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Preface

This dissertation is the result of 4.5 years of Ph.D. research on the use of mov-
ing mesh methods for flow simulations. My first encounter with the subject
was in 2001 during a seminar on mesh and graph computation by Rob Bis-
seling and Paul Zegeling at the Mathematical Institute of Utrecht University.
That same year I visited several companies in search for an internship as
a graduation project, and ended up at TNO Traffic and Transport in Delft.
Highway traffic flow can be modeled similar to gas flow, and moving meshes
can be used to obtain better simulation results near the head and tail of traf-
fic jams [vD02]. I still remember how I visited my supervisor Paul Zegeling
after I graduated. He showed me the equations of one-dimensional mag-
netohydrodynamics and without preparation, we got all equations into my
developed matlab software within ten minutes and the moving mesh algo-
rithm produced promising results right away. The reuse of software for a
whole new physical model was very intriguing to me.

Two years later, Paul started a project just on this topic, and I gladly ac-
cepted the offered Ph.D. student position. The original project proposal men-
tions the intention “to combine analytical and numerical insights in the dynamics
generated by the adaptive mesh equations”. Also, “the main goal and real challenge
[..] is to analyze and develop a stable and effective adaptive mesh method [..] gen-
erally applicable in many other scientific areas”. Finally, possible new directions
for mesh adaptation are suggested: “geometric conservation laws, harmonic maps
and the deformation method”. The second point has gradually taken the main
place in this project, together with the ‘numerical insights’ of the first point.
The more example problems I applied my moving mesh solver to, the more
feeling I got for what is important and what not in time-dependent mesh
adaptation. The result is a solver in Fortran 95 that handles the full class
of hyperbolic problems that was originally intended. I have not made the
extension to three dimensions. Others did so, but always with adaptation
criteria manually tuned for the problems considered. Although this is good
for advancing research, I found improving the robustness of the method in
two dimensions more important. The adaptation criteria are now automat-
ically regulated, which gives much more often good results immediately in
the first run of a new problem. I studied discrete geometric conservation
laws in 2007 (see also [vDZ07]), but I preferred keeping the mesh moving
and PDE solving parts separated. I studied the above three moving mesh
methods amongst many others in Chapter 2. The theoretical foundation of
the deformation method is more firm than the direct variable diffusion, which
I use (deformation guarantees equidistribution in spaces of any dimension).
This is mainly beneficial for unsteady test problems, though; for complicated
time-dependent flow problems, the resulting meshes are often too stretched.

I encourage a follow-up on this project that extends the moving mesh
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algorithm and monitor function balancing to three dimensions. The risk of
mesh collapsing seems imminent there, but again, the smooth balancing of
the monitor function may provide good robustness in practice. If not, the
deformation method or alternative techniques should be investigated. The
monitor function balancing that I developed remains equally useful there,
and extends easily to higher dimensions.
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Introduction

1T H E S I S

The true power of a solver for compressible flow problems that employs
adaptive moving meshes lies not only in the use of higher-order numeri-
cal techniques, but also in the elimination of redundant user-defined and
problem-dependent parameters.

1.1 M OV I NG M E S H R E S E A RCH

Adaptive moving mesh research emerged from the field of mesh1 generation
in the 1970s and has evolved into a research area of its own. Mesh gen-
eration is about generation of domain discretizations on complicated—e.g.,
nonconvex—domains and in or around complicated geometries in computer
aided design (CAD), such as airfoils and propellers. Adaptive mesh movement
adapts a given mesh to features of solutions that live on the domain. It starts
with a reference mesh and moves the mesh nodes towards regions where
a finer discretization is required for increased accuracy. Mesh movement is
also used for free surface flow problems and moving boundary problems.
The mesh adaptation can be time-dependent to continuously adapt, e.g., to
unsteady flow features.

Origins

Earlier works on analysis of partial differential equations (PDEs) can be seen
as the forerunners of adaptive meshes. Karl F. Sundman, for example, in-
troduces a new scale-invariant time variable in his ‘Mémoire sur le problème
des trois corps’ in 1912. N.A. Philips proposes a meteorological model with
vertical coordinate scaling with reference to atmospheric pressure at ground
level such that both sea level and mountains all lie at the same coordinate
isosurface, in ‘A coordinate system having some special advantages for numerical
forecasting’ in 1956.

The earliest work on adaptive meshes involved an explicit coordinate trans-
formation, for example radially expanding mesh cell sizes in hurricane simu-
lations [Ant70]. Gradually, this shifted to implicit specification of the nonuni-
form coordinates. This specification is generally done through strictly positive
weights to attract mesh points and penalties to guard mesh qualities, such
as smoothness and orthogonality. Usually, an elliptic generator PDE then
prescribes the actual mesh.

1Throughout this dissertation, the word ‘mesh’ can always be read as ‘grid’.
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Figure 1.1 Velocity-based mesh movement bears a high risk of mesh skewness and de-
generacy. Moving finite element results for a 2D circular advection problem at t = 0.5 and
t = 1; the mesh follows a pulse (marked by +’s).

Theoretical foundations

In the 1980s and early ’90s, typical research was fundamental. Due to limited
computing power, the adaptivity was often prescribed as a function of the
location, i.e., no solution adaptivity, nor a physical PDE that needed to be
solved on the resulting mesh. The various forms of mesh generator equations
are still in use, though. Winslow’s variable diffusion method (Section 2.3.2.3)
and the general variational approach (Section 2.3.2.4) form the basis of many
of today’s methods.

Winslow’s variable diffusion method [Win81] worked well, but needed
theoretical foundations too. This mainly concerns the existence of a mesh
map and its invertibility. The latter prevents mesh points to collapse or mesh
cells to ‘fold’ and become degenerate. This is equivalent to the positivity of
the map’s Jacobian determinant.

The theory of harmonic mappings has been well-developed since the 1950s
and guarantees existence and invertibility of the mesh map, given a convex
target domain. Dvinsky [Dvi91] was the first to use harmonic mappings
in mesh adaptation. Although well-defined, the resulting meshes can have
extremely large mesh cells in areas of little adaptation, close to very small
mesh cells. This makes harmonic mappings mainly suitable for stationary or
prescribed solutions. In unsteady problems, the mesh cells keep changing
and such large stretching factors between neighboring cells produce large
errors in solution interpolation and flux evaluation. Other approaches are
better suited for such time-dependent problems.

Another important aspect in mesh adaptation is the widely appreciated
equidistribution principle in one dimension due to De Boor [dB74]. The dis-
tribution of local error measures equally over the domain by modifying cell
sizes is evidently a good technique for increasing overall accuracy. This prin-
ciple does not extend to multiple dimensions for several methods, though,
so researchers have sought for new methods that do ensure equidistribu-
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tion in higher dimensions. Liao’s deformation method [LLdlP02] maintains
equidistribution by definition, as well as approaches based on the geometric
conservation law, e.g, by Cao et al. [CHR02] and Baines et al. [BHJM09]. Re-
cently, Monge–Kantorovich optimization was employed for mesh adaptation
with guaranteed equidistribution, by Budd et al. [BW06] and Delzanno et al.
[DCF+08].

Adaptive meshes may still be far from optimal, despite their theoretical
foundations. Firstly, the invertibility is guaranteed for the analytic mesh map,
whereas the actual mesh is a discrete representation of the map, and mesh nodes
might collapse anyway. Robust solvers for the nonlinear mesh equations are
necessary or the mesh adaptation should be smooth enough to prevent degen-
eracy of the mesh. Secondly, an invertible mesh map may still yield mediocre
cells, for example heavily rotated or very skew cells. As an illustration, con-
sider the diagrams in Figure 1.1. They show an adaptive mesh obtained by
moving finite elements (Section 2.3.3.2) for a pulse wave that is advected over
a circular path. The mesh points constantly follow this pulse and as a result
the mesh cells are pulled into increasingly bad shape. This is a common
risk of velocity-based approaches (Section 2.3.3). Location-based approaches
(Section 2.3.2) allow mesh cells to ‘let go’ of passing flow phenomena, after
which neighboring cells take over the refinement.

Practical applications and robustness

Over the past two decades, the vastly increased computing power facilitated
more complicated applications, such as unsteady flow. As the flow features
can change substantially over time, proper solution adaptivity becomes in-
creasingly difficult. Researchers have attempted to prevent overly refined or
underrefined meshes by carefully introducing and tuning parameters that
affect the mesh adaptation.

The strive for a fully automatic—i.e., parameter-free—and all-knowing
mesh adaptation process is immoderate. Mesh adaptation is a supportive
technique for solving the actual physical problems, where the scientist is
still the expert. Sometimes, an engineer is not so much interested in extreme
sharpness of shocks, but rather in the emergence of unstable vortices in seem-
ingly quiet areas. Or a physicist who knows that the curl of the magnetic field
will be a good indicator to detect current sheets. However, the automation of
mesh adaptation does have an important goal in the elimination of parame-
ters that are too ad hoc to be clear to inexperienced users of mesh adaptation.
Certain parameters do make sense and should not be excluded, for example
the balance between adaptation to strong and subtle phenomena, and the
relative amount of adaptation at all. It is crucial to make these parameters
intuitive and problem-independent by an appropriate and automatic scaling.
Without such problem-independent parameters, the amount of time spent on
reruns and manual parameter fine-tuning could just as well have been spent
on nonadaptive simulations.

We consider the colliding blast wave problem by Woodward and Colella
[WC84] in one-dimensional gas dynamics as an example. Two different shock
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Figure 1.2 Bad choices for adaptation parameters waste time. Mesh point trajectories
for the one-dimensional colliding blast wave problem. Top row: arc length monitor. Left
diagram: qx gradient, α = 8 · 10−10: the left shock dominates all mesh refinement. Right
diagram: qξ gradient, α = 1.5 · 10−4: upon impact of the two shocks the run halts. Bottom
row: the time-dependent balanced monitor. Left diagram: qx gradient, β = 80%. Right
diagram: qξ gradient, β = 80%. The adaptation is automatically balanced.

waves at x = 0.1 and x = 0.9 at the initial time move towards each other
between reflective walls. Figure 1.2 shows the mesh point trajectories of four
runs with different adaptivity settings. The top row uses a standard arc
length monitor which scales solution gradients with a manually set constant
parameter α:

ω(q) =
√

1 + α|dq/dx|2.

Too low values give too little refinement, whereas too large values cause a
crash at t ≈ 0.027. The crash is due to a large stretching ratio for certain
neighboring cells, after which the solution reconstruction yields a negative
gas pressure. All computing time spent thus far is wasted. The left and right
diagrams use a different type of solution gradient, which requires a totally
different value for α (O(10−10) instead of the former O(10−4)), which is found
by trial and error. Other values than these would cause even earlier crashes
or underresolution. The bottom row uses an automatic and time-dependent
balancing of the monitor function (see Section 3.3.3). The intuitive parameter
β represents the relative amount of refinement. It produces similarly smooth
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results for both runs without changing its value, whereas the two arc length
results were fundamentally different. Chapter 3 elaborates on the monitor
balancing in one dimension, which is the crucial point in this example.

A crucial, but easily satisfied requirement is that the overall computing
time for an adaptive method should be less than for the same method on a
uniform mesh. In other words: the additional costs for the mesh adaptation
should be (significantly) less than the saved computing time and gained ac-
curacy. Typically, our mesh adaptation takes 25% of the total CPU time spent,
whereas the effective local resolution can increase by a factor of several tens.

1.2 T H E STAT E O F T H E A RT

The research on adaptive moving mesh methods in the past decade shows a
division in two directions. One is the fundamental analysis of the optimality
of adaptive meshes. This involves analysis of the local errors of the physical
PDE solver at hand and subsequent inclusion of these (a priori or a posteriori)
error measures into the mesh adaptation criteria. The combination with finite
element solvers is evident; in finite volume solvers, error analysis for nonlinear
PDEs is notoriously difficult. Rigorous analysis of mesh quality is therefore
often done for prescribed example solutions, without an underlying physical
PDE problem.

The other direction is aimed at increasingly challenging physical applica-
tions. Mesh refinement at a shock wave poses no problem even with today’s
more basic methods. Doing so over long periods of time, however, with the
continuous emergence of new flow features such as shocks, local physical
instabilities and vortices is significantly more difficult. Due to the increased
computing power, we can now easily reach spatial scales at which the latter
local phenomena become visible. Consequently, the adaptation criteria need
to focus on a range of solution features.

The work in this dissertation is mainly in the second direction, but also
leans towards the theoretical by guaranteeing a balance in the amount of
adaptation for all times. We present a new method that automatically pre-
vents imbalance between multiple monitor components (adaptation criteria).
This results in a robustness that allows for very long time integrations in
which the mesh continuous to adapt to evolving flow features. We demon-
strate this on a range of challenging examples from hydrodynamics and mag-
netohydrodynamics in one and two dimensions. The detection of small-scale
flow features proves the quality of the adaptive method. We will now present
some of the most relevant work done by others in both directions.

1.2.1 Innovations in analysis

The lion’s share of recent theoretical analysis of the monitor matrices that
define the criteria for mesh adaptation is due to Weizhang Huang. He be-
gins the analysis of functionals for variational mesh adaptation in a two-part
publication [Hua01b, HS03]. The first part concerns the combination of two
functionals for equidistribution and isotropy, where isotropy aims to keep
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mesh cells close to their original equilateral shape. The second part uses
analysis of the linear interpolation errors to define the adaptation criteria.
Subsequent work on the mathematical principles behind anisotropic mesh
adaptation is summarized in [Hua06].

A new development is the use of Monge–Kantorovich optimization for
mesh adaptation by Budd and Williams [BW06] and Delzanno et al. [DCF+08].
This approach takes exact equidistribution as a constraint, and then minimizes
a measure of mesh distortion. Such strict equidistribution is mainly useful
for blow-up solutions, but the accompanying robust Newton–Krylov solver
may well prove valuable for different applications as well. It achieves fast
convergence towards the solution to the nonlinear mesh equations by pre-
conditioning and is even more efficient by using a multigrid preconditioner
and avoiding Jacobian evaluations.

1.2.2 Expanding physical applications

Tang and Tang [TT03] were the first to really put the direct method pro-
posed by Ceniceros and Hou [CH01] to work. They devised a conservative
solution interpolation, which is crucial for the solution of hyperbolic PDEs
from conservation laws. Tang and coworkers employ variants of the standard
arc length monitor with manually chosen parameters for diverse problems:
Euler gas flow [Tan06], Hamilton–Jacobi equations [TTZ03] and ideal magne-
tohydrodynamics [HT07]. The preceding work involves finite volume solvers,
but the mesh adaptation can also be combined with a finite element solver,
e.g., for the incompressible Navier–Stokes equations [DLTZ05], which is also
extended to two-phase flows [DLTZ07] and multi-phase flows in three dimen-
sions [DLT08]. In the second application the curvature of a level set function
is added to the monitor function to refine at the interface.

Mackenzie and coworkers use the MMPDE approach (Section 2.3.2.7) for
mesh adaptation. Their results for the Hamilton–Jacobi equations [MN07] are
comparable to Tang’s aforementioned results. Beckett and Mackenzie have
also proposed a time-dependent monitor parameter [BM00]. They apply this
to the same phase-field problems [BMR06] as Tan et al. [TTZ06] did. They
obtain similar results, but without the need for choosing appropriate monitor
parameters. Recently, Zegeling et al. [ZLI] used a similar monitor to detect
Liesegang patterns in a reaction-diffusion system coupled with a fourth-order
PDE.

The methods presented in this dissertation were partly inspired by the
aforementioned monitor parameter. We use it on gas dynamics and ideal
magnetohydrodynamics, both in one (Chapter 3) and two dimensions (Chap-
ters 4 and 5). We improve the monitor balancing such that it properly com-
bines multiple components with different singularity characteristics into the
monitor function. This has led to impressive mesh adaptation, which occa-
sionally captures unanticipated physical phenomena.
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1.2.3 Alternative techniques

Adaptive local mesh refinement—also known as h-refinement or AMR—has
gotten more attention than moving mesh refinement over the past decades.
This technique recursively splits mesh cells into finer cells or coarsens them
where necessary. The implementation is more complicated, as the nested
levels of refined mesh cells require proper bookkeeping, especially in the
evaluation of inter-cell fluxes. Mathematically, though, this technique is more
straightforward. Given an initial, level-0 mesh, all refined mesh cells have
the same shape as their parents. Guarding mesh quality, e.g., smoothness or
skewness is not an issue, but this lack of freedom also means that alignment
with flow structures is impossible. AMR is an extremely powerful method
nonetheless, as tremendous effective resolutions can be obtained very locally.

AMRVAC [vdHK07, vdHKM08] is a parallel block-AMR finite volume solver
for systems of conservation laws. It supports curvilinear coordinates that are
fixed in time. Aimed at astrophysical models, equipped with high-order ap-
proximate Riemann solvers and running on clusters, it delivers unprecedented
detail in astrophysical simulations, see, e.g., Keppens et al. [KMvdHC08].

A recent variant of plain h-refinement is the multi-mesh approach to h-
refinement, proposed by Li [Li05]. The idea is to perform the local refine-
ment and coarsening steps for each component separately when they have
significantly different singularity behavior. This does not increase the overall
effective resolution, but saves some computing time.

Van der Vegt and coworkers have developed a space–time discontinu-
ous Galerkin solver, which considers the space–time continuum as the 4-
dimensional domain. They apply this to domains with moving boundaries,
e.g., an oscillating airfoil [vdVvdV02]. The moving mesh does not adapt to
solution features; this is done by local h-refinement.

Morrell et al. [MSB07] include slightly more mesh movement into their an-
isotropic h-adaptive arbitrary Lagrangian Eulerian scheme. The mesh move-
ment is governed by the flow velocity, but it is relaxed to such an extent, that
most adaptivity still comes from the the local h-refinement.

The truly hybrid combination of h- and r-refinement has been studied in
only a few publications. Lang et al. [LCHR03] present a finite element solver
that uses mesh movement by MMPDEs (Section 2.3.2.7) and local refinement
based on a posteriori error measures. We feel that hr-refinement can truly
deliver increased accuracy for problems with curved flow features, e.g., cir-
cular fronts, that extend from one side of the domain to the opposite side.
h-Refinement alone will not be able to align with the curved front, and r-
refinement will properly refine across the shock front, but not along it, due to
the lack of points in the tangential direction.

1.3 CO M P R E S S I B L E F LOW A P P L I CAT I O N S

In this dissertation, the moving mesh process is essentially decoupled from the
physical PDE solver. Hence, the mesh adaptation requires no assumptions
about the actual physical PDEs that are to be solved.
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Various applications have been solved by others using adaptive methods,
such as reaction-diffusion problems [Lan98], phase-change problems [BMR06],
and incompressible (Navier–Stokes) flow [DLTZ05].

We employ our mesh adaptation algorithm to solve compressible flow
problems, or nonlinear hyperbolic conservation laws in general:

∂q
∂t

+∇ · F(q) = 0, (1.1)

where the p×n flux tensor F defines the fluxes for the p solution components
in n dimensions. We consider one- and two-dimensional domains.

One of the earliest test problems in the research on one-dimensional mesh
adaptation is the inviscid Burgers’ equation:

∂q

∂t
+ qqx = 0.

This scalar equation fits in the hyperbolic conservative form by defining:

q = q, F(q) = 1
2q

2.

Starting with an initial sine wave, e.g., q(x, 0) = 0.5 + sin(x), the solution
develops a shock after some time. This problem is hardly a challenge for a
moving mesh method, since only one typical shock wave is formed, within a
short time, after which it moves along with constant speed. More challenging
applications contain multiple phenomena that change substantially over time.

The multidimensional ideal magnetohydrodynamics (MHD) equations fit
in the same nonlinear hyperbolic form:

q =


ρ
ρv
B
E

 , F(q) =



ρu ρv . . .
ρu2 + ptot −B2

1 ρvu−B2B1 . . .
ρuv −B1B2 ρv2 + ptot −B2

2 . . .
...

...
...

0 vB1 −B2u . . .
uB2 −B1v 0 . . .

...
...

...
(E + ptot)u−B1B · v (E + ptot)v −B2B · v . . .


,

where the dots hide all third-dimension terms.
Both our algorithms and the software implementations of them are generic

for systems of conservation laws (1.1) in two dimensions. There are several
concise program modules that define the physics, e.g., for scalar advection,
gas dynamics (Euler) and ideal MHD. The physical quantities are conserved
up to machine precision.

Sometimes, physical models lead to additional requirements. The Navier–
Stokes model for incompressible flow assumes a divergence-free velocity field
(∇ · v = 0). This requires additional measures in the algorithm. Also, for
multidimensional MHD, the magnetic field should be divergence-free. We
show how to ensure this in Chapter 5.
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1.4 O U T L I N E

In Chapter 2 we give an extensive overview of the field of mesh refinement,
moving mesh adaptation in particular. This involves the history and evolution
of the methods and—more importantly—the relations between them. Also,
we introduce the underlying mathematical concepts and the notation, which
will be used throughout this dissertation. It is not only a necessary intro-
duction to the next chapters, but also a complete and up-to-date review of
moving mesh methods, worth reading on its own. The succeeding chapters
contain our own work and may have some overlap with this chapter in their
theoretical parts, but we expect that this improves readability.

In Chapter 3 we apply one-dimensional moving mesh adaptation to ideal
magnetohydrodynamics. We present an algorithm that combines mesh move-
ment and a higher-order finite volume solver. Main features of this are the
self-regulating monitor function for controlling mesh movement and a de-
tailed study of interesting physical phenomena, such as regular versus criti-
cal solutions, and physical staircasing. These would have been very hard to
obtain on uniform meshes. Finally, we present some benchmark results, also
in comparison with local h-refinement. This chapter has been published as
[vDZ06]:

A. van Dam and P.A. Zegeling. A Robust Moving Mesh Finite Volume
Method applied to 1D Hyperbolic Conservation Laws from Magnetohy-
drodynamics. J. Comput. Phys., 216:526–546, 2006.

In Chapter 4 we present the full two-dimensional solver. The main contri-
bution of this chapter is the study of an even better balancing of monitor
components to capture various flow phenomena. This is motivated by the
fact that for one given monitor component, the former monitor function is
automatically balanced, but the difference in locality of multiple components
might cause one component to dominate all the others. This can be elegantly
remedied by a rethought normalization. This type of monitor balancing is
new and greatly improves adaptivity at only minimal extra costs. Besides,
the solver is enhanced with an HLLC approximate Riemann solver and we
show the details of slope limiting and upwinding on nonuniform meshes.
The solver is tested on problems from hydrodynamics. We show a study of
jet formation and emergence of instabilities in an implosion problem with
unprecedented detail. This chapter will appear as [vDZ09]:

A. van Dam and P.A. Zegeling. Balanced monitoring of flow phe-
nomena in moving mesh methods. To appear in Commun. Comput.
Phys. DOI:10.4208/cicp.2009.09.033, 2009.

In Chapter 5 we extend the two-dimensional solver to ideal magnetohydro-
dynamics in two dimensions. A crucial aspect is the preservation of the
divergence-free magnetic field through a vector potential approach. An ad-
ditional difficulty is posed by the interpolation and numerical integration of
this vector potential on the adaptive mesh. The solver is tested on several
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MHD problems, including the formation of current sheets in the well-known
Orzsag–Tang test problem.

In the appendices we discuss some of the enhancements that we appended
to our solver. They are of a pragmatic nature, but nevertheless nontrivial.



An Overview of Mesh Adaptivity

2This chapter contains an extensive overview of approaches for mesh adap-
tation. We focus on moving mesh adaptivity, but also discuss alternative
approaches. The overview is not only a good introduction to the methods
used in the following chapters, but—more importantly—puts all approaches
in perspective, describing their equivalences and differences. This includes
mathematical foundations for the methods. It also adds to some older reviews
with the field’s publications over the last years.

2.1 I N T RO D U C T I O N

Numerical simulations should result in highly accurate solutions to the prob-
lems they are to solve. If the problem involves solving partial differential
equations (PDEs), the accuracy generally improves by increasing the degrees
of freedom. This describes the number of unknowns and is closely related
to the amount of mesh points and—for finite element methods—the order of
the basis functions. A finer discretisation and basis functions of higher order
will therefore yield better results.

Numerical simulations have to be efficient too, though. Doubling the res-
olution becomes increasingly expensive on multidimensional domains. Be-
sides, large areas may not need all that costly resolution. The key point of
adaptive methods is to only locally increase the resolution of the method.

2.1.1 Three classes of adaptivity

The accuracy of PDE solvers can be improved by dividing certain mesh
cells into multiple smaller cells (h-refinement), moving mesh nodes freely (r-
refinement), or locally increasing the order of basis functions (p-refinement).

Figure 2.1 Three classes of adaptivity: h-refinement, r-refinement and p-refinement.
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Figure 2.1 depicts the three types of adaptivity schematically. h-Refinement
starts with a coarse mesh and recursively splits individual cells until certain
criteria are met. A relevant concept for h-refinement is proper nesting, meaning
that the difference between refinement level of two neighboring cells is at most
one, to prevent large differences in cell size. The first diagram also shows
how refinement can be anisotropic, which means possibly different in each
direction. For example, some cells are only split vertically. Cells may also be
merged, or coarsened again, when the local solution behavior has become less
demanding.
r-Refinement, depicted in the second diagram, starts with a reasonably

dense mesh and keeps the number of mesh cells constant all the time. It
moves the mesh points towards regions of interest, such that the mesh cells
there become smaller, thus increasing local resolution. Here also, anisotropic
adaptivity is often used, but is is generally called directional adaptivity.
p-Refinement, finally, is mainly used in finite element solvers. It locally

increases the order of the basis functions. As these solvers are less related to
the solvers that we use, this type of refinement is not further discussed.

