as given in (190). There is an infrared
divergence for all values in the shaded region. The green dotted line indicates ε = 2
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is such a divergence. Moreover, for all ξ > (D−1)(D−2)
4

there is also a divergence, and the
larger the value of ξ, the larger the range of ε. We can see this in figure 5
This is all physically very reasonable. The presence of a nonzero ξ acts effectively as a
(time-dependent) mass, proportional to ξR. A positive mass regulates the infrared,
while a negative mass destabilizes the solution and thus enhances the long range
correlations. This is precisely what we find, if one remembers that R > 0 if ε < 2 and
R < 0 if ε > 2.If ξ = D−2

4(D−1)
we now from section 3.5 that we should effectively recover

the Minkowski space-time, so the infrared divergences should disappear there.
The presence of the infrared divergencies is due to the creation of modes at
super-Hubble scales. The constant creation of these modes makes the universe highly
correlated on large scales, causing the propagator to diverge. It is important to
emphasize here the meaning of infrared divergencies, in contrast to the ultraviolet
divergencies discussed in section 3.4. Ultraviolet divergences indicate that loop
corrections have made an infinite change between observed parameters and the
corresponding parameters of the Lagrangian [20, 21, 38]. They can be cancelled by
expressing the parameters of the Lagrangian in terms of observed quantities plus
counterterms which subtract the divergences. Infrared divergences however do not mean
anything about parameters in the Lagrangian. Instead, they signify that there is
something unphysical about the computation being done. One does not deal with an
infrared divergence by subtracting a counterterm; the correct procedure is rather to
compute physically well-defined quantities. The classic example is the Bloch-Nordsieck
switch from infrared divergent, exclusive processes to infrared finite, inclusive processes
in quantum electrodynamics [20].
The unphysical thing about the propagator calculated above is that due to the particle
creation, the super Hubble modes cannot be described by a coherent Bunch-Davies
vacuum. Several plausible fixes have been proposed:

• One could work on a compact spatial manifold such as a torus TD−1 for which
there are no initially super-horizon modes [37, 38]. In this case the free field
expansion becomes a sum rather than an integral but it is generally valid to make
the integral approximation to this sum, with a nonzero lower limit. When this was
done for the graviton propagator on de Sitter background (ε = 0) there is no
disturbance to powerful consistency checks such as the one loop Ward identity
[96] and the nature of allowed counterterms [97, 98]. The renormalization of
scalar field theories is not even affected at two loop order [45, 46, 99, 100].

• One could choose the coefficients α and β in the mode functions (180) such that
the super-horizon modes are less singular than they would have been in the
Bunch-Davies vacuum [40, 41]. Because only the super-horizon modes change
there would be no effect on the Hadamard short distance behavior of the
propagator. Of course the time dependence of the mode functions is determined
by the scalar field equation but their initial values and the initial values of their
first time derivatives can be freely specified. For example, if the initial values for
the infrared modes were chosen to be those of the Bunch-Davies mode functions
for ν = 1/2 (regardless of the actual value of ν) then there would be no infrared
divergence, either initially or at any later time [39].

• Instead of splitting the ultraviolet and the infrared sector, one could also consider
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the matching between the Bunch-Davies vacuum in an infrared safe space-time
and the space-time one wishes to study[72] for all modes. Also in this case the
initial state does not lead to infrared divergences and thus also the final state will
be safe. In this approach the ultraviolet mode functions will differ from the
ultraviolet Bunch-Davies mode functions, but the ultraviolet divergent structure
will not change.

5.1 Infrared divergence in de Sitter and back-reaction

In this thesis we shall implement the first of these fixes. But let us now first consider
what we naively might expect to happen. Both approaches effectively correspond to a
choice of the initial vacuum, such that the long range correlations are suppressed. The
creation of infrared modes however, is not suppressed. Therefore, as time goes on, we
expect the universe to become more and more correlated on super-Hubble scales. Of
course, within a finite amount of time, the amount of correlation can only be finite,
leading to an infrared finite propagator. However we do expect a growing contribution
coming from the continuously produced infrared modes. For example lets consider the
case of de Sitter inflation (ε = 0, ν = 3/2) and suppose we have implemented the first
fix. Effectively this means we impose an infrared cut-off at some scale k0. The leading
order contribution coming from the lower limit of the integral (185) is in D = 4
proportional to

i∆(x, x̃)dS ∝
√

ηη̃

∫

k0

dk(
√

ηη̃k)2−2ν

∝ − ln(k
√

ηη̃) + O(2ν − 3)

(191)

We see thus that what we obtain is a term that grows logarithmically with conformal
time [41]. This indeed signifies that, although we have made the infrared finite, the long
range correlations still do grow. Notice however that the contribution due to (191) to
the energy density will also be redshifted in time, countering the growth due to the long
range correlations.
The growth of (191) is exactly what we anticipated when we discussed back-reaction in
section 3.3. The logarithm in (191) can at least in principle cause the expectation value
of the stress-energy tensor (109) to grow in time. Therefore, though initially small,
quantum effects might have a significant effect at late times [37]. Of course, as soon as
back-reaction becomes significant, the geometry of the universe is no longer de Sitter
and the analysis breaks down. Still this logarithmic growth has led to a lot of interesting
physics [86, 45, 46, 44, 37, 96, 49, 50]. In many back-reaction calculations the idea is
roughly the following. Suppose inflation is driven by a large cosmological constant (or
alternatively by an inflaton field). In this era, the universe is approximately de Sitter
and if non-conformally coupled massless fields are present (like the scalar discussed
above, or perhaps more realistically the graviton [101]) we can expect a growing
contribution (191) to the energy density. As long as this growth is not too fast, it will
effectively behave as a contribution to the cosmological constant, and if the sign of this
contribution is correct, it will decrease the cosmological constant. Thus at each moment
in time, we effectively have a de Sitter universe, but at each subsequent time step, the
effective cosmological constant is slightly smaller. Eventually the growing contribution
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becomes non-perturbatively large and the calculation cannot be trusted anymore.
However, if one extrapolates the behavior described above, one might be led to the
conclusion that the cosmological constant eventually will be completely screened by
quantum corrections. The hope is then that such a mechanism might simultaneously end
inflation in a natural way and describe why the present day value of the cosmological
constant is so small. If correct, such a mechanism would solve two important problems
in theoretical physics, without the need for any exotic new ingredients. For example, if
the graviton is responsible for this effect, it was found in [47, 48, 37, 96] that at two
loop order, interactions between virtual graviton pairs appear to slow down inflation.
However appealing, this work has also been criticized [102, 103, 52, 51]. Similar
mechanisms have also been studied in the context where the growing infrared modes are
due to a scalar field [49, 50, 104, 53, 54]. It was found in [54] that at three loop order
the contribution due to the infrared modes grows in time.
Other effects on which the effect of the growing two point function has been studied
include for example a massless minimally coupled scalar with a quartic self-interaction
[45, 46, 99]. The resulting model shows a violation of the weak energy condition on
cosmological scales. A non-minimally coupled, massive scalar with quartic
self-interaction has also been studied [105]. In this model the radiative corrections to
slow roll inflation where calculated and found to be unobservable.
Also scalar electrodynamics has been studied extensively [23, 106, 107, 108, 100, 109].
The vacuum polarization has been studied and it has been shown that in such a model
super-Hubble photons acquire a mass. The contribution to the zero-point energy of
these photons sources cosmological magnetic fields.

5.2 The relevance of massless scalar fields

So far we only considered (massless) scalar fields, for the simple reason that those fields
are typically the easiest to study. However the conclusions made above can be
generalized to many other massless fields.
For example we consider the graviton, whose action is obtained from the Einstein
Hilbert action (2) by decomposing the metric in a background piece g

(0)
µν plus a small

perturbation

gµν = g(0)
µν + hµν

gµν = g(0)µν + δgµν
(192)

and we assume that the matter degrees of freedom do not fluctuate (the more general
case will be treated in section 9). We require that gµαgµβ = δαβ and we raise and lower
indices on the perturbation with the background metric: hµα = gµνhνα and find

δgµν = −hµν + hµαh
αν + O(h3). (193)

After a long calculation we find that [71] the gauge fixed propagator of the pseudo
graviton field ψµν , defined by

hµν ≡
√

16πGNa
2ψµν (194)
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can be written in a general FLRW space-time as

[ρσ∆
αβ] =

(

2δ̄(α
ρ δ̄

β)
σ − 2

D − 3
η̄ρση̄

αβ
)

∆0 + 4δ0
(ρδ̄

(α
σ)δ

β)
0 ∆1

+

[

2

(D − 2)(D − 3)
(ηρσ + (D − 2)δ0

σδ
0
ρ)(η

αβ + (D − 2)δβ0 δ
α
0 )

]

∆2,
(195)

where
η̄µν = ηµν + δ0

µδ
0
ν . (196)

and the individual propagators are given by

√
−g
(

2S − n(D − n− 1)(1 − ε)H2
)

∆n(x; x̃) = ıδD(x− x̃), (197)

here n = 0, 1, 2 and 2S is the d’Alembertian as it acts on a scalar field, irrespective of
what it actually acts on

2S ≡ a−D∂αa
D−2ηαβ∂β. (198)

Thus we see we can write the graviton propagator in terms of massless scalar field
propagators with a certain amount of conformal coupling. Thus we can apply all the
conclusions we made for the scalar field also in this case. Similar situations have been
shown to arise, at least in de Sitter space, for the photon [44] and an antisymmetric
tensor field [36].
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6 Resolving the infrared divergencies using a

momentum cut-off

The purpose of this section is to resolve the infrared divergence with the first of the
three fixes proposed in the previous section. Thus we shall construct the propagator on
a spatially compact manifold, such that we effectively cut away all modes with momenta
less than some cut-off k0 [38]. We shall perform this calculation by first simply
neglecting the infrared divergences and calculate the propagator on R

D−1 (which is
incorrect). We can then afterwards subtract the infrared divergent contribution. The
infinite volume propagator is given by the integral (184) and is of the same form as
(162). We can thus immediately find the result that

i∆∞(x; x̃) =

[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

Γ(D−1
2

+ν)Γ(D−1
2

−ν)
Γ(D

2
)

× 2F1

(
D−1

2
+ν,

D−1

2
−ν; D

2
; 1− y

4

)

,

(199)

where we use a subscript ∞ to indicate we work on a non-compact manifold. Here and
henceforth we define the quantity y = y++(x; x̃) as defined in (152). The propagator
(199) is the generalization of the Chernikov-Tagirov propagator for de Sitter space to
space-times with constant, but arbitrary ε [81]. The constant ε propagator was already
found for D = 4 in [33].
Expression (199) has also been obtained by solving the propagator equation (144) with

the Ansatz of (HH ′)
D
2
−1 times a function of y(x; x′) [110, 74]. If we employ the

transformation formulae for hypergeometric functions and then their series expansion we
can write this as,

i∆∞(x; x̃) =
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]D
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{
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1

2
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2
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2
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2
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y
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,(200)

=

[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

Γ
(D

2
−1
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)
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+ν)Γ(1

2
−ν)

×
∞∑

n=0

[

Γ(3
2
+ν+n)Γ(3

2
−ν+n)

Γ(3−D
2
+n) (n+1)!

(y

4

)n−D
2

+2

−Γ(D−1
2

+ν+n)Γ(D−1
2

−ν+n)

Γ(D
2
+n)n!

(y

4

)n
]}

.(201)

In the context of dimensional regularization, we can automatically subtract all D
dependent powers of y. We then see however that in (201) the gamma functions on the
last line diverge for certain values of ν, irrespective of whether or not x̃µ = xµ and with
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the dimensional regularization still in effect. We immediately find that divergences occur
for

ν =
D − 1

2
+N =⇒ Γ

(D−1

2
− ν + n

)

= Γ(−N + n)

ν =
D − 1

2
−N =⇒ Γ

(D−1

2
+ ν + n

)

= Γ(−N + n),

(202)

where N = 0, 1, 2, . . .. Based on the discussion following (185) however we conclude that
the integral (184) has infrared divergences for all ν > (D − 1)/2 and ν < −(D − 1)/2,
while the final result (201) only diverges for the discrete values of ν given by expressions
(202). The reason for this is because dimensional regularization [111, 112]
automatically subtracts power law divergences and only registers logarithmic
divergences. For most values of ν the infrared divergence is a power law, and
dimensional regularization — quite incorrectly — sets it to zero. It is only for the
discrete values (202) that a logarithmic divergence occurs and causes expression (201) to
become ill-defined. To see this, consider the integral (184) and note that the logarithmic
divergence could derive from any of the order k2N series corrections to the leading small
argument expansion of the Bessel function (168). We immediately find that logarithmic
infrared divergences occur precisely for the values given in (202).
It is important to understand that the infinite space propagator has physical problems
for every value of ν in the infrared divergent range |ν| ≥ D−1

2
whether or not ν happens

to take one of the critical values (202) necessary for a logarithmic divergence. This is
because ultraviolet and infrared divergences mean different things, as was also
emphasized before. The automatic subtraction of dimensional regularization is not an
error for ultraviolet divergences; it merely saves one the trouble of defining and
subtracting the appropriate counterterm to cancel a power law divergence. Employing
the automatic subtraction of dimensional regularization to remove a power law infrared
divergence however, corresponds to adding an illegal counterterm. The result that an
unphysical question now returns a finite answer does of course not make the answer
physical.

6.1 Finite Space Mode Sum

The purpose of this section is to resolve the infrared problems present in the infinite
space propagator by working on a finite-sized spatial manifold [37, 38]. We show how
this changes the mode sum for the propagator. We also derive the corrections it makes
to the integrated, position-space form. Explicit demonstrations are given that the
correction terms cure the N = 0 and N = 1 divergences in expressions (202). And
certain special cases are checked against known results [45, 46, 113].
We work on TD−1, which supports the spatially flat FLRW geometry (10). If the
coordinate radius in each direction is 2π/k0 then the integral approximation for the free
field expansion of the operator is the same as (180) except that the integral is cut off at

‖~k‖ = k0,

φ =

∫
dD−1k

(2π)D−1
a1−D

2 θ(k − k0)
(

b(k)ei
~k·~xψ(k, η) + b†(k)e−i

~k·~xψ∗(k, η)
)

. (203)

The mode functions ψ are as in (180), with α = 1 and β = 0. This ensures that we
recover normal flat space-time physics in the ultraviolet.
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Of course the same cutoff works its way into the mode sum for the propagator (184),

i∆(x; x̃) =
[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

π
3
2 2

D−3
2

(
r√
ηη̃

)D−3
2

∫ ∞

z0

dz z
D−1

2 JD−3
2

( r√
ηη̃

z
)

×
{

θ(η − η̃)H (1)
ν

(√η

η̃
z
)

H(1)
ν

(
√

η̃

η
z
)∗

+ θ(η̃ − η) ×
(

conjugate
)
}

. (204)

Here and subsequently

z ≡
√

ηη̃k ; z0 ≡
√

ηη̃k0. (205)

We can obviously break the integral over z up into two parts,

∫ ∞

z0

dz =

∫ ∞

0

dz −
∫ z0

0

dz . (206)

This means that the result for (204) is what we already have (201) from the work of
[71, 110, 74], minus the finite range integral. It would be simple enough to expand the
integrand of this second contribution and then integrate termwise, but we really only
need the most infrared singular parts.
To be more specific and to simplify the calculation somewhat we shall assume that
ξ = 0, and the parameter ν in the remainder of this section will be given by

ν̂ =
D − 1 − ε

2(1 − ε)
. (207)

Notice the difference between this parameter and the one used before is that ν̂ becomes
negative if the expansion of the universe is decelerating (ε > 1). At the end of this
section, we shall see that we can easily generalize the result to nonzero ξ and the
original definition of ν.
With this in mind, we see that for the inflationary case 0 ≤ ε < 1 divergences occur at,

ε =
2N

D−2+2N
=⇒ Γ

(D−1

2
− ν̂ + n

)

= Γ(−N + n) for N = 0, 1, 2, . . . (208)

For the decelerating case of 1 < ε divergences are found at,

ε = 2
D−1+N

D+2N
=⇒ Γ

(D−1

2
+ ν̂ + n

)

= Γ(−N + n) for N = 0, 1, 2, . . . (209)

For the inflationary case of 0 ≤ ε < 1 the index ν̂ is positive and the most infrared
singular parts of the integrand derive from the J−ν̂ contributions to the Hankel functions
(137). For the decelerating case of 1 < ε ≤ 2(D−1)/D the index ν̂ is negative and it is
the J+ν̂ parts of the Hankel functions that are the most infrared singular. We shall work
out the series of leading corrections in each case.
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6.1.1 Accelerating case

Let us begin with the most infrared singular correction for the inflationary case of
0 ≤ ε < 1. From the small argument expansion of the Bessel functions (168) and (185)
we see that the desired correction is,

δi∆0(x; x̃) = −

[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

22ν̂Γ2(ν̂)

π
1
2 Γ(D−1

2
)

∫ z0

0

dz zD−2−2ν̂

=

[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

Γ(2ν̂)Γ(ν̂)

Γ(1
2
+ν̂)Γ(D−1

2
)

2(1−ε)
ε(D−2)

( 1

k2
0ηη̃

) ε(D−2)
2(1−ε)

. (210)

To reach the last form (210) we have used the doubling formula for the Gamma
function,

Γ(2x) =
22x−1

π
1
2

Γ(x)Γ
(

x+
1

2

)

. (211)

Of course the infrared divergence at z = 0 in δi∆0 was dimensionally regulated, the
same way as in the infinite space result i∆∞. This is wrong for δi∆0, just as it was for
i∆∞, but expression (206) implies that the two errors must cancel.
We shall use the notation δi∆N to indicate the N -th order correction in the case of an
inflationary universe (ε < 1). For the correction in the decelerating case
(1 < ε ≤ 2(D − 1)/D) we use the notation δi∆N . While the power law divergences now
are removed with a physical reason, let us also show that the logarithmic divergences are
also correctly removed. The addition of (210) should eliminate the N = 0 logarithmic
divergence (208). Both (210) and the n = 0 term from the last line of (201) have a
common factor that we may as well omit,

[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

× 1

Γ(1
2
+ν̂)

. (212)

The remaining contributions are,

2(1−ε)Γ(2ν̂)Γ(ν̂)

ε(D−2)Γ(D−1
2

)

( 1

k2
0ηη̃

) ε(D−2)
2(1−ε) − Γ(D

2
−1)Γ(2−D

2
)

Γ(1
2
−ν̂)

Γ(D−1
2

+ν̂)Γ(D−1
2

−ν̂)
Γ(D

2
)

=
2(1−ε)Γ(2ν̂)Γ(ν̂)

ε(D−2)Γ(D−1
2

)

{
( 1

k2
0ηη̃

) ε(D−2)
2(1−ε)

+
Γ(D−1

2
)

Γ(ν̂)

Γ(1−D
2
)

Γ(1
2
−ν̂)

Γ(D−1
2

+ν̂)

Γ(2ν̂)

Γ(D−1
2

−ν̂)
2(1−ε)
ε(D−2)

}

. (213)

Near N = 0 we can define a small parameter

α ≡ D − 1

2
− ν̂ = ε(D−2)/[2(1−ε)] (214)
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and we expand (213) in this parameter. The limit α→ 0 is equivalent to the limit when
ε vanishes and expression (213) reduces to

lim
ε→0

2(1−ε)Γ(2ν̂)Γ(ν̂)

ε(D−2)Γ(D−1
2

)

{
( 1

k2
0ηη̃

) ε(D−2)
2(1−ε)

+
Γ(D−1

2
)

Γ(ν̂)

Γ(1−D
2
)

Γ(1
2
−ν̂)

Γ(D−1
2

+ν̂)

Γ(2ν̂)

Γ(D−1
2

−ν̂)
2(1−ε)
ε(D−2)

}

(215)

= Γ(D−1)

{

ln(aã) − π cot
(πD

2

)

+2 ln
(H0

k0

)

+ ψ
(D−1

2

)

− ψ
(D

2

)

+ ψ(D−1) − γ

}

,

where ψ(z) = (d/dz) ln(Γ(z)) indicates the digamma function, we used a = −1/H0η
(valid for ε = 0), ψ(1) = −γ and the reflection formula for the digamma function,

ψ(1−x) = ψ(x) + π cot(πx) . (216)

Multiplying (215) by the common factor (212), and then adding the rest of (201) —
which is not singular for ε = 0 — gives the following result,

lim
ε→0

i∆(x; x̃) =
HD−2

0

(4π)
D
2

{

Γ(D
2
)

D
2
− 1

(4

y

)D
2
−1

+
Γ(D

2
+1)

D
2
−2

(4

y

)D
2
−2

+
Γ(D−1)

Γ(D
2
)

[

ln(aã)

−π cot
(πD

2

)

+ 2 ln
(H0

k0

)

+ ψ
(D−1

2

)

− ψ
(D

2

)

+ ψ(D−1) − γ

]

+

∞∑

n=1

[

Γ(D−1+n)

nΓ(D
2
+n)

(y

4

)n

− Γ(D
2
+1+n)

(2−D
2
+n) (n+1)!

(y

4

)n−D
2

+2
]

+O(k2
0)

}

. (217)

We see that we indeed recover a term that grows logarithmically with a, as we
anticipated in (191). Except for the order k2

0 corrections, and for some constant, finite
factors on the second line, expression (217) agrees precisely with the result first obtained
in [45] and used subsequently in many one and two loop computations
[114, 88, 99, 100, 115, 116, 117] on de Sitter background.
It is straightforward to work out the next contributions from the lower limit. We merely
add up the three first order corrections from the Bessel and Hankel functions for the
case of ν̂ positive,

JD−3
2

( r√
ηη̃

z
)

=
( r

2
√
ηη̃

)D−3
2 × z

D−3
2

Γ(D−1
2

)

{

1 −
r2

ηη̃
z2

4

(D−1
2

)
+O(z4)

}

, (218)

H
(1)
ν̂

(√η

η̃
z
)

=
−i(1

2
z)−ν̂(η/η̃)−ν̂/2

sin(ν̂π)Γ(1−ν̂)

{

1 −
η
η̃
z2

4

1−ν̂ +O(z4)

}

, (219)

H
(1)
ν̂

(
√

η̃

η
z
)∗

=
i(1

2
z)−ν̂(η̃/η)−ν̂/2

sin(ν̂π)Γ(1−ν̂)

{

1 −
η̃
η
z2

4

1−ν̂ +O(z4)

}

. (220)

55



The resulting lower limit term is,

δi∆1 = −

[

(1−ε)2HH ′
]D

2
−1

(4π)
D
2

2Γ(2ν̂)Γ(ν̂)

Γ(1
2
+ν̂)Γ(D−1

2
)

[
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]
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×
[

(η2+η̃2)
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− ∆x2
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0

D+1−2ν̂
. (221)

This should cancel the N = 1 divergence of (208) at ε = 2/D, which affects the n = 0
and n = 1 terms on the last line of (201),

[

(1−ε)2HH̃
]D
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(4π)
D
2

Γ(D+1
2

+ν̂)Γ(D+1
2

−ν̂)Γ(−D
2
)

Γ(1
2
+ν̂)Γ(1

2
−ν̂)

[

−D
2

(D−1
2

)2−ν̂2
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4

]

. (222)

The key to seeing that the infrared divergence of (221) cancels that in (222) is to express
both in terms of the small parameter,

α ≡ ν̂ −
(D+1

2

)

=
(Dε−2)

2(1−ε) . (223)

As before, we extract the common factor of

[

(1−ε)2HH̃
]D

2
−1
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. (224)

When expanded in terms of α, the lower limit contribution from (221) is this factor
times,
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=
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. (226)

In contrast, the contribution from the infinite space propagator (222) is the factor (224)
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times,
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Adding (226) to (228) and taking α = 0 (which implies ε = 2/D) gives,
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Thus we find indeed that the result has become finite. The N = 0 correction (210) is
now also finite, but it does contribute a term that grows as 1

(ηη̃)
. We can get the full

propagator for ε = 2/D by multiplying (230) by the common factor (224), and then

57



adding the rest of (201) with the now finite N = 0 correction (210),

lim
ε→ 2

D

i∆(x; x̃) =

[(1− 2
D

)2HH̃]
D
2
−1

(4π)
D
2

{

Γ
(
D
2

+ 1
)

(
1 − D

2

)(
− D

2

)

(4

y

)D
2
−1

+
Γ(D

2
+2)

(2−D
2
)(1−D

2
)

(4

y

)D
2
−2

+
1

2!

Γ(D
2
+3)

(3−D
2
)(2−D

2
)

(4

y

)D
2
−3

+
Γ(D+1)

4Γ(D
2
+1)

[

2(D−1)

k2
0ηη̃

− 2

D−1

(η

η̃
+
η̃

η

)

+2 +
2

D
+ (2−y)

{(

1− 2

D

)
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Here the constant KD is,

KD ≡ 2 ln
[(
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. (232)

As far as we know the literature contains no result against which we can check (231) but
its limit in D = 4 dimensions has been worked out,
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This agrees perfectly with equation (3.82) of [113].
We have seen that the lower limit term which corrects the N = 0 problem in (208) is
given by (210). For the N = 1 problem the corresponding lower limit correction is (221).
To see the general pattern, first substitute the relation for H in terms of η,

H = H0

[

−(1−ε)H0η
] ε

1−ε
. (234)

This reveals the N = 0 correction (210) to be constant,
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The same substitution reveals that the N = 1 correction (221) is quadratic in the
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coordinates,

δi∆1 ≡

[
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Both corrections are homogeneous solutions of the propagator equation (144),

∂µ

(√
−ggµν̂∂ν̂δi∆N

)

= 0 . (237)

Note that each lower limit correction δi∆N must separately solve (237) because each
goes like a distinct power of k0. The freedom to add such homogeneous terms is precisely
what is not fixed by just solving the propagator equation rather than using the mode sum.
We could work out the N-th lower limit correction δi∆N from the mode sum but that
would involve tedious multiplications of corrections from the Bessel function and the two
Hankel functions. A simpler technique is to use the fact that the correction must have
the form,
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Then we determine the coefficients ak` by three requirements:

1. The coefficient aN0 derives entirely from the z2N correction of the Bessel function
and, by direct examination of (204), we can see that it is,

aN0 =
(−1)NΓ(D−1

2
)

N !4NΓ(D−1
2

+N)
; (239)

2. Symmetry under η ↔ η̃ implies,

ak` = ak(N−k−`) ; (240)

3. The series must solve the homogeneous Klein-Gordon equation (237).
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The differential equation (237) implies,
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2kη2`−2η̃2(N−k−`) , (242)

=

N−1∑

k=0

N−1−k∑

`=0

2(k+1)(2k+D−1)ak+1 `r
2kη2`η̃2(N−1−k−`)

−
N−1∑

k=0

N−1−k∑

`=0

4(`+1)(`+ 1 − ν̂)ak `+1r
2kη2`η̃2(N−1−k−`). (243)

Hence the coefficients must obey,

(k+1)(2k+D−1)ak+1 ` = 2(`+1)(`+1−ν̂)ak `+1 . (244)

The unique solution consistent with the other two of the three properties is,

ak` =
(

−1

4

)N 1

k! `! (N−k−`)!
Γ(D−1

2
) Γ2(1−ν̂)

Γ(k+D−1
2

)Γ(`+1−ν̂)Γ(N−k−`+1−ν̂) . (245)

For N = 0 this gives the known result

N = 0 =⇒ a00 = 1 . (246)

A less trivial check is that it also works for N = 1,

N = 1 =⇒ a00 = a01 =
1

4(ν̂−1)
and a10 = − 1

2(D−1)
, (247)

thus we see we indeed correctly recover (236).

6.1.2 Decelerating case

Let us turn now to the decelerating case of 1 < ε ≤ 2(D−1)/D for which the infinite
space propagator (201) diverges at the discrete values given in (209). The leading order
contribution to the propagator is, equivalent to (185), but now for negative ν̃

2−2ν̃−DΓ(−ν̃)2

π(D+1)/2Γ(D−1
2

)

(
(aη)(ãη̃)

)1−D
2
√

ηη̃

∫

dk(
√

ηη̃k)D−2+2ν̃ . (248)

By paralleling what we did for the inflationary case one can show that the lower limit
term which corrects the N = 0 problem is,
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δi∆0 = −

[

(1−ε)2HH̃
]D

2
−1

(4π)
D
2

Γ(−2ν̂)Γ(−ν̂)
Γ(1

2
−ν̂)Γ(D−1

2
)
2

∫ z0

0

dz zD−2+2ν̂ ,

=

[

(1−ε)2H2
0

]D
2
−1

(4π)
D
2

Γ(−2ν̂)Γ(−ν̂)
Γ(1

2
−ν̂)Γ(D−1

2
)

2(ε−1)

2(D−1)−Dε (249)

×
[

(1−ε)2H2
0

k2
0

] ε(D−2)
2(1−ε) (

k2
0ηη̃
)2ν̂

. (250)

One can easily check that (k2
0ηη̃)

2ν̂ indeed solves again the homogeneous equation (237).
So the full series of these lower limit corrections should take the form,

δi∆N =

[

(1−ε)2H2
0

]D
2
−1

(4π)
D
2

Γ(−2ν̂)Γ(−ν̂)
Γ(1

2
−ν̂)Γ(D−1

2
)

2(ε−1)

2(D−1+N)−(D+2N)ε

×
[

(1−ε)2H2
0

k2
0

] ε(D−2)
2(1−ε)

(k2
0ηη̃)

2ν̂k2N
0

N∑

k=0

N−k∑

`=0

bk`r
2kη2`η̃2(N−k−`) . (251)

We determine the coefficients bk` by the same three requirements as the ak`, although
the solution will be different because the Ansatz (251) is.
We need to commute the differential operator in (237) through the prefactor of (k2

0ηη̃)
2ν̂

in the Ansatz (251),

[

∂2 +
2ν̂−1

η
∂0

](

k2
0ηη̃
)2ν̂

=
(

k2
0ηη̃
)2ν̂[

∂2 +
−2ν̂−1

η
∂0

]

. (252)

That is a highly significant result because it means the equation the bare series obeys is
the same as we already solved for the lower series but with the replacement ν̂ → −ν̂. So
we can write down the answer immediately,

bk` =
(

−1

4

)N 1

k! `! (N−k−`)!
Γ(D−1

2
) Γ2(1+ν̂)

Γ(k+D−1
2

)Γ(`+1+ν̂)Γ(N−k−`+1+ν̂)
. (253)

It is worth explicitly checking that the lowest N corrections δi∆N cancel the ε poles in
(201) from the upper series (209). From (251) and (253) we see that the N = 0
correction is,

δi∆0 =
[(1−ε)2HH̃]

D
2
−1

(4π)D/2
Γ(−ν̂)Γ(−2ν̂)

Γ(D−1
2

)Γ(1
2
−ν̂)

2(ε−1)
[

2(D−1)−Dε
]

(

1

k2
0ηη̃

) 2(D−1)−Dε
2(ε−1)

. (254)

This should cancel the divergence at ε = 2(D−1)/D in the n = 0 term on the last line of
(201),

[(1−ε)2HH ′]
D
2
−1

(4π)D/2
Γ(1−D

2
)Γ(D−1

2
+ν̂)Γ(D−1

2
−ν̂)

Γ(1
2
+ν̂)Γ(1

2
−ν̂) . (255)
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The relevant small parameter is,

α ≡ 2(D−1)−Dε
2(ε−1)

= −D−1

2
− ν̂ . (256)

Adding (254) to (255) and taking the limit that α vanishes gives,

lim
α→0

[(1−ε)2HH̃]
D
2
−1

(4π)D/2
Γ(D−1

2
+α)Γ(D−1+2α)

Γ(D
2
+α)Γ(D−1

2
)α

{(

1

k2
0ηη̃

)α

− Γ(D−1
2

)

Γ(D−1
2

+α)

Γ(D−1+α)

Γ(D−1+2α)

Γ(1−D
2
)

Γ(1−D
2
−α)

Γ(1−α)

Γ(1)

}

. (257)

=
[(1− 2

D
)2HH̃]

D
2
−1

(4π)D/2
Γ(D−1)

Γ(D
2
)

{

2 ln
[(

1− 2

D

)H0

k0

]

−
(

1− 2

D

)

ln(aã)

−π cot
(Dπ

2

)

− γ − ψ
(D

2

)

+ ψ(D−1) + ψ
(D−1

2

)
}

. (258)

By using ε−1 = 1−2/D the final result for the propagator can be expressed in a form
that is identical with the de Sitter case (217),

lim
ε→ 2(D−1)

D

i∆(x; x̃) =

[(1−ε)2HH̃]
D
2
−1

(4π)
D
2

{

Γ(D
2
)

D
2
− 1

(4

y

)D
2
−1

+
Γ(D

2
+1)

D
2
−2

(4

y

)D
2
−2

+
Γ(D−1)

Γ(D
2
)

[

(1−ε) ln(aã)

−π cot
(πD

2

)

+2 ln
[

|1 − ε|H0

k0

]

+ψ
(D−1

2

)

−ψ
(D

2

)

+ψ(D−1)−γ
]

+
∞∑

n=1

[

Γ(D−1+n)

nΓ(D
2
+n)

(y

4

)n

− Γ(D
2
+1+n)

(2−D
2
+n) (n+1)!

(y

4

)n−D
2

+2
]

+O(k2
0)

}

. (259)

We find that we have a similar logarithmic growth as in the de Sitter case. However,
there is a crucial difference here. In de Sitter the prefactor H0 is constant, while here H
decreases with time. The total factor HH̃ ln(aã) can also be seen to decrease in time.
We will content ourselves with working out one more propagator. From (251) and (253)
we see that the N = 1 correction is,

[(1−ε)2HH̃]
D
2
−1

(4π)D/2
2Γ(−ν̂)Γ(−2ν̂)

Γ(1
2
−ν̂)Γ(D−1

2
)

(−1

4ηη̃

)
[

2r2

D−1
+
η2+η̃2

1+ν̂

]

(k2
0ηη̃)

−α

2α
, (260)

where we define the small parameter α as,

α ≡ 2D−(D+2)ε

2(ε−1)
= −D+1

2
− ν̂ . (261)

This should cancel the divergences from the n = 0 and n = 1 terms on the last line of
(201),

[(1−ε)2HH̃]
D
2
−1

(4π)D/2
Γ(D+1

2
+ν̂)Γ(D+1

2
−ν̂)Γ(−D

2
)

Γ(1
2
+ν̂)Γ(1

2
−ν̂)

{

−y
4
−

D
2

(D−1
2

)2−ν̂2

}

. (262)
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Adding (260) to (262) and taking α to zero gives,

[(1−ε)2HH̃]
D
2
−1

(4π)
D
2

Γ(D+1)

4Γ(D
2
+1)

{

− 2

D−1

(η

η̃
+
η̃

η

)

+ 2 +
2

D

+(2−y)
[

−
(D−2

D+2

)

ln(aa′) + 2 ln
[(D−2

D+2

)H0

k0

]

− π cot
(Dπ

2

)

−γ − ψ
(D

2
+1
)

+ ψ
(D+1

2

)

+ ψ(D+1)

]}

. (263)

By taking advantage of the fact that (1−ε) = −(D−2)/(D+2) we can express the full
propagator in a form identical to the N = 1 result (231) from the lower series,

lim
ε→ 2D

D+2

i∆(x; x̃)

=
[(1−ε)2HH̃]

D
2
−1

(4π)
D
2

{

Γ(D
2
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(1−D
2
)(−D

2
)

(4
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2
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+
Γ(D

2
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2
)(1−D
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)

(4

y
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2
−2

+
1
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Γ(D
2
+3)

(3−D
2
)(2−D

2
)

(4

y

)D
2
−3

+
Γ(D+1)

4Γ(D
2
+1)

[

2(D−1)

k2
0ηη̃

− 2

D−1

(η

η̃
+
η̃

η

)

+2 +
2

D
+ (2−y)

{

(1−ε) ln(aã) − π cot
(πD

2

)

+ CD

}
]

+
∞∑

n=2

[

Γ(D
2
+2+n)

(2−D
2
+n)(1−D

2
+n) (n+1)!

(y

4

)n−D
2

+2

− Γ(D+n)

n(n−1) Γ(D
2
+n)

(y

4
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]

+O(k2
0)

}

. (264)

Here the constant CD is,

CD ≡ 2 ln
[

|1−ε|H0

k0

]

+ ψ(D+1) + ψ
(D+1

2

)

− γ − ψ
(D

2
+1
)

. (265)

6.1.3 Final result

We thus see that if we write the propagator i∆ in terms of the infinite space propagator
(199) and the corrections (238) and (251),

i∆(x; x̃) = i∆∞(x; x̃) +

∞∑

N=0

δi∆N (x; x̃) +

∞∑

N=0

δi∆N (x; x̃) , (266)
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we obtain an infrared finite result. The corrections we rewrite as

δi∆N (x; x̃) = −

(

HH̃(1 − ε)2
)D

2
−1

(4π)
D
2

2z
2N+(D−1)−2ν̂
0

2N + (D − 1) − 2ν̂

× Γ(2ν̂)Γ(ν̂)

Γ(1
2

+ ν̂)Γ(D−1
2

)

N∑

k=0

N−k∑

`=0

ak`

(r

η̃

)2k(η

η̃

)2`−N

δi∆N (x; x̃) = −

(

HH̃(1 − ε)2
)D

2
−1

(4π)
D
2

2z
2N+(D−1)+2ν̂
0

2N + (D − 1) + 2ν̂

× Γ(−2ν̂)Γ(−ν̂)
Γ(1

2
− ν̂)Γ(D−1

2
)

N∑

k=0

N−k∑

`=0

bk`

(r

η̃

)2k(η

η̃

)2`−N

(267)

Since ak`(ν̂) = bk`(−ν̂), we find that (266) is exactly symmetric under ν̂ ↔ −ν̂. Since if
ξ = 0 the only difference between ν (as defined in (178)) and ν̂ (207) is a potential
minus sign, we can essentially drop all the hats in the corrections how they appear in
(266). Moreover, because of the role ν plays, one is guaranteed that even if ξ 6= 0 (267)
stays the same, when expressed in terms of the more general ν given in (178). Thus we
can write the corrections as

δi∆N (x; x̃) = −

(

HH̃(1 − ε)2
)D

2
−1

(4π)
D
2

2z
2N+(D−1)−2ν
0

2N + (D − 1) − 2ν

× Γ(2ν)Γ(ν)

Γ(1
2

+ ν)Γ(D−1
2

)

N∑

k=0

N−k∑

`=0

ak`

(r

η̃

)2k(η

η̃

)2`−N

δi∆N (x; x̃) = δi∆N (x; x̃)(ν ↔ −ν).