The above three methods can also be combined. hp-Type adaptivity is
widely used. hr-Type adaptivity is also investigated, albeit to a lesser extent.

Each type of adaptivity needs good criteria for refinement, as it is an au-
tomatic process, incorporated into the solver, often for time-dependent prob-
lems. Evidently, local error measures, either a priori or a posteriori are im-
portant for volume control: small mesh cells for increased accuracy, and larger
mesh cells where the solution is smooth. Besides, additional measures may
guard the quality of the mesh, e.g., in terms of orthogonality or skewness.

2.1.2 Related publications

Each overview has to limit its scope, therefore we suggest additional books
and articles here that are truly worth reading.

A broad discussion of computational grids is given by Carey [Car97].
Topics include triangulation, local (h-)refinement and its data structures, p-
refinement and combination with finite element methods, and—to a lesser
extent—adaptive moving r-refinement. In Section 2.6 we only give a brief
discussion of h-refinement.

Castillo [Cas91] collected chapters on grid generation that cover elliptical
generators, variational formulations and harmonic maps, which we discuss
in Section 2.3.2. It is a good introduction to the various approaches with
references to more in-depth coverage of those.

Knupp and Steinberg [KS93] take a more geometrical viewpoint. They
start with basic (structured) grid generation techniques and then focus on the
variational approach on lines, planes and manifolds, all fairly in-depth. This
also involves functionals for volume, alignment and orthogonality control,
which we discuss in Sections 2.3.2.4 and following and also in Section 2.5.4.

The classic book by Thompson, Warsi and Mastin from 1985 is still available
online [TWM85]. It offers the same in-depth treatment of all geometrical
concepts of mesh generation and adaptation. It lacks the developments from
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the early 1990s on harmonic mappings and functionals in the variational
approach, which makes Knupp’s above book more suitable.

Azarenok has collected chapters on grid generation and applications by
Ivanenko [Iva04]. It treats similar methods as the previous two books, but
has an excellent historical introduction with a wealth of references.

Hansen, Douglass and Zardecki [HDZ05] cover the same elliptical mesh
enhancement methods, but in a more pragmatic way, illustrated with exam-
ples and extended to unstructured meshes as well.

The well-known handbook by Thompson, Soni and Weatherill [TSW98] is
a large collection of chapters on diverse topics, from the elliptic generators
in Section 2.3.2 to unstructured meshes, from complex geometries and CAD
design to mesh qualities. It lacks the developments of the past decade in
solution monitoring as we present in Section 2.5.

There also exist some good overview papers on r-refinement, which differ
in scope and up-to-dateness. Liseikin [Lis96] treats the classical location-
based adaptive methods, e.g., equidistribution, variational formulation and
harmonic mapping. It complements other review papers with many refer-
ences to publications on these methods by Russian researchers.

Cao et al. [CHR03] have given a well-structured overview of approaches for
the generation of adaptive meshes, which forms the basis of our discussions in
Section 2.3. They compare several methods for prescribed monitor functions,
including their deviation from equidistribution. A very recent review by
Budd, Huang and Russel [BHR09] covers the same approaches as we do, with
focus on the authors’ work (i.e., mesh qualities, MMPDEs, blow-up problems
and Monge–Kantorovich optimization). It includes illustrative examples.

Huang, coauthor of the previous overviews has also written a workshop
chapter on the same methods [Hua07]. Its main contribution is the discussion
of (an)isotropic mesh adaptation through monitor functions and mesh quality
measures. We cover this in Section 2.5.

Hægland and Skaflestad [HS02] have given a survey that has similar cov-
erage as the previous overview, with more details on moving finite elements
and the geometric conservation law. They also include some h-adaptivity.

Tang [Tan05] has mainly focused on the coupling between the mesh adap-
tation and the physical PDEs, e.g., the various approaches for solution inter-
polation, which we discuss in Section 2.4.2. The physical PDEs are solved by
both finite element and finite volume approaches. The methods are illustrated
with challenging examples of incompressible flow and reactive flow.

Zegeling [Zeg07] considers equidistribution and the underlying concepts,
e.g., truncation errors and mesh smoothness. He has collected a wide range
of applications of moving mesh methods, e.g., singular blow-up problems,
transport in porous media and resistive magnetohydrodynamics.

The current chapter is not a book on its own and therefore not as in-depth
as the books mentioned. It does emphasize the equivalences and differences
between the many approaches, though. Besides it has a wider scope than
the individual review papers mentioned, including new relevant publications
over the past five years.
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2.1.3 Outline

This overview mainly concerns adaptive moving mesh refinement. We clar-
ify the discussion by structuring it according to three aspects. Section 2.2
introduces these aspects involved in r-refinement methods. The subsequent
sections 2.3, 2.4 and 2.5 are dedicated to each respective aspect. We briefly
discuss local h- and hr-refinement in Section 2.6, which is not as complete
as its predecessors, but is interesting nonetheless as these two types of re-
finement are often compared. The chapter ends with a short overview of the
techniques that together form our solvers in the following chapters.

2.2 A DA P T I V E M OV I NG M E S H O R R - R E F I N E M E N T

r-Refinement is the main topic of this dissertation, therefore an extensive
background of the surrounding research field is given. This section gives an
accessible overview of the various aspects involved in r-refinement research.
The sections thereafter classify a large body of literature according to these
aspects. Figure 2.2 depicts the schematic structure of all approaches that we
discuss.

Approaches for mesh adaptation
Mesh adaptation serves intuitive goals, but how can it be prescribed mathe-
matically? The specification of the adaptation goals is left to Section 2.5. First,
we distinguish two approaches of prescribing adaptive meshes, inspired by
Cao et al. [CHR03]. The first is location based adaptation, which—at each
time—defines mesh points by a mesh map with respect to some uniform
reference mesh. The second is velocity based adaptation, which defines mesh
point velocities, resulting in mesh points that move towards their desired po-
sition. These two approaches form the first defining aspect of r-refinement
techniques and are discussed in Section 2.3.

Coupling with physical PDEs
Mesh generation is generally considered a research area of its own, but mesh
adaptation is usually incorporated into a numerical (PDE-)solver, aimed at
making the mesh more suitable for representing the numerical solution. The
physical PDEs now have to be solved on a time-dependent non-uniform mesh.
The second defining aspect of these adaptive solvers is how either these PDEs
are transformed or the actual solver is enhanced for this, e.g., by solution
interpolation. It is discussed in Section 2.4.

Control by monitor functions
The goals that drive mesh adaptation can be diverse. Evidently, solution-
based adaptation is important for controlling mesh cell volumes. Preserving
good mesh qualities is another goal. Direction-dependent adaptation or even
alignment with vector fields form possible enhancements. The choices made
in these form the third and final aspect of r-refinement. They are discussed
in Section 2.5.
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Figure 2.2 Categorization of r-refinement methods. The author names are only some
representatives, more references are given in the associated sections.
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Figure 2.3 Mesh map in two dimensions. The computational domain Ωc gets mapped
onto the physical domain Ω by x(ξξξ). The inverse map ξξξ(x) should also exist.

2.3 R - R E F I N E M E N T: D E F I N I T I O N O F M E S H A DA P TAT I O N

Nonuniform meshes can be described by a mesh map from a reference or
computational domain to the physical domain. How this mesh map is prescribed
or obtained will be discussed in Sections 2.3.2 and 2.3.3. They make the
general distinction between location based and velocity based approaches,
respectively. First, we will introduce some general terminology and properties
of mesh maps.

2.3.1 Concepts of mesh maps
The definition and some properties of mesh maps are now introduced. We
will specialize most of the notation to two dimensions. Simplification to
one-dimensional spaces—as used in Chapter 3—is trivial. Extension to three
dimensions is sometimes straightforward, but potential difficulties will be
indicated in later sections.

2.3.1.1 Spaces and mesh maps
The computational domain Ωc is the unit n-cube—here only the interval and
square—that resides in the logical space. It gets mapped onto the physical
domain Ω in physical space:

ξξξ := [ξ1, . . . , ξn]T = [ξ, η]T ∈ Ωc := [0, 1]n,
x = x(ξξξ) := [x(ξ, η), y(ξ, η)]T : Ωc → Ω. (2.1)

The domain has boundary ∂Ω with outward normal n. The normal derivative
represents the gradient in this direction: ∂/∂n := n · ∇. Figure 2.3 depicts
this map. Mesh mapping can serve two purposes. One is the generation of a
nonuniform domain discretization, which is our only purpose in this work.
Second is the generation of boundary-conforming discretizations on complex
geometries. In the latter case, one often includes an intermediate parametric
domain. This results from a nonuniform, e.g., solution adaptive map from the
reference domain and in its turn gets mapped onto the physical domain. We
only employ a direct map from reference to physical domain, since in our
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case the physical domain is convex, more specifically: a straight line in 1D
and a rectangle in 2D.

2.3.1.2 Jacobians and invertibility
We require the mesh map to be bijective, which is satisfied if the map is
continuously differentiable and its Jacobian determinant is nonzero. More
specifically, we require the mapping to preserve the orientation of the bound-
ary, so that the Jacobian determinant should be strictly positive. It differs per
method how the positive Jacobian criterion is satisfied. Later sections will
present proofs for it. The mapping’s Jacobian matrix and its determinant are
denoted as follows:

J := ∇ξx =
[
xξ xη

yξ yη

]
, (2.2)

J := det(J ), (2.3)

where the subscripts denote partial derivatives and the computational gradient
operator is defined as follows1:

∇ξ :=
[

∂
∂ξ
∂
∂η

]
. (2.4)

In the following, the term ‘Jacobian’ may refer to both the matrix and the
determinant, depending on the context.

The inverse map ξξξ(x) has Jacobian matrix J−1 and determinant 1/J and its
partial derivatives may be rewritten into computational derivatives as follows:

ξx = 1
J
yη ηx = −1

J
yξ

ξy = −1
J
xη ηy = 1

J
xξ.

(2.5)

This follows from the chain rule JJ−1 = I , where I is the identity matrix.
Many location-based methods (Section 2.3.2), e.g., Winslow and harmonic

mapping use the inverse map, since its existence and one-to-one property is
more easily satisfied. This is due to the requirement that the boundary of the
codomain is convex, which is always the case for the computational domain
Ωc, but may not always be the case for physical domain Ω. The sections on
the aforementioned methods will elaborate on this.

The Jacobian is a local measure of area in the physical space, which is
easily seen by a change of variables to the fixed—i.e., area 1—computational
domain:

|Ω| :=
∫

Ω
1 dx =

∫
Ωc

1 · J dξξξ. (2.6)

1Any gradient operator ∇ is defined in the usual sense: when applied to a scalar function it
yields a column vector. When applied to a column vector-valued function it yields the Jacobian
matrix: ∇v := (∇vT )T . Without subscript, physical coordinates are assumed: ∇ := ∇x.
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xη

xξ

ξ = c1

∇η

∇ξ

J

ξ = c3

η = d1

η = d2

ξ = c2

Figure 2.4 Curvilinear coordinate mapping on a planar domain. The tangent and normal
vectors are not necessarily up to scale.

In a discretized domain, the Jacobian thus gives an approximation of local
cell areas. Positivity of the Jacobian is equivalent to non-collapsing of mesh
cells.

2.3.1.3 Differential geometry
The theory of mesh maps is generally formulated on manifolds; lines and
planes are special cases of these. To support the description of some of
the variational methods in Section 2.3.2, we will introduce some elemen-
tary differential geometry. In particular, the energy (2.38) associated with a
map between two manifolds will be expressed using the theory below, in
Section 2.3.2.6 on harmonic maps. The aforementioned handbooks in Sec-
tion 2.1.2 provide an in-depth coverage of this field. Figure 2.4 depicts the
planar domain with curvilinear coordinates to illustrate the normal and tan-
gent vectors used below.

The metric tensor or matrix G associated with a manifold contains impor-
tant geometrical interpretations of the map that defines the manifold and is
defined by:

G = [gij] := J TJ =
[

x2
ξ + y2

ξ xξxη + yξyη

xξxη + yξyη x2
η + y2

η

]
, (2.7)

where the latter term is specialized for two dimensional surfaces. The matrix
elements gij are in fact dot products of the tangent vectors to two coordinate
curves:

gij := xξi
· xξj

=
n∑

l=1

∂xl

∂ξi

∂xl

∂ξj
for i, j = 1, . . . , n. (2.8)

Note that the metric tensor G is square symmetric with its dimension n equal
to the dimension of the computational space. For planar mesh generation, the
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physical space has the same dimension. A coordinate system is orthogonal
if and only if the metric matrix is diagonal, that is, gij = 0 for i 6= j. More
specifically, the Euclidean metric is gij = δij , which equals 1 if i = j and 0
otherwise.

The metric g is defined as the matrix determinant:

g := det(G) = 1/det(G−1). (2.9)

A change of variables in integration can be expressed using the above, since
by definition (2.7) the Jacobian determinant (2.3) can be expressed as:

J = √g. (2.10)

This makes it also easy to see that a map from logical to physical space is
nonsingular in the point ξξξ if and only if the metric g 6= 0 at ξξξ.

The above concepts are generally referred to as covariant, dealing with
tangent vectors xξj . For the inverse map ξξξ(x) similar concepts exist, now
tagged as contravariant, dealing with normal vectors ∇ξj .

The contravariant metric tensor G−1 has components gij , defined by:

gij :=
n∑

l=1

∂ξi
∂xl

∂ξj
∂xl

, (2.11)

which specializes for two-dimensional planes to:

G−1 =
[

ξ2
x + ξ2

y ξxηx + ξyηy

ξxηx + ξyηy η2
x + η2

y

]
. (2.12)

The elements gij are in fact dot products of the normals to two coordinate
surfaces.

2.3.1.4 Discretization
For later reference we now introduce the notation for discretized coordi-
nates. The mesh adaptation approaches that we will discuss apply to ar-
bitrary meshes, both structured and unstructured. In our own work we limit
ourselves to structured meshes. The physical domain is rectangular and dis-
cretized into Nx ×Ny quadrangles:

Ω := [a1, b1]× [a2, b2], (2.13)

ξξξj,k := [ξj , ηk]T =
[
j

Nx
,
k

Ny

]T

for j = 0, . . . , Nx and k = 0, . . . , Ny , (2.14)

xj,k := [xj,k, yj,k]T for j = 0, . . . , Nx and k = 0, . . . , Ny. (2.15)

Notice that the discretization of the computational domain is Cartesian and
uniform in each dimension. The physical domain discretization is nonuni-
form, but still logically rectangular: each mesh point corresponds to a reference
point on the Cartesian computational mesh.
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In one dimension, the index k drops out, and the cell size is defined as:

∆xj := xj+1 − xj for j = 0, . . . , Nx − 1. (2.16)

The discretization indices j, k are not to be confused with the coordinate
indices ij from the previous subsection.

2.3.2 Location-based mesh adaptation
Location-based methods obtain a mapping x(ξξξ) (or its inverse), which is re-
peatedly computed while solving the physical PDEs, thus making it time-
dependent. There is no explicit dependence on time t, but still the (dis-
crete) mesh velocities play a role in the coupling with the physical PDEs
(Section 2.4). We now give a classification of the best-known location-based
approaches.

2.3.2.1 Equidistribution in one dimension
Equidistribution is the concept of equally distributing weights—which pos-
sibly measure some local error—over the domain. In one dimension this
reads: ∫ xj+1

xj

ω dx =
∫

Ω ω(x) dx
Nx

for j = 0, . . . , Nx − 1. (2.17)

This form is generally attributed to De Boor [dB74]. When the weight func-
tion ω is related to the local discretization error, such a mesh map gives the
minimal overall error. The above form defines equidistribution on a ’per-cell’
basis; we can generalize this to any interval in terms of the continuous inverse
map (remember that ξ(x) ∈ [0, 1]):

ξ(x) =
∫ x

a1
ω(s) ds∫ b1

a1
ω(s) ds

. (2.18)

Substituting xj+1 and xj for x in (2.18) and subtracting yields De Boor’s form
(2.17). The x-derivative of (2.18) yields an equivalent, but simpler form:

ξx = ω

c
=⇒ ωxξ = c, where c =

∫ b1

a1

ω(s) ds. (2.19)

The discrete variant of this form is probably the most intuitive formulation
of mesh adaptation:

ωj∆xj = c for j = 0, . . . , Nx − 1, (2.20)

where the weight value ωj is an approximation of the cell average of the
weight function ω(x(ξ)), e.g., by midpoint averaging. Clearly, the larger the
weight is, the smaller the mesh cell becomes and vice versa.

In practice, the location-based approaches in this section attempt to satisfy
form (2.19) differentiated once more:

(ωxξ)ξ = 0 or equivalently:
( 1
ω
ξx

)
x

= 0. (2.21)
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This shows that equidistribution is equivalent to Winslow’s variable diffusion
method (2.27) in one dimension.
Some of the velocity-based approaches in Section 2.3.3 prescribe zero change
in time:

d
dt (ωxξ) = 0. (2.22)

The principle of equidistribution, e.g., (2.19) generalizes to multiple dimen-
sions through the Jacobian, which measures the local area:

ωJ = constant. (2.23)

Most multidimensional extensions of one-dimensional methods do not triv-
ially satisfy this form, as we will show for the direct variant of Winslow’s
method in Section 2.3.2.9. The deformation method (Section 2.3.3.3) and
GCL-based approaches (Section 2.3.3.4) do satisfy (2.23) for any number of
dimensions.

2.3.2.2 Direct or inverse maps
In 1966 Winslow used Laplace’s equation for computational coordinates to
generate ’equipotential’ meshes [Win66]:

∇2ξ = 0, ∇2η = 0, (2.24)

an approach for which he gave two arguments. Firstly, the averaging property
of solutions to the Laplace equations will lead to meshes that are, in some
sense, smooth. Secondly, the use of physical coordinates x and y in (2.24)
instead would easily lead to collapse of mesh cells on nonconvex domains.
Note that the above and following generators are not solution-adaptive. The
only goal is to generate a nonuniform mesh that fits the irregular domain.
The next sections will introduce solution adaptivity.

Laplace’s equation for physical coordinates reads:

∇2
ξ x = 0, ∇2

ξ y = 0, (2.25)

which has a unique solution that is determined by the boundary mapping.
The solution is directly in terms of the desired physical coordinates, so we
call this a direct map. The system is easy to solve thanks to the uniform logical
coordinates and the convex domain. As said, though, there is a big risk of
collapsing mesh cells, so we will now describe the use of the computational
form (2.24). It is difficult to solve this system on an arbitrary domain with
nonuniform physical coordinates, so it is generally translated into computa-
tional coordinates. This yields the inverse formulation of (2.24):

g22 xξξ − 2g12 xξη + g11 xηη = 0,
g22 yξξ − 2g12 yξη + g11 yηη = 0,

(2.26)

where the covariant metric coefficients gij were defined in (2.8). The equations
are now nonlinear due to the coefficients that contain first-order derivatives
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(a) Direct map, bottom boundary in three. (b) Inverse map, bottom boundary in three.

(c) Direct map, bottom boundary in two. (d) Inverse map, bottom boundary in two.

Figure 2.5 Elliptic mesh generation for a nonconvex domain. The direct map is obtained
from (2.25), the inverse map from (2.26).

of x and y. Besides, the equations for x and y are now coupled, again due to
the coefficients. The inverse formulation does have its price, as we now see.
Still, we can linearize the inverse system (2.26). Dvinsky [Dvi91] provides
some practical hints for the numerical solution of it.

As an example we consider a nonconvex domain that is similar to a for-
ward facing step, well-known from hydrodynamical problems. Figure 2.5
shows four different discretizations. The left diagrams show the mesh maps
obtained from the direct formulation (2.25). The right diagrams show the
inverse formulation (2.26). The collapse—or folding—of mesh cells for the
direct map is clear, whereas the inverse formulation produces valid meshes
using the same boundary conditions.

The difference between the top and bottom diagrams in Figure 2.5 is the
choice of boundary mappings. Evidently, the left and top boundary are
mapped to the left and top side of the unit square. The four remaining
segments provide some freedom. We can map the rightmost boundary to the
right side and map the remaining three segments all to the bottom side of
the unit square. This is shown in the top diagrams. Notice how three red,
logically vertical, sample mesh lines touch the three segments. Alternatively
we can map the first two segments to the bottom side and the remaining
two segments to the right side. The bottom diagrams show the result. The
horizontal segment of the ’step’ now is touched by a blue, logically horizontal
line. The choice of boundary mapping does change the mesh characteristics,
but it has no guaranteed effect on the non-collapsing of the mesh. This is
only guaranteed by the convexity of the codomain.

The inverse formulation as used by Winslow and many others can handle
nonconvex domains without a problem. However, for convex domains the
direct approach has none of the above problems and is more straightforward
to use. We discuss its properties in Section 2.3.2.8. It has been used success-
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fully by, e.g., Ceniceros and Hou [CH01], Tang et al. [TT03] and Zegeling and
coworkers [vDZ09, ZdBT05, Zeg05].

2.3.2.3 Winslow’s variable diffusion method
In 1981 Winslow investigates an adaptive form of the above generator [Win81]:

∇ · (D∇ξ) = 0, ∇ · (D∇η) = 0, (2.27)

where the ’diffusion’ coefficient D > 0 can be some function of the solution to
the physical PDEs. In one dimension this is the same as equidistribution (2.21)
when D = 1/ω. Expanding the divergence operators yields:

∇2ξ = −∇ξ · ∇D
D

,

∇2η = −∇η · ∇D
D

.

(2.28)

This shows that Winslow’s method is a special case of the inhomogeneous
TTM generator by Thompson, Thames and Mastin [TTM74], where the right
hand sides are the control functions P and Q. In fact, the equipotential
generator (2.24) is often called the homogeneous TTM generator. In gen-
eral, choosing the source terms P and Q requires experience and skill, so
Winslow’s new formulation was a major improvement. Several handbooks
on grid generation give an overview of possible choices, e.g., Knupp and
Steinberg [KS93].

Again, the inverse map in (2.28) is found by first translating the generator
equations to computational coordinates. Using the inverted partial derivatives
from (2.5) yields the inverse formulation of Winslow’s generator:

g22 xξξ − 2g12 xξη + g11 xηη = (Dξyη −Dηyξ) J
D

,

g22 yξξ − 2g12 yξη + g11 yηη = (Dξxη −Dηxξ) J
D

,
(2.29)

where the covariant metric coefficients are the same as for the Laplace gener-
ator, i.e., as in (2.8). Again, the need to invert the generator equations makes
this method more complicated. In three dimensions this inversion needs to
be redone. Section 2.3.2.8 discusses a direct variant of Winslow’s variable
diffusion method.

Winslow’s approach inspired many others, mainly due to the intuitive spec-
ification of solution adaptivity through D and the resulting smooth meshes.
The approaches discussed in the next sections will often have some equiva-
lence relation with it, as we will show.

2.3.2.4 Variational formulations
Winslow already described how his variable diffusion method can also be
derived from a variational formulation. The calculus of variations deals with
functionals—often as integrals of unknown functions—and their minimiza-
tion. In this context, we can define a functional, sometimes called ’mesh
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energy’, that measures the appropriateness of a mesh map according to cer-
tain adaptation criteria. For example, Winslow’s variable diffusion generator
(2.27) can also be obtained from the minimization of a weighted-smoothness
functional:

Is :=
∫

Ω

1
ω

((∇ξ)2 + (∇η)2) dx, (2.30)

where we use D = 1/ω.
Finding the mesh map that minimizes such a mesh energy functional is

equivalent to solving the associated Euler–Lagrange equations. The inter-
esting aspect of this approach is that the preceding generators can also be
formulated in a variational way. Moreover, it is easier to define additional
adaptation criteria, such as mesh alignment or orthogonality and other mesh
quality measures. A thorough investigation of variational calculus and the
derivation of Euler–Lagrange equations is beyond the scope of this work, but
many good references exist, such as the book by Arthurs [Art75], or—in the
context of mesh generation—Knupp and Steinberg [KS93]. In the following
subsections we consider several approaches that start from a variational for-
mulation.

2.3.2.5 Brackbill and Saltzmann’s combined functional
Brackbill and Saltzmann [BS82] devised their variational generator around
the same time as Winslow published his adaptive generator. They use a
combination of three functionals. The first measures smoothness and is equal
to (2.30) with D = 1, which is equivalent to Winslow’s equipotential zoning
(2.24). The second measures orthogonality:

I ′o :=
∫

Ω
(∇ξ · ∇η)2J3 dx, (2.31)

which is volume-weighted. Note that this functional is equal to
∫

Ωc
(xξ · xη) dξξξ,

which may be more intuitive as it uses the dot product of the two tangent
vectors to a mesh cell (see Figure 2.4). The third is for volume control:

Iv :=
∫

Ω
wJ dx, (2.32)

where w := w(x) is a given function. The combined functional is then:

IBS := Is + λvIv + λ′oI ′o. (2.33)

The smoothness measure is always included, such that existence of solu-
tions is guaranteed. Next, parameters λv ≥ 0 and λ′o ≥ 0 are user-defined.
Castillo et al. [CSR88] state that volume control is most important, followed
by smoothness, and only some orthogonality control is beneficial.

The Euler–Lagrange equation for the minimization of the combined func-
tional (2.33) are solved by a Jacobi iteration. Very large values for λv and
λ′o harm the ellipticity, in which case a solution may not always be found,
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cf. [Lia92]. Brackbill [Bra93] remedies this by a normalization and modified
functionals. We will further discuss these choices in Section 2.5.2.