(268)

When we construct the stress energy tensor, based on this propagator, we shall discuss
its properties in more detail. For now let us just mention that z0 approaches zero in an
accelerating universe, while it grows to infinity in a decelerating universe. Thus we see
from (268), as expected that if ν > D−1

2
the ∆N correction has growing terms. These

growing terms are due to the fact that although we cut away initial super-Hubble
modes, the universe becomes more and more correlated on large scales as time goes on.
What happens in the decelerating case is difficult to say at this point. Both corrections
∆N and ∆N contain in principle infinitely fast growing terms, since the sum over N goes
to infinity. Moreover these terms appear to be there for all values of ν, while the
infrared is only divergent for ν < (D − 1)/2 as expected, based on (186). We shall come
back to this issue when we discuss the stress energy tensor.
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7 The stress energy tensor

In this section we shall calculate the expectation value of the scalar stress-energy tensor
using the propagators constructed in the preceding two sections. The energy momentum
tensor for a massless scalar field is (conform Eq. (109))

Tµν = ∂µφ∂νφ− 1

2
gµν

(

gαβ∂αφ∂βφ
)

+ ξ
(

(Rµν −
1

2
Rgµν) −∇µ∇ν + gµν2

)

φ2. (269)

When written in terms of the propagator we obtain

〈0|Tµν |0〉 =

(
(

δρµδ
σ
ν (1 − 2ξ) − 1

2
gµνg

ρσ(1 − 4ξ)
)

∂ρ∂̃σ

− 2ξ
(

δρµδ
σ
ν − gµνg

ρσ
)

∇ρ∂σ + ξ
(

Rµν −
1

2
Rgµν

)
)

i∆(x; x̃)
∣
∣
∣
x=x̃

.

(270)

Alternatively we can take the trace of (269) to obtain

T µµ =
(

1 − D

2

)(

(∂µφ)(∂µφ) +Rξφ2
)

+ (D − 1)ξ2φ2 (271)

and using the scalar equation of motion (132) for φ we find that the expectation value
for the trace is given by

Tq ≡ 〈0|T µµ|0〉 =
(2 −D

4
+ (D − 1)ξ

)

2i∆(x; x). (272)

Since any quantum correction will respect the symmetries of the underlying space-time,
we know that we should be able to write the energy momentum tensor conform Eq. (5)
as

〈0
∣
∣T µν

∣
∣0〉 = diag

(

ρq,−pq,−pq, ..,−pq
︸ ︷︷ ︸

D−1

)

(273)

where we used a subscript q to indicate we are considering the quantum corrections to
the stress energy tensor. Next we can calculate the individual components using the
conservation equation (15)

d

dt
(aDρq) = aDH(ρq − (D − 1)pq)

= −aDHTq
, (274)

such that in D = 4 we obtain from (272) and (274)

ρq − 3pq =
1

2

(

1 − 6ξ
)

2i∆(x; x). (275)

Now an important question is whether the energy density in the quantum corrections
calculated here can dominate over the energy density in the classical background. The
background Friedmann equations (14) tell us that the equation of state parameter of the
background wb is given by

wb ≡
pb
ρb

=
1

3
(2ε− 3) (276)
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and moreover we know from the conservation equation (274), which holds for any stress
energy tensor, that the energy density scales in general with the scale factor as

ρb = ρ?ba
−3(1+wb)

ρq = ρ?qa
−3(1+wq),

(277)

where ρ?b,q indicate the energy density for a = 1. The energy density due to the quantum
fluctuations will typically be proportional to ρq ∼ H4 and we thus find from the

Friedmann equation (14) that
ρ?q
ρ?
b

∼
(
H?

mp

)2

, where H? is H at a = 1. We therefore find

that
ρq
ρb

∼
(H?

mp

)2

a3(wb−wq) (278)

which implies that the quantum contribution to the stress energy grows with respect to
the background contribution whenever

wq < wb . (279)

If this is the case, the quantum correction can dominate over the classical background
energy density after a sufficient amount of time, despite the smallness of H?

mp
. If this

happens, we find using (18) that this happens at a time

t ∼ 1

H?

(mp

H?

) 1+wb
wb−wq ; (wq < wb). (280)

Notice that the dominance of the quantum corrections therefore might happen at late
times. This is interesting in the context of the ’why now?’ problem of dark energy. The
cumulative growth is simply only relevant at late enough times. Of course one then also
needs to show that the equation of state is that of dark energy (which it will not be in
the present analysis).

7.1 Calculation of the stress-energy tensor

In this section we shall calculate the expectation value of the scalar stress-energy tensor
using the propagator obtained in section (6). We shall use (270) to calculate the full
stress energy tensor, using the propagator given in (266) and (268).

7.1.1 The infinite space contribution

We first consider the contribution to (270) coming from i∆∞. From (165) we find that
at coincidence (y → 0) the following identities hold

∂ρy
∣
∣
∣
y=0

= 0

∂ρ∂̃σy
∣
∣
∣
y=0

= − 2

η2
ηρσ = −2(1 − ε)2H2gρσ

∇ρ∂σy
∣
∣
∣
y=0

=
2

η2
ηρσ = 2(1 − ε)2H2gρσ .

(281)
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Moreover, since in dimensional regularization all D dependent powers of y can be
automatically subtracted, we find using (6.131.2) in [95] that the contributions from the
hypergeometric function appearing in i∆∞ relevant for this calculation are

2F1

(D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1 − y

4

)∣
∣
∣
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2
)Γ(D

2
)
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2
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2
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d

dy
2F1

(D − 1

2
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2
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2
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∣
∣
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2
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(282)

Using these identities we immediately find that

∂ρ∂̃σi∆∞(x; x̃)
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∣
∣
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Γ(1
2

+ ν)Γ(1
2
− ν)

×
[(D

2
− 1
)2 ε2

(1 − ε)2
a2δ0

ρδ
0
σ +

1

D

(

ν2 −
(D − 1

2

)2)

gρσ

]

∇ρ∂σi∆∞(x; x̃)
∣
∣
∣
x=x̃

= HD|1 − ε|DΓ(1 − D
2
)

(4π)
D
2

Γ(D−1
2

+ ν)Γ(D−1
2

− ν)
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[
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(283)

Making use of Eq. (270) and (13) the one-loop contribution to the stress-energy from
i∆∞ can be written as,

〈0|Tµν |0〉∞ =
HD|1 − ε|D

(4π)D/2
Γ(1 − D

2
)Γ(D−1

2
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2
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Γ(1
2

+ ν)Γ(1
2
− ν)

×
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((D − 2)ε
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1 − 4(D − 1)

D − 2
ξ
)

a2δ0
ρδ

0
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+

(
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(

1 − 4(D − 1)

D − 2
ξ
)

+
D − 2

8D
(1 − 4ν2)

)

gρσ

]

. (284)

7.1.2 The ∆N correction

To calculate the contribution to the stress-energy tensor due to the correction terms
(268) it is easiest to first calculate the expectation value of the trace, and then use the
conservation equation to calculate the full energy momentum tensor. For this we need
the correction at coincidence. Using (268) we find

δi∆N (x; x) = − 1

4π5/2)

1

3 + 2N − 2ν

Γ(ν −N)Γ(2ν −N)

Γ(1
2

+ ν −N)Γ(N + 1)
H2(1 − ε)2z2N+3−2ν

0

≡ ANH
2z2N+3−2ν

0

(285)

where we used that
N∑

`=0

N !

`!(N − `)!

Γ(N+1−2ν)

Γ(`+1−ν)Γ(N+1−`−ν) =
Γ(2N+1−2ν)

Γ2(N+1 −ν) . (286)
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We have put D = 4, since the corrections do not contain an ultraviolet singularity. From
(275) we find that we need

1

2
(1−6ξ)2H2z2N+3−2ν

0 = −H4z2N+3−2ν
0 (1−6ξ)(1−ε)(N−ν)

(
2(1−ε)(N−ν)+3−ε

)
. (287)

Furthermore we have

d

dη

(
a4H4z2N+3−2ν

0

)
= a5H5z2N+3−2ν

0 (1 − ε)(1 − 2N + 2ν) (288)

and we find immediately that

ρN = −ANH4z2N+3−2ν
0 (1 − 6ξ)(N − ν)

2(1 − ε)(N − ν) + 3 − ε

1 − 2N + 2ν

pN = −1

3
ANH

4z2N+3−2ν
0 (1 − 6ξ)(N − ν)

×
(

2(1 − ε)(N − ν) + 3 − ε
)( 1

1 − 2N + 2ν
− (1 − ε)

)

wN =
1 − ε

3

(
2(N − ν) +

ε

1 − ε

)
.

(289)

Now we can write the full correction to the stress energy tensor in this case as

〈0|Tµν |0〉N = (ρN + pN )a2δ0
µδ

0
ν + pNgµν

=
1

4π5/2

(
2(1 − ε)(N − ν) + 3 − ε

)

3 + 2N − 2ν

Γ(ν −N)Γ(2ν −N)

Γ(1
2

+ ν −N)Γ(N + 1)

×H4(1 − ε)2z2N+3−2ν
0 (1 − 6ξ)(N − ν)

×
(

1

3

( 4

1 − 2N + 2ν
− (1 − ε)

)

a2δ0
µδ

0
ν +

1

3

( 1

1 − 2N + 2ν
− (1 − ε)

)

gµν

)

.

(290)

When ξ = 0 this reduces to the correction found in [38]. Because of the symmetry in
the propagators (268), we immediately find the second correction to be

〈0|Tµν |0〉N =
1

4π5/2

(
2(1 − ε)(N + ν) + 3 − ε

)

3 + 2N + 2ν

Γ(−ν −N)Γ(−2ν −N)

Γ(1
2
− ν −N)Γ(N + 1)

×H4(1 − ε)2z2N+3+2ν
0 (1 − 6ξ)(N + ν)

×
(

1

3

( 4

1 − 2N − 2ν
− (1 − ε)

)

a2δ0
µδ

0
ν +

1

3

( 1

1 − 2N − 2ν
− (1 − ε)

)

gµν

)

.

(291)

7.1.3 Renormalization

The total one-loop stress energy tensor is the sum of the three contributions (284), (290)
and (291),

〈0|Tµν |0〉 ≡ (ρq + pq)a
2δ0
µδ

0
ν + pqgµν

= 〈0|Tµν |0〉∞ +
∞∑

N=0

〈0|Tµν |0〉N +
∞∑

N=0

〈0|Tµν |Ω〉N .
(292)
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Note that the ultraviolet divergence (which in dimensional regularization appears as a
term multiplying 1/(D − 4)) is confined to (284). When expanded around D = 4,
Eq. (284) gives,

〈0|Tµν |0〉∞ = −ε(2 − ε)(1 − 6ξ)2

8π2(D − 4)
H4
(

εa2δ0
µδ

0
ν +

(
ε− 3

4

)
gµν

)

− ε(2 − ε)(1 − 6ξ)2

16π2
H4

(

γE + ln
((1 − ε)2H2

4πµ2

)

+ ψ(
1

2
− ν) + ψ(

1

2
+ ν)

+ 2
1 − 2ν ′

1 − 2ν
+ 2

1 + 2ν ′

1 + 2ν

)
(

εa2δ0
µδ

0
ν + (ε− 3

4
)gµν

)

− (2 − ε)(1 − 6ξ)

16π2

(

(1 − 4ξ)ε2a2δ0
µδ

0
ν +

1

8

(

− 7 + 8ε(1 − 4ξ) + 30ξ
)

gµν

)

+ O(D − 4)

(293)

here we have defined ν ′ = ( d
dD
ν)
∣
∣
∣
D=4

and we expanded HD as,

HD = H4µD−4

[

1 +
D−4

2
ln
(H2

µ2

)]

+ O((D−4)2) , (294)

where µ is an arbitrary renormalization scale. It is known that this theory can be
renormalized by the R2 counterterm only. Indeed, taking a functional derivative with
respect to gµν of the counterterm action results in

− 2√−g
δ

δgµν

∫

dDx
√−gαR2 = α(4∇µ∇νR− 4gµν�R + gµνR

2 − 4RRµν) . (295)

Making use of the corresponding expressions for R and Rµν in FLRW spaces (13) this
evaluates to

− 2√−g
δ

δgµν

∫

dDx
√−gR2 = 144(2 − ε)εH4

[

ε a2δ0
µδ

0
ν +

(

ε− 3

4

)

gµν

]

−H4
(

48ε(1 − 4ε+ ε2)a2δ0
µδ

0
ν − 12(3 − 22ε+ 22ε2 − 4ε3)gµν

)

(D−4)

+O
(

(D−4)2
)

. (296)

From Eqs. (293) and (296) we see that the divergence in (293) is canceled by

α =
µD−4(1 − 6ξ)2

1152π2(D−4)
, (297)
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where µ controls the undetermined finite part of α. The renormalized stress-energy
tensor can be now easily obtained

〈0|Tµν |0〉 = − ε(2 − ε)(1 − 6ξ)2

16π2
H4

(

γE + ln
((1 − ε)2H2

4πµ2

)

+ ψ(
1

2
− ν) + ψ(

1

2
+ ν)

+ 2
1 − 2ν ′

1 − 2ν
+ 2

1 + 2ν ′

1 + 2ν

)
(

εa2δ0
µδ

0
ν + (ε− 3

4
)gµν

)

+
H4(1 − 6ξ)

16π2

(
(

− (1 − 4ξ)(2 − ε)ε2 − 2

3
(1 − 6ξ)(1 − 4ε+ ε2)ε

)

a2δ0
µδ

0
ν

+
(

− 1

8

(
− 7 + 8ε(1 − 4ξ) + 30ξ

)
− 1 − 6ξ

6

(
3 − 22ε+ 22ε2 − 4ε3

))

gµν

)

+

∞∑

N=0

(
〈0|Tµν |0〉N + 〈0|Tµν |0〉N

)
,

(298)

where the terms in the last line are given in Eqs. (290) and (291).

7.1.4 Resolving the divergencies of the digamma functions

Even though the ultraviolet divergences have been removed by dimensional
renormalization, the renormalized stress-energy (298) still seems to diverge at the poles
of the (di)gamma functions (208–209) (see also Eq. (202)). For general ν these poles are
at ν = 3/2 +M , where M is an integer ≥ 0. We shall now show that these divergences
are only apparent however, and that they are cancelled by the correction terms in (298)
given by (290) and (291), precisely as they were designed to do 4. We expand

ν =
3

2
+M − δ (299)

and realizing that

(2 − ε)(1 − 6ξ) = (ν2 − 1

4
)(1 − ε)2 (300)

we see that the contribution from the digamma function to the stress energy tensor is
given by

(1 +M)(2 +M)(1 − ε)2ε(1 − 6ξ)

16π2δ
H4
[

εa2δ0
µδ

0
ν +

(

ε− 3

4

)

gµν

]

+ O(δ0) (301)

where we used

ψ(−M − 1 + δ) = −1

δ
+ O

(
δ0
)
. (302)

To check that our construction works, we next calculate the N = M contribution from
the sum over (290)

〈0|Tµν |0〉N = − (1 +N)(2 +N)(1 − ε)2ε(1 − 6ξ)

16π2
H4

×
[

εa2δ0
µδ

0
ν +

(

ε− 3

4

)

gµν

](1

δ
+ ln(z2

0) + O(δ0)
) (303)

4One might think that the second digamma function in (298) has a simple pole also at ν = 1/2, but
this term will be cancelled by the (ν2

− 1/2) prefactor.
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By comparing Eq. (303) with (301) we see that the O(1/δ) terms cancel, as required.
The resulting leading order contribution to the one-loop stress-energy tensor is finite
and depends logarithmically on the scale factor as ∝ H4[ ln(a)+const.], where the
constant term contains a logarithm of the cutoff k0. Notice that there will typically also
be terms that grow as a power of z0 due to the fact that we included only one term of
the sum over N .

7.1.5 The leading order contribution in the accelerating case

As we mentioned before, in an inflationary space-time z0 approaches zero, while in a
decelerating space-time z0 grows to infinity. In both cases we shall construct the leading
order contribution from the corrections to the stress energy tensor. We start with the
accelerating case. If z0 approaches zero, we see that the leading order contribution
comes from the N = 0 term of (290). This term is growing if ν > 3/2, as is expected,
since this is the requirement for an infrared divergence (186). The case ν = 3/2 leads to
the logarithmic growth described above The leading order contribution is thus

〈0|Tµν |0〉L.O,ν=3/2 −
(1 − ε)2ε(1 − 6ξ)

8π2
H4

×
[

εa2δ0
µδ

0
ν +

(

ε− 3

4

)

gµν

]

ln(z2
0) + O(z0

0)

(304)

If ν > 3/2, the contribution is

〈0|Tµν |0〉L.O =
4H4(1 − ε)4

3π3(1 + 2ν)(2ν − 3)

(z0
2

)3−2ν

(1 − 6ξ)Γ(ν)Γ(ν + 1)
( 3 − ε

2(1 − ε)
− ν
)

(
( 3 + ε

2(1 − ε)
− ν
)

a2δ0
µδ

0
ν +

( ε

2(1 − ε)
− ν
)

gµν

)

+ O(z5−2ν
0 ).

(305)

Notice that this expression is zero if ξ = 0, since then ν = 3−ε
2(1−ε) . In that specific case we

need the next to leading order contribution, which is proportional to z5−2ν
0 .

〈0|Tµν |0〉N.L.O =
2H4(1 − ε)4

π3(2ε− 1)

(z0
2

)5−2ν

Γ(ν)2

(

1 − ε

3
a2δ0

µδ
0
ν−

1 − ε

6
gµν

)

+O(z7−2ν
0 ), (306)

where we explicitly used the fact that ξ = 0 and ν = 3−ε
2(1−ε) . Finally we see that in this

case, the specific point ε = 1/2 is special. If ε = 1/2, we have that ν = 5/2 and thus this
point corresponds again to a logarithmic contribution and we find from (303)

〈0|Tµν |0〉L.O,ξ=0,ε=1/2 −
3

128π2
H4
[

a2δ0
µδ

0
ν −

1

2
gµν

]

ln(z2
0) + O(z0

0). (307)

We are now interested in the question whether these contributions can ever dominate
over the background contribution, thus we want to now according to (279) if
wq < wb = 1

3
(2ε− 3). We can immediately read of the leading order late time

contribution to wq from the expressions above and we find from (304), (305), (306) and
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(307)

wq =
4

3
ε− 1 ; ν = 3/2

wq =
1

3
ε− 2(1 − ε)ν ; ν > 3/2 ; ξ 6= 0

wq = −1

3
; ν > 3/2 ; ξ = 0 ; ε 6= 1/2

wq = −1

3
; ν > 3/2 ; ξ = 0 ; ε = 1/2

(308)

Which can actually be summarized as

wq =
1

3
ε− 2(1 − ε)ν

= wb +
3 − ε

3

(

1 −
√

1 − 24(2 − ε)

(3 − ε)2
ξ
)

; ξ 6= 0

wq = −1

3

= wb +
2

3
(1 − ε) ; ξ = 0.