Some years earlier, Yanenko et al. [YLK77, YKL+79] used a similar approach
with the following combined functional:

IY :=
∫

Ω
(ε1h1 + ε2h2 + ε3h3) dx dt. (2.34)

The first term measures the mesh distortion through deviation from a con-
formal map:

h1 := (ξx − ηy)2 + (ξy + ηx)2. (2.35)

A conformal map satisfies the Cauchy–Riemann equations (ξx = ηy, ξy = −ηx),
which gives h1 = 0. The second term measures the deviation from ’La-
grangianness’, the degree to which the mesh moves along with the physical
fluid:

h2 := ‖v − ẋ‖2, (2.36)

where v is the fluid’s velocity. The third term is volume control again:

h3 := ωJα, (2.37)

where α is an additional parameter, which they leave unspecified, and ω is a
monitor function based on solution gradients. When ε2 = ε3 = 0 the resulting
mesh is equal to Winslow’s equipotential mesh (2.25).

The Euler–Lagrange equations for the minimization of functional (2.34) are
time-dependent and coupled with the physical PDEs, Euler’s equations of gas
dynamics. The equations are simplified such that only one of the coordinates
is dynamically adapted, which makes the examples a lot simpler.

2.3.2.6 Harmonic maps
Harmonic maps are critical points of an energy functional. Intuitively, this
means that the obtained mesh map minimizes some mesh energy, thus mak-
ing it the most appropriate for the specified goal. An important feature of
harmonic maps is that their existence and uniqueness can be proved in any
dimension, when certain conditions are satisfied. Their invertibility is not
guaranteed for higher than two dimensions, though. We will get back to this
at the end of this section.

A firm mathematical basis for harmonic map theory was developed since
the 1950s, and harmonic maps were first applied by Dvinsky [Dvi91] for goal-
based mesh adaptation. Winslow’s equipotential generator (2.24) is a basic
harmonic map generator.

In general, a harmonic map ξξξ(x) maps between two Riemannian manifolds
M and N with Riemannian metrics gij and hαβ , and local coordinates xi and
ξα, respectively. The energy associated with this map is then defined as:

E(ξξξ) :=
∫

M

|∇ξ|2 dM = 1
2

∫
M

gij(x)∂ξ
α

∂xi

∂ξβ

∂xj
hαβ(ξξξ(x))√g dx, (2.38)



26 2. An Overview of Mesh Adaptivity

where we use the standard summation convention.2 The map is harmonic if
it is a critical point of this energy functional. Alternatively, it can be found
as the solution to the energy’s Euler–Lagrange equations.

Dvinsky applies harmonic maps to the same two-dimensional planar do-
mains from the previous subsections, i.e., M = Ω, N = Ωc. The computational
domain is Euclidean, hence its metric is diagonal: hαβ = δαβ . The key point
for adaptation is now the following. The domain M may be planar, but we
are still free to choose any metric G on it. Dvinsky’s harmonic mapping
functional now simplifies to:

Ihrm :=
∫

Ω

[
(∇ξ)TG−1(∇ξ) + (∇η)TG−1(∇η)

]√
g dx, (2.39)

whose minimizer is the desired mesh map. The freedom to choose the metric
G on the physical domain provides the means to prescribe a nonuniform,
i.e., adaptive mesh. Dvinsky’s choice of monitor functions is described in
Section 2.5.1 and involves solution gradients, i.e., aimed at mesh adaptation.
Brackbill [Bra93] uses harmonic mapping in combination with a functional
for mesh alignment, but we note that the adaptivity functional is incorrectly
fitted within the framework of harmonic mappings (see below). Li et al.
[LTZ01] devise a method based on harmonic maps, which—for their choice of
arc length-type monitor—is actually similar to the direct variant of Winslow,
which we will discuss in Section 2.3.2.8. Recently, Di et al. [DLT08] employ the
same approach, but now with a multigrid solver for the generator equations,
applied to three-dimensional multi-phase flows.

The above authors use convex domains and warn for the complicated form
of the inverse formulation when nonconvex domain would have to be han-
dled. Chacón and Lapenta [CL06] do derive a compact formulation of this
inverse map. They use a Jacobian-free Newton–Krylov approach to solve
the discretized equations, with a multigrid preconditioner to handle the ill-
conditionedness of the system. The adaptivity is tested on prescribed so-
lution, but the same authors have experimented with coupled solution and
mesh equations in 1D [LC06]. Recently, the authors seem to have switched
to Monge–Kantorovich optimization for mesh adaptation, which we discuss
in Section 2.3.2.10.

Existence, uniqueness and invertibility
When the target domain has nonpositive curvature and a convex boundary
∂N , there exists a unique harmonic map ξξξ : M → N . This holds in any
dimension. Moreover, when M and N are two-dimensional domains this
map is a diffeomorphism, i.e., its inverse exists and both are differentiable.

The above is the Hamilton–Schoen–Yau (HSY) theorem due to Hamil-
ton [Ham75] and Schoen and Yau [SY78].

2The Einstein summation convention is notational shorthand for a sum of terms. When an
index appears twice in a single term, once as subscript, once as superscript, this term is summed
over all possible values for that index. The index generally concerns coordinates, hence attains
the values 1, . . . , n, where n = dim(space).
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As mentioned above, the manifold N is the planar computational domain,
so it has zero curvature. Besides, it has a convex boundary, so both conditions
are met and the harmonic map is indeed suitable for mesh generation and
adaptation.

When also the manifold M is planar, namely the physical domain M = Ω,
an older version of the above theorem exists, which is due to Rado [Rad26].
Harmonic maps between two planes simply yield two coordinate maps (for ξ
and η) that are both harmonic functions. Harmonic functions are C2 functions
that are solutions to Laplace’s equation.

Brackbill [Bra93] was inspired by the above foundations of harmonic maps
and claimed that Winslow’s method is a special case of a harmonic map. This
is not true, though. To equate the integrands in both energy functionals (2.30)
and (2.39), the following should hold:

1
ω
I = √gG−1.

Hence, at least:

det
( 1
ω
I
)

= det(√gG−1) =⇒ 1
ω2 = g

g
=⇒ ω = 1.

In other words: Winslow’s method only yields a harmonic map if there is
no adaptivity (ω = 1), i.e., when it is the Laplace mesh generator (2.24). The
claim that the HSY-theorem applies to Winslow’s method is thus not valid.
An alternative proof for the invertibility of the obtained map is given by
Clément et al. [CHS96], which we discuss in Section 2.3.2.8.

Liao [Lia91] critically noted how the invertibility of harmonic mappings
does not extend to three dimensions. This led to the development of the
deformation method [LA92, LJL99], whose theoretical basis does extend to
higher dimensions. The deformation method is studied in Section 2.3.3.3.

2.3.2.7 Huang, Ren and Russell’s MMPDE approach
In 1994, Huang, Ren and Russell [HRR94] presented an adaptive moving mesh
method in 1D, based on moving mesh PDEs (MMPDEs) that strive to achieve
the equidistribution principle. Later, they extended some of the better MM-
PDEs to two dimensions, now motivated from the theory of harmonic maps,
which results in gradient flow equations [HR97a, HR99]. In 2001 Huang
describes the practical aspects of the actual implementation [Hua01a]. Sub-
sequent work of the same author concentrates on proper monitor functions,
which we will discuss in Section 2.5.3.

In the MMPDE approach, the mesh map is explicitly time-dependent, i.e.,
x(ξ, t). Several one-dimensional MMPDEs are proposed; one that lies very
close to equidistribution (2.21) is MMPDE5:

ẋ = 1
τ

∂

∂ξ

(
ω
∂x

∂ξ

)
, (2.40)
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where τ > 0 is a time-relaxation parameter to fit the speed of mesh movement
approximately to the typical physical time scales (see page 43). Clearly, the
mesh points are moved towards regions of large ω and the mesh speed is
zero when exact equidistribution is attained.

In the general, multidimensional gradient-flow formulation [HR99], the
mesh functional is generalized to:

I :=
∫

Ω

[
(∇ξ)TG−1

1 (∇ξ) + (∇η)TG−1
2 (∇η)

]
dx, (2.41)

where the symmetric positive definite matrices G1 and G2 are the monitor
functions. When G1 = G2 = G/

√
g it is a genuine energy functional (2.39),

resulting in a harmonic map, but many other choices have been considered.
The functional derivatives −δI/δξ and −δI/δη are the directions in which
I descends the fastest. The Euler–Lagrange equations yields the functional
derivatives for (2.41):

δI

δξ
= −∇ ·

(
G−1

1 ∇ξ
)

, δI

δη
= −∇ ·

(
G−1

2 ∇η
)
. (2.42)

These functional derivatives define the movement of the mesh points:

∂ξ

∂t
= −P1

τ

δI

δξ
, ∂η

∂t
= −P2

τ

δI

δη
, (2.43)

where P1 and P2 are operators with positive spectrum that allows one to
change the descent directions and τ changes the time scale of the mesh equa-
tion. For example, limiting the above equations to one dimension, P = ( ω

ξx
)2I

gives the above one-dimensional MMPDE5 (2.40), where I is the identity
operator. Other choices for P result in other MMPDEs by Huang et al.

Mackenzie and coworkers have employed MMPDEs for a wide range of
applications. Amongst these are phase-field equations modeling fluid solidi-
fication and other state transitions [MR02, BMR06], and the Hamilton–Jacobi
equations modeling front propagation [MN07].

The adaptive mesh generators in the previous sections are sometimes called
quasi-static generators, since they do not contain a mesh speed ẋ. They
are time-dependent, though, since the monitor functions—or more generally,
the mesh functionals—are solution-dependent, hence time-dependent. Sec-
tion 2.4 describes how these generators combine easily with the PDE solver.

2.3.2.8 Direct variant of ‘variable diffusion’
Ceniceros and Hou [CH01] have formulated a direct (covariant) method that
closely resembles Winslow’s variable diffusion method. They start from the
following observation. Given a solution q(x), define the solution on the un-
derlying reference mesh as v(ξ) := q(x(ξ)). A good mesh map should make
this solution ‘better-behaved’, for example by making the new gradient vξ
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smoother than the original qx. They derive the Euler–Lagrange equations
and after some simplifications end up with the generator equations:

∇ξ · (G∇ξx) = 0, ∇ξ · (G∇ξy) = 0, (2.44)

where G = ωI . We will discuss the monitor function ω in Section 2.5.1. Later
work, mentioned below, also uses more general directional monitor matrices
for G (Section 2.5.2).

Note that the generator equations (2.44) are a lot simpler than Winslow’s
inverted equations (2.29). Extension to three dimensions is straightforward
by including a similar generator equation for the z coordinate. Still, these
direct equations are nonlinear and coupled, through the monitor function
ω(x, q,∇q, . . .), which may contain the solution q and its derivatives.

Ceniceros and Hou solve the generator equations by an MMPDE similar
to (2.40):

xτ = ∇ξ · (G∇ξx), yτ = ∇ξ · (G∇ξy), (2.45)

where τ is an artificial time, over which the coordinates tend to their steady
state solution that satisfies (2.44). They decouple the MMPDE from the trans-
formed physical PDEs, an approach that we describe in Section 2.4.2. One
of the test problems concerns inviscid Boussinesq convection and is handled
very well by the adaptive method. Others solve the generator equation (2.44)
by a Jacobi or Gauss–Seidel iteration of the linearized system. Note that the
former is equivalent to a forward time central space discretization of the MM-
PDE (2.45) when ∆τ = 1. A Gauss–Seidel iteration converges somewhat faster
and has proved reliable. We give more details on this discretization in the
following chapters.

Extensions of the method
The direct method was adopted by Tang and Tang [TT03] and Van Dam
and Zegeling [vDZ06, vDZ09] and Zegeling et al. [ZdBT05]. Tang and Tang
have devised a proper framework for solving hyperbolic PDEs from con-
servation laws (e.g., gas dynamics) that employs this direct moving mesh
approach. This includes a well-designed conservative solution interpolation,
which we discuss in Section 2.4.2. Other applications include incompressible
flow [TLK08], resistive magnetohydrodynamics (MHD) [Zeg05], ideal MHD
[HT07] and the Hamilton–Jacobi equations in 2D and 3D [TTZ03].

Tang [Tan06] included a directional monitor, applied to 2D hydrodynamics
(HD). We have adopted this approach and improved the behavior of the
monitor functions, as the following chapters will show. We apply the method
to 1D magnetohydrodynamics (MHD), 2D HD and 2D MHD, respectively.

We relate the direct formulation to near-equidistribution in Section 2.3.2.9.
First, we give proof for the invertibility of the obtained map.

Existence, uniqueness and invertibility
Hagmeijer [Hag94] uses a directional variant of Winslow’s method to achieve
anisotropic mesh adaptation. Together with Clément and Sweers [CHS96] he
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has proved the invertibility of the obtained map in two dimensions. This
forms an alternative for the application of the harmonic mapping proof on
page 26 to Winslow’s generator.

Consider the following problem on the open unit square S := (0, 1)× (0, 1).
We search a mapping [s, t] → [u(s, t), v(s, t)] : S̄ → S̄ that is the solution to
the following system:

Lu = 0 in S,
Lv = 0 in S,
u and v are boundary conforming,
∂u
∂n = 0 on the bottom and top boundaries,
∂v
∂n = 0 on the left and right boundaries,

(2.46)

where the solutions u and v should lie in the Sobolev space W 2,p(S) for p > 2
and the operator L is given by:

L := a1(s, t)
( ∂
∂s

)2
+ a2(s, t)

( ∂
∂t

)2
+ b1(s, t) ∂

∂s
+ b2(s, t) ∂

∂t
. (2.47)

The coefficients—which should not be confused with the physical domain
boundaries in (2.13)—satisfy for some c > 0 and γ ∈ (0, 1):

ai ∈ C0,1(S̄) and a1 ≥ c > 0 in S̄ for i = 1, 2, (2.48)

bi ∈ Cγ(S̄), for i = 1, 2. (2.49)

We now state the main theorem of Clément et al.

Theorem 2.3.1. The elliptic generator problem (2.46) possesses exactly one solution
u, v ∈ C2(S̄). Moreover [u, v] is a bijection from S̄ onto itself and

det
(
us ut

vs vt

)
> 0 on S̄. (2.50)

Proof. The proof forms the main part of the original publication [CHS96].

The direct Euler–Lagrange equations (2.44) are a special case of the above
problem (2.46). Take [s, t] := [ξ, η], [u, v] := [x, y]. If we use directional
adaptation G = diag(ω1, ω2) with ω1, ω2 > 0, then ai = ωi and bi = ∂ωi/∂ξi.
These coefficients satisfy the conditions (2.48) and (2.49), since the monitor
functions ωi are strictly positive continuous functions with a known minimum
value (see Section 2.5).

The same theorem can be applied to the Winslow’s original method (2.27)
or directional variants thereof. Theorem 2.3.1 does not extend to three dimen-
sions as its proof relies on the Carleman–Hartman–Wintner theorem, which
has no 3D equivalent either.
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2.3.2.9 Approximate equidistribution in higher dimensions
The Winslow formulation (2.27) is equivalent to equidistribution in one di-
mension, but this is not the case for higher dimensions. Anderson [And90]
shows that only under certain assumptions, Winslow’s diffusion coefficient is
approximately proportional to the cell volume. We make a similar statement
for Ceniceros’ covariant formulation (2.44).

Theorem 2.3.2. The mesh map x(ξξξ) that is the solution to the covariant variational
formulation (2.44) in two dimensions only gives equidistribution when R/J is zero,
with R as in (2.54).

Proof. We expand the PDE (2.44) and obtain

∇2
ξ x = −∇ξG

G
· ∇ξx, (2.51a)

∇2
ξ y = −∇ξG

G
· ∇ξy. (2.51b)

Local cell area is given by the Jacobian, so as a start we now also apply the
Laplace operator to it:

∇2
ξ J = ∇ξ · ∇ξ(xξyη − xηyξ). (2.52)

Expanding the partial derivatives and substituting (2.51a) and (2.51b) gives
an equation of the form:

∇2
ξ J = −∇ξḠ · ∇ξJ − J∇2

ξ Ḡ +R, (2.53)

where the ’remainder’ R is defined as

R := 2(∇ξxξ · ∇ξyη −∇ξxη · ∇ξyξ) (2.54)

and Ḡ := logG. We also use J̄ := log J and expanding its Laplacian yields a
simplified form of (2.53):

∇2
ξ (J̄ + Ḡ) +∇ξJ̄ · ∇ξ(J̄ + Ḡ) = R

J
. (2.55)

When the right hand side term is assumed to be small or even ignored, a
solution to (2.55) is given by

∇ξ(J̄ + Ḡ) = 0, (2.56)

hence J̄ + Ḡ = constant or in the original quantities for the Jacobian and
monitor function:

∇ξ · (G∇ξxi) = 0 for i = 1, 2 and therefore R

J
= 0 =⇒ JG = c (2.57)

for some constant c. This final result shows that when R/J = 0, Ceniceros’
method leads to equidistribution in two dimensions.
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Interpretation of R/J
The right hand side of (2.54) can be rewritten as:

R = 2 (∇ξxξ · ∇ξyη −∇ξxη · ∇ξyξ)
= 2 (xξξyηξ − xηξyξξ + xξηyηη − xηηyξη)
= 2 (det(∇ξxξ) + det(∇ξxη)).

Hence, R contains the sum of the Jacobian determinants of the two tangent
vectors xξ and xη. The change in these vectors defines a contraction or expan-
sion of the coordinates x and is also related to the curvature of the coordinate
lines. Only when this change is significantly smaller than the local cell area,
(near-)equidistribution is achieved. Experiments show that in the refined ar-
eas, equidistribution is almost achieved, but in stretched areas, the local value
for ωJ may sometimes deviate by almost a factor two from the exact value.

2.3.2.10 Monge–Kantorovich optimization
The latest approach for adaptive mesh generation is Monge–Kantorovich op-
timization. The key difference of this method with the other methods dis-
cussed, is the following. Instead of optimizing some combination of adapta-
tion criteria and mesh quality measures, the Monge–Kantorovich approach
enforces local equidistribution and then optimizes some mesh quality measure
under this constraint. Monge’s mapping problem [Mon81] and Kantorovich’s
associated optimization problem [Kan42] go back a long time. Only recently,
Budd and Williams [BW06] employed it for mesh adaptation using relax-
ation. Delzanno et al. [DCF+08] solve the full nonlinear system instead of
using relaxation.

Monge–Kantorovich optimization aims to find a mapping that satisfies for
any set Ac ⊂ Ωc (which maps to A := {x(ξξξ) |ξξξ ∈ Ac} ⊂ Ω):∫

Ac

dξξξ =
∫

A

ω(x, t) dx, i.e., ωJ = 1, (2.58)

and—under these constraints—minimizes the point displacement:∫
Ωc

‖x− ξξξ‖2
2

2 dξξξ. (2.59)

The constrained minimization problem can be put into variational form by
including the equidistribution constraint with a local Lagrange multiplier:

IMK :=
∫

Ωc

‖x− ξξξ‖2
2

2 + λ(ξξξ)(ω(x)J − 1) dξξξ. (2.60)

The Euler–Lagrange equations imply x− ξξξ = ∇λ, i.e., the map x(ξξξ) := ξξξ +∇ξΦ
is a gradient map. Inserting this into equidistribution relation (2.58) yields
the Monge–Ampère equation to the displacement potential Φ:

∇2
ξ Φ +H(Φ) = 1

ω(x, t) − 1, (2.61)
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where H denotes the determinant of the Hessian matrix:

H(Φ) := ∂2Φ
∂ξ2

∂2Φ
∂η2 −

( ∂2Φ
∂ξ∂η

)2
. (2.62)

Budd and Williams solve their Monge–Ampère equation by approximation.
Using temporal relaxation, an approximate potential tends to the exact solu-
tion over time. The Monge–Ampère equation in its relaxed form is parabolic
(PMA), from which a convex potential and thus Jacobian positivity can be
proved. This approach is similar to the relaxation approach that yields the
MMPDEs (Section 2.3.2.7). In fact, the PMA equation simplifies to one of the
MMPDEs in 1D.

Delzanno et al. solve (2.61) directly with a Newton–Krylov method that is
sped up with multigrid. They also compare their results with the deformation
method. As expected, the deformation method results in distorted meshes
for some of the more difficult problems, as no quality control is applied.

The question remains whether such an accurate solution is truly necessary.
Example problem 3 in [DCF+08] takes 4.9 seconds of CPU time for a 64× 64
mesh with their method. We produced an equally smooth mesh in less than
one second using the ‘direct Winslow’ method from Section 2.3.2.8. This
does not maintain equidistribution everywhere, though (see Section 2.3.2.9).
Interestingly, the refined regions (with large monitor values) approximate
equidistribution the best. Monge–Kantorovich optimization is probably too
costly in time-dependent problems with many evolving features, but the exact
equidistribution and mesh quality control is a definite advantage for problems
with singular solutions, for example.

2.3.3 Velocity-based mesh adaptation

Velocity-based methods obtain a time-dependent mapping x(ξξξ, t) by defining
the mesh velocity

ẋ := dx
dt = ∂x

∂t
. (2.63)

The equation for the mesh velocity is solved in conjunction with the physical
PDEs and t is actual time, or—in the case of steady problems—t is an artificial
time over which the mesh converges to the desired distribution. The coupling
of the mesh equations with physical PDEs is discussed in Section 2.4. We now
give a classification of the best-known velocity-based approaches.

2.3.3.1 The Lagrangian approach: or method of characteristics
The Lagrangian formulation of physical PDEs moves the coordinates x with
the characteristic velocities of the physical problem. This approach is very
important in the analysis of PDEs (see, e.g., [CH62]). For a two-dimensional
hyperbolic PDE:

∂q

∂t
+ ∂f (q)

∂x
+ ∂g(q)

∂y
= 0, (2.64)
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where q is the solution variable, the characteristic velocity is given by:

v :=
[df (q)

dq ,
dg(q)

dq

]T
. (2.65)

The Lagrangian coordinate lines are then given by:

ẋ = v. (2.66)

If we now write the PDE with reference to the computational coordinates ξξξ,
the convective flux terms cancel exactly against the mesh velocities, leaving
the ODE:

dq
dt = 0. (2.67)

The solution q is known exactly for all times t if the initial solution is given.
It is constant along each integral curve of (2.66).

Note that this is mainly useful for local analysis of the solution. On the
entire domain the mesh map (2.66) can quickly become stretched, skewed or
even degenerate. Take, for example, the one-dimensional inviscid Burgers’
equation with an initial sine wave solution. The characteristics are defined at
t = 0 by dx

dt = q(x, 0) = sin(x|t=0), so the peaks of the sine yield characteristics
that will ‘overtake’ the characteristics of the smaller sine values after some
time. As a result the strict ordering of the mesh points is violated. The
requirement that the mesh points are ‘tied’ to the flow for ever makes the
method of characteristics unsuitable for mesh adaptation in nonlinear flow
problems. The arbitrary Lagrangian Eulerian (ALE) approach relaxes this
requirement: the mesh velocities may mimic the flow, but need not follow it
forever. We will discuss the ALE approach further in Section 2.4.1.

Also note that the method of characteristics does not involve any mesh
refinement in the usual sense: there is no monitor function that can steer
mesh points, e.g., to sharp solution gradients.

Harten and Hyman [HH83] average the characteristics for one-dimensional
systems of PDEs, based on the eigendecomposition of the solution on each
mesh cell. They prevent collapses of mesh points by regularization at each
time step.

2.3.3.2 Moving Finite Elements
Miller and Miller [MM81, Mil81] have introduced the moving finite element
(MFE) method for generating adaptive meshes. The idea is to minimize the
residual of a solution to the physical PDE not only over a space of basis
functions, but also over a space of functions related to mesh velocity.

Consider a general PDE:
∂q

∂t
= Lq, (2.68)

for some spatial differential operator L. The residual of a solution qh is then
defined by:

R(qh) :=
∥∥∥∂qh
∂t
− L(qh)

∥∥∥
2
, (2.69)
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with the standard L2-norm over the entire domain.
Normally, solutions are written as a superposition of basis functions qh :=∑
qiφi, where i ranges over the number of nodes N . If now the coordinates

of the nodes are time-dependent, the basis functions above those nodes also
become time-dependent. By the chain rule we have:

∂qh
∂t

=
N∑
i=1

[∂qi
∂t
φi + ẋ · ψi

]
, (2.70)

where the ψi := ∇xi
qh are n-dimensional (here n = 2) secondary-type basis

functions, reflecting the solution gradient with reference to each node. For
more details on the resulting augmented weak formulation and its solution,
we refer to the excellent monograph by Baines [Bai94]. In the same work,
Baines also shows that for a first-order PDE, the discretized velocities in the
MFE method approximate the velocities from the method of characteristics, as
discussed in the previous section. For a nonlinear PDE the characteristics may
cross at some point, which will cause the finite element solution to ‘overturn’.

The solution to the PDE (2.68) now depends on an extra set of basis func-
tions {ψi} for which additional equations (weak formulations) are needed.
Miller and Miller use the equivalence of weak formulations with minimization
of the residual functional (2.69), i.e., their approach comes down to finding
the following minimum:

min
ẋ,q̇

IGWMFE := min
ẋ,q̇

∫
Ω

(q̇ −∇q · ẋ− Lq)2w + P 2 dx, (2.71)

where w > 0 is a weight function and P 2 is a regularizing penalty term that we
will discuss later. In the original method w = 1, but in the gradient-weighted
MFE method w = 1/

√
1 + |∇q|2.

When the standard basis functions φi are piecewise linear, the secondary-
type basis functions ψi are discontinuous. This forms a problem when the
spatial differential operator L contains second-order derivatives. In this case,
one generally employs ‘mollification’: in a small region with radius δ around
the nodes the original hat functions are made twice differentiable. Next, the
integrals from the weak formulation are evaluated in the limit for δ → 0.

The gradient-weighted MFE (GWMFE) method was introduced by Carlson
and Miller [CM98a, CM98b] to reduce the effect of minimization in steep
parts of the solution. This makes the method more robust. The weighted
formulation is also more natural in terms of normals and tangents to the
solution gradient, see, e.g., Baines and the references therein. A disadvantage
of the weighted formulation is that it no longer maintains the conservation
property when operator L describes conservation laws (cf. [Bai94]).

The motivation for GWMFE gradually shifted to a geometrical-mechanical
viewpoint [Mil97], which led to the String GWMFE (SGWMFE) for systems
of PDEs. For a scalar PDE (2.68), GWMFE and SGWMFE are equivalent.
The geometrical-mechanical interpretation comes down to the following. The
solution q forms a manifold over the domain with coordinates x. The partial
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time derivative qt denotes vertical displacement of this manifold. Instead,
the normal displacement with reference to the manifold is used, i.e., multiply
(2.70) by 1/

√
1 + |∇q|2. The resulting equation describes the balance between

‘viscous drag forces’ and ‘applied forces’ on the manifold. This balance drives
the movement of mesh points. Now, if solution q is a vector, this balance
equation and the normal vector is defined separately for each component.
Since all components of q are generally defined on the same mesh, i.e., the
same set of nodes, the resulting forces are summed. The SGWMFE method
does not separate the equations: they are formulated over a manifold that is
(p + n)-dimensional, where p is the number of PDEs/components in q. The
projection onto the normal direction is done in this higher-dimensional space,
and the resulting forces directly prescribe the mesh point movement.

Wacher and coworkers [WSM05, WS07] have further developed the SG-
WMFE method. Their results for the Gray–Scott reaction–diffusion and shal-
low water equations show that it is not necessarily better or worse than
GWMFE, but its specification for systems seems to be more elegant. A com-
parison with a basic MMPDE (Section 2.3.2.7) in one dimension shows that
for well-chosen parameters they perform equally well on average [Wac05].

Regularization measures
The unknowns in the minimization problem (2.71) are both the solution co-
efficient qi and the mesh point coordinates xi at each of the N nodes, which
can be combined in a vector of length N · (n + 1):

Y := [q1, ẋ1, ẏ1, . . . , qi, ẋi, ẏi, . . .]T , i ≤ N.

The finite element formulation of the problem requires that the numerical
error, i.e., the integrand in (2.71), is orthogonal to the space of test functions.
This results in the nonlinear discretized finite element system:

M (Y)Ẏ = F(Y), (2.72)

where both the extended mass matrix M and the vector F (which normally
is the stiffness matrix times Y) are nonlinear in the unknown vector Y.

A potential problem is the collapse of two nodes (mesh points), because two
of the diagonal blocks in the mass matrix then become singular. Also, when
two edges between three nodes form a straight line, the middle point has no
force operating on it, again rendering the mass matrix singular. Miller and
Miller added a penalty term P 2 :=

∑
(ε|xi−xi−1|)2 in 1D to the residual term

as some form of internodal viscosity. New test problems and extension to
multiple dimensions led to several alternate forms of the internodal viscosity.
Although understanding of these penalties clearly has improved, experience
is still required to properly choose their form and parameters, see, e.g., [ZB92].

2.3.3.3 Deformation method
In 1992, Liao and Anderson [LA92] proposed a new way of adaptive mesh
generation, motivated by problems in extending harmonic maps and Winslow’s
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variable diffusion to three dimensions. Over the following years, Liao and
coworkers further developed the deformation method. This method yields a
mesh map whose Jacobian determinant can be prescribed exactly, namely:

J = det∇ξx(ξξξ, t) = 1
ω(x(ξξξ, t)) , where x ∈ Ω ⊂ Rn, t > 0. (2.73)

It achieves equidistribution in any number of dimensions for all times.
The main theorem is inspired by Moser and Dacorogna’s work [Mos65,

DM90] on diffeomorphisms on manifolds with prescribed Jacobian. The co-
ordinate map is an automorphism, e.g., on the unit cube. If the physical
domain is different from the computational domain (Ω 6= Ωc), an additional
transformation can be included, e.g., a linear scaling on rectangular domains
or a curvilinear transformation around an airfoil. Liao et al. [LPS94] show
that this does not invalidate the original proof.

The existence of a map that satisfies the equidistribution property (2.73)
is valid for any number of dimensions, the proof is by construction. We
discuss a time-dependent map here, for the static case we refer to the original
publications.

Suppose we have a monitor function ω > 0 that is ‘normalized’ such that
at each time it satisfies: ∫

Ω
(ω(x, t)− 1) dx = 0. (2.74)

The idea is to evolve the mesh map x(ξξξ, t) according to a well-chosen velocity
field v(ξξξ, t). The first step is to find a field that satisfies:

∇ξ · v(ξξξ, t) = − ∂

∂t
ω(ξξξ, t). (2.75)

This is a scalar equation for the unknown vector-valued function v, so it is
underdetermined. A vector field can always be written as the sum of the
gradient of a potential and the curl of some other vector potential. Liao et
al. [LJL99] neglect the second term, because they impose zero curl (∇ξ×v = 0)
in order to allow points to move along the boundaries. Substituting this form
of v in (2.75) gives:

v := ∇ξa =⇒ ∇2
ξ a = − ∂

∂t
ω. (2.76)

Now the velocity field is the solution to a Poisson equation, completed by
Neumann boundary conditions that keep the points on the boundary:

∂a

∂n
= 0.

The second step is to solve the ODE system:

ẋ = v(x, t)
ω(x) , for t > 0, x(ξξξ, 0) = x0(ξξξ). (2.77)
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These two steps will make sure that the resulting mesh satisfies equidistri-
bution, as we will show in Theorem 2.3.3. Interestingly, though, they are
also equivalent with the GCL-based approach (see next section), since the
substitution of (2.77) in (2.75) yields ∇ξ · (ωẋ) = −ωt, which is (2.85).
We now state Liao’s main theorem, reformulated in our notation.

Theorem 2.3.3 (Equidistribution for deformation in n dimensions). Let x0 be
an initial mesh map that satisfies J(x0) = 1/ω(x0(ξξξ), 0). The time-dependent mesh
map obtained from (2.76) and (2.77) satisfies J = 1/ω(x, t) for all t > 0.

Proof. We only need to prove d
dt (J(x)ω(x, t)) = 0 for all t > 0.

d
dt (Jω) = ω d

dt (J) + J d
dt (ω(x, t))

= ω d
dt (J) + J(ẋ · ∇ω + ∂

∂t
ω(x, t))

= ω d
dt (J) + J

(v
ω
· ∇ω + ∂

∂t
ω(x, t)

)
. (2.78)

The time derivative of the Jacobian matrix can be derived using (2.77):

d
dtJ = d

dt∇ξx(ξξξ, t) = ∇ξ

( d
dtx(ξξξ, t)

)
= ∇ξ

(v
ω

)
= ∇

(v
ω

)
∇ξx, (2.79)

which is a matrix differential equation, for which holds in general:

d
dtX(t) = A(t)X(t) =⇒ d

dtdet(X(t)) = trace(A(t)) det(X(t)).

We can now introduce the determinant in (2.79):

d
dtJ = d

dtdet(J ) =
(
∇ ·
(v
ω

))
J =

( 1
ω
∇ · v + v · ∇

( 1
ω

))
J. (2.80)

Finally, the definition of the velocity field (2.75) implies ∇·v(x, t) = − ∂
∂tω(x, t),

so that (2.78) simplifies to:

1
J

d
dt (Jω) =

(
− ∂

∂t
ω + ωv · ∇

( 1
ω

))
+
(v
ω
· ∇ω + ∂

∂t
ω
)

= 0.

It is easy to see that in one dimension the above theorem reduces to (2.19) by
proving (2.22).
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Applications
The deformation method was demonstrated with prescribed monitoring func-
tions, i.e., without any physical PDEs, in the aforementioned papers. The
steady Euler equations were solved in [LJL99]. The monitor function is based
on pressure gradients:

ω = C1(1 + C2∇p),

where C2 is set manually to fit the problem and C1 follows from the nor-
malization requirement (2.74). The resulting meshes are smooth and well
adapted. In [LLdlP02] a time-dependent circular implosion problem is con-
sidered. Recently, the deformation method is also used in image registration,
some first results are presented in [LX06]. Image registration is widely ap-
plied to medical scans of deforming tissues, see, e.g., Hsieh et al. [HCL+08].
All of these applications make no fundamental improvements to the original
deformation method.

Just like the location-based methods, the deformation method still bears
the risk of mesh tangling. The positive Jacobian is guaranteed for the ana-
lytic map, but in solving the discretized equations mesh distortion could occur,
see, e.g., [CJ04] and [DCF+08]. The deformation method does not offer any
control over mesh qualities such as smoothness and orthogonality. In this
sense, the variational approaches and Monge–Kantorovich optimization (Sec-
tion 2.3.2.10) are more robust. Both methods involve two steps to obtain the
adaptive mesh: first, a vector potential is obtained iteratively, next the new
mesh results from (a time-integration of) the gradient field of that potential.
For actual flow computations this may be quite expensive. It is not always
necessary to strive for exact equidistribution.

2.3.3.4 Geometric Conservation Law
Thomas and Lombard [TL79] were the first to recognize the importance of
a geometric conservation law (GCL) for conservative flow models. Their
context is a domain with moving boundary, but it equally applies to moving
mesh approaches in general. Consider an arbitrary volume element A(t) =
{x(ξξξ, t) |ξξξ ∈ Ac} mapped from some reference element Ac ⊂ Ωc. The change
of its area over a certain time is equal to the area swept by its boundary:

d
dt

∫
A(t)

dx =
∫

∂A(t)
ẋ · n dS. (2.81)

A change of coordinates to ξξξ introduces the Jacobian and application of the
divergence theorem to the right hand side then yields:∫

Ac

d
dtJ dξξξ =

∫
Ac

(∇ · ẋ)J dξξξ. (2.82)

This holds for arbitrary volume elements, so we can formulate the differential
form of the GCL:

∇ · ẋ = 1
J

dJ
dt . (2.83)
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The GCL holds for any smooth mesh map, but its discrete variant (DGCL)
is not trivially satisfied. Its differential form allows for coupling it with the
physical PDEs; we discuss this further in the context of ALE methods in
Section 2.4.1.

Most research on the GCL is motivated by free surface problems and mov-
ing boundaries around objects. Still, it applies equally to solution adaptive
meshes. Cao et al. [CHR02] have based a moving mesh method on it. The
size of a volume element should be inversely proportional to the monitor
function, so they change the GCL (2.83) into:

∇ · ẋ = − 1
ω

dω
dt . (2.84)

The combination of (2.83) and (2.84) exactly satisfies multidimensional equidis-
tribution (2.23).

It is more practical to get rid of the total derivative by means of the chain
rule:

∇ · (ωẋ) + ∂ω

∂t
= 0. (2.85)

This scalar equation has no unique solution, but by the classical decomposi-
tion theorem of Helmholtz a continuously differentiable vector field can be
written as the orthogonal sum of the gradient field of a scalar potential and
the curl of another vector field, so we can additionally specify the curl of the
mesh velocity. Cao et al. let

∇× w(ẋ− u) = 0, (2.86)

where w > 0 is some weight function and u is a velocity field that ẋ should
align with. They prove that due to orthogonality of the divergence and curl in
(2.85) and (2.86), the unique solution can also be found from the minimization
of the following functional, which combines equidistribution and alignment:

IGCL(ẋ) :=
∫

Ω

∣∣∣∇ · (ωẋ) + ∂ω

∂t

∣∣∣2 +
(ω
w

)2
|∇ × w · (ẋ− u)|2 dx, (2.87)

completed by the boundary condition:

ẋ · n = 0 on ∂Ω. (2.88)

The above GCL-based method is a generalization of several others. The La-
grangian method (Section 2.3.3.1) results when the alignment field is set to
the physical flow’s velocity and adaptivity is disabled (ω = 1).

The MFE methods (Section 2.3.3.2) use a very different functional (2.71),
but similar to the GCL approach, it obtains the mesh by a minimization over
ẋ and has a strong relation with the Lagrangian approach.

The deformation method (Section 2.3.3.3), finally, results when no partic-
ular alignment field is used, i.e., u = 0, and w = ω. Instead, w = 1 is a better
choice, as it produces a mesh that is free of rotation (∇× ẋ = 0).
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Cao et al. consider several approaches for finding the minimum of the
functional (2.87) and find a direct finite-element minimization of the func-
tional most suitable. The velocity field ẋ is determined at several intermediate
time steps in [tn, tn+1], after which ẋ is integrated by Runge-Kutta steps.

They test their method on prescribed monitor functions, i.e., no underlying
physical PDEs. The discrete Jacobian value at each cell differs at most 30%
with the value prescribed by exact equidistribution. The experiments also
show that the GCL-based approach has the same disadvantages as all velocity-
based approaches: when flowing along with the physical flow (u 6= 0), mesh
cells can become very skewed. Unless a good intuition for the velocity field
u exists, they recommend setting it to zero. The same authors developed the
location-based MMPDEs (Section 2.3.2.7) in which the smoothing effect of the
elliptic Euler-Lagrange equation applies to the mesh points x directly, instead
of to the mesh velocities ẋ; in the end they seem to prefer the MMPDE to the
GCL approach.

Time-dependent applications
Recently, the GCL-based approach has gained renewed attention in work by
Baines and coworkers [BHJ05, BHJJ06]. They use it to solve general time-
dependent PDEs (2.68) on a time-dependent domain Ω(t). The solution-
dependent monitor function is rescaled to a time-dependent monitor ω(q, t)
such that it satisfies the equidistribution principle:

ωavg(q(x, t), t) · |A(t)| = cA, (2.89)

where |A(t)| is the area of a mesh cell that moves in time and ωavg is the
averaged monitor on that cell and cA is time-independent. This is a generalized
form of equidistribution principle (2.20). Also note that the monitor function
now has an explicit dependence on the solution q, as opposed to the original
form ω(x). Baines et al. solve the mesh movement by finite elements, so they
use a weak form, now called the scale-invariant conservation principle:∫

Ω(t)
ψ(x, t)ω(q(x, t), t) dx = c0(ψ), (2.90)

where the test function ψ(x, t) has local support ∆Ω and the constant c0(ψ) is
again time-independent.

The time derivative of the monitor ω can be expressed in terms of the
solution:

∂ω

∂t
= ∂ω

∂q

∂q

∂t
. (2.91)

The conservative form of the GCL (2.85) now gets coupled to the physical
PDE:

∇ · (ωẋ) = −∂ω
∂q
L(q). (2.92)

Just like Huang and coworkers the authors use an irrotational mesh velocity
(ẋ = ∇φ). The original PDE is transformed into ALE-form (2.94), which we



42 2. An Overview of Mesh Adaptivity

�
�
�

�
�
�

���
���
���

���
���
���tn+1

Qn

j+ 1
2

1. Finite volume ALE step

Qn

j+ 1
2

xj

tn+1

tn

t̃

xj+1

2. Finite volume step on fixed mesh
1. Move mesh, interpolate solution

F n
jF n

j+1− ẋq F n
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Figure 2.6 ALE formulation versus solution interpolation for finite volumes in 1D. The ALE
formulation of a PDE incorporates the mesh velocity into the flux.

discuss in Section 2.4.1. We refer to the original publication [BHJJ06] for the
weak forms of the mesh velocity PDE (2.91) and physical PDE (2.94) and their
finite element solutions.

The results for compressible fluid problems [WBG05] appear very smeared,
but this is apparently due to the first-order HLLC-solver. Recent work on
phase-change problems [BHJM09] shows well-adapted meshes and second-
order accurate results.

2.4 R - R E F I N E M E N T: CO U P L I NG W I T H P H YS I CA L P D E S

The solution of time-dependent PDEs using any of the preceding moving
mesh approaches requires the mesh equations and physical PDEs to be com-
bined in one way or another. The moving mesh cells move ’underneath’ the
solution manifold on the physical domain, so the discrete solution values at
the nodes need to be updated accordingly. Two approaches can be distin-
guished. The first incorporates the mesh velocity into the physical PDEs.
The time integration of the new PDEs applies the change in solution due
to physical differential operators and the mesh movement in one step. The
second approach moves the mesh one step while ’freezing’ the physical time
and then interpolates the solution onto the new mesh nodes. The second
step then ‘freezes’ the nonuniform mesh points and integrates the original
physical PDEs for one time step. The following two sections discuss these
approaches. Tang [Tan05] calls them ’interpolation-free’ and ’interpolation’
approaches, respectively, in his review paper. Figure 2.6 shows the two ap-
proaches schematically for a finite volumes approach in one dimension.

2.4.1 Transformed physical PDEs

The mesh velocity is now incorporated into the physical PDEs. The velocity-
based approaches in Section 2.3.3 have a mesh velocity ẋ by definition. The
location-based approaches in Section 2.3.2 solve their generator equations for
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x in an iterative way. The difference between the old and new points could
be used as an approximate velocity:

ẋ ≈ xnew − xold

∆t , (2.93)

although this is less common.
Again consider the general PDE (2.68). Using the chain rule for the time

derivative of solution q(x(ξξξ, t), t), we get the Lagrangian form of this PDE:

q̇ −∇q · ẋ = Lq. (2.94)

This approach is called an arbitrary Lagrangian Eulerian (ALE) method. The
method is not fully Lagrangian, because the mesh velocity is not by definition
equal to the flow characteristics (as in Section 2.3.3.1). It is also not Eulerian,
because it uses a moving reference frame.

Coupled vs. uncoupled
Most velocity-based approaches and the ones using MMPDEs combine the
mesh velocity equations with the physical PDEs, i.e.:{

q̇ = ∇q · ẋ + Lq,
ẋ = . . . , (2.95)

where the right hand side for ẋ depends on the chosen moving mesh ap-
proach. By the method of lines (MOL), spatial derivatives are first discretized
using finite differences or finite elements. This results in a system of ordinary
differential equations (ODEs) for the time integration. The natural time scale
of the mesh movement may be very different from the one of the physical
solution, which makes the coupled nonlinear ODE system extremely stiff.

The same can happen for the location based methods. Consider for exam-
ple one of the equidistribution approaches. When discretized, this forms an
algebraic equation for the mesh point locations. Together with the ODEs for
the physical solution, this forms a system of differential algebraic equations
(DAE). More specifically, an index-2 DAE system as Li et al. [LPR99] show.
This means that the discretized equidistribution equations need to be differ-
entiated twice before fitting into one ODE system with the physical PDEs.
Again, a very stiff system is the result.

The stiffness of the coupled system can be reduced by a relaxation of the
time scale. In the first design of their MMPDEs, Huang et al. [HRR94]
already included a scalar time relaxation parameter τ . For example, their
(one-dimensional) MMPDE6 is relaxed as follows:

∂2ẋ

∂ξ2 = − ∂

∂ξ

(
ω
∂x

∂ξ

)
time−−−−−→

relaxation

∂2ẋ

∂ξ2 = −1
τ

∂

∂ξ

(
ω
∂x

∂ξ

)
. (2.96)

Originally, the authors claim that the numerical methods are not very sensitive
to choice of τ . Recently, though, Soheili and Stockie [SS08] show that for
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solutions that have a natural time scale which changes significantly over time,
a constant value for τ can result in bad mesh adaptation. When τ is increased,
the stiffness decreases, but the adaptation becomes less sharp (the mesh points
may in fact ‘lag behind’). When τ is decreased, the results are more accurate,
but the system becomes stiffer. They propose a time dependent relaxation
parameter τ (t) which is specific for the chosen MMPDE. This new approach
is very effective, although it is still specific for self-similar blow-up problems
only.

Contrary to their coupled approach in one dimension, Huang et al. decou-
ple the mesh and physical PDEs for two-dimensional problems [HR99]. The
two systems are solved alternately, where (2.93) defines the mesh velocity for
use in the ALE form (2.94). An argument for the relaxation of mesh generator
equations is the fact that the mesh point locations need not be solved up to
the same accuracy as is desirable for the physical PDEs.

Discrete Geometric Conservation Law
Decoupled or not, in the transformed ALE formulation of PDEs the stability
of numerical solvers may not be guaranteed. For finite volume methods, the
crucial point is the time integration of the fluxes across the moving cell edges.
Farhat and coworkers have investigated the effects of satisfying a discrete ge-
ometric conservation law (DGCL) on a method’s stability for several types
of PDEs. For the nonlinear Euler equations they prove that the satisfaction
of a DGCL is a necessary and sufficient condition for a moving grid numer-
ical scheme to maintain the nonlinear stability of its fixed grid counterpart
[FGG01]. They also prove, though, that satisfaction of a DGCL is neither a
necessary nor a sufficient condition for a scheme to maintain the order of
time-accuracy of its fixed-grid counterpart [GGF03].

Consider a system of PDEs in conservation form, i.e., Lq = ∇·F(q), where
F is the multidimensional flux tensor. The ALE formulation (2.94) can be
brought back close to conservative form by multiplying it by the Jacobian
and rewriting it to:

(J̇q) + J∇ · (F(q)− ẋq) = 0. (2.97)

Integrating this over a computational cell Ac and using the Jacobians to trans-
fer to the associated physical cell Aj,k yields:

d
dt

∫
Aj,k(t)

q dx +
∫

∂Aj,k(t)
(F(q)− ẋq) · n(t) ds = 0. (2.98)

Notice that the second integral for the fluxes across the edges is now time-
dependent. The time-discretization has to include some way of averaging
three quantities: edge lengths |∂Aj,k(t)|, edge normals n(t) and velocity of
the edge ẋ(t). These averages are marked by lines above them hereafter.

A DGCL is specific for the discretization scheme used. It follows from the
requirement that a constant solution should be reproduced exactly by the
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discretized scheme. Consider for example, the Euler–Backward scheme:

∣∣An+1
j,k

∣∣qn+1
j,k =

∣∣An
j,k

∣∣qn
j,k − ∆t

4∑
l=1

∣∣∂Aj,k,l

∣∣Φ(qn+1
j,k ,q

n+1
j,k,l,nj,k,l, ẋ · nj,k,l), (2.99)

where Φ defines the numerical flux of the second integrand of (2.98), which
is integrated across all four edges of the cell. The DGCL follows after some
rewriting (cf. [FGG01]):

∣∣An+1
j,k

∣∣− ∣∣An+1
j,k

∣∣ = ∆t
4∑

l=1

∣∣∂Aj,k,l

∣∣ ẋ · nj,k,l. (2.100)

Notice how this looks like a discretized version of the original GCL (2.81).
Again, this may be different for other discretization schemes. The choice for
the averaged quantities determines whether the scheme violates its DGCL or
not. If so, spurious oscillations may occur, yet the scheme may still main-
tain its order of time-accuracy. Recently, Mackenzie and Mekwi [MM07]
investigated a θ-time integration method on contracting and expanding one-
dimensional domains, for which they use an adaptive parameter θ to satisfy
the DGCL, thus achieving unconditional stability and asymptotic second-
order accuracy.

2.4.2 Transformed solution
The stiff, combined system can be avoided by solving the mesh equations sep-
arately from the physical PDEs and not incorporating the mesh velocity into
them. The new mesh locations are computed first, after which the discrete
solution values are interpolated onto the new mesh. Next, a finite volume
step evolves the solution while keeping the mesh points fixed. This is shown
in the right scheme in Figure 2.6.

For systems of conservation laws, the interpolation step should maintain
the conservation property. Tang and Tang [TT03] presented a conservative in-
terpolation based on mesh velocities. Later Han and Tang proposed a slightly
modified formulation based on a geometrical interpretation. Both maintain
global conservation in the following discrete sense:∑

j,k

∣∣∣A[ν+1]
j,k

∣∣∣Q[ν+1]
j+ 1

2 ,k+ 1
2

=
∑
j,k

∣∣∣A[ν]
j,k

∣∣∣Q[ν]
j+ 1

2 ,k+ 1
2
.

We refer to Chapters 3 and 4 for a full specification of the interpolation.
The subsequent time integration step—e.g., by finite elements or finite

volumes—does not need to be modified for the mesh movement whatsoever.
It just advances the solution one time step on a nonuniform mesh. If the inter-
polation step is similar to the finite volume step, the decoupled ALE approach
and the interpolation approach are practically equal. The conservative inter-
polation (see (3.13) and (4.32)) is in fact a finite volume step with the artificial
flux ẋ ·∇q, which is exactly the correction flux in the ALE formulation.
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2.5 R - R E F I N E M E N T: CO N T RO L BY M O N I TO R F U NC T I O N S

The generator equations of the various approaches for adaptive mesh move-
ment are diverse, as we showed in Section 2.3. Most of them have some
solution-dependent weight function in common, though, which is generally
called a monitor function.

A loose classification of monitor functions could be ’practical–theoretical’.
Many publications on solution adaptivity define monitor functions in terms
of solution gradients or curvatures. These monitors are generally applied
to time-dependent PDEs where solutions are unknown and error analysis is
complicated. The more theoretical studies of monitor functions define them
in terms of a posteriori error estimates. Generally, these monitors are applied
to prescribed solutions. The error estimate is then an interpolation error,
which makes analysis more feasible.