(309)

From this we immediately see that if ξ ≥ 0 we always have that wq > wb (remember that
we are considering an accelerated universe, thus ε < 1). On the other hand we have for
all ξ < 0 that wq < wb. Thus in this case we find that the energy density in quantum
effects grows faster in time than the energy density in the background. That this
happens for negative ξ is not surprising, since a negative ξ effectively induces a (time
dependent) negative mass.
We can compare these results with results obtained in de Sitter space (ε = 0) in [122]
(see also [123]). There the late time contribution to 〈0|Tµν |0〉 is calculated for a field
with mass m and conformal coupling ξ. The inclusion of a mass in de Sitter space leads
only to a modification of ν. In practice one can substitute ξR with m2 + ξR. The
calculation is performed independent of the state, as long as the result is infrared finite
and possesses the correct ultraviolet divergences. In this paper it is found that if
ν < 3/2, 〈0|Tµν |0〉 asymptotically approaches at late times the Bunch-Davies value. If
ν = 3/2 and ξ = m = 0, 〈0|Tµν |0〉 approaches a constant and if ν > 3/2, contributions to
〈0|Tµν |0〉 grow as η3−2ν . This is exactly what we find. If ν < 3/2, all infrared correction
terms decay in time and we are simply left with 〈0|Tµν |0〉∞. This is of course in our case
nothing but the Bunch-Davies contribution. If ν = 3/2 and ε = 0, we see from (304)
that we indeed obtain that 〈0|Tµν |0〉 approaches a constant (although we did not
explicitly calculate that constant). Finally for ν > 3/2 (which in de Sitter if m = 0
implies that ξ < 0) we also find a growth proportional to (k0η)

3−2ν .

7.1.6 The leading order contribution in the decelerating case

In a decelerating space-time we have a different situation, the sums over N run to
infinity and since z0 grows, this leads in principle to immensely fast growing terms.
Moreover we see that this happens, independent of ν. Thus also infrared perfectly finite
space-times become dominated by the cut-off. Since this will essentially spoil the use of
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this approach for decelerating space-times, we will not bother to construct the leading
order stress energy tensor explicitly. Instead we shall limit ourselves to calculating the
leading order terms in a decelerating space-time of the trace of the stress energy tensor.
After taking the trace of (290) we can perform the sum over N to obtain

∞∑

N=0

〈0|T µµ|0〉N =
2Γ(ν)2

π3(5 − 2ν)(3 − 2ν)
(1 − 6ξ)H4(1 − ε)4

(z0
2

)3−2ν

×
[

ν(5 − 2ν)
( 3 − ε

2(1 − ε)
− ν
)

2F3

(1

2
− ν,

3

2
− ν; 1 − 2ν,

5

2
− ν,−ν;−z2

0

)

+
z2
0

2
(3 − 2ν)2F3

(3

2
− ν,

5

2
− ν; 2 − 2ν,

7

2
− ν, 1 − ν;−z2

0

)
]

(310)

The leading order can be studied by considering the asymptotic expansion of the 2F3

hypergeometric functions. We have in general

2F3

(

a1, a2; b1, b2, b3;−z
)

∝ Γ(b1)Γ(b2)Γ(b3)

Γ(a1)Γ(a2)

×
[

Γ(a1)Γ(a2 − a1)

Γ(b1 − a1)Γ(b2 − a1)Γ(b3 − a1)
z−a1

(

1 + O
(1

z

))

+
Γ(a2)Γ(a1 − a2)

Γ(b1 − a2)Γ(b2 − a2)Γ(b3 − a2)
z−a2

(

1 + O
(1

z

))

+
(z)χ√
π

(

cos(πχ+ 2
√
z)
(

1 + O
(1

z

))

1

16
√
z

(

(3a1 + 3a2 + b1 + b2 + b3 − 2)(8χ− 2)

+ 16(b1b2 + b1b3 + b2b3 − a1a2) − 3
)
sin(πχ+ 2

√
z)

)
(

1 + O
(1

z

))
]

,

(311)

with

χ =
1

2

(

a1 + a2 − b1 − b2 − b3 +
1

2

)

. (312)

Using this we find that the leading order terms are

∞∑

N=0

〈0|T µµ|0〉N =
1

π2 sin(πν)2
(1 − 6ξ)(1 − ε)4H4

[

1

4(1 − ε)

(z0
2

)2

1

8

(z0
2

)2(5ε− 1

ε− 1
+ 4ν2

)

sin(2z0 + πν)

−
(z0

2

)3

cos(2z0 + πν)

]

+ O
(

z0

)0

.

(313)

The second series is obtained by interchanging ν with −ν and can be easily added. We
see from (313) that there are indeed growing contributions for z0 → ∞. Let us compare
the scaling in time of the quantum contributions with the background energy density. It
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is easiest in this case to consider the Friedmann equations (14). We see that the trace of
the background stress energy tensor scales in time as

ρb − 3pb ∝ H2. (314)

From this we immediately find that the contribution (313) decays in time with respect
to the background contribution to the Friedmann equations in most cases. Only if ε > 3,
we see that the term H2z3

0 cos(2z0 + πν) will start to dominate. This behavior is
independent of ν, as long as ν is not half integer. In that case this contribution is
cancelled by the second contribution obtained by replacing ν with −ν.
It would be perfectly fine if we had a growing contribution for all ν > 3/2, since these
values correspond to the cases with an infrared divergence. This is however not what we
find. What happens here is the following. In an inflationary space-time the physical
wavelength associated with the infrared cutoff, a(t)/k0, grows faster than the Hubble
radius. Thus a super-Hubble cutoff stays super-Hubble at all times. In contrast, for a
decelerating universe the Hubble radius grows faster than a(t)/k0 and therefore an
initial super-Hubble cutoff will eventually enter the Hubble radius. Hence the effect of
the cutoff becomes more and more profound as time evolves. This effect moreover is
larger, for larger values of ε, and we indeed find that for ε > 3, the effect is strong
enough to dominate over the classical background.
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8 The one loop effective potential

In the previous section the focus was on how the energy density of quantum corrections
to the scalar field influence the dynamics of the background space-time. However these
corrections are always suppressed by a factor of (mp)

−2 with respect to the background
contribution. Therefore these corrections can only become significant if the quantum
energy density grows in time with respect to the background energy density. However,
as we have seen, this will typically not happen in the cases considered.
Alternatively one can consider how the quantum loop corrections change the dynamics
of the scalar field itself [73]. This can have interesting consequences for example for the
dynamics of the inflaton field [24, 119], or on electroweak phase transitions due to
quantum correction to the potential of the Higgs field.
Such a discussion however is not very useful in the context of the free field we have
discussed so far. In order to obtain interesting dynamics, we need some interaction
term. However in the presence of such an interaction, it becomes much more
complicated to construct the propagator.
Suppose we have a scalar field action

S[ϕ] =

∫ √
−g
[

−1

2
(∂ϕ)2 − 1

2
ξRϕ2 − 1

4!
λϕ4

]

. (315)

Conform the discussion leading to (101) we write the field as a background contribution
Φ and a quantum field φ

ϕ = Φ + φ (316)

and expand the action up to second order in φ. The linear term will be zero by the
equations of motion and we obtain

S[ϕ] = S[Φ] + δS[φ] + O(φ3)

δS =

∫ √
−g
[

−1

2
(∂φ)2 − 1

2
ξRφ2 − 1

4
λΦ2φ2

]

. (317)

When we integrate out the quadratic quantum field we obtain the effective action at one
loop order

Γ = S[Φ] +
i

2
Tr ln

[√−g(2 − ξR− λ

2
Φ2)
]

. (318)

We are interested in the dynamics of the background field Φ, whose one loop corrected
equation of motion is

√
−g
[

2 − ξR− λ

3!
Φ2 − λ

2
i∆(x; x)

]

Φ = 0 , (319)

where i∆(x; x) is the coincident propagator, obeying

√−g
(

2 − ξR− λ

2
Φ2

)

i∆(x; x̃) = iδD(x− x̃) , (320)

Calculating this propagator is typically not possible, unless one specializes Φ to a certain
background value, around which one is then considering the quantum fluctuations. For
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example in Minkowski space-time one typically chooses Φ(x) = Φ0 =constant [21, 120].
In that case the λΦ2 contribution to (320) behaves like a mass term and since we can
solve the massive scalar field propagator in Minkowski space-time, we can solve this
problem. The resulting effective action leads to a correction to the potential of the scalar
field. This new potential is known as the effective potential. In Minkowski space-time
this was first worked out by Coleman and Weinberg [120]. They obtained after
renormalization at an arbitrary scale µ the following effective equation of motion of Φ

2Φ − dVeff
dΦ

= 0

Veff =
λ

4!
Φ4 +

λ2

256π2
Φ4
(

ln
(Φ2

µ2

)

− 25

6

) (321)

Now Φ(x) = Φ0 is still a solution for the minimum of this potential, and thus we have
self-consistently constructed the one loop contribution.
In curved space-time we will typically not be able to do this. If we focus on the
particular case at hand, the cosmological backgrounds with constant ε, we saw in section
5 that we cannot solve for the scalar field propagator in the presence of a mass. Thus
choosing Φ a constant will not help. Moreover, choosing Φ constant does not even solve
the tree level equations of motion in the presence of a nonzero ξ, thus this certainly is
not the way to go.
The solution however presents itself. If we choose Φ(x) = Φ0H(t), where H(t) is the
Hubble parameter, the term λΦ2 acts similar to the term ξR, as can be seen from (13).
Moreover, since

2H = (D − 1 − 2ε)εH3, (322)

this Ansatz does indeed solve the tree level equation of motion. There is however a
problem. The ultraviolet logarithms will now contribute to the effective action as

ln
(
H2

µ2

)

. Moreover, the infrared terms we encountered also have a nontrivial scaling

with time. Since both these terms, will scale typically different than H2, the Ansatz
Φ = Φ0H will not solve the one loop corrected equation of motion. We shall not worry
too much about that now and come back to this issue later.
We rescale our field, as in (175) to write the propagator equation

(

∂2 + η−2
(
ν2 − 1

4

))(

(a(η)a(η̃))
D
2
−1i∆(x; x̃)

)

= iδD(x− x̃) . (323)

With the parameter ν now given by

ν2 =
(D − 1 − ε)2

4(1 − ε)2
− ρ

(1 − ε)2

ρ = ξ
R

H2
+
λ

2

Φ2

H2

= ξ(D − 1)(D − 2ε) +
λ

2
Φ2

0

(324)

thus we see that indeed ν is a constant and we can therefore use the previous
construction of the propagator. We use for this section the propagator we constructed
using an infrared cut-off in section 6, which is given in (266) and (268). We shall
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consider only an accelerating universe, thus ε < 1, in the remainder of this section. The
only relevant contributions are then expected to originate only from the ∆N corrections.
We will for now focus on the one loop contribution to (319),

− λ

2
i∆(x; x) = −λ

2

[

(1 − ε)D−2

(4π)D/2
HD−2Γ(D−1

2
+ ν)Γ(D−1

2
− ν)

Γ(1
2

+ ν)Γ(1
2
− ν)

Γ(1 − D

2
) + δi∆N (x; x)

]

,(325)

where we used the coincident limit of (199), and dropped all D dependent powers of
zero. We use the following expansion of the Γ functions around D = 4

Γ(D−1
2

+ ν)Γ(D−1
2

− ν)

Γ(1
2

+ ν)Γ(1
2
− ν)

=
[(D − 3

2

)2

− ν2
]Γ(D−3

2
+ ν)Γ(D−3

2
− ν)

Γ(1
2

+ ν)Γ(1
2
− ν)

=
1

(1 − ε)2

{

(ξ − 1

6
)(D − 1)(D − 2ε) +

λ

2
Φ2

0 +
1

6
(1 − 5ε+ 3ε2)(D − 4) + O(D − 4)2

}

×
{

1 +
(

ψ(
1

2
+ ν) + ψ(

1

2
− ν)

)D − 4

2
+ O(D − 4)2

}

(326)

and using

Γ(1 − D

2
) =

2

D − 4
+ γE − 1 + O(D − 4) (327)

we can write (325) as

−λ
2
i∆(x; x) = −λ

2

{[
(1 − ε)2H2

]D−4
2

(4π)D/2
Γ(1 − D

2
)

(
(

ξ − 1

6

)

R+
λ

2
Φ2

)

+
1

16π2

(
(

ξ − 1

6

)

R+
λ

2
Φ2

)(

ψ(
1

2
+ ν) + ψ(

1

2
− ν)

)

+
1

16π2

1

3
(1 − 4ε+ 3ε2)H2 + O(D − 4)

}

(328)

To renormalize the theory, we add a the following counterterms

SC =

∫ √
−g
[

α

2
RΦ2 +

β

4!
Φ4

]

. (329)

Its contribution to the equations of motion (319) is simply

√
−g
[

αR+
β

3!
Φ2
]

Φ , (330)

and thus the theory is renormalized if

α =
λ

2
(ξ − 1

6
)
Γ(1 − D

2
)

(4π)D/2
µD−4

1 (331)

β =
3λ2

2

Γ(1 − D
2
)

(4π)D/2
µD−4

2 (332)

(333)
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where we introduced the renormalization scales µ1 and µ2. The renormalized one loop
corrected equation of motion is now

√
−g
(

2 − dVeff
dΦ

)

Φ

=
√
−g
{

2 −
[

ξ +
λ

32π2
(ξ − 1

6
)

(

ln
((1 − ε)2H2

µ2
1

)

+ ψ(
1

2
+ ν) + ψ(

1

2
− ν)

)]

RΦ

−
[

λ

6
+

λ2

64π2

(

ln
((1 − ε)2H2

µ2
2

)

+ ψ(
1

2
+ ν) + ψ(

1

2
− ν)

)]

Φ3

− λ

96π2
(1 − 5ε+ 3ε2)H2Φ − λ

2
δi∆N (x; x) − λ

2
δi∆N (x; x)

}

Φ = 0,

(334)

where the coincident limit of the correction terms ∆N and ∆N has been calculated in
(285) and notice that in D = 4

(ξ − 1

6
)R +

λ

2
Φ2 = (

1

4
− ν2)(1 − ε)2H2. (335)

The equation of motion (334) is unfortunately only of limited use. The assumption
underlying the calculation is that an expansion around Φ = Φ0H makes sense. However
we see that because of the presence of the logarithm and the presence of the growing z0

terms this ansatz will not solve the equation of motion anymore. Thus we find the
interesting result that quantum corrections ruin the scaling which is expected on
classical grounds. This was to be expected, since the ultraviolet physics introduces a
new scale µ, while the infrared physics introduces a scale z0. Both scales introduce a
different time dependence than H , and thus a solution that is only determined by the
time dependence of H can never solve the one loop corrected effective action.
We for now ignore this issue and consider the effective potential (334) in various limits.
We should then be aware that if the corrections to the scaling are too large, the results
should only be seen as an indication of how the dynamics changes. In any accelerating
space-time, the second sum over N quickly goes to zero. In the following discussion we
shall therefore not consider these terms.

8.1 Analysis

In the previous section we obtained the one loop corrected equations of motion for the
scalar field (334). In this section we shall now consider some approximations for the
effective potential. We shall for simplicity set µ1 = µ2 and assume 0 < ε < 1. We shall
in particular focus on the question whether the quantum corrections can cause the
potential to obtain additional minima and thus induce a symmetry breaking. In this
subsection we shall perform some approximations, in the next section we shall plot the
exact (numerical) effective potential, confirming the conclusions made here.

8.1.1 Large field limit

If the field Φ is large enough, we see that ν becomes imaginary. One can easily find
using techniques similar to those in section 5 that the integral over the modes in this
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case is again proportional to
∫
dkk2±2ν , similar to (185). Thus for imaginary ν, this

quantity is not infrared divergent and we do not expect the infrared corrections to be
relevant. This is also expected, since the limit Φ → ∞ is equivalent to the limit H → 0,
or in other words, the Minkowski limit. Since the propagator in this regime recovers its
standard Hadamard form, we expect to recover the Coleman-Weinberg potential (321).
We obtain

dVeff
dΦ

=ξRΦ +
λ

3!
Φ3 +

λ

96π2
(1 − 5ε+ 3ε2)H2Φ

+
λ

32π2
Φ
(

(ξ − 1

6
)R+

λ

2
Φ2
)
{

ln
((ξ − 1

6
)R+ λ

2
Φ2

µ2

)

− 1

3

( (1 − ε)2H2

(ξ − 1
6
)R+ λ

2
Φ2

)

− 1

10

( (1 − ε)2H2

(ξ − 1
6
)R+ λ

2
Φ2

)2

+ O(Φ−6)

}

(336)

When we take the limit R → 0 we indeed recover the same logarithmic contribution to
the effective potential as in the Coleman-Weinberg case (321). Moreover, for ε = 0 we
recover the same dependence on the logarithms as found in ([105]), where the effective
potential in de Sitter space has been calculated. The finite part does differ however,
since our renormalization scheme is different from the ones used in [120] and [105].
From (336) we see that symmetry breaking occurs when the logarithm becomes
negative. This occurs for

(ξ − 1

6
)R+

λ

2
Φ2 < µ2. (337)

On the other hand, the large field expansion (336) is valid if

(ξ − 1

6
)R+

λ

2
Φ2 > (1 − ε)2H2. (338)

These two conditions are consistent, provided that

(1 − ε)2H2 < µ2. (339)

This however seems highly unlikely if the theory is renormalized at some low energy
scale, while we require the Hubble parameter to be near the inflationary scale.

8.1.2 Logarithmic corrections

It is unfortunately not very useful to consider the small field limit of (334). The highly
non-polynomial dependence on ν makes it then complicated to make any analytic
statement. Instead we shall consider an approximation in ν itself. If ν = 3/2, the
corrections to (334) are only logarithmic. We obtain

√
−g
{

2 − ξR− λ

3!
Φ2 +

λ

16π2
(1 − ε)2H2

(

− 1

2
+ ln

(2H2(1 − ε)2z2
0

µ2

)
)

(340)

− λ

96π2
(1 − 5ε+ 3ε2)H2

}

Φ = 0 . (341)
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In this case we thus see that the effective potential exhibits symmetry breaking, if the
logarithm is large enough. Or, alternatively, if we neglect the logarithm and put ξ = 0,
we find a symmetry breaking for ε > 1/2. A large logarithm is initially not very strange,
indeed if H is at the inflationary scale, µ is a low energy renormalization scale and z0 is
not yet extremely small, one can easily envision this. However, as time goes on, z0 will
approach zero. Thus we see that eventually the logarithm will become negative.
Therefore at late enough times, the symmetry will be restored.