2.5.1 Monitoring based on solution gradients
Arc length monitoring
The unit of arc length of a scalar solution in one dimension is given by its
first derivative: ds :=

√
dx2 + dy2 =

√
1 + (dy/dx)2dx. The arc length(-based)

monitor is named after it:

ω(q) :=
√

1 + αq2
x. (2.101)

The floor value of 1 prevents mesh cells of infinite size and the parameter α
has to be chosen by the user depending on the behavior of the solution q. The
form shown above is very basic, but variants of it are used in the majority of
publications on solution adaptivity.

Second-order derivatives
Strictly speaking, it is the curvature or second derivative of a function that
forms the main numerical error of linear approximations. It is logical to
think of a curvature-based monitor function, e.g.,

ω(q) := 4
√
α + q2

xx. (2.102)

This is the monitor that Blom and Verwer [BV89] compare to an arc length
monitor like (2.101). The results for the curvature monitor are indeed more
accurate, for some examples significantly so. However, the ODEs for the
semi-discretized coupled Lagrangian system (see page 43) are very hard to
solve numerically. The Newton iteration repeatedly fails to converge, after
which a restart with significantly smaller time steps needs to be made. The
coordinate lines for the curvature monitor are often oscillatory, in spite of
the applied mesh smoothing, whereas the arc length monitor shows smooth
mesh movement for all cases.

We have also experienced that the smallest oscillations in a numerical so-
lution immediately attract mesh points with a curvature monitor, after which
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the oscillations can grow even more. A monitor based on solution gradients
does not suffer from this problem.

For a shock wave, or jump in the solution the arc length monitor will yield
refinement in the shock, whereas the curvature monitor will yield refinement
at the start and end of the shock. In practice—especially with monitor filtering
(Section 2.5.5)—these regions will overlap. Therefore, first order derivatives
are more viable monitor components for solution adaptivity in flow simula-
tions.

The combination of both arc length and curvature monitors is also used,
for example by Dvinsky [Dvi91] and Tang et al. [TTZ03]. Di et al. [DLTZ07]
add the curvature of a level set function to the monitor in the context of two-
phase flows. This is not motivated by truncation errors, though, but by the
need to refine at places where the interface between the two media develops
features such as corners and cusps.

Blow-up problems can be treated in a fundamentally different way. Budd
et al. [BHR96] study blow-up problems where the solution—despite being
unknown—has a known built-in scaling-invariance. They choose the monitor
function such that the resulting MMPDE remains invariant under the same
scaling, namely:

ω(q) := qp−1, (2.103)

where p comes from the source term in the original PDE: qt − qxx = qp. If
the natural time scale of the MMPDE to reach equidistribution is now at least
smaller than the natural time scale of the evolution of the solution structure,
then the mesh can keep up even during the faster and faster growth of the
implosion. An arc length or curvature monitor would stop adapting after a
certain time.

Automated balancing of monitor values
The standard arc length monitor performs well on solutions with only one
distinct feature, but for a range of solution features that differ in size and over
time it quickly falls short. As mentioned before, the necessity to properly
choose parameter α for each new problem is inconvenient. More importantly,
for unsteady problems, the solution features will often change over time, to
such an extent that the original choice for α becomes unsuitable.

Beckett and Mackenzie [BM00] were the first to propose a solution-depen-
dent, hence time-dependent parameter α(q). Both Huang [Hua01a] and Van
Dam and Zegeling [vDZ06] include a dimensionless parameter β ∈ (0, 1) that
defines the relative amount of refinement. The balanced monitor function
takes the following form in one dimension for a scalar equation:

ω(φ) := (1− β)
β

α(φ) + φ, (2.104)

where the monitor component φ is generally, but not necessarily, a solution
gradient and the time-dependent scaling parameter α(φ) is given by the av-
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erage value:

α(φ) := 〈φ〉 =
∫

Ωc

φdξ. (2.105)

We now show that β defines the relative amount of refinement initiated by
the monitor component φ. We integrate the monitor function (2.104) over the
entire reference domain:∫

Ωc

ω dξ =
∫

Ωc

1− β
β
〈φ〉dξ +

∫
Ωc

φdξ.

The parameter β is a constant, hence:

β

∫
Ωc

ω dξ = (1− β)
∫

Ωc

〈φ〉dξ + β
∫

Ωc

φdξ (2.106)

= (1− β)
∫

Ωc

φdξ + β
∫

Ωc

φdξ.

Finally, we see that β is the ratio of the integral over the nonzero values of φ
and the total monitor function:

β =
∫

Ωc
φdξ∫

Ωc
ω dξ

. (2.107)

By equidistribution, ω is inversely proportional to the mesh density 1/J .
Therefore, the ratio (2.107) is an indicator for the relative amount of mesh
points in regions of large φ.
We have found that the standard summation of multiple components:

ω :=
P∑

p=1
ω(φp)

can lead to unexpected and unsatisfactory results. The problem is that a
monitor component with a very small average value and at the same time
very large maximum value will dominate all other monitor components. It
makes sense to make sure that the values for all monitor components are in
the same range before summing them:

ω(φ) := (1− β)〈φ〉 + βφ
(1− β)〈φ〉 + βmaxΩc

φ
. (2.108)

Note that for a single monitor component (P = 1) the original form (2.104)
and this new balanced form are equivalent, due to scaling invariance of
the monitor function: the adaptive mesh that is the solution to one of the
equidistribution-based generator equations for a given monitor ω is the same
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as the mesh for that monitor multiplied by a constant: c · ω. We elaborate on
this monitor balancing in Chapter 4.

Extension to multiple dimensions is straightforward, either by taking the
norm of the gradient vector (nondirectional) or by taking respective spatial
derivative in each direction (directional), see Section 2.5.2.

2.5.2 Directional monitoring
The monitor functions discussed so far are all scalar functions, which for
large monitor values results in attraction of mesh points from all surrounding
directions. In view of the truncation errors it is sensible to align mesh lines
with user-defined vector fields. Besides, different degrees of adaptivity in
different direction is beneficial. Section 4.4.4 contains a motivating example
for this. The term ‘directional’ means the same as ‘anisotropic’, which is often
used in research on h-refinement. Similarly, ‘non-directional’ and ‘isotropic’
have the same meaning.

Mesh alignment
Giannakopoulos and Engel [GE88] are the first to give a variational formula-
tion that involves mesh alignment. Brackbill [Bra93] uses the same approach,
but with a solution-adaptive weight. The alignment or directional functional
is now:

Id :=
∫

Ω

1
ω

(
(a×∇ξ)2 + (b×∇η)2)dx, (2.109)

where a and b are user-defined vector fields. In two dimensions, a cross
product is defined as follows:a1

a2
0

×
b1
b2
0

 :=

 0
0

a1b2 − a2b1

. (2.110)

The square of a vector is just its 2-norm squared: a2 := ‖a‖2
2 = a · a. The

solution to the associated Euler–Lagrange equations is the mesh map for
which the cross products vanish when the contravariant normal ∇ξ aligns
with vector field a and similar for the other direction. Figure 2.4 depicts this
normal vector of the iso-lines of ξ. In a direct, covariant setting, the logically
horizontal edges (xξ, η = constant) will align with b⊥, the vector field that is
perpendicular to b. In a three-dimensional setting where c is the third vector
field, xξ aligns with b× c, xη aligns with a× c and xζ aligns with a× b.

When the direction of∇ξ aligns perfectly with its vector field ((a×∇ξ)2 = 0),
the directional functional (2.109) is minimized with reference to ξ no mat-
ter what the size of that same normal vector ∇ξ is. Hence, the system has
no unique solution. Therefore, alignment is generally combined with the
weighted smoothness functional (2.30):

IBrackbill := (1− λ)Is + λId, (2.111)

for some constant λ ∈ (0, 1). Brackbill demonstrates the combined functional
on unsteady ideal magnetohydrodynamics in two dimensions. The alignment
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is defined by the normalized magnetic field and its orthogonal counterpart:
a := B, b := B⊥. As the two fields are perpendicular, the resulting mesh also
has a good orthogonality, but this does not hold for arbitrary fields a, b (and
c). Glasser et al. [GLK05] give some examples of this for prescribed vector
fields. To limit the mesh skewness, a third functional can always be included,
as Brackbill and Saltzmann did, see (2.33).

Finally, note that the choice of vector fields requires some advance knowl-
edge on the solution. In the case of Brackbill’s magnetic reconnection exam-
ple, the magnetic field was more ‘horizontal’ than ‘vertical’, so alignment of
∇ξ—as opposed to ∇η—with it was the right choice. For a more vertically
directed magnetic field, the choice for a and b would have to be switched, to
prevent strong rotation of mesh cells.

Directionality

The concept of directionality is more general than alignment. It involves mon-
itor matrices that are not equivalent to a scalar monitor: G 6= ωI . Cao et al.
[CHR99] have investigated the effect of directional monitoring in terms of the
matrix’s eigendecomposition.

Consider the functional (2.41), which incorporates the MMPDE, harmonic
mapping and variable diffusion approaches. For the moment, take G1 =
G2 = G. This monitor matrix can be written in terms of its eigenvalues and
normalized (orthogonal) eigenvectors:

G = λ1vT
1 v1 + λ2vT

2 v2. (2.112)

The Euler–Lagrange equations in a v1,v2-reference frame are of the following
form:

∂2ξ

∂v2
1

+
(λ1

λ2

) ∂2ξ

∂v2
2

+ ‘2D effects’ = 1
λ1

∂λ1

∂v1

∂2ξ

∂v2
1
, (2.113a)

∂2η

∂v2
1

+
(λ1

λ2

) ∂2η

∂v2
2

+ ‘2D effects’ = 1
λ1

∂λ1

∂v1

∂2η

∂v2
1
, (2.113b)

where the directional derivatives are defined as ∂/∂vi := vi · ∇, and the
authors collect the not so well understood terms in the ‘2D effects’. We refer
to the original paper [CHR99] for more details. Using Green’s function, the
authors show the role of the source terms in the above equations. An increase
of λ1 in the direction of v1 followed by a decrease results in compression of
both ξ and η in the same direction v1. The same holds for variations in λ2
in the v2 direction. The mesh refinement will definitely have preference for
these two directions, but no strict alignment of mesh lines occurs. Also, the
mesh cells may become very skew, since both ξ and η are compressed equally.
The second term in (2.113a) tends to space coordinate lines equally, hence it
has a strong smoothing effect on the mesh when λ1/λ2 is large.
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A monitor matrix inspired by the arc length monitor is defined by its
eigendecomposition (2.112) with:v1 := v = ∇q/|∇q|, v2 := v⊥,

λ1 :=
√

1 + |∇q|2, λ2 := a function of λ1.
(2.114)

Winslow’s non-directional mesh adaptation (Section 2.3.2.3)has λ2 = λ1 = ω
and it has no preference for any direction. This results in perfectly symmetric
meshes for symmetric functions ω. A harmonic mapping (Section 2.3.2.6)
results for λ2 = 1/λ1. The interplay of the elliptic terms and the other two-
dimensional effects is so much intricate that the resulting mesh remains hard
to predict, though.

Recently, Huang [Hua06] provided a new motivation for the equidistribu-
tion and alignment conditions in terms of monitor matrices, which he intro-
duced in [Hua01b]. Firstly, the singular value decomposition (SVD) of the
Jacobian matrix J controls the change in size, shape and orientation of local
cells by the mesh map. The first two are dictated by the singular values σi,
the latter by the left SVD vectors ui. Secondly, the eigenvalues of the matrix
J−TJ−1 are equal to σ−2

i and its eigenvectors are the same ui. Therefore,
finding (the eigendecomposition of) J−TJ−1 gives total control over the mesh
adaptation. Finally, it turns out that satisfying the following relation allows
one to control the adaptation entirely through a monitor matrix M :

J−TJ−1 =
( σ

|Ωc|

)− 2
n

M (x), (2.115)

where M is n× n symmetric and positive definite and

σ :=
∫

Ω
ρ(x) dx, ρ :=

√
det(M ).

The control over size is through a multi-dimensional generalization of equidis-
tribution, obtained by taking the determinant of (2.115):

ρJ = σ

|Ωc|
= constant. (2.116)

Note that for Winslow’s nondirectional method ρ = ω. Next, relation (2.115)
is equivalent with J TMJ = (σ/|Ωc|)

2
n I , in other words: all its eigenvalues

are equal. This is only the case when their arithmetic mean is equal to their
geometric mean, or in terms of the matrix itself:

1
n

tr
(
J TMJ

)
= det

(
J TMJ

) 1
n . (2.117)

Huang shows that this alignment condition is equivalent to J−TJ−1 = θ(x)M (x)
for some scalar function θ, in other words: the eigenvectors and ratios of
eigenvalues of J−TJ−1 are completely determined by the monitor matrix M .
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Therefore, the equidistribution and alignment conditions (2.116) and (2.117)
are necessary and sufficient for total control over size, shape and orientation
of mesh elements.

Now that the role of the monitor matrix M is clear, its definition based on
error estimates is discussed in the next section.

2.5.3 Error-based monitoring

Huang [Hua06] has performed a thorough analysis of local interpolation error
estimates, generalizing over the smoothness of the functions, the order of
interpolation, dimensionality of the domain and the p-norm. Basically, the
resulting monitor matrix can be based on gradients:

M := rani,1(ρ)
[
I + 1

α2
ani,1
∇q∇qT

]
, (2.118)

where the scaling function rani,1 of the determinant ρ :=
√

det(M ) enables
equidistribution (2.116) and α2

ani,1 is similar to the solution-dependent α(φ)
in (2.105). Alternatively, the monitor matrix can be based on second-order
derivatives:

M := rani,2(ρ)
[
I + 1

α2
ani,2
|H(q)|

]
, (2.119)

where H(q) is the Hessian matrix with second-order derivatives of solution
variable q.

The above two monitors are anisotropic (directional), which greatly im-
proves the results when the solution has strong anisotropic features. Alterna-
tively, isotropic (nondirectional) variants of the above monitors can be used
(see also [HS03]):

M := ρ 1
n I , (2.120)

where the determinant ρ contains either the norm of the gradient or Hessian,
or even higher-order derivatives.

The numerical results for linear interpolation are best when the Hessian-
based monitor is used, but only for prescribed solutions q(x, t). For actual
PDEs, no comparison between gradient-based and Hessian-based monitors is
shown, but at least the anisotropic monitor functions always outperform the
isotropic ones.

2.5.4 Mesh qualities

The elliptic generator equations have a built-in smoothness that tends to pro-
duce good meshes. However, the stronger the adaptivity becomes, and the
more anisotropic it is, the more stretching and skewing is applied to the mesh.
It is possible to add mesh quality measures to the variational minimization
problems that compete with the alignment and adaptivity measures.
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Brackbill and Saltzman originally included an orthogonality measure (Sec-
tion 2.3.2.5), which we repeat here for completeness:

I ′o :=
∫

Ω
(∇ξ · ∇η)2J3 dx. (2.121)

The alignment condition (2.117) can be used as a measure for skewness when
no alignment is prescribed (M := I). It is not exactly satisfied, but the ratio
of the left and right hand sides should be as close as possible to the minimal
value of one:

Isk :=
∫

Ω

[
tr(J−1J−T )

ndet(J−1J−T ) 1
n

] 2
2(n−1)

dx, (2.122)

We have found that for finite volume solvers, the possible skewness of mesh
cells is not that big a problem. The net fluxes through cell edges are namely
always projected onto the edge normal. The stretching factor between neigh-
boring cells appears more important, which is controlled by balanced moni-
toring and monitor filtering.

2.5.5 Monitor filtering
Monitor filtering—or monitor smoothing—is the application of a low-pass
filter to the discrete monitor values in order to spread the mesh refinement
somewhat. In two dimensions, the following Gaussian filter is common:

ωfilter
j,k := 1

4 ωj,k + 1
8 (ωj−1,k + ωj+1,k + ωj,k−1 + ωj,k+1)

+ 1
16(ωj−1,k−1 + ωj+1,k−1 + ωj−1,k+1 + ωj+1,k+1). (2.123)

The regions that require mesh refinement are often very thin, for example
across shock lines. Adjacent mesh cells can easily be a factor of O(10) larger,
according to equidistribution. In other words: the stretching factor of adja-
cent mesh cells ∆xj+1/∆xj can be very large (or very small, evidently). For
robustness it is better to have a smooth transition between the large cells
and the extremely fine cells, which is implicitly accomplished by filtering the
monitor values. The filter (2.123) is generally applied several times.

Veldman and Rinzema [VR92] show that the accuracy of a discrete solution
is not very well predicted by the local truncation error. In that context they
also show how large stretching factors result in a strongly stiff problem that
easily becomes unstable. Verwer et al. [VBFZ89] keep the stretching ratio
bounded:

κ

κ + 1 ≤
∆xi+1

∆xi
≤ κ + 1

κ
,

where κ is user-defined, e.g., κ = 2. They do so by a spatial smoothing of the
discrete monitor values through diffusion. Huang and Russell [HR97b] do
the same in two dimensions: an artificial diffusion term ∆ξω that smoothens
the monitor. Its effect is related to the above discrete filter (2.123).
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Many authors report the use of monitor filtering, e.g., [BMRS01, HZZ02,
TTZ03]. However, the increased smoothness of our balanced monitor func-
tions makes the filtering less necessary; we limit it typically to 0, 1 or 2
applications.

2.6 LO CA L O R H - R E F I N E M E N T

r-Refinement—or adaptive mesh refinement (AMR)—is often compared with
h-refinement, as both have the same goal—solution-adaptive improvement
of resolution to achieve higher accuracy—and both can be integrated with
finite volume- or element-based solvers. This section provides no complete
overview of all research that involves h-refinement, but it does identify the
limitations and advantages of both h- and r-refinement. The following three
subsections discuss the same three aspects of h-refinement as we did for r-
refinement in Sections 2.3–2.5. As the (dis)advantages of both methods are
mostly disjoint, the suggestion for a hybrid combination of the two is obvious.

2.6.1 Refinement and coarsening

The formulation of local refinement itself is fairly straightforward, as opposed
to the diverse approaches for mesh movement in Section 2.3. A mesh cell can
be split into a number of smaller cells, generally two in each direction. A
rectangular cell (in two dimensions) thus gets divided into four smaller cells.
On unstructured meshes composed of triangles the same is possible.

Unsteady physical problems have changing flow phenomena over time, so
locally refined cells may need to be brought back to their original state. This
is called coarsening of mesh cells. Both the refinement and coarsening can
be applied recursively, so the locally refined cells form a nested set of dis-
cretization levels. The initial mesh could be called the ‘level 0’ mesh. Most
implementations of h-refinement allow the user to set a maximal refinement
level, which puts an upper limit to the total number of mesh cells. Due to
the recursive nature of the refinement, this number may become unexpect-
edly large anyway, resulting in a very long running time. Proper refinement
criteria should prevent this.

Berger and coworkers have done extensive research on AMR. They allow
for arbitrary rectangular regions in the domain to have increased refinement-
levels, as long as the rectangles remain properly nested [BC89]. Van der
Holst and Keppens [vdHK07] call this patch-based refinement levels. On the
opposite side, the most structured form of nested refinement is when a cell
is split into 2n cells, such that a perfectly nested and symmetric tree results.
A hybrid form that is block-structured, but allows for anisotropic refinement
and incomplete grid families (equivalent to hanging nodes) combines the best
of both approaches with an increased efficiency of up to 30% on example
problems. Trompert [Tro94] has investigated isotropic local grid refinement
for various problems. Systems of linear PDEs allow for proper error analysis
and it turns out that there can indeed be a big difference between local error
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estimates (e.g., second-order derivatives) and global errors. When applied to
unsteady ground water flow PDEs, a curvature monitor is used [TVB93].

The virtually unlimited possible accuracy makes local refinement an ex-
tremely powerful method, especially for detecting local phenomena. Mesh
movement, on the other hand, aligns with flow features and thereby reduces
dispersive errors, e.g., near wave fronts.

2.6.2 Embedding local refinement into the physical PDE solver

The subdivision of mesh cells is extremely pragmatic and intuitive. The in-
corporation of this refinement into a physical PDE solver requires some addi-
tional measures, though. Firstly, the addressing of discrete cells and solution
values can no longer be done through a standard matrix-like data structure,
but this is fairly easily remedied with nested data structures.

Secondly, in the case of flow problems flux functions need to be evaluated
across cell edges (across faces in three dimensions), but neighboring cells will
often have different levels of refinement. The total flux from the large cell
is spread over its neighboring smaller cells. In the opposite direction, all
flux values from the smaller cells are summed up to one total flux into the
larger cell. Generally, neighboring cells are allowed to differ by at most one
refinement level, such that no extremely large differences in local resolution
occur. This is called the proper nesting condition.

Thirdly, and strongly related to the previous point, the finer cells at higher
levels of refinement require a smaller time step, dictated by the stability cri-
terion. As a result, local time stepping is an obvious choice. For one time
step at some coarse level, multiple time steps are made at the finer level.
In order to maintain global conservation for conservative flow problems, the
total flux into the coarser cell is corrected with the more accurate fluxes over
the smaller time steps from the finer neighboring cells. Local time stepping
greatly improves the efficiency of the solver and it can also be applied to
r-refinement methods (see, e.g., Tan et al. [TZHT04]).

2.6.3 Refinement criteria

Refinement and coarsening should be initiated by some error indicator ex-
ceeding a given tolerance value, as opposed to the relative monitor values
used for r-refinement. In the equidistribution-related approaches in Sec-
tion 2.3, only the relative differences in monitor values was important for mesh
adaptions: the mesh was invariant under monitor scaling. For h-refinement,
the error indicator is used at each cell independently and at all refinement
levels in the same way.

A well-known error indicator is obtained through Richardson interpola-
tion. Solutions values are averaged to a one level coarser mesh and then ad-
vanced one time step. The result is compared to the solution value obtained
by first advancing and then averaging. Bell et al. [BBSW94] additionally in-
clude a spatial error measure to capture stationary features such as contact
discontinuities, as these are hardly detected by the Richardson estimate.



56 2. An Overview of Mesh Adaptivity

Figure 2.7 Schlieren plot for the density in the HD22RM problem.

In finite element methods, the inherent a posteriori error estimates could be
used, but this depends on the complexity of the physical PDEs. For example,
for the unsteady Euler equations no good error estimates are available, so
Van der Vegt and Van der Ven use equidistribution-like weights based on
solution variables and total pressure loss [vdVvdV98] complemented by a
local vorticity sensor and a grid anisotropy sensor [vdVvdV02].

2.6.4 hr-refinement
We believe that the hybrid combination of h- and r-refinement could be ex-
tremely powerful. The alignment of mesh cells with shock lines and other
flow features greatly reduces local truncation errors, but in some cases the
fixed number of mesh cells in r-refinement methods is too big a limitation.

The need for hr-refinement: an example
We consider the two-dimensional hd22rm example problem [vdHK07] from
hydrodynamics, details on the physics and the solver used can be found in
Chapter 4. The domain is a long tube of size [0, 5]× [0, 1]. At the initial time,
a vertical Mach-10 shock wave is located at x = 1/10 and ahead of it lies a
contact discontinuity (CD) at an angle of π/3 with tenfold lower density:

[ρ,v, p] =

 [ 8, 8.25, 0, 116.5], if x ≤ 0.1,
[ 1.4, 0, 0, 1], if x > 0.1 and tan(π/3)(x− 1) ≤ y,
[0.14, 0, 0, 1], otherwise.

The shock moves rightward and hits the contact discontinuity after some
time. It then gains speed in the lower-density medium and reflects off the
top and bottom walls. A more detailed discussion is given in the original
paper. Figure 2.7 shows the overall solution at t = 0.3. The rightmost struc-
ture is the original shock with its reflections and the distinct line of features
left of it is the perturbed CD. All of these phenomena are well captured by
adaptive methods (both r- and h-). Moreover, the passing shock deposits
additional vorticity on the unstable CD, which produces Richtmyer–Meshkov
instabilities over time. These are small rotational phenomena that can occur
everywhere along the CD. Here lies the problem: in the horizontal direc-
tion mesh cells have concentrated near the CD (and shock), but vertically
the points are needed everywhere along the CD. The result is a more-or-less
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Figure 2.8 The need for hr-refinement. Mesh details for the HD22RM problem at t = 0.12.
Left: total mesh size is 200 × 100 for the 5 × 1-sized domain. Middle: total mesh size
is 200 × 300. Right: r-refinement from left diagram (200 × 100) with h-refinement where
needed.

uniform mesh in the y-direction. The spatial resolution is generally too low
to properly capture the small instabilities. In r-refinement (moving mesh)
methods the only option is to start with a large amount of mesh points in the
y-direction. Figure 2.8 shows a detail of a 200× 100 mesh at an earlier time,
where the horizontal resolution in the shock and CD is much larger than
the vertical resolution. The middle diagram shows the expensive alternative:
a mesh with three times as many points in the y-direction only. Combined
with h-refinement, the cells that are aligned with the CD and shock could
additionally be locally refined, to obtain the same effective resolution in the
y-direction as was already obtained in the x-direction. The rightmost dia-
gram shows this hr-combination where the base grid is the same as for the
r-refinement in the leftmost diagram and on top of that only in the CD and
shocks local h-refinement has occurred.

Related work
Combinations of h- and r-refinement have been investigated occasionally in
the past. Arney and Flaherty [AF90] employ a basic moving mesh approach
that identifies clusters of cells with large errors and moves them along with
the solution features. Subsequently, these cells can be refined recursively.
According to their experiments, the main gain comes from r-refinement.

Capon and Jimack [CJ96] use a two-dimensional mesh movement approach
inspired by equidistribution on an unstructured mesh. The combination with
local refinement yields results that are equally accurate as without local re-
finement, but at lower costs, as the initial mesh needs to have less points. In
the resulting meshes, the refined areas are very similar for both methods, but
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the less demanding regions in the domain have significantly less mesh cells
for the hr-combination.

Lang et al. [LCHR03] use the MMPDE approach (Section 2.3.2.7) for mesh
movement on an unstructured mesh, combined with a finite element solver.
Next, they apply local refinement, based on an estimate of the local dis-
cretization error. The authors show convincing results of the hr-combination,
especially for unsteady problems. The distinguishing difference between pure
h- and hr-refinement is the continuous coarsening and refining in the former
method to keep up with the moving flow features, whereas the latter method
keeps the total number of mesh cells approximately constant over time.

The latter two approaches consider unstructured meshes. Morrell et al.
[MSB07, Mor07] use moving quadrilateral meshes that are refined one level
in an anisotropic way. Hanging nodes are allowed. They report a performance
gain of a factor 9 for several examples. The most sensitive point appears to be
the possibility of oscillations when a shock-like structure passes the interface
between cells of different refinement levels.

2.7 I NG R E D I E N T S O F O U R A DA P T I V E M E T H O D

The great variety of mesh adaptation approaches discussed in this chapter
may be somewhat overwhelming. We now list the approaches that form the
ingredients of our one- and two-dimensional solvers in the following chapters.

We use the direct variant of Winslow’s method (Section 2.3.2.8), with di-
rectional monitor functions (Section 2.5.2). The monitor uses two types of
monitor balancing (within and across components, see page 48) and the com-
ponents are usually solution gradients, and sometimes derived physical quan-
tities (see Section 4.4.3). The mesh generator equations and the physical PDEs
are solved alternately, combined with conservative solution interpolation (Sec-
tion 2.4.2).



One-dimensional Mesh Movement,
Multidimensional Magnetohydrodynamics

3The adaptive mesh movement is demonstrated on one-dimensional (1D) do-
mains in this chapter1. As 1D mesh movement is pretty well understood,
an additional challenge is posed by the application of quasi-two- and three-
dimensional magnetohydrodynamics (MHD). Solutions to these models have
various interesting features that the monitor function should detect auto-
matically. This chapter has three main contributions. Firstly, it shows how
adaptive mesh movement can be easily combined with a PDE solver, in this
case a higher-order finite volume method. Secondly, it demonstrates the ef-
fectiveness of a smooth monitor function that needs little manual fine-tuning.
Thirdly, it shows how the mesh adaptation captures subtle phenomena such
as critical solutions and also led to the discovery of a physical staircasing
phenomenon in the oscillating plasma sheet problem.

3.1 I N T RO D U C T I O N

Many interesting phenomena in plasma fluid dynamics can be described
within the framework of magnetohydrodynamics (MHD). Numerical stud-
ies in plasma flows frequently involve simulations with highly varying spa-
tial and temporal scales. As a consequence, numerical methods on uniform
meshes are inefficient, since a very large number of mesh points is needed
to resolve the spatial structures, such as shocks, contact discontinuities, shear
layers, or current sheets. For the efficient study of these phenomena we need
adaptive mesh methods which automatically track and spatially resolve all of
these structures. The problems considered here come from previous work by
Tóth et al. [TO96, TKB98], Keppens [Kep04], Torrilhon [Tor03], and Zegeling
et al. [ZK01].

Huang et al. [HRR94] prescribe mesh movement by a moving mesh PDE
(MMPDE), which is solved simultaneously with the physical PDEs for one-
dimensional models. Although this avoids solution interpolation, the cou-
pled system may be hard to solve due to differences in time scales and de-
sired error tolerances. For two-dimensional models the MMPDE and physical
PDEs are often decoupled and solved in an alternating way, as Huang and
Russell [HR99] show. Stockie et al. [SMR00] also use an MMPDE-based
decoupled approach for solving one-dimensional hyperbolic systems of con-
servation laws. It is similarly based on the equidistribution principle that
follows from a variational formulation of mesh energy minimization. Tang

1An earlier version of this chapter appeared as [vDZ06]: A. van Dam and P.A. Zegeling. A
Robust Moving Mesh Finite Volume Method applied to 1D Hyperbolic Conservation Laws from
Magnetohydrodynamics. J. Comput. Phys., 216:526–546, 2006.
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et al. [TT03] extend this approach to two-dimensional domains, but use a
stationary description for the mesh movement, hence a decoupled approach
by definition. Their monitor function still needs parameterization for each
new problem by hand, though. In this chapter, we take the latter approach,
with an improved monitor function. Zegeling et al. [ZdBT05] have recently
used a similar method for two-dimensional hydrodynamic problems. The
smoothness of mesh distribution is important for decreasing interpolation er-
rors in the decoupled approach. The most powerful means for this is a good
choice of monitor function. Huang has done much research on different mon-
itor functions [CHR99, with Cao and Russell], monitor quality [Hua01a], and
mesh quality [Hua05]. Error analysis quickly becomes complicated for mov-
ing mesh methods, but Beckett and Mackenzie [BM00, BMRS01] have done
some convergence studies for these methods. Tang [Tan05] recently presented
an interesting overview paper on moving mesh methods for computational
fluid dynamics. Zegeling et al. [ZK01] also employ a moving mesh method,
but it is fully coupled and solved using the method of lines and an implicit
time solver. Although their mesh movement is fairly sophisticated, ensuring
mesh-consistency and smooth mesh movement, it still needs manually-set
adaptivity parameters. Furthermore, an artificial diffusion term is added in
order to handle discontinuities in the physical solution. To avoid these artifi-
cial terms, we use a high-resolution finite volume method with MUSCL-type
flux-limiters as proposed by Van Leer [vL79].

The layout of this chapter is as follows. In the next section we present
the full set of MHD equations and their physical meaning. In Section 3.3 we
describe the adaptive moving mesh method, based on the equidistribution
principle, including a conservative solution interpolation. This is followed by
details on the high-resolution finite volume method. Special attention is also
given to a more sophisticated monitor function. Numerical experiments are
presented in Section 3.4. Not only accuracy is considered, but also compu-
tational efficiency, in comparison with uniform methods. Also, some experi-
ments compare r-refinement with h-refinement. Besides, interesting physical
aspects of MHD are studied, such as pseudo-convergence to incorrect critical
solutions, propagation of Alfvén waves, and high speed magnetosonic effects.
In Section 3.5 we give conclusions and suggestions for improvement.

3.2 T H E E Q UAT I O N S O F M AG N E TO H Y D RO DY NA M I C S

The MHD equations govern the dynamics of a charge-neutral ionized gas,
or ‘plasma’. Just as the conservative Euler equations provide a continuum
description for a compressible gas, the MHD equations express the basic
physical conservation laws a plasma must obey. Because plasma dynamics are
influenced by magnetic fields through the Lorentz-force, the needed additions
in going from hydrodynamic to magnetohydrodynamic behavior consist of a
vector equation for the magnetic field evolution and extra terms in the Euler
system that quantify the magnetic force and energy density.

Using the conservative variables density ρ, momentum density m := ρv
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(with velocity v), magnetic field B, and total energy density e, the ideal
MHD equations can be written as follows (cf. [BW88], [TO96], [TKB98]):
Conservation of mass:

∂ρ

∂t
+∇ ·m = 0. (3.1)

Conservation of momentum:
∂m
∂t

+∇ · (ρvv −BB) +∇ptot = 0. (3.2)

Magnetic field induction:

∂B
∂t

+∇ · (vB−Bv) = 0. (3.3)

Conservation of energy:

∂e

∂t
+∇ · (ev + vptot −BB · v) = 0. (3.4)

Hereafter, we will abstract from the above four quantities by introducing the
solution vector q(x, t), where x := [x, y] or x := [x, y, z]. In (3.2) and (3.4) the
total pressure ptot consists of both a thermal and a magnetic contribution, as
given by:

ptot = p + B2

2 , where p = (γ − 1)(e− ρv
2

2 −
B2

2 ) (3.5)

is the thermal pressure (B2 := B · B). The adiabatic constant γ is the ratio
of specific heats of the plasma. This set of equations must be solved in
conjunction with an important condition on the magnetic field B, namely the
non-existence of magnetic ‘charge’ or monopoles. Mathematically, it is easily
demonstrated that this property can be imposed as an initial condition alone,
since

∇ ·B|t=0 = 0 =⇒ ∇ ·B|t≥0 = 0. (3.6)
In multi-dimensional numerical MHD, the combined spatio-temporal dis-
cretization may not always ensure this conservation of the solenoidal char-
acter of the vector magnetic field. Note that in our 1D applications this
solenoidal property is satisfied automatically by construction (see below).

3.2.1 Derivation of 1.5D and 1.75D models
If we restrict the MHD model (3.1)–(3.6) to variations in one spatial dimension
x, i.e., ∂q/∂y = 0, with possibly non-vanishing y-components for the vector
quantities, we obtain a 5-component PDE system in 1D, which is sometimes
referred to as ‘1.5D’. If we also include possibly non-vanishing z-components
of the vector quantities, but still keep ∂/∂z = 0 for the flux, we obtain a 7-
component PDE system in 1D, which is sometimes referred to as ‘1.75D’. This
system is formally written as

∂

∂t
q + ∂

∂x
f (q) = 0, x ∈ [xL, xR], t > 0. (3.7)
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Here, q = [ρ,m1,m2,m3, B2, B3, e]T is the vector of conserved variables (m1,
m2 , m3 are now the x-, y- and z-components of the momentum vector and
B2 and B3 denote the y- and z-component of the magnetic induction), with
the flux-vector f = (f1, . . . , f7)T given by

f1 = m1,

f2 = m2
1
ρ
− B̄1

2 + (γ − 1)e

−(γ − 1)m
2
1 +m2

2 +m2
3

2ρ + (2− γ) B̄1
2 +B2

2 +B2
3

2 ,

f3 = m1m2

ρ
− B̄1B2,

f4 = m1m3

ρ
− B̄1B3,

f5 = B2
m1

ρ
− B̄1

m2

ρ
,

f6 = B3
m1

ρ
− B̄1

m3

ρ
,

f7 = m1

ρ

(
γe− (γ − 1)m

2
1 +m2

2 +m2
3

2ρ + (2− γ) B̄1
2 +B2

2 +B2
3

2

)

−B̄1

(
B̄1
m1

ρ
+B2

m2

ρ
+B3

m3

ρ

)
. (3.8)

The first component of the magnetic field vector is kept at a constant value B̄1.
The vanishing divergence of the magnetic field is thereby trivially satisfied in
this model situation. The remaining set of 7 PDEs given by (3.7) constitutes
the physical model used for the ‘1.75D shock tube’ simulation found hereafter.
Furthermore, several 1.5D simulations are shown; these are again described
by (3.7), where f4 and f6 drop out of the flux formulae, as well as all terms
involving m3 and B3. Keppens [Kep04] also derives these two models and
solves two shock tube problems on uniform meshes.

We first indicate how this system is further manipulated and discretized
to solve alternately for the adaptive mesh with its corresponding solution.

3.2.2 Eigen-structure for MHD
The eigenvalues of the flux Jacobian fq := ∂f/∂q represent the speeds at which
the various waves of an MHD Riemann solution move. In 1.5D these are an
entropy wave (v1), two fast (v1 ± cf ) and two slow (v1 ± cs) magnetosonic
waves, where

c2
f,s = 1

2

γp +B2

ρ
±

√(
γp +B2

ρ

)2
− 4γp

ρ

B̄1
2

ρ

 . (3.9)

For the full system of MHD equations, i.e., 1.75D, two additional eigenvalues
represent Alfvén waves with speed v1±ca, where ca = B1/

√
ρ. In general, the
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Figure 3.1 Wave structure of a 1.75D MHD Riemann problem.

following ordering holds: cs ≤ ca ≤ cf . Figure 3.1 shows the wave structure
of a 1.75D MHD Riemann problem.

3.3 T H E M OV I NG M E S H M E T H O D

This section describes the moving mesh finite volume approach as introduced
by Tang et al. [TT03]. For increased robustness, we use a more sophisticated
monitor function, originally proposed by Beckett et al. [BM00]. This combi-
nation yields a powerful solver that tracks and resolves both small, local and
large solution gradients automatically. No parameter adaptation by hand
using prior knowledge on the eventual shape of the solution is necessary.
Hence, the solver can be quickly applied to problems from entirely different
application areas.

The numerical algorithm is shown below. The symbol Qj+1/2 represents
the numerical solution for q, as will be introduced in (3.11). Each time step
consists of a mesh moving step and a physical PDE solving step. The next
two sections describe these separate steps. Finally, Section 3.3.3 deals with
monitor functions in more detail.

3.3.1 Mesh adaptation in 1D

The solution of the MHD equations, denoted by q ∈ Rm, is defined on the
physical domain Ωp := [xL, xR] ⊂ R with coordinate x. Introducing a fixed
computational domain Ωc := [0, 1] ⊂ R, with coordinate ξ, a coordinate trans-
formation, or one-to-one mesh map, is defined by:

x := x(ξ), ξ ∈ Ωc,
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Algorithm 1 mmfvsolve – 1D moving mesh finite volume PDE solver.
1: Generate an initial uniform mesh: x0

j = xL + j · xR−xL

N , j = 0, . . . , N .
2: Compute initial values Q0

j+1/2 based on cell average of q(x, 0).
3: while tn < T do
4: repeat
5: ν = 0; x[0]

j = xn
j ; Q[0]

j+1/2 = Qn
j+1/2, j = 0, . . . , N .

6: Move grid
{
x[ν]

j

}
to
{
x[ν+1]

j

}
, using a Gauss-Seidel iteration (3.12).

7: Compute the solution
{
Q[ν+1]

j+1/2

}
on the new mesh, using (3.13).

8: until ν ≥ νmax or
∥∥x[ν+1] − x[ν]

∥∥ ≤ ε
9: Compute Qn+1 using high-resolution finite volumes (3.14).

10: end while

or its inverse
ξ := ξ(x), x ∈ Ωp.

In a variational approach, finding the most appropriate mesh map x(ξ) for
some solution profile is equivalent to finding a ξ that minimizes a mesh
energy functional E(ξ). A simple, but effective, mesh energy is:

E(ξ) = 1
2

∫
Ωp

ξ2
x

1
ω

dx,

where ω > 0 is a monitor function, which will be considered in more detail
in Section 3.3.3. In general, ω is defined in terms of spatial derivatives of q.
In a variational formulation (cf. [TWM85]), minimization of the mesh energy
yields the Euler–Lagrange equation:(

1
ω
ξx

)
x

= 0.

This is equivalent to the equidistribution principle in 1D, ωxξ = constant, or:

(ωxξ)ξ = 0. (3.10)

Now that the adaptive mesh is implicitly prescribed, a numerical algorithm
can be set up, that determines the new mesh and updates the solution on it.

Domain discretization
To facilitate differential operators with stencils up to size 5, a domain dis-
cretization as depicted in Figure 3.2 is used. The domain Ωp := [xL, xR] is
discretized using N +1 mesh points, with two additional mesh points on both
sides outside Ωp. The computational domain Ωc is discretized with N + 1
uniform coordinates ξj = j/N (0 ≤ j ≤ N ).

As the finite volume solver uses cell averaged solution values, the discrete
solution Qj+1/2 is defined on the cell center:

Qj+ 1
2
≈ 1

∆xj+1/2

∫ xj+1

xj

q(x) dx, 0 ≤ j ≤ N − 1, (3.11)
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Figure 3.2 The discretized spatial domain with ‘beyond-boundary’-points.

where the local cell size, or mesh width is given by

∆xj+1/2 := xj+1 − xj .

Mesh redistribution
For every time t > 0, the new mesh should satisfy the redistribution equa-
tion (3.10). Using central differences for (xξ)j+1/2, and inserting the current
solution and monitor values yields a linear system in [x1, . . . , xN−1]T , which
is solved with a Gauss–Seidel (GS) iteration:

x[ν+1]
j =

ω
(
Q[ν]

j−1/2

)
x[ν+1]

j−1 + ω
(
Q[ν]

j+1/2

)
x[ν]

j+1

ω
(
Q[ν]

j−1/2

)
+ ω

(
Q[ν]

j+1/2

) , (3.12)

where x[ν+1]
j (ν = 0, 1, . . .) denotes the updated mesh point. Typically a mere

three to five steps are performed before the mesh adaptation is considered
appropriate (νmax = 3 to 5, ε = 10−6). In most cases the νmax-bound is reached
before the ε-bound. Each mesh moving step also involves a solution interpo-
lation, as described hereafter. The small number of GS steps keeps the costs
of this interpolation low. Many, more advanced solvers exist, but accuracy of
mesh movement is not the most critical aspect here. Tang et al. give proof
[TT03] of the preservation of monotonic order of x[ν]:

x[ν]
j+1 > x[ν]

j =⇒ x[ν+1]
j+1 > x[ν+1]

j , 0 ≤ j ≤ N ,

or, equivalently: xξ is strictly monotonically increasing. This is desirable, since
otherwise mesh points might collapse and solution gradients could blow up.

Solution updating on the new mesh
In each redistribution step, mesh points x are moved to a new location x̃.
Also, the solution Q needs to be updated on the new mesh, yielding Q̃. A
conservative interpolation technique is used, to maintain physically correct
solutions.

Assuming that the difference c(x) between the old mesh x and new mesh
x̃ := x − c(x) is small, using a perturbation method eventually yields the
interpolation relation:

Q[ν+1]
j+1/2 =

(
x[ν]

j+1 − x
[ν]
j

)
Q[ν]

j+1/2 −
(

(cQ)[ν]
j+1 − (cQ)[ν]

j

)
x[ν+1]

j+1 − x
[ν+1]
j

, (3.13)
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where the upwinding (cf. Van Leer [vL77a, Eq. (12)]) numerical fluxes are
approximated by:

(cQ)j = cj
2
(
Q+

j + Q−
j

)
− |cj |2

(
Q+

j −Q−
j

)
.

This method uses the ‘wave speed’ c[ν]
j = x[ν]

j −x
[ν+1]
j , and Q+

j and Q−
j , which

approximate Qj at a cell edge, are defined by (3.18). The interpolation rela-
tion (3.13) is in a conservative flux-differencing form, hence the interpolation
satisfies the following conservation property:∑

j

∆x̃j+ 1
2
Q̃j+ 1

2
=
∑

j

∆xj+ 1
2
Qj+ 1

2
.

The updating of the solution is preceded by a single mesh redistribution step;
the combination of the two forms the body of the GS iteration.

3.3.2 Finite volume solver for physical PDEs
On the redistributed mesh, the physical PDEs can be solved by any PDE
solver that accepts nonuniform discretizations. We use a second order finite
volume method. In the following, the mesh at time tn is given by xn := x[ν+1].

One-dimensional hyperbolic systems of conservation laws are described
by the PDE system in (3.7). Integrating the PDE over the control volume
[tn, tn+1〉×

[
xn

j , x
n
j+1
]

leads to the following explicit finite volume method (we
improve the time integration in (3.20)):

Qn+1
j+1/2 = Qn

j+ 1
2
− tn+1 − tn
xn

j+1 − xn
j

(
Fn

j+1 − Fn
j

)
(3.14)

=: Qn
j+ 1

2
+ ∆tn Lj+ 1

2
(Qn), (3.15)

where the cell average Qn+1
j+1/2 is defined in (3.11) and Fn

j is some numerical
flux satisfying

Fn
j = F

(
Qn,−

j ,Qn,+
j

)
, F(Q,Q) = f (Q). (3.16)

We use a local Lax–Friedrichs (LF) flux

F(Qa,Qb) = 1
2

[
f (Qa) + f (Qb)− max

Q∈{Qa,Qb}
{|fq|}(Qb −Qa)

]
, (3.17)

where the largest absolute eigenvalues of the Jacobian fq := ∂f/∂q are used.
Local LF is less diffusive than normal LF, since it locally limits the numerical
viscosity instead of having a uniform viscosity on the entire domain.

To determine flux values at cell boundaries, the solution values Qj are
approximated using values from the cell centers at both the left and right
side. In (3.16), Qn,±

j are defined using the initial reconstruction technique:

Qn,±
j = Qj±1/2 + 1

2
(
xn

j − xn
j±1
)
S̃j±1/2, (3.18)
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where S̃j+1/2 is an approximation of the slope qx at xn
j+1/2, defined by:

S̃j+1/2 =
(

sign
(
S̃+

j+1/2

)
+ sign

(
S̃−j+1/2

)) ∣∣∣S̃+
j+1/2S̃

−
j+1/2

∣∣∣∣∣∣S̃+
j+1/2

∣∣∣ +
∣∣∣S̃−j+1/2

∣∣∣ , (3.19)

with
S̃+

j+1/2 =
Qn

j+3/2 −Qn
j+1/2

xn
j+3/2 − x

n
j+1/2

, S̃−j+1/2 =
Qn

j+1/2 −Qn
j−1/2

xn
j+1/2 − x

n
j−1/2

.

The above is a MUSCL-type method, where the slope approximation (3.19)
uses a monotonicity preserving slope limiter as formulated by Van Leer
[vL77b, Eq. (67)]. Note that both the reconstruction and slope limiting is
performed for each component of the solution vector Q separately.

To obtain a higher accuracy in the time range, the standard one-step finite
volume formulation (3.15) is replaced by a second-order Runge-Kutta scheme:

Q∗
j+1/2 = Qn

j+ 1
2

+ ∆tn Lj+ 1
2
(Qn),

Qn+1
j+1/2 = 1

2

(
Qn

j+ 1
2

+ Q∗
j+ 1

2
+ ∆tn Lj+ 1

2
(Q∗)

)
.

(3.20)

In a method with changing mesh widths, the stability criterion for the time
step is extra important. The standard CFL limit reads∣∣∣∣ fq∆t

∆x

∣∣∣∣ ≤ 1, ∀∆t, ∆x, eigenvalues of fq. (3.21)

To enforce higher accuracy, the Courant number will here be limited by a
parameter C, thereby limiting the time step to:

∆tn ≤ C min
j

∆xj+1/2∣∣∣fq(Qn
j+1/2)

∣∣∣ , (3.22)

where 0 < C ≤ 1. Notice how we determine the limit on the time step locally,
instead of using, e.g., ∆tn ≤ minj ∆xj+1/2/maxj |fq(Qn

j+1/2)|.

3.3.3 A sophisticated monitor function
An often seen, most basic choice for controlling adaptivity is the arc length-
type monitor function for scalar solutions q:

ω(q) =
√

1 + α(∂q/∂x)2, (3.23)

where the adaptivity parameter α controls the amount of adaptivity. The
value 1 is set as floor on the monitor function to prevent all points from
concentrating in just the steep parts of the solution. This type of monitor
has two problems. Firstly, α is problem dependent; a problem from gas
dynamics might require an α of an entirely different order than a problem
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from hyperbolic macroscopic traffic flow models. Secondly, α is a constant,
whereas the solution profile might change significantly through time. The
chosen α based on the solution at the initial time may be far from optimal at
some point of time t > 0.

From now on we will use the term ‘critical’ for parts of the domain where
refinement is especially necessary. For the monitor function (3.23), ‘critical’ is
equivalent to ‘steep’, because of the first-order derivative. In general, higher
order derivatives may be used as well.

To overcome the before-mentioned disadvantages, Beckett and Mackenzie
[BM00] introduce a more sophisticated monitor function, which we schemat-
ically define as:

ω(q) = α(q) + φ(q).
It has a solution dependent floor value α(q), where α(q) is defined as an aver-
age value of some function φ(q). Most often, φ will contain solution gradients.
Huang [Hua01a] generalizes this monitor function with a parameter β that
controls the ratio of points in critical parts. Here, we furthermore generalize
to PDE systems, i.e., when q has m > 1 components. We define the monitor
function ω(q) ∈ (Ωp × R≥0 → Rm)→ R>0 as:

ω(q) =
m∑

p=1

[
(1− β)αp(q) + β

∣∣∣∣∂qp∂ξ
∣∣∣∣1/2
]

, (3.24)

where

αp(q) =
∫

Ωc

∣∣∣∣∂qp∂ξ
∣∣∣∣1/2

dξ. (3.25)

The critical regions are now identified by the computational derivative ∂q/∂ξ,
which is smoother than the physical derivative ∂q/∂x. The solution depen-
dent α(q) averages this derivative for each component qp separately. Finally,
the m monitor values for all components are summed. Although β is still
a user-defined parameter, we found β = 0.8 a suitable value for a range of
different problems and keep it fixed at that for all numerical experiments in
the next section.

Following the approach of Huang [Hua01a], it can be shown that for mon-
itor (3.24), β is indeed the ratio of points in critical parts:

β =

∫
Ωp
βφdx∫

Ωp
(1− β)〈φ〉 + βφdx

, (3.26)

where 〈φ〉 is the averaged φ, i.e., α(q). Hence, for our fixed choice of β = 0.8,
approximately 80% of the mesh points is positioned in critical parts of the
domain.

Another technique to prevent the mesh points from being moved too
brusquely, when some local gradient changes rapidly, is to smoothen the
monitor function. This is done by applying a low-pass filter, possibly multi-
ple times:

ωsmooth
j+1/2 ←−

1
4

(
ωj+ 3

2
+ 2ωj+1/2 + ωj−1/2

)
, (3.27)
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where ωj+1/2 := ω
(
Qj+1/2

)
. Even with the sophisticated monitor (3.24) we

found a single application of this smoothing operator to be beneficial and
sufficient.