8.1.3 Late times

We now consider the late time limit of (334). Remember that we are considering an
accelerating universe, ε < 1 and thus late times implies η → 0. At late times, and for ν
not too close to 3/2, the leading order contribution to (334) is the N = 0 contribution
from the first sum. Thus we have

√
−g
(

2 − ξR− λ

3!
Φ2 +

λH2(1 − ε)2

2π3

Γ(ν)2

3 − 2ν

(z

2

)3−2ν
)

Φ = 0. (342)

Since ν is quadratic in Φ, the correction term is odd in Φ. The potential is given by

V =
ξ

2
RΦ2 +

λ

4!
Φ4 −

∫
λH2(1 − ε)2

2π3

Γ(ν)2

3 − 2ν

(z

2

)3−2ν

ΦdΦ (343)

and thus we see that the contribution of the potential is even in Φ and moreover for all
ν > 3/2, Φ > 0 it will be positive. For ν < 3/2 the correction terms will be suppressed
at late times, and thus irrelevant. Since the minima of the potential are at d

dΦ
V = 0, this

implies that as soon as the correction terms dominate over the other quantum
contributions any symmetry broken by radiative corrections will be restored. The
potential will have only one minimum, at Φ = 0. Thus the late time symmetry
restoration we saw in the ν → 3/2 approximation above is generic for any ν > 3/2.

8.1.4 Numerical solutions

The properties of the potential are most easily seen by considering some plots. All plots
are numerical plots of the full potential (334) and we defined V0 = V

H4 . All plots are
made with ξ = 0, λ = 0.1, k0/H0 = 1, µ/H0 = 10−13. To factor out the time dependence
of the Hubble parameter we have scaled the potential and the field by H(t),

Φ0 ≡
Φ(t)

H(t)
, V0(Φ0) ≡

Veff(Φ)

H4(t)
. (344)

Fig. 6 shows V0 over the range −2 < Φ0 < +2 for three different conformal times,

H0η = −10−1 , H0η = −10−3 , H0η = −10−5 . (345)

The earliest time shows symmetry breaking, whereas the symmetry has been restored by
the second time, and the third plot shows that further time evolution makes the
potential steeper at the origin. Fig. 7 shows the same three curves but over the
expanded scale −8 < Φ0 < +8. The large field expansion (336) is valid by Φ0 = ±8.
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Figure 6: Three different snapshots of V0 ≡ Vhub/H
4 as a function of Φ0 for ξ = 0, λ = 0.1

with ε = 0.2, µ/H0 = 10−13 and k0/H0 = 1. The red dashed curve is for H0η = −10−1,
the purple dotted curve is for H0η = −10−3 (about 3.7 e-foldings later), and the blue solid
curve is for H0η = −10−5 (another 3.7 e-foldings later).
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Figure 7: The same three snapshots of V0 ≡ Vhub/H
4 as a function of Φ0 as in Fig. 6 over

a larger range of Φ0. For these parameters (λ = 0.1 and ε = 0.2) the index ν becomes
imaginary for Φ0 = ± 14√

5
≈ ±6.3 and the large field expansion (336) is valid by the end

of the plotted range at Φ0 = ±8.
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Figure 8: V0 ≡ Vhub/H
4 as a function of Φ0 for three different values of ε. The other

parameters are ξ = 0, λ = 0.1, µ/H0 = 10−13, k0/H0 = 1 and H0η = −10−2. The red
dashed curve is for ε = 0.1, the purple dotted curve is for ε = 0.3, and the blue solid curve
is for ε = 0.4.

Note that the steepening at late times is a small field effect; time evolution has very
little impact in the large field or even the intermediate field regime.
We close with a comment on ε dependence. This is only very weak in the large field
regime (336), as required by the need to agree with the result of Coleman and Weinberg
[120]. In the small field regime however at late times, the value of ε controls the rate at
which time evolution causes the M = 0 infrared contribution (343) dominate. One can
see all this by plotting V0 versus Φ0 for different values of ε at the same time. In Fig. 8
and Fig. 9 we have chosen,

ξ = 0 , λ = .1 , µ = 10−13H0 , k0 = H0 , H0η = −10−2 , (346)

for three different values of ε,

ε = 0.1 , ε = 0.3 , ε = 0.4 . (347)

In Fig. 8 the three curves are plotted over the range −2 < Φ0 < +2. The plot for ε = .1
shows symmetry breaking, whereas the symmetry has been restored for ε = .3, and the
plot for ε = .4 shows that the potential steepens with increasing ε. In Fig. 9 the same
three curves are plotted over the expanded range −8 < Φ0 < +8. One can see that the
curve for ε = .4 is still noticeably above the other curves in the intermediate regime, but
the three curves are almost indistinguishable in the large field regime.

8.2 Discussion

From the analysis so far we draw the following conclusions. First of all, we have seen
that at late times, or for values of ε close to 1, the infrared correction terms start to
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Figure 9: The same plots of V0 ≡ Vhub/H
4 as a function of Φ0 as in Fig. 8 over a larger

range of Φ0. For these parameters the large field result (336) applies by Φ0 = ±8.

dominate the quantum contribution. We also saw that these corrections will cancel any
possible symmetry breaking at earlier times. We could see this very explicitly in the
specific case where ν = 3/2. Here at early times symmetry could be broken due to
quantum contributions and the potential develops two minima, while at later times, the
growing infrared corrections restore the symmetry, but we find that the behavior is
generic. Let us briefly discuss the implications of this behavior.
We shall consider the Higgs field, during inflation. In the standard model the Higgs
mechanism is responsible for the masses of the particles. Although the Higgs is a
complex doublet, the characteristics of the potential will be essentially the same as the
way we calculated it (for a complex field you obtain simply a factor 2). The Higgs field
has a nonzero mass, put by most estimates to be between 115 and 160 GeV. This mass
is however much smaller than the inflationary scale HI ∼ 1013 GeV. Therefore it is an
excellent approximation to consider the Higgs to be effectively massless during inflation.
Of course, one should be a bit careful, since the mass will regulate the infrared.
However, assuming that our results at least give qualitatively reasonable results, we see
that at the beginning of inflation it is perfectly possible that the one loop corrections
cause the Higgs to obtain a nontrivial expectation value. This breaks the electroweak
symmetry and particles become massive. We see from for example figure 6 that the
expectation value of the Higgs in the broken phase will be roughly proportional to the
Hubble parameter during inflation. Therefore the masses obtained by the fermions will
be roughly a factor 1011 times their standard model values. Normally during inflation
the production of fermions will be irrelevant, since massless fermions are conformally
coupled. When this is not the case, they will be produced, and their asymptotic (after a
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long enough time) particle number is given by [121]

nψ =
1

e2πmψ/H + 1
. (348)

Here mψ ∼ fyΦ ∼ fyH is the fermion mass, with Yukawa coupling fy. For all fermions
but the top quark, fy is small, and in those cases we thus have

nψ =
1

2
(1 − πfy + O(f 2

y )), (349)

or almost maximal production. Now as inflation goes on, z0 → 0, or when inflation ends,
ε→ 1, the electroweak symmetry is restored, and the effect disappears again. If this
symmetry restoration occurs sufficiently close to the end of inflation, these fermions
might still be observable. If the restoration however occurs earlier during inflation, these
particles will be completely diluted away at the end of inflation.
Second of all we have seen that quantum corrections break the classical scaling of the
background Φ ∼ Φ0H . This is in contrast to for example the Coleman-Weinberg
potential, which does obey the classical scaling in Minkowski space-time Φ ∼ Φ0.
Unfortunately this means that the previous conclusion cannot be trusted completely,
but it does give an indication of what might happen. The fact that the scaling is
changed by the ultraviolet physics can be understood as follows. If we renormalize the
theory at a fixed scale µ, this extra scale now introduces a different time dependence
into the problem. µ is simply a constant energy scale, while the Hubble scale does
change. The fact that the scaling is also affected by the infrared physics is due to similar
reasons. The infrared physics introduces a typical scale ∝ k0η, where k0 is the infrared
cut-off. This scaling is also not the same as the scaling of the Hubble parameter and
thus will also change the scaling of Φ.
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9 The case of the graviton

In the previous sections we have concerned ourselves with the study of a scalar field. In
particular the focus was mostly on a massless, free scalar field. Many interesting
phenomena arose due to the presence of an infrared singularity for a wide class of
cosmological backgrounds. However, no massless scalar fields have as of yet been
observed. The only scalar field that is commonly recognized, the Higgs field, has a
nonzero mass, but can be considered effectively massless at high energies (or high H in a
cosmological setting). There are however many other scalar fields proposed in the
literature, of which some might be light enough. For example, quintessence models
might have light scalars. Also various modifications of gravity, like Brans-Dicke theory
or TeVeS, require additional massless scalar fields [124]. And of course there is the
possibility of considering light composite scalars.
Apart from these fields, also the graviton is extremely interesting in this context. As we
shall see explicitly below, the kinetic operator for the graviton has the same structure as
the kinetic operator for the massless scalar field, with different amounts of conformal
coupling. Therefore we expect that the infrared effects we found for the massless scalar,
will also occur in the case of the graviton. Notice that there are many ideas in the
literature concerning massive gravitons [125, 126]. This would of course regulate the
infrared sector for the gravitons. However all of these approaches are not without
problems. Either one gets additional degrees of freedom, which survive even in the
massless limit [127, 128] or one gets a propagating scalar ghost [129].
Because of the potential relevance for inflationary cosmology, the quantum behavior of
gravitons on a (locally) de Sitter background has been a widely studied subject over the
past years [130, 84, 131, 132, 101, 48, 47, 133, 134, 135, 85, 42, 49, 50, 104, 136, 51, 137,
140, 53, 54, 113, 71]. One line of research deals with the back-reaction of gravitational
waves on the background spacetime [49, 50, 136, 51]. However of more interest for the
present work is the one loop back-reaction by virtual gravitons on a de Sitter
background, which has been calculated by several authors, using different
techniques [135, 138, 9]. Since it is not clear whether in these works exactly the same
quantity is calculated and the renormalization schemes differ, the numerical coefficients
differ. However the main result is the same: one loop graviton contributions to the
expectation value of the energy momentum tensor result in a finite, time independent
shift of the effective cosmological constant. Since the contribution can always be
absorbed in a counterterm [138], the exact numerical coefficient coming from such a
calculation is scheme dependent and has no physical meaning.
We would like to apply our results, which are valid in a wider class of cosmological
backgrounds, now also to the case of the graviton. One immediate problem with
working with a more general space-time instead of de Siter space-time, is that for
consistency of the Einstein equations the addition of matter fields is unavoidable.
Whereas in de Sitter space, the only relevant metric fluctuations are the tensor modes
(gravitational waves), in a more general setting one has to take the mixing of
gravitational and matter degrees of freedom into account [28, 139, 140, 53, 54, 113].
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9.1 The quadratic gravitational and matter action

The model we consider is the action of gravity plus a scalar field ϕ with an arbitrary
potential V (ϕ)

S =

∫
√

−ĝ
(R̂− (D − 2)Λ

κ
+

1

2
ϕ2ϕ− V (ϕ)

)

, (350)

where κ = 16πGN = 16π/m2
P denotes the (rescaled) Newton constant,

mP ' 1.2 × 1019 GeV is the Planck mass, Λ denotes the cosmological constant, and D is
the number of space-time dimensions. By an appropriate choice of the potential V , such
a model can mimic any mixture of fluids which are relevant for the evolution of the
universe. We consider a conformally flat FLRW background (10) and split the fields in a
background contribution and a quantum contribution [101, 113]

ĝµν = gµν(η) + δgµν = a2(ηµν +
√
κψµν)

ĝµν = gµν(η) + δgµν = a−2(ηµν −
√
κa4ψµν) + O(ψ2)

ϕ = Φ(η) + φ ,

(351)

where δgµν ≡ hµν denotes the graviton field, ψµν is the so called pseudo-graviton field
and δgµν = −hµν + hµαh

αν + O(h3). Notice that indices on the pseudo-graviton field ψµν
are raised and lowered with the full background metric gµν(η) = a2ηµν . The background
scalar field Φ is homogeneous and thus only depends on (conformal) time. The
background fields obey the tree level Friedmann equations (14) and the scalar field
equation of motion:

H2 − 1

D − 1
Λ − κ

(D − 1)(D − 2)

( 1

2a2
Φ′2 + V (Φ)

)

= 0

a−1H ′ +
D − 1

2
H2 − 1

2
Λ +

κ

2(D − 2)

( 1

2a2
Φ′2 − V (Φ)

)

= 0

Φ′′ + (D − 2)aHΦ′ + a2∂V

∂Φ
(Φ) = 0 ,

(352)

from which one can derive the following identities

√
κΦ′ =

√

2(D − 2)εaH
√
κΦ′′ =

√

2(D − 2)ε(1 − ε)a2H2 + O(ε′)

√
κ
∂V

∂Φ
(Φ) = −

√

2(D − 2)ε(D − 1 − ε)H2

∂2V

∂Φ2
(Φ) = 2(D − 1 − ε)εH2 + O(ε′)

(353)

In these equations a prime indicates a derivative with respect to conformal time. Notice
that from section (8) we have learned that these simple scalings with H will be broken
by the loop corrections.
For the purpose of this paper we are only interested in the quadratic perturbations in the
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fields and we do not consider any interactions. After many partial integrations we find 5

L(2) =aD+4ψµν

(
(

2s −W
)(1

4
δρµδ

σ
ν −

1

8
ηµνη

ρσ
)

+ X δ0
µδ

ρ
νδ
σ
0 − Yηµ0δ

0
νη

ρσ

)

ψρσ

− aD−2ψ00

(√
κΦ′′

)

φ+ aD−2
√
κηµνψµνZφ

+
1

2
aDφ

(

2s −
∂2V

∂ϕ2
(Φ) + a−2Φ′2κ

)

φ+
1

2

√
−ggαβFαFβ ,

(354)

where we defined

Fα = a2∇µ

(

ψµα −
1

2
δµαg

ρσψρσ

)

− φΦ′√κδ0
α
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2
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2
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a−1H ′

)
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2

(

Φ′′ + (D − 2)aHΦ′ +
∂V

∂ϕ
(Φ)a2
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(355)

and

2s =
1√−g∂µ

√
−ggµν∂ν (356)

is the d’Alembertian as it acts on a scalar field. We add a gauge fixing term

LGF = −1

2

√−ggαβFαFβ (357)

and therefore we also need to add a ghost lagrangian

Lghost = −
√
−ga−2V̄ µδFµ , (358)

where we consider the change of Fµ under infinitesimal coordinate transformations
x′µ = xµ +

√
κV µ. From φ(xµ) = φ(x′µ) + δφ and ψµν(x

µ) = ψµν(x
′µ) + δψµν , we find up

to first order in V µ:

δφ = −
√
κV 0Φ′

δψµν = −a−2
(

gαν∂µV
α + gαµ∂νV

α + 2
(a′

a

)

gµνV
0
) (359)

and thus

Lghost = aDηαβV̄
α

(

δβµ2s − (D − 2)(H2 − a−1H ′)δβ0 δ
0
µ + a−2κΦ′2δβ0 δ

0
µ

)

V µ , (360)

where V and V̄ are the ghost and anti-ghost fields.

5An analogous result can be found in Ref. [113]. The main difference is that our result (354) includes
also terms that vanish on-shell.
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The quadratic lagrangian (354–355) contains mixing between the different components.
The following field redefinition removes the mixing between ψij and ψ00 and φ on-shell
6.

ψij = zij +
δij

D − 3
z00

ψ00 = z00

ψ0i = z0i .

(361)

The resulting quadratic lagrangian (which still is valid off shell) can be written as

L(2) + LGF + Lghost =
1

2
XT
ijG

ijklXkl +
1

2
z0iDij

vectorzoj + V̄ αDghost
αβ V β, (362)

where

Xij =





zij
z00
φ





Gijkl =





Dijkl
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Z − Φ′′)

aD−2
√
κZδkl aD−2

√
κ( 2

D−3
Z − Φ′′) Dφ
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(

2s −W
)(1

2
δikδjl − 1

4
δijδkl

)

Dij
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(
(

2s −W
)

+ 2X
)

ηij
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(

D − 2

2(D − 3)

(

2s −W
)

+ 2X +
4

D − 3
Y
)

Dφ = aD
(

2s −
∂2V

∂ϕ2
(Φ) + a−2Φ′2κ

)

Dghost
αβ = aD

(

ηαβ2s + 2X δ0
αηβ0

)

.

(363)

Note that Gijkl contains the tensor as well as the two scalar (gravitational and matter)
kinetic operators.

9.2 The propagators

We shall now construct the propagators, associated to the various modes in (362). In
general this will not be possible, due to the nontrivial dependence of the propagators on
the background fields and the mixing between the different modes. Therefore we shall
restrict ourselves in calculating the on-shell propagators. As will be clear from the
discussion in section 9.3 this will actually be sufficient to calculate the one loop effective
action. It will turn out that kinetic operators can be written in terms of

Dn ≡ √−g
[

2s − n
(

D − n− 1 +
n(n− 1)

2
ε
)

(1 − ε)H2
]

(n = 0, 1, 2) , (364)

6In the special case when D = 4, this and Eq. (370) below agree with Ref. [113].
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with an associated propagator

Dni∆n(x; x̃) = iδD(x− x̃) (n = 0, 1, 2) . (365)

The operator (364) is however nothing but the kinetic operator for the massless scalar
field, with conformal coupling

ξ =
n(D − n− 1 + n(n−1)

2
ε)

(D − 1)(D − 2ε)
(1 − ε) (366)

such that we can use the propagators calculated in the previous sections with

ν2
n =

(D − 1 − ε

2(1 − ε)

)2

−
n
(

D − n− 1 + n(n−1)
2

ε
)

1 − ε
. (367)

We find for the kinetic operators for the vector and the ghost on-shell

Dij
vector |on shell = −D1δ

ij

Dghost
µν |on shell =

(

η̄µνD0 + δ0
µην0D1

) (368)

and their associated propagators:

ij∆
k
vector = −δkj i∆1

iα∆
ρ
ghost =

(

δ̄ραi∆0 + δ0
αδ

ρ
0i∆1

) (369)

There is still mixing between z00 and φ. The on-shell part of the mixing can be removed
by the following rotation

X = RY

Yij =





zij
χ
ν





R =





1 0 0

0
√
λ cos(θ) −

√
λ sin(θ)

0 1√
λ

sin(θ) 1√
λ

cos(θ)





λ =

√

2(D − 3)

D − 2

tan(2θ) =
2
√

(D − 3)ε

D − 3 − ε
, θ = arccos

(

−
√

ε

D − 3 + ε

)

.

(370)

This rotation reduces the on-shell part of the term 1
2
XTGX to

1

2
Y T
ij G

ijkl
diagYkl |on shell =

1

2
Y T
ij






(
1
2
δkiδlj − 1

4
δijδkl

)

D0 0 0

0 1
λ
D0 0

0 0 1
λ
D2




Ykl . (371)
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Thus the associated propagator matrix Mdiag, defined by

GdiagMdiag(x; x̃) |on shell = 1δD(x− x̃) (372)

is given by

Mdiag |on shell =





rs∆kl 0 0
0 λ∆0 0
0 0 λ∆2





irs∆kl =
(

2δr(kδl)s −
2

D − 3
δrsδkl

)

i∆0 .

(373)

To avoid confusion with the subscript diag, we have omitted the explicit Lorentz indices
in Mdiag and Gdiag. It now follows that the non-diagonal propagator matrix rsMkl that
inverts Gijkl on-shell is

rsMkl |on shell = RMdiagR
T |on shell

=





rs∆kl 0 0
0 λ2(cos2(θ)∆0 + sin2(θ)∆2) λ cos(θ) sin(θ)(∆0 − ∆2)
0 λ cos(θ) sin(θ)(∆0 − ∆2) (sin2(θ)∆0 + cos2(θ)∆2)



 .