3.4 N U M E R I CA L E X P E R I M E N T S

The moving mesh method is now used on a selection of problems from mag-
netohydrodynamics. Although still in one spatial dimension, these problems
have five (m = 5) or even seven (m = 7) model equations, and consequently
exhibit a range of shocks, rarefaction waves and contact discontinuities (at
most m). Some problems were also used by Zegeling and Keppens [ZK01]
for testing their adaptive method of lines approach, which is a fully-coupled
moving mesh method.

The numerical results are compared to a reference solution. Solutions to
the shock tube problems (Sections 3.4.1, 3.4.2 and 3.4.3) were obtained with
the exact Riemann solver by Torrilhon [Tor02]. The shear Alfvén problem
(Section 3.4.4) is compared to a 2500 points adaptive solution. For all prob-
lems, solutions by the widely-used Versatile Advection Code [Tót96] (VAC,
see http://www.phys.uu.nl/˜toth) are also considered.

A discrete L1 norm is used for an error measure on adaptive meshes:

EL1 =
N∑
j=1

∆xj

∣∣Qj+1/2 − q(xj+1/2)
∣∣ , (3.28)

which is an approximation to the area between the numerical and exact so-
lution profile. Note that E is still a vector in Rm, error measures may later
pick out single components from the solution, e.g., density, or sum them.
In addition to observing the numerical errors (3.28), we have also checked
some physical properties of the computed solution, such as conservation and
positivity of solution components.

Most problems have homogeneous Neumann boundary conditions, unless
stated otherwise. We expand solution values to the two ghost cells on the left
and right by copying the first value inside the domain (i.e., Q−3/2 = Q−1/2 =
Q1/2 at the left). All experiments keep the CFL number at 0.5 for increased
accuracy, although values up to 1.2 did not result in instability yet. We used
a Pentium M 1.8GHz notebook for all experiments.

3.4.1 MHD shock tube in 1.5D: computational efficiency

One-dimensional shock tube problems are Riemann problems, where an imag-
inary tube contains plasmas in two different states, separated by a diaphragm.
At t = 0 the diaphragm opens and the left and right state start to interact. In
hydrodynamics, Sod’s shock tube is the best known example problem. Here,
we consider the classical MHD shock tube in 1.5D, initially described by Brio
and Wu [BW88], which now is widely considered a benchmark problem for
MHD simulations.

http://www.phys.uu.nl/~toth
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The problem is set up in the domain [0, 1], with the discontinuity at x = 0.5.
We simulate for times t ∈ [0, 0.1]. The plasma is initially at rest (m = 0), with
γ = 2 and B̄1 = 0.75. The problem is co-planar, i.e., B2,L = −B2,R. The
difference in density and pressure between the two states is: ρL = 8ρR = 1,
and pL = 10pR = 1. In conservation form, the initial conditions are:

[ρ,m1,m2, B2, e]L = [ 1, 0, 0, 1, 1.78125], if x ≤ 0.5,
[ρ,m1,m2, B2, e]R = [0.125, 0, 0, −1, 0.88125], if x > 0.5, (3.29)

where subscripts L and R denote the left and right state. Homogeneous
Neumann boundary conditions are used for all components.

3.4.1.1 Numerical results
First, we compare our moving mesh method to the same method with a uni-
form mesh. Also, a finite volume solver from the VAC package is considered;
we use it with a similar TVD Lax–Friedrichs flux and Van Leer flux limiter
for a fair comparison. We sum all five components of EL1 to study the overall
error. Figure 3.3 shows the density and v1 component of the velocity on the
first row. The moving mesh and uniform solutions have N = 250 mesh points,
and the uniform VAC solution has N = 1500 (both take equal running time
approximately). The bottom left diagram focuses on the middle three waves.
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Figure 3.3 Solutions to the Brio and Wu problem.

The uniform solution is quite diffusive, a known property of Lax–Friedrichs-
type methods. VAC with 1500 points has a much higher resolution, especially
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at the compound wave. Our moving mesh result is slightly more accurate
for all shocks. Its overall error is 9.1 · 10−3, and the VAC result has an overall
error of 1.3 · 10−2. The top right diagram shows the v1 component of the
velocity. It is very accurate and does not suffer from the dispersive effects
observed by Zegeling and Keppens [ZK01, Fig. 2]. Finally, the bottom right
diagram shows the mesh movement through time. Note how the rightmost
fast rarefaction fan is also properly detected.
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Figure 3.4 Computational efficiency for the Brio and Wu problem.

The increased accuracy comes at a price: the mesh movement and conser-
vative interpolation take about 50% of the total running time. The amount of
mesh points needed is seriously smaller, though, so the moving mesh method
should be more efficient on the whole. To test this, the Brio and Wu problem
was solved with N = 250, 500, 1000, 2000, 4000, 6000, 8000, 12,000, 24,000,
and 48,000. The error was determined using (3.28) and summing all five
components, as we are interested in overall accuracy here.

The diagram in Figure 3.4 sets out these errors on the horizontal axis and
the running time on the vertical axis. The moving mesh method is used with
monitor (3.24), and twice with the arc length-type monitor (α = 1 and 10).
Since VAC programs are in Fortran and our method runs in MATLAB, the
VAC timings are normalized using

tVAC,norm = tVAC · tunif,N=Nnorm/tVAC,N=Nnorm ,
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where we normalized with the Nnorm = 8000 measurements. The uniform
lines for MATLAB and VAC now almost coincide for all N , which justifies the
normalization. The arc length runs are never efficient enough to beat uniform
solutions. With the advanced monitor function, the moving mesh method
becomes a lot more efficient. The gain factor in running time, compared
to uniform runs, is approximately 3. A possible improvement could be to
adapt the mesh every k > 1 time steps. This will reduce the mesh movement
and interpolation costs. In their study of efficiency of h-refinement, Keppens
et al. have an average of 20% additional costs for mesh adaptation in 1D
[KNTG03]. Also note how for the same amount of points (e.g., N = 500)
the obtained accuracy differs (by almost a factor 10 between adaptive and
uniform runs). When computer memory is an issue, adaptive methods can
still compute accurate solutions with relatively small discrete solution vectors.
This becomes a definite advantage in higher dimensional simulations.

r-Refinement vs. h-refinement
In this research we perform mesh adaptation by points movement (r-refine-
ment). An alternative is local mesh refinement (h-refinement), where mesh
cells are split into smaller cells or merged again. An adaptive version of the
previously used VAC package exists: AMRVAC [KNTG03, vdHK07]. It uses
L mesh levels, where level 1 is the initial uniform mesh. We used AMRVAC
with a refinement ratio of 2 on each level (i.e., splitting a cell into two equal
pieces), hence the maximal mesh refinement is 2L−1.

The advantage of h-refinement is its simplicity. The disadvantage is that the
eventual number of mesh points is unknown, which can lead to unexpectedly
long running times. Besides, good results require proper knowledge of the
parameters by which the user controls refinement (initial mesh size, number
of refinement levels, refinement ratios, and the tolerance level for deciding
on local refinement). Our method is virtually free of user-defined parameters
and is problem independent. For proper choices of refinement levels and
tolerance, AMRVAC also produces good results.

0.54 0.545 0.55 0.555 0.56 0.565 0.57
0.2

0.3

0.4

0.5

0.6

0.7

x

ρ

MMFV, N=250, BM β=0.8, Ntot=250
AMRVAC, N=50, L=6, Ntot=222
AMRVAC, N=100, L=6, Ntot=314
AMRVAC, N=250, L=5, Ntot=484
exact

Figure 3.5 The Brio and Wu problem solved using h-refinement. Left: AMRVAC solution
for the density. Black bars represent mesh refinement levels. Right: Comparison of r-
refinement with h-refinement, detail at contact discontinuity.
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We ran the Brio and Wu problem (3.29) again. Figure 3.5 shows the AM-
RVAC results. The left diagram shows the density, notice how all shocks are
represented properly on the maximal refinement level. Also, both rarefaction
waves are properly detected and refined. We used Ninitial = 100 and six mesh
levels, with tolerance εtol = 0.002. All solution components are used equally in
the error estimate for deciding on local refinement. The final mesh contains
314 mesh points and has an overall error of 1.4 · 10−2. Running time is 5.1
seconds, which would roughly scale to 35 seconds in MATLAB. Our N = 250
result reaches a smaller error in 16 seconds.

The right diagram in Figure 3.5 compares three AMRVAC results with our
N = 250 result. The smallest mesh cell in our experiment is 13 times smaller
than in the original uniform mesh. This can be compared to five refinement
levels (25−1 = 16). The biggest mesh cells are between two and five times
larger than the initial uniform cells. As AMRVAC does not coarsen its initial
mesh, we start AMRVAC also with smaller mesh sizes (N = 50 and 100). The
diagram also shows the final number of points; only for N = 50 this is less
than 250. Table 3.1 summarizes the results and lists the overall errors.

Method Initial N L εtol Final N Running time Overall error
(+ MATLAB equiv.)

MMFV 250 – – 250 16.5 (16.5) 0.0091

AMRVAC:
TVDLF,
Van Leer

50 6 0.005 222 2.4 (16.5) 0.0254
100 6 0.002 314 5.1 (35.2) 0.0135
250 5 0.0005 484 7.2 (49.7) 0.0102

Table 3.1 Brio and Wu problem solved with r- and h-refinement.

AMRVAC contains more powerful methods as well: MUSCL-type solvers
that use problem-specific Riemann solvers, and more sophisticated limiters.
We used TVDLF with a Van Leer limiter for an equal comparison with our
solver.

3.4.2 MHD shock tube in 1.75D: physical energy loss

The 1.5D Brio and Wu shock tube of the previous section can be extended
to 1.75D. Keppens [Kep04] describes a problem where all seven MHD waves
show up. The problem is set up in the domain [0, 1], with the discontinuity
at x = 0.35. We simulate for times t ∈ [0, 0.08]. The plasma has γ = 5/3 and
B̄1 = 1. In primitive form, the initial conditions are:

[ρ, v1, v2, v3, B2, B3, p]L = [0.5, 0, 1, 0.1, 2.5, 0, 0.1], if x ≤ 0.35,
[ρ, v1, v2, v3, B2, B3, p]R = [0.1, 0, 0, 0, 2, 0, 0], if x > 0.35. (3.30)

3.4.2.1 Numerical results
We use N = 250 mesh points again. The left diagram in Figure 3.6 shows the
density and the v3 component of the velocity. Note how the Alfvén signals do
not change the density. Similarly, the contact discontinuity, the fast rarefaction
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Figure 3.6 Solution to Keppens’ 1.75D shock tube problem. Left: density and v3 compo-
nent of the velocity. Right: mesh history.

and the fast shock are not reflected in v3. Still, the monitor is based on all
solution components. Indeed, the right diagram in Figure 3.6 shows that the
mesh movement captures all seven structures in a balanced way. The seven
waves are directly related to the eigen-structure of the 1.75D MHD system,
as depicted in Figure 3.1.

Throughout rarefaction fans, the entropy s = cv log(p/ργ) should remain
constant. We have verified that this is indeed the case here. Also, for in-
creasing N , the second-order accuracy of the finite volume solver in smooth
regions was confirmed.

A final physical check here is the conservation of solution components.
Mass conservation is satisfied, but energy conservation is not. Between t = 0
and t = 0.08, a constant decrease of energy yields a total loss of 0.2. This is
exactly right though: at the left boundary the only nonzero part of the energy
flux (3.8) is B̄1B2v2 = 2.5, whereas at the right boundary it is zero. Integrated
over time, this should indeed cause a total energy loss of 0.08 · 2.5 = 0.2.

3.4.3 Regular and critical solutions
We now consider a more general 1.75D shock tube problem described by
Torrilhon [Tor03] to investigate multiple possible solutions. The problem is
set up in the domain x ∈ [−1, 1.5] with the discontinuity at x = 0. We simulate
for times t ∈ [0, 0.4]. In primitive form, the initial conditions are:

[ρ, v1, v2, v3, B2, B3, p]L = [ 1, 0, 0, 0, 1, 0, 1], if x ≤ 0,
[ρ, v1, v2, v3, B2, B3, p]R = [0.2, 0, 0, 0, cos θ, sin θ, 0.2], if x > 0. (3.31)

The problem is non-planar if the angle θ between the transversal parts (i.e.,
[B2, B3]T ) of BL and BR is not a multiple of π. Torrilhon describes how
θ affects the possibility of multiple solutions. Regular r-solutions consist
only of shocks or contact discontinuities, whereas critical c-solutions can also
contain non-regular waves, such as compound waves. For critical choices of
θ, both an r- and c-solution are analytically correct simultaneously; θ = π is
such a choice. In the Brio and Wu example indeed the irregular compound
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Figure 3.7 Solution to the almost co-planar problem (3.31) with θ = 3. The adaptive
solution uses N = 250 mesh points, and suffers from pseudo-convergence towards an
incorrect c-solution.
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wave from the c-solution showed up. It depends on the amount of numerical
diffusion whether a PDE solver will converge to the r-solution.

3.4.3.1 Numerical results
We now consider the almost co-planar case θ = 3. Analytically, this has only
one r-solution. However, the numerical solution is attracted towards the
nearby critical solution for θ = π. Figure 3.7 shows the density and the B2
component of the magnetic field. The solutions resemble the one to the Brio
and Wu problem (a c-solution), but are clearly different from the correct r-
solution here.

Increasing the number of mesh points results in smaller mesh cells, hence
less numerical diffusion. We study, for increasing N , the convergence of our
numerical solution towards the correct r-solution, just as Torrilhon [Tor03,
Sec. 4.2.1] does. Figure 3.8 shows the density and the B2 component of the
magnetic field at [−0.35,−0.1] for N up to 2500. The dashed line represents
the co-planar c-solution to which the N = 100 solution clearly is attracted.
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Figure 3.9 Moving mesh solution to shear Alfvén problem at t = 0.8, with N = 250 mesh
points. Left: Transverse component B2 of magnetic field. Right: mesh history.

For larger values of N , the solutions converge towards the solid black line
of the correct r-solution. At N = 1000 the solution is about as good as the
uniform N = 20, 000 solution by Torrilhon: a considerable improvement.

3.4.4 Shear Alfvén waves in 1.5D

This test problem was described by Stone and Norman [SN92] and also used
by Tóth and Odstrčil [TO96] for their evaluation of different discretization
schemes. A homogeneous, uniformly magnetized plasma state is perturbed
with a localized velocity pulse transverse (v2 := (m2/ρ) 6= 0) to the horizontal
(x-direction) magnetic field. This evolves into two oppositely traveling Alfvén
waves that have associated v2 := m2/ρ and B2 perturbations.

The problem is set up in the domain x ∈ [0, 3], with the velocity pulse on
x ∈ [1, 2]. We simulate for times t ∈ [0, 0.8]. The plasma has an adiabatic
constant γ = 1.4, and B̄1 = 1. In conservation form, the initial conditions are:

[ρ,m1,m2, B2, e] = [1, 0, 10−3, 0, 0.5000005025], for x ∈ [1, 2],
[ρ,m1,m2, B2, e] = [1, 0, 0, 0, 0.5000000025], elsewhere, (3.32)

where the difference in total energy e is only caused by the difference in v2.
In primitive form, all quantities but v2 are constant. Homogeneous Neumann
boundary conditions are used for all components.

When considering linear effects, only v2 and B2 will be perturbed, and
all other primitive quantities should remain constant. Quadratic terms in
the flux for m1, however, cause nonlinear effects in the density and energy.
Furthermore, thermal pressure should always be positive.

3.4.4.1 Numerical experiments
Figure 3.9 shows the B2 component of the magnetic induction at t = 0.8
from both the adaptive mesh solution and the reference solution. In the right
diagram, the mesh history is shown. Again, the N = 250 adaptive solution
compares favorably with the 1000 point VAC solution. Analytic computation
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Figure 3.10 Nonlinear effects in the shear Alfvén problem. Left: Nonlinear effects in m1.
Right: Local errors in density

of the exact solution is more complicated than with the shock tube problems,
because of the interacting right- and left-going waves. An N = 2500 adaptive
solution shows the sharp profile here.

The mesh history reveals that some intermediate structures were captured
too, although those are not in the B2 (nor v2) component. A closer look at the
almost zero momentum shows levels slightly off from 0. These are caused
by the nonlinear terms in the m1 flux. The left diagram in Figure 3.10 shows
multiple levels, instead of a constant value of 0. Not only do the physical
equations justify these levels; changing the number of mesh points to 100
or 1000 results in the same levels. Furthermore, when changing the initial
velocity perturbation from 10−3 to 10−6 changes the momentum offset from
O(10−7) to O(10−13); clearly a quadratic effect.

The right diagram in Figure 3.10 shows the absolute, local errors in the
density for the N = 250 solution, obtained by subtracting the 2500 points
reference solution from it. At x = 1 and x = 2, local errors are the largest, at
10−4. Elsewhere, errors are very small, O(10−8), compared to VAC (O(10−3))
and the adaptive method of lines (O(10−6), cf. Zegeling and Keppens [ZK01,
Fig. 4]).

3.4.5 Oscillating plasma sheet in 1.5D: fast wave effects

To investigate the necessity of an implicit solver, Tóth et al. [TKB98] set up
a problem that leads to a very strict CFL limit, i.e., very small time steps.
A plasma sheet is surrounded by a vacuum which is modeled by a low
density, low pressure plasma. At the left and right boundaries are perfectly
conducting walls with reflective boundary conditions.

The problem is set up on the domain x ∈ [0, 1], with the plasma sheet on
x ∈ [0.45, 0.55]. We simulate for times t ∈ [0, 2]. The plasma has γ = 1.4, and
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B̄1 = 0. In primitive form, the initial conditions are:

[ρ,m1,m2, B2, p] =

 [10−3, 0, 0, 1.1, 10−4], for x ∈ [0, 0.45],
[ 1, 0, 0, 0.6, 0.3201], for x ∈ [0.45, 0.55],
[10−3, 0, 0, 1.0, 10−4], for x ∈ [0.55, 1].

(3.33)

In the plasma sheet, the total pressure ptot = p + B2/2 = 0.5001 is in balance
with the pressure in the ‘vacuum’ at the right, and is about 10% less than in
the ‘vacuum’ at the left. Therefore the sheet will start to move rightward until
the changing pressure imbalance reverses the movement leftward. Because
of conservation of magnetic flux in the left and right ‘vacuum’, this will result
in an ongoing oscillation of the sheet.

A reflective wall means zero flux for all components except for the ones or-
thogonal to the boundary, hence only m1 is nonzero here. The zero fluxes can
not be obtained by setting the values in the ghost cells outside the domain to
zero. As fluxes are computed at cell edges, and solution values are set on cell
centers, interpolation will yield slightly nonzero flux values on the bound-
aries. Instead, we make the m1 values asymmetric around the two boundaries
(i.e., Q−j−1/2 = −Qj+1/2 at the left, see also Figure 3.2), and impose an exactly
zero flux for all but the first momentum equation on the two boundaries (i.e.,
F0 = FN = 0, except for the second component of the flux vector F). Now, total
mass, magnetic field and energy are conserved numerically up to machine
precision.

3.4.5.1 Numerical experiments
We first look at the slow oscillation that should set in. The oscillating sheet
can be approximated by a point mass with total mass M = 0.1 at distance
L0 = 0.5 from the walls with some equilibrium value B0 for the magnetic
field. The point mass oscillates around this equilibrium, driven by the differ-
ence in magnetic pressure between the left and right half. By conservation
of magnetic flux (3.3), the total magnetic flux in the equilibrium and at an
extremal position are equal:

BL(L0 + ∆L) = (B0 − ∆B)(L0 + ∆L) = B0L0,
BR(L0 − ∆L) = (B0 + ∆B)(L0 − ∆L) = B0L0.

A linear approximation gives: ∆B/B0 ≈ ∆L/L0. Describing the oscillation as
x(t) = L0 + ∆L sin(ωt), and differentiating twice gives x′′(t) = −∆Lω2 sin(ωt).
Inserting this into F = Mx′′ for the rightmost extremum gives: −M∆L =
B2

L/2 − B2
R/2 = −2B2

0/L0∆L. The oscillation is now characterized by its fre-
quency and amplitude:

ω ≈

√
2B2

0
ML0

, and ∆L ≈ (∆B/B0)L0.

We estimate B0 ≈ 0.5 · 1.1 + 0.5 · 1 = 1.05 and ∆B ≈ 0.1. This yields ω ≈ 6.64,
i.e., the period T ≈ 0.946. The maximum of the total momentum Mv1 is
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Figure 3.11 Oscillating plasma sheet. Left: density (solid line) and total pressure (dashed
line) at t = 1. Right: mesh history over t ∈ [0, 2].
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Figure 3.12 Oscillating plasma sheet, initial details. Left: density (solid line) and total
pressure (dashed line) at t = 0.1. Right: mesh history over t ∈ [0, 0.15].

Mω∆L ≈ 0.158. Our numerical experiments yield a period of T = 0.942
and a momentum amplitude of 0.15. This is quite accurate, considering the
simplistic approximation sketched above.

A simulation up to t = 2 with N = 250 mesh points takes about 25000 time
steps, and only 220 seconds to run, with the CFL number limited to 0.5. The
right diagram in Figure 3.11 clearly shows how the adaptive mesh captures
the oscillation. The left diagram shows the solution profiles of the density
ρ and total pressure ptot at t = 1. The oscillation is driven by the imbalance
in magnetic (and hence total) pressure. In the diagram the sheet is moving
rightward, because of high pressure at the left. The solution profile is much
less diffused than in the results by Tóth et al. [TKB98, Fig. 3] and Zegeling
et al. [ZK01, Fig. 5].

We now focus on fast waves in the solution and simulate for early times
t ∈ [0, 0.15]. The right diagram in Figure 3.12 shows the mesh history in
more detail for early times. Within the sheet, additional waves are tracked
repeatedly. They are initiated by a wave that continuously moves through
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Figure 3.13 Oscillating plasma sheet, physical staircasing. Density profiles at t = 0, t =
0.012, t = 0.023, and t = 0.047. Top row: movement of a fast magnetosonic wave through
the left ‘vacuum’. Bottom row: staircase formation in the high density sheet.

the ‘vacuum’ between the left wall and the left edge of the sheet; it touches
the sheet for the first time at t ≈ 0.026. The left diagram again shows the
density and total pressure, for t = 0.1. Both show ‘physical staircasing’ on
top of their profile, initiated by three touches of the fast wave. Notice that a
similar fast wave moves through the ‘vacuum’ at the right. The wave is less
strong and hence causes hardly any ‘staircasing’ at first.

To study the formation of the ‘physical staircase’, Figure 3.13 shows four
snapshots in time of the density profile. The top row shows the left ‘vacuum’
part and the bottom row shows the high density plasma sheet. Not the entire
plasma sheet starts to oscillate at once: first only the left edge of the sheet
slowly moves rightward. This leads to an increased density shock on top of
the sheet that moves towards the right edge. The bottom diagrams show this
expanding shock wave. Only when it touches the right edge, the entire sheet
is in oscillation (not shown). In the meantime, other movement takes place as
well. As the diagrams in the top row of Figure 3.13 show, a fast magnetosonic
wave moves between the left wall and the left edge of the plasma sheet. The
wave is reflected on both sides because of the reflective wall and the high
density in the plasma sheet. The fast wave speed should be equal to v1 + cf ,
with cf as defined in (3.9). As v1 = 0 here, this yields cf ≈ 34.8 in the
‘vacuum’ at the left, and cf ≈ 31.6 in the ‘vacuum’ at the right. The wave
speed at the left in our numerical simulation is equal to 34.85, which is very
accurate. The first staircase formation is about to occur in the third column
of Figure 3.13: the fast wave will soon touch the sheet edge. In the fourth
column, the fast wave has almost completed its second period, and in the
meantime the first step in the staircase has properly formed. This process
will continue forever, although left-moving waves will start to interact after
t ≈ 0.11. We stress that the observed staircasing is definitely physical and
should not be confused with numerical staircasing sometimes seen in finite
volume methods. The recurring interactions between the fast wave and the
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Figure 3.14 AMRVAC results for the staircasing effect in the oscillating plasma sheet prob-
lem. Left: AMRVAC solution for the density. Black bars represent mesh refinement levels.
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plasma sheet are in fact repeated, distinct shock tube problems which change
density and momentum levels in steps. Local shock tube experiments near
the plasma’s edge have also confirmed this.

Both Tóth et al. [TKB98] and Zegeling et al. [ZK01] have not shown the
above fast wave effects. A probable explanation is their use of implicit time
solvers, which take too big time steps to properly capture the fast waves. We
also tested an explicit AMRVAC solution. Having seen that the staircasing is
mainly visible in them1 component of the momentum, we base the refinement
on m1 by 80% and on the density by 20%. Again we use the TVDLF solver
with a Van Leer limiter. The initial mesh has N = 100. The refinement
tolerance εtol had to be lowered to 0.0005. Figure 3.14 shows the results.
The left diagram shows the AMRVAC solution for the density. Notice how
the refinement has properly detected the fast magnetosonic wave in the left
vacuum. The right diagram focuses on the staircase formation in m1 within
the plasma sheet. It compares AMRVAC and our MMFV result. AMRVAC
seems more diffused, and the refinement could be better at the stair steps.
Running time was 37 seconds (Fortran), our MMFV run took 36 seconds
(MATLAB).

3.5 CO NC LU S I O N S

Adaptive methods for solving PDE systems are a commonly used technique
to increase numerical accuracy and save computing costs. Often, the adaptive
methods are manually finetuned for the specific problem under consideration.
A truly robust adaptive method should adapt itself to each new problem
considered, without additional fine-tuning. In this chapter we considered
such a method. Using a sophisticated monitor function, conservative solution
interpolation and a robust finite volume solver, the method is suitable for
any nonlinear system of hyperbolic PDEs based on conservation laws, where
numerical conservation is guaranteed. After earlier successful application to



82 3. 1D Mesh Movement, Multidimensional Magnetohydrodynamics

hyperbolic traffic flow PDEs [vD02] and problems from gas dynamics, we
now used the method on a selection of problems from MHD.