(374)

This finishes the construction of all the propagators and we indeed find that all modes
can be described in terms of ∆n.

9.3 One-loop effective action

In this section we shall first sketch using a simple example how to calculate the
correction to the Friedmann equation due to the one-loop effective action. Afterwards we
shall apply it to the case at hand. We consider as an example a model with an action

S = S0 + Sχ, (375)

where χ is a quantum scalar field with an action Sχ = Sχ[χ] and S0 is the classical
action of any background fields (including for example the Einstein-Hilbert action). If
the action Sχ is quadratic in χ,

Sχ =

∫

dDx
1

2
χDχχ (376)

We get the following effective action, conform (101)

Γ = S0 − i ln
( 1
√

Det(Dχ)

)

= S0 +
i

2
Tr ln

(
Dχ

)
(377)

Here the trace involves tracing over the Lorentz indices and space-time integration of
the operator at coincidence [6].
While in principle one could – at least formally – evaluate the effective action, the
object one is eventually interested in is the effective Friedmann equation, i.e. the
equations of motion associated with the background metric. Moreover in the present
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case we need to work under the constraint that ε is constant. As long as ε̇ remains
small, there is no problem with imposing such a constraint on the equations of motion.
On the other hand, imposing this constraint on the level of the action typically changes
the dynamics substantially. Therefore we shall not attempt to explicitly construct the
effective action, but instead we shall directly calculate the effective Friedmann equation.
By taking the functional derivative of the action with respect to the scale factor
a = a(η), we obtain the Einstein trace equation, that is the −(00) + (D − 1)(ii)
component of the Einstein equation. The second Friedmann equation can then always
be obtained by imposing the Bianchi identity, similar to what we did when discussing
the stress energy tensor. Thus we are interested in calculating

δΓ

δa
=
δS0

δa
+
i

2

δ

δa
Tr ln

(
Dχ

)

= V aD−1

[
D(D−1)(D−2)

κ

(

H2 − 1

D−1
Λ +

2

D
a−1H ′

)

+
∑

i

(

(D−1)pi − ρi

)]

+
i

2

δ

δa
Tr ln

(
Dχ

)
,

(378)

where V =
∫
dD−1x denotes the volume of space and we assumed that S0 contains the

Einstein-Hilbert action, and matter fields with an associated pressure and energy pi and
ρi. Notice that the quantum contribution i

2
δ
δa

Tr ln
(
Dχ

)
is by definition nothing but

V aD−1gµν〈Tµν〉. We now consider the calculation of this contribution. To be explicit, we
shall assume that χ is a massless minimally coupled scalar and therefore

Dχ =
√−g2. (379)

with an associated propagator i∆(x; x̃) which obeys

Dχi∆(x; x̃) = iδD(x− x̃) . (380)

Instead of considering the χ field, it is convenient to use a rescaled field

χ̂ = a
D
2
−1χ (381)

with an associated kinetic operator and propagator

D̂χ = ∂2 +
(D − 2)(D − 4)

4

a′2

a2
+
D − 2

2

a′′

a

i∆̂(x; x̃) = a
D
2
−1â

D
2
−1i∆(x; x̃).

(382)

Now, as we shall see explicitly later on, up to a D dimensional divergent delta function
that does not contribute in dimensional regularization, we have that

δ

δa
Tr ln

(
Dχ

)
=

δ

δa
Tr ln

(
D̂χ

)
. (383)

We shall now show how to calculate the trace logarithm contribution to (378) due to the
field χ̂. To be precise we give the exact coordinate dependence of each term indicated by
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xµ, yµ, and zµ

i

2

δ

δa(z0)
Tr ln

(
D̂χ(x)

)
=
i

2
Tr
(

∆̂(x; y)
( δ

δa(z0)
D̂χ(x)

))

=
i

2

∫

dDx

∫

dDy∆̂(x; y)δD(x− y)
[
(

− (D − 2)(D − 4)

2

a′(x0)2

a(x0)3
− D − 2

2

a′′(x0)

a(x0)2

)

δ(x0 − z0)

+
(D − 2)(D − 4)

2

a′(x0)

a(x0)2
∂x0δ(x0 − z0) +

D − 2

2a(x0)
∂2
x0δ(x0 − z0)

]

=
1

2
V

[
(

− (D−2)(D−4)

2

a′(z0)2

a(z0)3
− D−2

2

a′′(z0)

a(z0)2

)

i∆̂(z0; z0)

− (D−2)(D−4)

2
∂z0
( a′(z0)

a(z0)2
i∆̂(z0; z0)

)

+
D−2

2
∂2
z0

( 1

a(z0)
i∆̂(z0; z0)

)
]

= −D − 2

4
V aD−1

2zi∆(z; z) ,

(384)

where in going from the second to the third step we used the delta functions to change
∂x0 to −∂z0 and we used that the propagators at coincidence are a function of time only.
In the last step we used (382) to rewrite i∆̂ in terms of i∆. Now we see from (272) that
indeed we have that

i

2

δ

δa
Tr ln

(
D̂χ) = V aD−1gµν〈Tµν〉 . (385)

Comparing this with Eq. (378) we see that this is exactly what one expects, justifying
thus our procedure. The above example shows that indeed one can use the functional
derivatives with respect to a to evaluate the quantity that interests us. It also shows
that the rescaling (381) does not influence the final result in the context of dimensional
regularization. Notice that (378) is just an equation of motion. Therefore, after the
variation is performed, in the second line of (384), we can safely evaluate all the
quantities appearing on-shell. Hence we only need the propagators i∆(y; z) on-shell.
This justifies our on-shell diagonalization procedure in section IV, based on which we
constructed the propagators.
Now we apply this technique to the case at hand. The only difference is that there are
more quantum fields. This however does not change the procedure. Up to an irrelevant
constant, the effective action can be obtained from

exp[iΓ] =

∫

dDx
(
Dhµν

)(
Dφ
)(
DUα

)(
DŪα

)
exp

(

i
(
S(0) + S(2)

))

, (386)

where U and Ū denote the unrescaled ghost fields associated with the graviton field hµν .
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When written in terms of the rescaled fields this can be recast as 7

exp[iΓ] =

∫

dDx
(
Dzij

)(
Dz0i

)(
Dz00

)(
Dφ
)(
DV α

)(
DV̄ α

)
exp

(

i
(
S(0) + S(2)

))

= exp
(

iS(0)
) Dghost

αβ
√

det(Dij
vector) det(Gijkl)

,
(387)

where

S(0) =

∫

dDx
√
−g
(1

κ
(R − (D − 2)Λ) − 1

2
(∂Φ)2 − V (Φ)

)

S(2) =

∫

dDxL(2) ,

(388)

L(2) is given in (362) and (∂Φ)2 = −Φ′2. From Eq. (387) we obtain

Γ = S(0) +
i

2
Tr ln[Dij

vector] +
i

2
Tr ln[Gijkl] − iTr ln[Dghost

αβ ]

≡ S(0) + Γ1L .
(389)

From which we find the expression equivalent to (378) to be

δΓ

δa
=
δS0

δa
+
δΓ1L

δa

= V aD−1

[
D(D−1)(D−2)

κ

(

H2 − 1

D−1
Λ +

2

D
a−1H ′

)

+ (D−1)pM − ρM

]

+
δΓ1L

δa
,

(390)

where pM and ρM are the pressure and energy density associated to the background
scalar field matter, given by ρM = 1

2
Φ̇2 + V (Φ) and pM = 1

2
Φ̇2 − V (Φ).

The one loop contribution can be written analogously to (384) as

δΓ1L

δa
=

∫

dDx

(
i

2
i∆

vector
j (x; x)

δ

δa
Dij

vector +
i

2
ijMkl

δ

δa
Gijkl − iα∆β

ghost(x; x)
δ

δa
Dghost
αβ

)

.

(391)
The functional derivatives should naturally be taken of the off-shell kinetic operators.
However, as soon as these derivatives are taken, we are simply left with an equation of
motion. It is therefore completely valid to impose the background equations of motion
at that point. This is exactly the same procedure that leads to (270). Therefore the
propagators in (391) can be evaluated on-shell and thus we can use the propagators as
they are calculated in the previous section.
Instead of using the kinetic operators as given in (363), we rescale all our fields as

zµν → a1−D/2ẑµν ; φ→ a1−D/2φ̂ , (392)

7Our field redefinition (361) has a Jacobian equal to one. Furthermore, the rescaling by a2 of ψ with
respect to the ’true’ graviton will contribute to the effective action as a D-dimensional delta function
δD(0). Such a term does not contribute in dimensional regularization.
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which is identical to the rescaling in Eq. (381). This rescaling changes the effective
action (387) by a D dimensional delta function that does not contribute in dimensional
regularization. With the following identity

φ
√−g2sφ = φ̂

[

ηαβ∂α∂β +
D − 2

2

(D

2
− ε
)

a2H2
]

φ̂ (393)

we can easily calculate the kinetic operators of the rescaled fields. We will indicate these
rescaled kinetic operators with a hat. The associated propagators are also easily
obtained:

∆(x; x̃) = (aã)1−D/2∆̂(x; x̃) . (394)

We now shall consider one functional derivative in detail. The others are calculated
similarly. We follow the same procedure as in the example considered at the start of this
section. Our calculation proceeds analogously as in Eq. (384). We once again insert the
explicit arguments η = x0 and η̃ for the two coordinates respectively

∫

dDx ij∆̂kl(x; x)
δ

δa(η)
D̂ijkl

tensor(η̃)

=

∫

dDx ij∆̂kl(x; x)
δ

δa(η)

(

ηαβ∂α∂β +
D − 2

2

(D

2
− ε(η̃)

)
a(η̃)2H(η̃)2 − a(η̃)2W

)

×
(1

2
δikδjl − 1

4
δijδkl

)

=

∫

dDx ij∆̂kl(x; x)
δ

δa(η)

(

ηαβ∂α∂β −
D − 2

4

(

(3D − 16)
(a(η̃)′

a(η̃)

)2
+ 6

a(η̃)′′

a(η̃)

)

+ (D − 2)Λa(η̃)2 − κ
(1

2
Φ′2 − a(η̃)2V (Φ)

)
)
(1

2
δikδjl − 1

4
δijδkl

)

(395)

=

∫

dDx ij∆̂kl(x; x)

(

− D − 2

4

(

2(3D − 16)
( a′(η̃)

a(η̃)2

∂

∂η̃
− a′(η̃)2

a(η̃)3

)

+ 6
( 1

a(η̃)

∂2

(∂η̃)2
− a(η̃)′′

a(η̃)2

))

+ 2(D − 2)Λa(η̃) + 2κV (Φ)a(η̃)

)
(1

2
δikδjl − 1

4
δijδkl

)

δ(η̃ − η)

=

∫

dDx δ(η̃ − η)

(

− 3(D − 2)

2

1

a(η̃)

∂2

(∂η̃)2

+
1

2
(D − 2)(3D − 10)

(

H
∂

∂η̃
+ (1 − ε)H(η̃)2a(η̃)

)

+ 2(D − 2)Λa(η̃) + 2κV (Φ)a(η̃)

)
(1

2
δikδjl − 1

4
δijδkl

)

ij∆̂kl(x; x)
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= V

(

− 3(D − 2)

2

1

a
∂2
η +

1

2
(D − 2)(3D − 10)H∂η

+
1

2
(D − 2)2(7 − 3ε)H2a

)
(1

2
δikδjl − 1

4
δijδkl

)

ij∆̂kl(x; x) .

In step three we integrated by parts and dropped the boundary terms because of the
delta function. In step four we used the background equations of motion (352) for Φ.
This is justified, since corrections to those equations will be of order 1-loop and the
above expression is already at order 1-loop. Therefore the error one is making is of
2-loop order.
The other functional derivatives we need are calculated similarly

1

V

∫

i∆̂j,vector(x; x)
δ

δa
D̂ij

vector =

(

D − 2

2

1

a
∂2
η −

1

2
(D − 2)(3D − 2)H∂η

− 1

2
(D − 2)

(

(3D + 2)(1 − ε) + 4(D − 2)
)

aH2

)

δij i∆̂j,vector(x; x)

1

V

∫

M̂(1,1)(x; x)
δ

δa
D̂scalar =

D − 2

2(D − 3)

(

D + 2

2

1

a
∂2
η +

3

2
(D2 − 4)H∂η

+
1

2
(D − 2)

(

(7D + 2) − (3D + 10)ε
)

H2a

)

M̂(1,1)(x; x)

1

V

∫

M̂(2,2)(x; x)
δ

δa
D̂φ =

(

D − 2

2

1

a
∂2
η −

1

2
(D − 2)2H∂η −

(1

2
(D − 2)2(1 − ε)

+ 4(D − 1 − ε)ε
)

aH2

)

M̂(2,2)(x; x)

1

V

∫

α∆̂β
ghost

δ

δa
D̂ghost
αβ =

(D − 2

2

1

a
∂2
η −

1

2
(D − 2)2H∂η

− 1

2
(D − 2)2(1 − ε)H2a

)

ηαβ
α∆̂β

ghost

+
(

(D − 2)
1

a
∂2
η + 4(D − 2)H∂η + 4(D − 2)(1 − ε)H2a

)

δ0
αηβ0

α∆̂β
ghost

1

V

∫

M̂(1,2)(x; x)
δ

δa

√
κ
( 2

D − 3
Z − Φ′′

)

=

√

2(D − 2)ε

D − 3

(

(D − 2)H∂η + (3D − 4 −Dε)H2a
)

M̂(1,2)(x; x) .

(396)

Here we indicated with M̂(n,m)(x; x) the (n,m) component of the propagator matrix M̂
(374). The last thing we need before we can calculate the one loop contribution (391)
are the propagators at coincidence and their derivatives. Since all propagators are
related to the propagator ∆̂n, we only need that one.
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9.3.1 Infinite space contribution

We shall regulate the infrared with the cut-off as described in section 6. The
propagators thus are expressed as (266)

i∆(x; x̃) = i∆∞(x; x̃) +
∞∑

N=0

δi∆N (x; x̃) +
∞∑

N=0

δi∆N (x; x̃) , (397)

We first consider the infinite space contribution (199). Taking the y → 0 limit of (199)
and dropping the D dependent powers of y that do not contribute in dimensional
regularization we obtain (we drop the subscript ∞)

i∆̂n(x; x) = aD−2i∆n(x; x) = |1 − ε|D−2(aH)D−2Γ(1 − D
2
)

(4π)
D
2

Γ(D−1
2

+ νn)Γ(D−1
2

− νn)

Γ(1
2

+ νn)Γ(1
2
− νn)

∂

∂η
i∆̂n(x; x) = Ha(D − 2)(1 − ε)i∆̂n(x; x)

( ∂

∂η

)2

i∆̂n(x; x) = H2a2(D − 1)(D − 2)(1 − ε)2 i∆̂n(x; x)

(398)

We can now collect all the terms of (391). Using (369), (374), (395), (396) and (398) we
obtain for the vector and the ghost

1

V

∫
i

2
i∆̂

vector
j (x; x)

δ

δa
D̂ij

vector =
1

4
(D − 1)(D − 2)

[

2(D − 1)(D + 2)

− (D2 +D + 2)ε− (D − 1)(D − 2)ε2
]

aH2i∆̂1(x; x)

1

V

∫

−iα∆̂β
ghost(x; x)

δ

δa
D̂ghost
αβ =H2a

1

2
(D − 1)2(D − 2)2ε(1 − ε)i∆̂0(x; x)

− 1

2
(D − 1)(D − 2)(1 − ε)

(

2(D + 2) − 3(D − 2)ε
)

aH2i∆̂1(x; x) .

(399)

The last term evaluates to

1

V

∫
i

2
ijM̂kl(x; x)

δ

δa
Ĝijkl =

1

V

∫
i

2
ij∆̃kl(x; x)

δ

δa
D̂ijkl

tensor

+
1

2
λ2
(

cos(θ)2i∆̂0 + sin(θ)2i∆̂2

) δ

δa
D̂scalar

+ λ cos(θ) sin(θ)(i∆̂0 − i∆̂2)
δ

δa

(√
κ

2

D − 3
Z −

√
κΦ′′)

)

+
1

2

(

sin(θ)2i∆̂0 + cos(θ)2i∆̂2

) δ

δa
D̂φ .

(400)

The contribution from the tensor is
1

8
D(D − 1)(D − 2)2

[

(1 + 3D) − 3(D − 1)ε
]

εaH2i∆̂0(x; x) , (401)

while the terms in (400) multiplying i∆̂0 contribute as

ε

4(D − 3 + ε)

[

− (D − 1)(D − 3)(D2 − 8D + 4) + [D(D − 2)(D2 − 11D + 14) + 8]ε

+ (D − 1)(D − 2)(D + 2)ε2
]

aH2i∆̂0(x; x). (402)
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Finally the terms in (400) multiplying i∆̂2 contribute as

1

4(D − 3 + ε)

[

4(D − 1)(D − 2)(D − 3)(D + 3) −
(

5D4 − 20D3 − 9D2 + 68D − 36
)

ε

+
(

D4 − 5D3 − 4D2 + 24D − 32
)

ε2 +
(

D3 − 5D2 + 8D + 4
)

ε3
]

aH2i∆̂2(x; x) .

(403)

Putting (399–403) and (391) together and expanding the result around D = 4 we obtain
the following non renormalized one loop contributions to the Friedmann trace equation,

1

V aD−1H4

δΓ0
1L

δa
=
ε(63ε2 + 2ε− 105)

64π2(1 + ε)
(1 − ε)2(4ν2

0 − 1)

(

2

D − 4
+ γE + ln

((1 − ε)2H2

4πµ2

)

+ ψ(
1

2
+ ν0) + ψ(

1

2
− ν0) + 4

4ν0ν
′
0 − 1

4ν2
0 − 1

)

+
ε

32π2(1 + ε)2
(1 − ε)2(4ν2

0 − 1)
(

93ε3 + 90ε2 − 169ε− 122
)

1

V aD−1H4

δΓ1
1L

δa
=

3(9ε2 − 7ε− 6)

64π2
(1 − ε)2(4ν2

1 − 1)

(

2

D − 4
+ γE + ln

((1 − ε)2H2

4πµ2

)

+ ψ(
1

2
+ ν1) + ψ(

1

2
− ν1) + 4

4ν1ν
′
1 − 1

4ν2
1 − 1

)

+
1

64π2
(1 − ε)2(4ν2

1 − 1)
(

51ε2 − 17ε− 54
)

1

V aD−1H4

δΓ2
1L

δa
= −(5ε− 6)(ε2 − 2ε− 7)

64π2(1 + ε)
(1 − ε)2(4ν2

2 − 1)

(

2

D − 4
+ γE + ln

((1 − ε)2H2

4πµ2

)

+ ψ(
1

2
+ ν2) + ψ(

1

2
− ν2) + 4

4ν2ν
′
2 − 1

4ν2
2 − 1

)

+
1

64π2(1 + ε)2
(1 − ε)2(4ν2

2 − 1)
(

3ε4 + 13ε3 − 83ε2 + 35ε+ 30
)

(404)

here νn indicates νn as given in (367) in D = 4 and ν ′n is d
dD
νn

∣
∣
∣
D=4

. γE is the Euler
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constant and we used the following expansions of the propagators (398)

aH2i∆̂n(x; x) = aD−1|1 − ε|D−2HDΓ(1 − D
2
)

(4π)
D
2

((D − 3

2

)2

− ν2
n

)

×
[

1 +
D − 4

2

(

ψ
(1

2
+ νn

)

+ ψ
(1

2
− νn

))]

(405)

|1 − ε|D−2HDΓ(1 − D
2
)

(4π)
D
2

=
(1 − ε)2H4

16π2

×
(

2µD−4

D − 4
+ γE − 1 + ln

(H2

µ2

)

+ ln
((1 − ε)2

4π

))

, (406)

plus terms that vanish in D = 4. Here ψ(z) = (d/dz) ln(Γ(z)) is the digamma function
and µ is an arbitrary renormalization scale introduced for later convenience. If we use
the explicit expression for νn, we can add all terms together and obtain for the effective
action

1

V aD−1H4

δΓ1L

δa
=

1

V aD−1H4

δΓ0
1L

δa
+

1

V aD−1H4

δΓ1
1L

δa
+

1

V aD−1H4

δΓ2
1L

δa

= −
ε
(

186 − 149ε− 11ε2 + 10ε3
)

8π2

µD−4

D − 4

− ε

16π2

[
(

108 + 62ε− 153ε2 + 27ε3
)

+
(

186 − 149ε− 11ε2 + 10ε3
)

×
(

γE + ln
((1 − ε)2H2

4πµ2

))
]

+
ε(63ε2 + 2ε− 105)

64π2(1 + ε)
(1 − ε)2(4ν2

0 − 1)

(

ψ(
1

2
+ ν0) + ψ(

1

2
− ν0)

)

+
3(9ε2 − 7ε− 6)

64π2
(1 − ε)2(4ν2

1 − 1)

(

ψ(
1

2
+ ν1) + ψ(

1

2
− ν1)

)

− (5ε− 6)(ε2 − 2ε− 7)

64π2(1 + ε)
(1 − ε)2(4ν2

2 − 1)

(

ψ(
1

2
+ ν2) + ψ(

1

2
− ν2)

)

,

(407)

We kept the digamma functions in terms of ν, since then it will be trivial to add the
correction terms to regulate the infrared.

9.3.2 Renormalization

The contribution (407) contains a 1/(D−4) divergence and therefore needs to be
renormalized. If we take our approximation that ε = constant literally, the divergence is
of the form const×H4aD−1. However in a more realistic treatment, ε is a dynamical
parameter and our result is expected to be correct up to zeroth order in ε̇. In this more
realistic case, the ε structure of the divergent term should be taken into account and
subtracted accordingly. Therefore if ε is varying slowly enough, such that (407) remains
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approximately valid, we still need a counter lagrangian that produces the same ε
structure as the divergence in (407), in order for the theory to be renormalized at all
times. For this purpose many terms can be used, and indeed many terms are reported in
the literature [85, 111, 141]. However we cannot simply use these terms, since
counterterms are dependent on the gauge fixing used [142] and as far as we know, no
general calculations have been done using our gauge fixing (357). Calculations using
(357) have been done however in the special case of de Sitter space [138] [98],
considering both scalar and graviton loops. From these works and also e.g. from [135] it
follows that the one loop contribution in this limit should be finite. Since the de Sitter
limit is ε→ 0, this agrees with (407). To ensure that the one loop contribution due to
gravitons in the de Sitter case vanishes we need in that limit a counterterm

√−g
(

H2 − Λ

D − 1

)2

, (408)

which in our more general case becomes

LCT1 =
√
−g a0

(

R− D

D − 2

(

κV (Φ) + (D − 2)Λ
))2

, (409)

where a0 is a constant. This follows from the fact that the cosmological constant can
always be seen as a part of the scalar potential and thus for an invariant counterterm
they should come together. Moreover from [98] it follows that we also need a
counterterm of the form

√
−ĝH2κĝµν(∂µφ̂)(∂νφ̂) to vanish. From Eq. (13) it follows that

for our case this generalizes to

LCT2 =
√
−g a1(Rg

µν −DRµν)κ(∂µΦ)(∂νΦ) , (410)

with a1 a constant. Finally, also from [98] it follows that a counterterm
√−gκ(2Φ)2

should not appear.
Therefore a reasonable choice for the counter-lagrangian is

Lc =
√
−g
[

a0

(

R− D

D − 2
(κV + (D − 2)Λ)

)2

+ a1

(

Rgµν −DRµν
)

κ∂µΦ∂νΦ

+ a2
∂2V (Φ)

∂Φ2
R + a3κg

µν(∂µΦ)(∂νΦ)
∂2V (Φ)

∂Φ2

]

.

(411)

We stress that the counter-lagrangian (411) for the purpose of this calculation could be
chosen differently. There are many other terms with the correct dimensionality that
could have been used [141]. Since the divergence (407) gives only four constraints (one
for each power of ε), we at present can fix only 4 coefficients. This does not mean that
the counter-lagrangian is arbitrary. Different types of calculations could fix the
counter-lagrangian uniquely, as it is for example done in Ref. [111]. However apart from
the two cases mentioned above, we do not know of any calculation in our gauge, which
we could use to further specify our counter-lagrangian. Thus the ’true’
counter-lagrangian corresponding to the theory will probably contain different
counterterms than (411). However, these different counterterms do not change the
conclusions of this section. The only effect would be that in Eq. (414) the origin of the
βi’s changes, but not the fact that they are essentially arbitrary. Neither do different
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counterterms change the fact that the logarithmic terms, the digamma functions and the
IR corrections cannot be subtracted by local counterterms. The terms in our
counter-lagrangian (411) contribute as follows to the Friedmann trace equation

1

V

δ

δa

∫

dDx
√
−g
(

R− D

D − 2
(κV + (D − 2)Λ)

)2

= aD−1H4(D − 2)ε
(

8ε(2 + 3ε) +D2(4 + 9ε) − 2D(2 + 13ε+ 12ε2)
)

+ O(ε′)

= aD−1H4
(

16ε(6 + 7ε− 9ε2) + 4ε(26 + 37ε− 30ε2)(D − 4)

+ O((D − 4)2, ε′)
)

1

V

δ

δa

∫

dDxκ
√
−g(Rgµν −DRµν)(∂µΦ)(∂νΦ)

= 2aD−1H4(D − 1)(D − 2)2ε
(

(D − 1)(D − 6ε) + 6ε2
)

+ O(ε′)

= aD−1H4
(

144ε(1 − ε)(2 − ε) + 24ε(23 − 30ε+ 8ε2)(D − 4)

+ O((D − 4)2, ε′)

1

V

δ

δa

∫

dDx
√
−g∂

2V (Φ)

∂Φ2
R

= aD−1H4(D−1)(D−1−ε)2ε
(

D(D−2) − 2(3D−4)ε+ 12ε2
)

+ O(ε′)

= aD−1H4
(

24ε(3 − ε)(2 − 4ε+ 3ε2)

+ 4ε
(
51 − 88ε+ 53ε2 − 6ε3

)
(D − 4)

)

+ O
(

(D−4)2, ε′
)

1

V

δ

δa

∫

dDxκ
√
−ggµν(∂µΦ)(∂νΦ)

∂2V (Φ)

∂Φ2

= −4aD−1H4(D−2)2ε2(D−1−ε) + O(ε′)

= aD−1H4
(

− 16ε2(3−ε) − 16ε2(4−ε)(D−4)
)

+ O
(

(D−4)2, ε′
)

,

(412)

where we used (13) and once again we used the background equations of motion (352)
and (353). We find that all divergencies cancel if

a0 =
37

960π2

µD−4

D−4
+ af0 ; a1 =

49

640π2

µD−4

D−4
+ af1

a2 = − 5

288π2

µD−4

D−4
+ af2 ; a3 = − 43

480π2

µD−4

D−4
+ af3 ,

(413)

where the afi (i = 0, 1, 2, 3) indicates a possible finite part. Adding the contribution from
the counterterms (412) to the one loop contribution (407), we obtain the following
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renormalized contribution

1

a3V

Γ1L,ren

δa
=

H4

16π2

[

β1ε+ β2ε
2 + β3ε

3 + β4ε
4

− ε
(

186 − 149ε− 11ε2 + 10ε3
)(

ln
((1 − ε)2H2

4πµ2

))

+
ε(63ε2 + 2ε− 105)

4(1 + ε)
(1 − ε)2(4ν2

0 − 1)

(

ψ(
1

2
+ ν0) + ψ(

1

2
− ν0)

)

+
3(9ε2 − 7ε− 6)

4
(1 − ε)2(4ν2

1 − 1)

(

ψ(
1

2
+ ν1) + ψ(

1

2
− ν1)

)

− (5ε− 6)(ε2 − 2ε− 7)

4(1 + ε)
(1 − ε)2(4ν2

2 − 1)

(

ψ(
1

2
+ ν2) + ψ(

1

2
− ν2)

)]

.

(414)

Here the parameters βi (i = 1, 2, 3, 4) are given by,

β1 = 16π2 × 12
[

8af0 + 24af1 + 12af2

]

− 186γE +
1727

3

β2 = 16π2 × 4
[

28af0 − 108af1 − 84af2 − 12af3

]

+ 149γE − 5969

9

β3 = 16π2 × 4
[

− 36af0 + 36af1 + 78af2 + 4af3

]

+ 11γE +
10457

45

β4 = 16π2
[

− 72af2

]

− 10γE − 61

3
.

(415)

All βi’s (i = 1, 2, 3, 4) in Eq. (414) are free parameters that remain undetermined until
they are fixed by experiment. Other terms in Eq. (414), in particular the logarithm and
polygamma functions, cannot be altered by local counterterms and hence these terms
constitute the physical graviton plus massless scalar one loop contributions in
homogeneous expanding spaces with a power law expansion characterized by a constant
ε = −Ḣ/H2.

9.3.3 Correction terms

The effective action (414) is divergent for half integer values of the parameters νi. The
reason is that the propagators used do not describe the infrared physics correctly and we
need to add the correction term δi∆N as given in (268). Since we will be considering
accelerating space-times, we do not care for the δi∆N corrections, since they become
quickly insignificant in that case. Since the correction term is ultraviolet finite, we can
put D = 4 in all terms. Following the same procedure as above, we find for the
coincident limit and its derivatives

δi∆̂N,n(x; x) = AN,n(aH)2z2N+3−2νn
0

∂

∂η
δi∆̂N,n(x; x) = −(1 + 2N − 2νn)(1 − ε)(aH)δi∆̂N,n(x; x)

( ∂

∂η

)2

δi∆̂N,n(x; x) = (1 + 2N − 2νn)(2N − 2νn)(1 − ε)(aH)δi∆̂N,n(x; x)

(416)
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where νn is given in (367) and a subscript n implies that that quantity is evaluated with
νn. AN,n = AN (νn) is defined in (285). We find for the corrections due to the vector and
the ghost (396)

1

V

∫
i

2
(δi∆̂

vector
j )N(x; x)

δ

δa
D̂ij

vector = 3

(

4 + 7(1 − ε)

− 5(1 − ε)(1 + 2N − 2ν1) − (1 − ε)2(N − ν1)(1 + 2N − 2ν1)

)

aH2δi∆̂N,1(x; x)

1

V

∫

− i(α∆̂β
ghost)N(x; x)

δ

δa
D̂ghost
αβ = 6(1 − ε)(N − ν0)

×
(

(2ν0 − 2N)(1 − ε) + ε− 3
)

aH2δi∆̂N,0(x; x)

+ 6(1 − ε)(N − ν1)
(

(2ν1 − 2N)(1 − ε) + ε+ 1
)

aH2δi∆̂N,1(x; x).

(417)

The tensor contribution to (400) is

−6
(
3(ν0 −N)(1 − ε) + 2

)(
2(ν0 −N)(1 − ε) − 3

)
aH2δi∆̂N,0(x; x) , (418)

while the terms in (400) multiplying δi∆̂N,0 contribute as

1

1 + ε

(

− 4(3 − ε)ε+ (1 − ε)2(1 + 3ε)(2N2 + 2ν2
0) − (3 + ε)(1 − ε)(1 − 3ε)

+N(1 − ε)
(

3 − 4ν0 − 8ε(1 + ν0) − 3ε2(1 − 4ν0)
)
)

aH2δi∆̂N,0(x; x).

(419)

Finally the terms in (400) multiplying δi∆̂N,2 contribute as

1

1 + ε

(

(1 − ε)2(3 + ε)(2N2 + 2ν2
1) + 2(3 + 5ε(1 − ε) + ε3)

+ (1 − ε)(3 + ε)
(

(5 + ε)(1 −N) − 4(1 − ε)Nν1

)
)

aH2δi∆̂N,2(x; x).

(420)
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We add the corrections together to obtain the following three contributions

1

V aD−1H4

δΓ
(0)
N

δa
=
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− ε(63ε2 + 2ε− 105)

1 + ε
+

1 − ε

1 + ε
(3 + 2N − 2ν0)

×
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(ν0 −N)(1 − ε)(23 + 21ε) + (4 + 3ε)(3 − 7ε)
)
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δi∆N,0

H2

1

V aD−1H4
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=
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(
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)
)
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1
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δΓ
(2)
N

δa
=

(

(5ε− 6)(ε2 − 2ε− 7)

1 + ε

− (1 − ε)(3 + ε)

1 + ε
(3 + 2N − 2ν2)

(

(ν2 −N)(1 − ε) + 4 − ε
)
)

δi∆N,2

H2
,

(421)

where we have written δΓ
(n)
N for the contribution to δΓN that multiplies ∆N,n.

From these three contributions we see explicitly that indeed when ν = N + 3/2, the
corrections have the correct prefactor to add up correctly to cancel the divergence in the
digamma functions (414). This gives the final one loop corrected Friedmann trace
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equation

24
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(1 − 1

2
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(
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(
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+
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(

(ν0 −N)(1 − ε)(23 + 21ε) + (4 + 3ε)(3 − 7ε)
)
)

H2δi∆N,0

+
∑

N

(3 + 2N − 2ν1)
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(

(ν1 −N)(1 − ε) − ε
)
)

H2δi∆N,1

−
∑

N
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(
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1 + ε

(

(ν2 −N)(1 − ε) + 4 − ε
)
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H2δi∆N,2 = 0 .

(422)

This equation is our final result of this section. It presents the one loop quantum
corrected Friedmann trace equation, in the presence of both graviton and scalar
fluctuations.

9.4 Discussion

Having found the one loop corrected Friedmann trace equation, we can ask the question
whether the quantum effects calculated will have any significant effect. We immediately
see that the quantum contribution is suppressed by a factor H2/m2

p. Because of this
suppression, the one loop contribution can only become relevant for the dynamics of the
universe if there is a significant enhancement. This enhancement could in the case at
hand come from the infrared growing terms. The question whether this enhancement is
significant is equivalent to the question whether the quantity

H2z3+2N−2ν
0 (423)
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grows in time. In an accelerating universe the fastest growing term has N = 0. Since
z0 = −kη this term grows with η as

∝ η
3−ε
1−ε

−2ν . (424)

Thus we see that for the different ν values we have in (422) this evaluates to

η
3−ε
1−ε

−2ν0 = η0

η
3−ε
1−ε

−2ν1 = η2

η
3−ε
1−ε

−2ν2 = η4.

(425)

These general expressions fail near the N = 0 pole of the digamma functions (meaning
νi = 3/2). Here one will typically pick up an additional logarithm, ln(z0) from the
correction terms. Thus we see that the ν0 contribution, in the presence of such an
additional logarithm appears to grow in time. However ν0 = 3/2 implies ε = 0 and we
see from (422) that this contribution is cancelled by the pre-factor. Thus none of the
contributions actually grows in time. Notice that this is similar to the conclusions made
in section 7, but not exactly the same. In that case the pre-factor was such that if ξ = 0
(as is the case for ν0), the leading order N = 0 contribution is zero for all ν. Indeed one
immediately sees from (275) that if ∆N is constant, it will not contribute in that case.
In the calculation above, the relation between the trace of the stress energy tensor and
the coincident propagators is much more complicated. For example in (395) we see that
also undifferentiated factors of the coincident propagator contribute.
The fact that the pre-factor is such that near de Sitter space the logarithmic growth
drops out, is also in concordance with results obtained in [140]. This property however
does not have to stay true in general. For example if higher order loop corrections are
taken into account, this structure might change such that while the correction terms are
extremely small, their contribution grows in time, making them significant at late
enough times. Also when considering a different background geometry, one might get
growing effects even at one loop order. In [49, 50] for example one loop contributions
have been considered in chaotic inflationary models. Although those works found a
secular growth, in [53] it was concluded that this growth disappears if one considers
truly gauge invariant quantities. Notice that in chaotic inflation models one typically

has in the slow-roll approximation ε ∝ m2
p

φ(t)2
, with φ the inflaton field.
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10 Conclusions

In this thesis we studied the infrared properties of quantum fields on a cosmological
background. In particular we considered free massless scalar fields, with a possible
coupling ξ to the Ricci scalar. The study of such a field is first of all motivated by the
graviton, whose kinetic operator can be written in a similar form. Second of all, light
scalar fields can be considered effectively massless in the early universe (where the mass
has to be compared with the Hubble parameter H). This can for example include the
Higgs field, quintessence fields, the axion or scalar fields arising in scalar-tensor theories
of gravity. Notice however that, since the mass of a scalar field is not protected by any
symmetry, loop corrections might generate a significant mass for these fields. For
example in de Sitter space calculations have been done, for a massless minimally
coupled scalar with quartic self interactions [99], or for a massless minimally coupled
charged scalar coupled to the photon [88]. In both cases a generated mass squared is
found to be proportional to H2 and therefore such a field can not be considered light
anymore. However flat directions in supersymmetric models can be considered massless,
since they do not interact and hence cannot acquire quantum contributions. Also notice
that the mass of the Higgs field needs to be protected anyway if one wants to solve the
hierarchy problem.
Our background space-time is a homogeneous, flat FLRW space-time (8), with the

additional constraint that the parameter ε ≡ − Ḣ
H2 is a constant (11). Although this

constraint, which implies that the acceleration of the universe is constant, is necessary in
order to perform analytic calculations, it is quite reasonable. The Friedmann equations
(14) imply that, if the energy density of the universe is dominated by one fluid, with a
constant equation of state parameter w (6), one immediately finds that ε is constant [15].
It has been known for a long time that a massless scalar field on such a background
possesses problems in the infrared [42, 82] if the parameter ν (178), given in D
space-time dimensions by

ν2 =
(D − 1 − ε

2(1 − ε)

)2

− (D − 1)(D − 2ε)

(1 − ε)2
ξ (426)

is larger then D−1
2

(186). To be more precise, the propagator, which measures the
correlation of the field between two different points, diverges at the lower end of the
integration over the momenta when evaluated for the Bunch-Davies vacuum [33]. What
physically happens is that the expansion of the universe implies the existence of a
cosmological horizon. Virtual particles that are created due to the Heisenberg
uncertainty relation with a wavelength longer than this horizon fail to annihilate each
other within a finite time [23, 43]. Thus nonconformal scalar modes, with a super
Hubble wavelength, couple strongly to the expanding background. This causes the
creation of particles and the growth of large scale, super Hubble, field correlations. Such
an effect is naturally the largest if the field is massless. The fact that the propagator is
infrared divergent does not indicate that infrared particle creation is not a real physical
processes, instead it means that the way the propagator is calculated is not physical.
The unphysical thing in this specific case is that the Bunch-Davies vacuum cannot
describe the super-Hubble vacuum correctly due to the particle creation. In this thesis
we presented a fix to this problem. In this fix we effectively choose the initial vacuum to
be less singular in the infrared. If this is done, such that the infrared contribution to the
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propagator is finite initially, it will naturally stay finite at all later times.
The resolution we propose to the infrared problems we presented in section 6 [38]. The
idea here is to work on a spatially compact universe, with a co-moving size 2π/k0. This
effectively generates an infrared cut-off in the integral over the mode functions. The
final result for the propagator of a massless scalar field in a constant ε background (266)
then naturally is infrared finite.
To see what the physical effect of this approaches is, we calculated the expectation value
of the stress energy tensor in section 7. The stress energy tensor couples to the metric
through the Einstein equations and thus any quantum contribution to the stress energy
tensor in principle also induces a change to the metric. In a cosmological setting this
implies that quantum effects will either accelerate or slow the expansion of the universe.
This is known as backreaction. Of course this effect is small, but because particle
creation – which is a physical effect – is cumulative, it is at least in principle possible
that the expectation value of the stress energy grows in time. Therefore an initially
extremely small effect can significantly influence the expansion of the universe after a
sufficient amount of time.
Using the infrared regulated propagator, we find in the ultraviolet that we correctly
reproduce the Bunch-Davies result. This should of course happen; we do not want to
change ultraviolet physics because of a problem with long wavelength particles. In the
infrared the discussion can be split in two parts, depending on whether the expansion of
the universe is accelerating or decelerating.
If the universe is accelerating (ε < 1), we found that, although we see a growth in energy
due to the production of infrared particles, this energy will always dilute away faster
than the energy present in the background space-time. This dilution is due to the fact
that any infrared mode ripped out of the vacuum will be redshifted and thus lose energy.
We could however enhance the effect by allowing the coupling ξ between the scalar field
and the Ricci scalar to become negative. This is however not very surprising, such a
negative coupling will act as a (time dependent) negative mass and thus destabilize the
field, leading to a growth.
In a decelerating universe the situation is quite different. We find that, since in a
decelerating unverse, the Hubble radius grows faster then physical scales, the cut-off
scale actually enters the Hubble volume. While the infrared divergence is determined by
the parameter ν, the relative growth of the cut-off with respect to the Hubble parameter
is determined by ε. We indeed find in this case that the correction terms due to the
cut-off can grow faster in time with respect to the background energy density if ε > 3.
This effect is thus not due to particle creation, but it is due to the fact that the
influence of the cut-off grows more and more profound as time goes on. The cut-off
removes modes that would otherwise influence the expansion of the universe. Moreover
it does this even in space-times where there is no infrared divergence. Of course this was
expected. Requiring that the universe is compact is a physical change, which leads to
observable effects. Notice also that during inflation, the physical cut-off k0η becomes
much smaller than the Hubble scale as time goes on. Unless k0 was initially very large,
the cut-off k0η will very likely up to today stay small enough, similar to how inflation
makes any initial curvature of the universe negligibly small at later times. Therefore it is
unlikely that the late time behavior described above is already relevant for our universe,
and thus this approach is perfectly consistent with observations.
It is natural to ask how general these conclusions are. Firstly let us comment on the
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dependence on the infrared regularization scheme. As we mentioned in section 5, there
are several other schemes proposed in the literature [40, 41, 72]. All these schemes
effectively introduce some infrared scale κ one way or the other. Modes with momenta
lower then this scale are then suppressed, making the infrared finite, while modes with
momenta larger then this scale should be unaffected. In an accelerating universe we do
not expect much difference between the approach presented here and any other
approach. In this case physical length scales grow faster then the Hubble radius, such
that any details on what happens at length scale larger then κ−1 become less and less
visible. This is in agreement with the conclusions made in [122], where the one loop
expectation value of the stress energy tensor in de Sitter space indeed showed
qualitatively identical scaling with time, independent of the precise state chosen, as long
as the state is infrared finite and possesses the correct ultraviolet behavior. In a
decelerating space-time, after long enough time, the situation might be different. The
cut-off length κ−1 eventually enters the Hubble volume and therefore might significantly
influence physics. We saw that in the case studied in this thesis: the late time behavior
in a decelerating space-time was dominated not by infrared effects, but by effects due to
the finite size of the universe. What the effect of a different regularization is in a
decelerating space-time remains to be studied.
Secondly, while in our one loop calculations the growth of energy is always cancelled by
the redshift of the modes, this does not have to remain true in more general cases. In
particular studies in de Sitter space show that, if higher order loop corrections are taken
into account, the energy density might obtain a contribution that grows logarithmically
(while in de Sitter space, the background energy is constant) [54, 37].
As a second application we used the cut-off regulated propagator to calculate the
one-loop effective potential for a massless scalar field, with a coupling ξ to the Ricci
scalar and a quartic self interaction. We calculated the effective potential by assuming
that the background field Φ has the same time dependence as H . While this is true at
the classical level, this scaling is broken by the quantum corrections. This can be
understood from the fact that the ultraviolet sector of the theory introduces a
renormalization scale µ, while the infrared introduces the cut-off scale k0. While H
depends on time, k0 and µ are constants, and therefore requiring that Φ scales as H will
not solve the one loop corrected equation of motion (with de Sitter space, where H is
constant, as an exception). However, as long as quantum contributions are small, we can
still trust our result. What we find is that initially, the quantum corrections can induce a
phase transition, similar as in flat space [120], by generating minima in the potential for
nonzero Φ. However the growing infrared contributions are such that after a sufficient
amount of time the effective potential will always end up with only one minimum at
Φ = 0. Thus the infrared modes have restored the symmetry of the potential.
Finally we calculated in section 9 the one loop effective action in a theory where both
gravity and a scalar field produce quantum fluctuations. The mixing between the
dynamical degrees of freedom in such a case leads to more complicated expressions, but
in the end, it turns out that – up to some tensor structure – all kinetic operators can be
written as the kinetic operator of a massless free scalar field with a coupling to the Ricci
scalar. Therefore we could use the propagators calculated in section 6 to calculate the
one loop effective action, without infrared singularities. The final answer (422) is very
similar to the obtained expectation value of the stress energy tensor for just a single
massless scalar field. Also for the graviton we find that at one loop order all growth in
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energy due to the creation of infrared modes is cancelled by the redshift of these modes.
While in this thesis we constructed the propagator for a scalar field in a wide class of
FLRW backgrounds, the problem is still unsolved for a general FLRW space-time. All
our results are only valid if ε is constant and it would therefore be very interesting to see
how the propagator is affected if the time-dependence of ε is taken into account. Solving
this problem is important first of all to answer the question whether it remains true that
there is no secular growth at one loop order. Second of all, it is important because if
one finds a growing contribution, any significant back-reaction makes the constant ε
calculation untrustworthy. Knowing the propagator for a more general FLRW
space-time would solve this problem. One approach that might prove useful in this
context has been initiated in [118, 143, 144]. The idea is to match two space-times both
with a constant, but slightly different value of ε onto each other. By considering many
subsequent matchings, one approaches in the limit where the difference between two
steps is infinitesimal the limit where ε changes continuously in time. Although this
approach is technically involving, in principle it can be used to calculate the infrared
contributions to the propagator in a general FLRW space-time.
The study of quantum fields on cosmological space-times is a fascinating one, with a
very rich structure. The models studied in this thesis already show interesting physics.
Further work in this field will most probably lead to technical advances in the future,
which will allow us to delve deeper into this rich structure. A better understanding of
this structure can then eventually turn out to be crucial for a proper understanding of
the universe itself.
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A Conventions and definitions

Our metric convention is (-,+,+,+). and ~ = c = 1. Most of this thesis uses the flat
FLRW metric, with the metric given by

ds2 = −dt2 + a(t)2d~x2 (427)

Or using conformal time η

ds2 = a(η)2(−dη2 + d~x2)

≡ a(η)2ηµνdx
µdxν

(428)

with ηµν the Minkowski metric. We shall sometimes use for convenience a modification
of the Minkowski metric, where the (00) component is zero

η̄µν = ηµν + δ0
µδ

0
ν . (429)

Derivatives are indicated as

ẋ ≡ ∂

∂t
x ; x′ ≡ ∂

∂η
x (430)

The Christoffel connection and the curvature tensors are in general given by

Γαµν =
1

2
gαβ
(

∂µgβν + ∂νgβµ − ∂βgµν

)

Rρ
µσν = ∂σΓ

ρ
µν − ∂νΓ

ρ
σµ + ΓρσλΓ

λ
µν − ΓρνλΓ

λ
σµ

Rµν ≡ Rρ
µρν R ≡ gµνRµν

(431)

In the specific case of of flat FLRW we have in D space-time dimensions

Rα
µβν = −H2a2

(
(

δαν ηµβ − δαβηµν

)

+ ε
(

δαν δ
0
µδ

0
β − δα0 δ

0
νηµβ − δαβ δ

0
νδ

0
µ + δ0

βδ
α
0 ηµν

)
)

Rµν =H2a2

(

(D − 1)ηµν − ε
(

ηµν − (D − 2)δ0
µδ

0
ν

)
)

R =H2(D − 2ε)(D − 1)

(432)

here

δβα ≡ ηαρη
βρ

H ≡ ȧ

a

ε ≡ − Ḣ

H2

(433)

In most of our treatment we used the following symbols (the numbers in parentheses
refer to equations where a definition is given)

• φ : (quantum) scalar field (180)
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• Φ Background scalar field, (99)

• ϕ The ’full’ scalar field, (99)

• χ the rescaled and fourier transformed scalar field (134)

• ψ the mode functions (180)

• u positive frequency solutions (179)

• v = u∗ negative frequency solutions

• x, x̃ the coordinates points where the propagators are defined (142)

• x̄ The antipodal point of x, (131)

In section 6 specifically we used

• k0 Infrared cutoff

• z =
√
kηη̃

• z0 ≡
√
k0ηη̃

In section 7 we use a subscript q and b to indicate the quantum and background energy
and pressure respectively.
In section 9 ψµν indicates the pseudo-graviton field and the diagonal fields are defined in
equations (361) and (370). In this section hats will indicate rescaled quantities, as given
in (392).
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Samenvatting

Het is reeds lange tijd bekend dat de twee-punts correlatiefunctie, of equivalent de
propagator, van een massaloos scalair veld op een kosmologische achtergrond kan
divergeren in het infrarood. In het bijzonder treed deze divergentie op, wanneer de druk
verantwoordelijk voor de uitdijing van het universum negatief is en wanneer de
correlatie berekend wordt ten opzichte van het Bunch-Davies vacuüm. De fysische
oorsprong van deze divergentie ligt in de creatie van deeltjes op super-Hubble schaal.
Deze creatie vindt plaats doordat virtuele deeltjes die ontstaan door de Heisenberg
onzekerheidsrelatie met een golflengte langer dan de Hubble straal, elkaar niet meer
binnen een eindige tijd annihileren, als de uitdijing van het universum snel genoeg is.
Dit effect is uiteraard het sterkst aanwezig bij massaloze, niet conform gekoppelde
deeltjes, zoals een niet conform gekoppelde massaloos scalair veld of bijvoorbeeld het
graviton. De continue creatie van deze deeltjes met golflengtes langer dan de Hubble
straal zorgt voor een groei in de twee-punts correlatie over lange afstanden en het is
precies dit effect dat zorgt voor de eerder genoemde infrarode divergentie.
In dit proefschrift wordt deze infrarode divergentie nader onderzocht. Een infrarode
divergentie in de natuurkunde betekend in de regel dat de specifieke vraag die
onderzocht wordt, of de aannames die in de berekening gemaakt worden, niet fysisch
zijn. In dit specifieke geval is de niet fysische aanname die leidt tot de infrarode
divergentie, de aanname dat het Bunch-Davies vacuüm een goede beschrijving geeft van
het infrarood. Een resolutie voor de infrarode divergentie is dan ook snel gevonden: we
kiezen een nieuwe grondtoestand, zodanig dat de infrarode contributie aan de twee-punts
correlatiefunctie onderdrukt wordt in het infrarood. In dit proefschrift wordt een
methode beschreven die dit bereikt. De methode wordt uitgewerkt op een kosmologische
achtergrond, waarbij de versnelling van de uitdijing van het universum constant is.
In de methode die wordt beschreven wordt de infrarode contributie onderdrukt door aan
te nemen dat het universum een eindige doos is, met periodieke randvoorwaarden. De
grootte van de doos beweegt mee met de uitdijing van het heelal. Effectief betekend
deze methode dat de integraal over de impuls die bedraagt aan de twee-punts
correlatiefunctie dient te worden vervangen door een som. Als de doos groot genoeg is,
wordt deze som echter goed benadert door een integraal met een eindige ondergrens.
Deze eindige ondergrens zorgt er dan vanzelfsprekend voor dat de infrarode contributie
aan de twee-punts correlatiefunctie ook eindig is.
Het feit dat de propagator nu infrarood eindig is, betekend echter niet dat er geen
creatie van deeltjes meer plaatsvindt. Dit is simpelweg een fysisch proces, met reële
gevolgen. Om het effect hiervan te bekijken, worden in dit proefschrift twee zaken
bestudeerd. Ten eerste wordt de één lus kwantum contributie aan de
verwachtingswaarde van de energie-impuls tensor berekend. Deze verwachtingswaarde
koppelt via de Einstein vergelijkingen aan de metriek en zorgt er dus in principe voor
dat de metriek gewijzigd wordt door kwantum contributies. Aangezien we steeds in een
kosmologische ruimte werken, betekend dit dat kwantum effecten de uitdijing van het
heelal kunnen versnellen dan wel vertragen. Dit verschijnsel wordt ’terugkoppeling’
(backreaction) genoemd. Dit effect is uiteraard in beginsel onwaarneembaar klein, maar
de creatie van deeltjes is een cumulatief effect, dat er voor kan zorgen dat de
verwachtingswaarde van de energie-impuls tensor groeit in de tijd. Daardoor kan een
initieel klein effect na verloop van tijd een significante bijdrage leveren aan de Einstein
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vergelijkingen en dus significant de uitdijing van het universum bëınvloeden. De
expliciete berekening laat echter zien dat in een versneld uitdijend heelal de kwantum
contributie altijd insignificant blijft. De expansie van het heelal zorgt voor
roodverschuiving van de infrarode deeltjes, waardoor ze energie verliezen. Dit effect is
groot genoeg om het cumulatieve effect van de deeltjes creatie te laten verdwijnen. In
een vertraagd uitdijend heelal daarentegen is dit niet het geval. Hier vinden we dat als
de uitdijing traag genoeg is, kwantum effecten kunnen domineren na een voldoende
lange tijd. De reden hiervoor is dat in een vertraagd uitzettend heelal de grootte van de
doos na verloop van tijd altijd kleiner zal worden dan de Hubble straal. Dus het effect
van het feit dat we werken in een heelal met eindige grootte wordt steeds explicieter. Als
we de doos echter groot genoeg nemen, zodat we voor huidige metingen kunnen stellen
dat de grootte van de doos veel groter is dan de Hubble straal, geeft dit geen enkel
conflict met experimenten. Desondanks blijft het de vraag of bovenstaand effect reëel is,
en ook gerealiseerd wordt in een realistisch model van het universum.
De tweede toepassing die we bekijken is de één lus gecorrigeerde effectieve potentiaal
voor het scalaire veld. In dit geval voegen we vierdegraads interactie toe. Om de
effectieve potentiaal uit te rekenen, nemen we aan dat het achtergrondveld proportioneel
is aan de Hubble parameter. Hoewel deze proportionaliteit gerealiseerd wordt in
afwezigheid van kwantum effecten, blijkt dat de proportionaliteit gebroken wordt
wanneer de één lus correcties in beschouwing worden genomen. Voorts vinden we dat de
effectieve potentiaal, equivalent aan wat er gebeurd in Minkowski ruimte, twee niet
triviale minima kan ontwikkelen. Wanneer het scalaire veld naar deze minima rolt is de
oorspronkelijke symmetrie rond de oorsprong gebroken. Het effect van de infrarode
deeltjes creatie is echter dat na verloop van tijd, de symmetrie weer hersteld wordt. Na
een voldoende lange tijd heeft de effectieve potentiaal altijd maar één minimum, in de
oorsprong. Wanneer een dergelijk effect wordt bekeken in de context van bijvoorbeeld
het Higgs veld, zien we dat tijdens de periode van symmetrie breking fermionen een
massa kunnen krijgen. Deze generatie van massa kan dan zorgen voor de creatie van
fermionen in het vroege universum. Als de symmetrie weer hersteld wordt, verdwijnt dit
effect weer, doordat massaloze fermionen conform gekoppeld zijn.
Na deze toepassingen van de infrarood geregulariseerde propagator voor een massaloos
scalair veld, bestuderen we ook het graviton veld. Ook voor dit veld is de creatie van
infrarode deeltjes een belangrijk effect. Voor een consistente benadering, moet men
zowel graviton als materie fluctuaties in beschouwing nemen. Wanneer men zowel
graviton als materie fluctuaties bekijkt, loopt men tegen allerhande moeilijkheden aan
doordat deze fluctuaties koppelen aan elkaar. Het is echter mogelijk om nieuwe velden te
definiëren die ontkoppeld zijn en het blijkt bovendien dat voor deze ontkoppelde velden
de massaloze scalaire propagator gebruikt kan worden om lus correcties uit te rekenen.
We berekenen ook in dit geval de één lus contributie aan de verwachtingswaarde van de
energie impuls tensor en we vinden wederom dat de kwantum contributies in een
versneld uitdijend heelal altijd irrelevant zijn.
Uit dit proefschrift blijkt dat het correct in beschouwing nemen van infrarode deeltjes
creatie leidt tot interessante nieuwe fysica. Hoewel de één lus berekeningen van de
energie impuls tensor niet tot een significant effect leiden, is het de vraag of dit ook het
geval is wanneer twee of meer lus diagrammen worden bekeken. Berekeningen in de
Sitter ruimte laten immers zien dat daar in het geval van gravitonen twee lus effecten en
bij scalaire velden drie lus effecten tot een significant effect kunnen leiden. Het zou zeer
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interessant zijn om te kijken of dit ook nog steeds het geval is in de meer algemene
kosmologische ruimtes die in dit proefschrift bekeken worden.
Een ander aspect wat meer aandacht verdient is een studie naar de afhankelijkheid van
de effecten op de gekozen regularisatie van het infrarood. Naar verwachting zal een
andere regularisatie in een versneld uitzettend universum vergelijkbare resultaten geven.
In een vertraagd uitdijend heelal echter zagen we dat specifieke gevolgen van de in dit
proefschrift gekozen regularisatie zichtbaar worden na verloop van tijd. Het is niet
ondenkbaar dat andere regularisaties tot andere conclusies leiden in dit geval.
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