Each of the example problems has one or more interesting physical fea-
tures that were accurately tracked by the adaptive method. The 1.75D shock
wave problem showed automatic and balanced refinement for all individual
solution components, thanks to the monitor function used. The study of reg-
ular and critical solutions showed how nearby critical solutions are a strong
attractor for numerical solutions. The use of our adaptive method shows
convergence to the correct solution with 20 times fewer mesh points than for
a uniform method. The shear Alfvén problem showed correct tracking and
propagation of Alfvén waves. Moreover, nonlinear effects in the flux terms
were accurately computed, with average errors of O(10−8). Finally, the os-
cillating plasma sheet problem challenged the method because of the severe
limit on the time step. Even after a large number of time steps, the important
parts in the solution are tracked by our adaptive method. The oscillation that
should set in is correctly represented. Moreover, the high speed magnetosonic
waves in the two ‘vacuum’ parts turn out to cause a ‘physical staircasing’ in
the plasma sheet. Although this effect can be explained from the physical
formulas, it had not been studied before. The use of an adaptive method
increased the accuracy sufficiently to let these effects show up noticeably in
the numerical results.

The Brio and Wu shock tube problem was used to benchmark our adaptive
method. The gain with respect to a uniform method is at least a factor three.
For two- or higher-dimensional models this gain factor counts exponentially.
The overall accuracy of the finite volume method is first order, due to first
order accuracy of the method at discontinuities. Focusing on smooth parts,
however, correctly shows the second order nature of the method. Also, a
short comparison with h-refinement shows that our r-refinement method can
reach smaller errors more efficiently.

Although Lax–Friedrichs-type methods are known for their numerical vis-
cosity, the combination of a local Lax–Friedrichs flux in combination with
a moving mesh yields very accurate results, with still good computational
performance. We will extend the use of this robust adaptive technique to
higher-dimensional models. The use of higher-order solvers, and a more ac-
curate solution interpolation step during mesh moving, are possible future
improvements during that process.
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4Adaptive moving mesh research usually focuses either on analytical deriva-
tions for prescribed solutions or on pragmatic solvers with challenging phys-
ical applications. In the latter case, the monitor functions that steer mesh
adaptation are often defined in an ad hoc way. In this chapter1 we generalize
our monitor function from the previous chapter to a balanced sum of any
number of monitor components. This avoids the trial-and-error parameter
fine-tuning that is often used in monitor functions.

Key reason for the new balancing method is that the ratio between the
maximum and average value of a monitor component should ideally be equal
for all components. Vorticity as a monitor component is a good motivating
example for this. Entropy also turns out to be a very informative monitor
component.

We incorporate the monitor function in an adaptive moving mesh higher-
order finite volume solver with HLLC fluxes, which is suitable for nonlin-
ear hyperbolic systems of conservation laws. When applied to compressible
gas flow it produces very sharp results for shocks and other discontinu-
ities. Moreover it captures small instabilities (Richtmyer–Meshkov, Kelvin–
Helmholtz), thus showing the rich nature of the example problems and the
effectiveness of the new monitor balancing.

4.1 I N T RO D U C T I O N

Adaptive mesh methods improve local resolution of numerical solvers and, as
a result, improve the performance of them. Results are significantly sharper
than those obtained by using a uniform mesh with more mesh points. True
gain in performance is only obtained, though, when the adaptive methods
perform well automatically. This requires a balanced monitoring of flow
phenomena, without manual fine-tuning of parameters by trial and error.
This chapter presents such a balanced monitoring, combined with a powerful
finite volume solver, applied to hydrodynamical problems.
h-Refinement or local refinement splits mesh cells into smaller ones based

on some criterion. This can provide great levels of detail and is widely used
in CFD-codes. An overview of the aspects involved in this method was given
in Section 2.6. In one of our experiments (Section 4.5) we will make a com-
parison between our r-refinement results and h-refinement results produced
by AMRVAC [NK02, vdHK07].
r-Refinement or (adaptive) moving mesh refinement moves mesh points to-

wards regions that need refinement based on some criterion. The number

1This chapter will appear as [vDZ09]: A. van Dam and P.A. Zegeling. Balanced monitoring of
flow phenomena in moving mesh methods. To appear in Commun. Comput. Phys., 2009.
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of points remains constant, which gives fairly predictable running times. Be-
sides, the mesh cells can change shape, position and orientation, so that align-
ment with, e.g., shocks or vortices is well possible. This chapter deals with
r-refinement only and shows that it can achieve great levels of detail. The pre-
vious chapter contains a detailed overview of the wide range of approaches
possible for r-refinement.

We employ a variational formulation of mesh adaptation, an approach
which has become well-known over the past five decades. Tang and Tang
[TT03] presented a moving mesh algorithm in a pragmatic combination with a
finite volume solver. Over the past five years, this inspired several others. The
technique is usually applied to hydrodynamics (HD), e.g., by Tang [Tan06]
and Zegeling et al [ZdBT05], and to magnetohydrodynamics (MHD), e.g.,
by Han and Tang [HT07], Tan [Tan07], Van Dam and Zegeling [vDZ06] and
Zegeling [Zeg05]. Moving mesh methods generally have little dependency
on the physical PDEs under consideration, as diverse applications show, e.g.,
the Navier–Stokes equations by Di et al. [DLTZ05] and the Hamilton–Jacobi
equations by Tang et al. [TTZ03]. A similar method, but now using direct
minimization of the mesh functional has been used for reactive flows in 2D by
Azarenok and Tang [AT05] and multi-phase fluids in 3D by Di et al. [DLT08].

Inspired by earlier work by Beckett and Mackenzie [BM00] and Huang
[Hua01a], we formulated an adaptive monitor function that makes manual
fine-tuning unnecessary in the previous chapter. Here we improve this func-
tion in two ways: a slightly changed normalization balances all solution com-
ponents equally, and we propose additional monitor components that detect
phenomena that would otherwise be largely overseen.

Huang has done extensive research on analytical properties of monitor
functions and the resulting mesh adaptation. Most of that work deals with
prescribed solutions, so no physical PDE part is involved in the algorithm.
This gives a better opportunity for analytical discussions, which Huang re-
cently summarized in an overview paper [Hua06].

Brackbill has done similar research on the combination of several func-
tionals in the minimization process (see Section 4.3.3.1). Besides combining
mesh quality functionals [BS82, with Saltzman] he also combined an align-
ment functional with a solution adaptivity functional in order to obtain di-
rectional control [Bra93]. Directional monitor functions have been widely
used ever since, for example by Glasser et al. [GLK05] in a more analyti-
cal context. Tang [Tan06] applies a directional monitor function to the two-
dimensional Euler equations and Tan [Tan07] uses an identical monitor for a
two-dimensional resistive MHD model. We will also use such a directional
monitor function as it produces much higher quality meshes at negligible
costs.

This chapter is organized as follows. In Section 4.2 we briefly recall the
physics behind compressible gas flow and mention some relevant flow quan-
tities. Next, we give a detailed description of our moving mesh finite volume
solver in Section 4.3. The first part concerns the finite volume solver with
HLLC fluxes, non-uniform solution reconstruction and slope limiting. The
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second part concerns the mesh movement, its history and our current algo-
rithm. Section 4.4 contains the main contribution of this chapter: a balanced
monitor function to capture various flow phenomena. Section 4.5 contains
three example problems that were already partly used in the preceding sec-
tions and are then further explored. In Section 4.6 we summarize our findings
and give some recommendations for further research.

4.2 P H E NO M E NA I N CO M P R E S S I B L E GA S F LOW

The first system of PDEs that comes to mind when testing moving mesh
methods on flow problems are the equations of compressible gas dynamics.
Forming a nonlinear system of hyperbolic PDEs, they can result in several
wave types, possibly interacting, without requiring additional conditions from
the numerical solver, such as the divergence-free magnetic field condition in
ideal MHD simulations would do. We defer the latter problem to the next
chapter.

In the following sections the physical model and several physical features
in compressible gas flow are described, where some expressions are already
specialized into their two-dimensional form.

4.2.1 Physical model
The time evolution of a compressible gas is described by the Euler equations:

∂

∂t

 ρρv
E

 +∇ ·

 ρv
ρvv + pI
(E + p)v

 =

0
0
0

 , (4.1)

where the two-dimensional advection is denoted as v := [u, v]T . The diver-
gence of the flux tensor results in, e.g.,

∇ · ρvv ≡ ∂

∂x
ρuv + ∂

∂y
ρvv.

The system (4.1) is closed by the standard equation of state:

E = p

γ − 1 + 1
2ρv · v,

where γ is the adiabatic constant, specifying the ratio of specific heats.

4.2.2 Relevant flow features
Analysis of shock waves and other features in compressible gas flow is eas-
iest in a one-dimensional setting. For completeness, Figure 4.1 shows the
elementary wave structure that results from an initially discontinuous solu-
tion. Remember that not all solution quantities change value across all waves.
For example, the thermal pressure

p = (γ − 1)(E − 1
2ρv · v) (4.2)
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contact discontinuity
(CD)

rarefaction fan (RF) shock wave

Figure 4.1 Elementary wave structure of the hyperbolic Euler equations for one-
dimensional compressible gas flow. The three wave types form the building blocks of
wave interactions in two dimensions.

is constant across the contact discontinuity (CD). Similarly, the entropy, de-
fined as

S = log
(
p

ργ

)
, (4.3)

is constant across the rarefaction fan (RF). It is still an interesting quantity,
though, as rapid changes in entropy indicate a high potential for the emer-
gence of new flow features. These observations will be relevant in selecting
flow quantities upon which mesh adaptivity is based.

The three elementary wave types above will also appear in problems on
two-dimensional domains. They are essentially the same, except that they can
appear in any direction. Moreover, they are likely to meet and interact over
time. Schulz-Rinne et al. [SRCG93] give a classification of fifteen different
solutions for two-dimensional Riemann problems, which was later corrected
by Lax and Liu [LL98] to nineteen different solutions. All make the same
assumption that each initial discontinuity produces only one type of elemen-
tary wave. More freedom in the initial solutions would greatly increase the
number of possible outcomes.

Possible new flow features include Mach reflections between shock lines
or at rigid walls or CDs bending into spirals. In Section 4.5 we will use one
of these example problems to test our adaptive method on. Amongst others,
we will investigate whether entropy gradients or local vorticity ‖∇ × v‖ are
good detectors of more subtle flow features.

4.3 A M OV I NG M E S H S O LV E R FO R CO N S E RVAT I O N L AWS

The conservation law PDEs are solved by an explicit time integration using
finite volumes, combined with time dependent mesh movement to capture
evolving flow features. The finite volume solver is discussed in Section 4.3.2
and the mesh movement in Section 4.3.3.
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4.3.1 Physical problem description
We use a solver that is suitable for nonlinear systems of hyperbolic PDEs in
general:

∂

∂t
q + ∂

∂x
f (q) + ∂

∂y
g(q) = 0, q([x, y]T , t) ∈ RM . (4.4)

The Euler equations for compressible gas dynamics (4.1) are in the above form
and will be the leading example in this paper. Basic meteorological models
as well as the advection model fit in the same form.

The domain Ω is defined and discretized as follows:

Ω := [a1, b1]× [a2, b2] =
⋃

j=0,...,Nx−1, k=0,...,Ny−1
Aj+ 1

2 ,k+ 1
2
, (4.5)

Aj+ 1
2 ,k+ 1

2
:= quadrilateral cell with corners xj+c,k+d, c, d ∈ {0, 1}, (4.6)

xj,k := [xj,k, yj,k]T for j = −2, . . . , Nx + 2, (4.7)
and k = −2, . . . , Ny + 2.

The mesh points xj,k are not uniformly distributed: the mesh is logically
rectangular, but can be solution adaptive in physical space. The domain is
now covered by Nx × Ny convex quadrilaterals Aj+ 1

2 ,k+ 1
2
. Besides, there are

two rows and columns of ghost cells beyond all four domain boundaries to
facilitate the second order stencils of the finite volume solver.

4.3.2 Second order finite volumes
The finite volume method employed is of second order and uses MUSCL-
type solution reconstruction with slope limiting and local Lax–Friedrichs and
HLLC numerical fluxes, which we will now discuss in more detail.

Finite volume solvers use average solution values on all mesh cells:

Qn
j+ 1

2 ,k+ 1
2
≈
∫∫

A
j+ 1

2 ,k+ 1
2

q([x, y], tn) dxdy/|An
j+ 1

2 ,k+ 1
2
|, (4.8)

where |An
j+ 1

2 ,k+ 1
2
| is the area of cell Aj+ 1

2 ,k+ 1
2

at time tn.
The integral form of the PDEs (4.4) leads to the well-known finite volume

discretization:

Qn+1
j+ 1

2 ,k+ 1
2

= Qn
j+ 1

2 ,k+ 1
2
− ∆tn
|An

j+ 1
2 ,k+ 1

2
|

(
|hn

j+1,k+ 1
2
|F̆j+1,k+ 1

2
− |hn

j,k+ 1
2
|F̆j,k+ 1

2
(4.9)

+|hn
j+ 1

2 ,k+1|Ğj+ 1
2 ,k+1 − |h

n
j+ 1

2 ,k
|Ğj+ 1

2 ,k

)
=: Qn

j+ 1
2 ,k+ 1

2
+ ∆tnLj+ 1

2 ,k+ 1
2
(Qn),

where F̆ and Ğ approximate the normal fluxes across the logically vertical
and horizontal edges, respectively, averaged over the time range [tn, tn+1].
The length of the left edge of a cell Aj+ 1

2 ,k+ 1
2

is denoted by |hj,k+ 1
2
|.
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G

F̂ = F(T(Q)) ≡ F̆

[F, G]T

θ

n = [cos θ, sin θ]T

F

Ĝ

xj,k

y
ŷ

x

x̂

xj,k+1

Figure 4.2 Rotation of the flux tensor into the (logically vertical) edge’s normal reference
frame. For ease of notation, F denotes the tensor [F,0], and similar for G, F̂ and Ĝ.

Figure 4.2 depicts the construction of the net, i.e., normal flux across a
logically vertical edge. In general we can define the flux normal across an
edge by taking the inner product of the flux tensor [F,G] with the edge’s
normal, but here we can instead exploit the rotational invariance of the Euler
equations:

F̆(Q) = cos(θ)F(Q) + sin(θ)G(Q) = T−1(F(T (Q))), (4.10)

where T := T (θ) is the rotation matrix and T−1 := T−1(θ) its inverse for
rotating back:

T (θ) =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 , T−1(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 . (4.11)

Equation (4.10) describes how Q is first rotated over an angle θ into a new
reference frame as Q̂ = T (Q) where the new x̂-direction aligns with the
edge’s normal. Now, only F(T (Q)) needs to be evaluated, since flux G(T (Q))
aligns exactly with the edge and thus has zero contribution to the net flux
through the edge. Finally, the flux is rotated back into the physical reference
frame. This saves us one flux evaluation at each edge and more importantly,
the numerical flux evaluation on the edge is now essentially reduced to a
one-dimensional problem. This greatly simplifies the use of more advanced
approximate Riemann solvers, such as the HLLC solver described in Sec-
tion 4.3.2.2. Also note that for Ğ on logically horizontal edges, the exact same
procedure can be used and again only flux F(Q̂) needs to be evaluated, i.e.,
G can be discarded completely.
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lj,k+ 1
2

xj,k

hj,k+ 1
2

Q j− 1
2 ,k+ 1

2
→ Q−j,k+ 1

2
Q+

j,k+ 1
2
← Q j+ 1

2 ,k+ 1
2

xj,k+1

: xj,k+ 1
2

: aj,k+ 1
2

Figure 4.3 Solution reconstruction on a nonuniform mesh.

4.3.2.1 Solution reconstruction and slope limiting on nonuniform meshes
The fluxes are functions of the solution q, so for evaluating the fluxes at the
cell edges, solution values first need to be reconstructed from the cell centered
values Qj+ 1

2 ,k+ 1
2
. We use piecewise linear MUSCL reconstruction as proposed

by Van Leer [vL77a, vL77b], combined with the Van Leer slope limiter. We
will now describe the logically horizontal reconstruction of Qn

j,k+ 1
2

at a vertical
edge, the procedure for the other direction is of course similar.

The solution reconstruction is depicted in Figure 4.3. It is done over the line
segment ln

j,k+ 1
2

between the cell centers xn
j− 1

2 ,k+ 1
2

and xn
j+ 1

2 ,k+ 1
2
, which intersects

with the edge hn
j,k+ 1

2
. The adaptive meshes that occur in our experiments have

a smooth enough ‘curvature’ to assume that the intersection of this line and
the edge lies approximately at the center of the edge:

an
j,k+ 1

2
:= ln

j,k+ 1
2
∩ hn

j,k+ 1
2
≈ (xn

j,k + xn
j,k+1)/2 =: xn

j,k+ 1
2
. (4.12)

The linear reconstructions on a nonuniform mesh are then given by:

Qn,±
j,k+ 1

2
= Qn

j± 1
2 ,k+ 1

2
∓ ‖xn

j,k+ 1
2
− xn

j± 1
2 ,k+ 1

2
‖2 S̄n

j± 1
2 ,k+ 1

2
, (4.13)

where S̄n
j+ 1

2 ,k+ 1
2

is the limited slope approximation on the cell as defined below,

S̄n
j+ 1

2 ,k+ 1
2

= φ(Sn
j+1,k+ 1

2
/Sn

j,k+ 1
2
)Sn

j,k+ 1
2
, (4.14)

Sn
j,k+ 1

2
=

Qn
j+ 1

2 ,k+ 1
2
−Qn

j− 1
2 ,k+ 1

2

‖xn
j+ 1

2 ,k+ 1
2
− xn

j− 1
2 ,k+ 1

2
‖

, (4.15)

where φ is the Van Leer limiter:

φ(r) = r + |r|
1 + r . (4.16)

Other well-known slope limiters, such as the Woodward or Koren limiters
may be used instead. Note that the reconstruction (4.13) incorporates the
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mesh nonuniformity and thus is more accurate than when reconstruction is
done entirely in the logical domain.

Genuinely multidimensional reconstruction and slope limiting was studied
by, e.g., Hubbard [Hub99] and Berger et al. [BAM05]. In the latter, this even
involves solving linear programming problems at each cell interface. Our
experience is that our quasi-one-dimensional approach (4.13) proves robust
for a wide range of problems.

4.3.2.2 Approximate Riemann solvers
The numerical fluxes in (4.9) are supposed to be averaged at the edge over
the time interval [tn, tn+1]. The reconstructed solution values

QL := Qn,−
j,k+ 1

2
and QR := Qn,+

j,k+ 1
2

(4.17)

form a local Riemann problem at the edge. We consider an exact Riemann
solver too expensive here, so we use the local Lax–Friedrichs (LLF) flux and
the HLLC flux approximations.

Local Lax–Friedrichs
The LLF—or Rusanov [Rus61]—flux averages the left and right fluxes and
adds a stabilizing numerical diffusion locally:

Fllf(QL,QR) = 1
2(f (QL) + f (QR))− 1

2 max
K∈{L,R}

|λmax(QK)|(QR −QL), (4.18)

where |λmax| is the largest absolute eigenvalue of the flux Jacobian ∂f/∂q and
QK represents either the left or right solution state. The Lax–Friedrichs flux
thanks its robustness to its diffusive nature and the local diffusion constant
of LLF limits this enough to still obtain accurate results. Especially in combi-
nation with adaptive meshes we obtained good results for one-dimensional
magnetohydrodynamics [vDZ06]. In two dimensions shock waves are also
captured very well, but more delicate flow features are not. The moving
mesh algorithm can not properly detect these delicate features, because LLF
has diffused the solution beforehand. This is the reason why we will use
HLLC fluxes instead. Section 4.5.1.1 compares results obtained with LLF and
HLLC fluxes.

HLLC
The MUSCL-LLF combination may be of second order accuracy, it still uses
a fairly crude approximation of the actual fluxes across cell edges. This is
because it always uses the fastest wave speed to add some local numerical
viscosity to the numerical flux function (4.18). It is especially the middle
wave, the contact discontinuity (CD) that is harmed by this approximation.
Much more viscosity than necessary is added and the sharpness of the CD
is generally worse than that of the faster left and right waves.

Harten et al. [HLL83] proposed a new approximate Riemann solver to ob-
tain Godunov-type fluxes, which is now widely known as the HLL Riemann
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Local Lax–Friedrichs HLL HLLC

QR QR QR

−S+ SL SR SL S∗ SR

QL QL QL

Q
∗R

Q∗ Q
∗LQ∗

S+

x x x

Figure 4.4 Approximate Riemann solvers: Local Lax–Friedrichs, HLL and HLLC. The dif-
ference lies in the number of different wave speeds that are used. In between waves, the
solution is approximated by a constant state.

solver. It distinguishes between the leftmost and rightmost waves in a local
Riemann problem and approximates the intermediate state by averaging. It
still overlooks the CD though. We will now elaborate on this approach in the
more general setting of the HLLC solver. The definitions below are complete,
but a more in-depth discussion is given by Toro [Tor99].

Toro et al. [TSS94] proposed an improved version of the HLL solver that
accurately captures the middle CD wave from the Euler equations. Hence the
name HLLC solver. The underlying idea is to distinguish three instead of two
waves that emanate from the local Riemann problem between two solution
states on the neighboring cells, see Figure 4.4.

The local Riemann problem (QL,QR) is one-dimensional due to the ro-
tated reference frame (see Section 4.3.2). Along each path x̃/t the solution is
constant (where x̃ := x̂− x̂j denotes the local coordinate) and the position of
this path relative to the three characteristic waves determines in which regime
the solution falls:

Qhllc
j =


QL if x̃/t ≤ SL,
Q∗L if SL ≤ x̃/t ≤ S∗,
Q∗R if S∗ ≤ x̃/t ≤ SR,
QR if SR ≤ x̃/t.

(4.19)

By applying Rankine–Hugoniot conditions to the jumps across each of the
waves SL, S∗ and SR, and using additional knowledge about the exact so-
lution jumps across these waves, we obtain the solution vectors in the two
intermediate states:

Q∗K = ρK

(
SK − uK

SK − S∗

)
1
S∗
vK

EK

ρK
+ (S∗ − uK)

(
S∗ + pK

ρK (SK−uK )

)
 for K ∈ {L,R}.

(4.20)
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The numerical flux is evaluated at the edge, i.e., x̃/t = 0:

Fhllc
j+ 1

2
=


FL if 0 ≤ SL,
F∗L = FL + SL(Q∗L −QL) if SL ≤ 0 ≤ S∗,
F∗R = FR + SR(Q∗R −QR) if S∗ ≤ 0 ≤ SR,
FR if SR ≤ 0.

(4.21)

The left- and rightmost wave speeds are chosen as follows:

SL = min{(u− c)L, (u− c)R} and SR = max{(u + c)L, (u + c)R}, (4.22)

where c is the sound speed. The speed S∗ of the intermediate wave can be
obtained by realizing that the pressure is constant across a CD: p∗L = p∗R,
which gives:

S∗ = pR − pL + ρLuL(SL − uL)− ρRuR(SR − uR)
ρL(SL − uL)− ρR(SR − uR) . (4.23)

When SR (or SL) and S∗ coincide, HLLC reduces to HLL. Besides, when we
set SL = −SR = −maxK∈{L,R} |λmax|K in HLL, the method reduces to LLF.
Experiments confirm this up to machine precision.

4.3.2.3 Two-step explicit time integration
The PDEs (4.4) are integrated in time by Heun’s predictor–corrector method,
which has second-order accuracy. Using the notation from (4.9), we now use
two FV-steps:

Q∗
j+ 1

2 ,k+ 1
2

= Qn
j+ 1

2 ,k+ 1
2

+ ∆tnLj+ 1
2 ,k+ 1

2
(Qn),

Qn+1
j+ 1

2 ,k+ 1
2

= Qn
j+ 1

2 ,k+ 1
2

+ ∆tn
Lj+ 1

2 ,k+ 1
2
(Qn) + Lj+ 1

2 ,k+ 1
2
(Q∗)

2 ,
(4.24)

where the Lj+ 1
2 ,k+ 1

2
(Q) operator computes the discretized flux gradients by

the MUSCL–HLLC combination described before.
Since the underlying mesh is nonuniform, the CFL stability condition is

enforced on each mesh cell locally. We define the quasi-one-dimensional
mesh cell sizes in the rotated frame as:

∆x̂n
j+ 1

2 ,k+ 1
2

:=
|An

j+ 1
2 ,k+ 1

2
|

max{|hn
j,k+ 1

2
|, |hn

j+1,k+ 1
2
|}

, ∆ŷn
j+ 1

2 ,k+ 1
2

:=
|An

j+ 1
2 ,k+ 1

2
|

max{|hn
j+ 1

2 ,k
|, |hn

j+ 1
2 ,k+1|}

.

(4.25)
Next, we apply the CFL-stability criterion in the following way:

∆tn ≤ Cmin
j,k

min{∆x̂n
j+ 1

2 ,k+ 1
2
, ∆ŷn

j+ 1
2 ,k+ 1

2
}

max{|λ1,max(Qn
j+ 1

2 ,k+ 1
2
)|, |λ1,max(Qn

j+ 1
2 ,k+ 1

2
)|} , (4.26)

where λ1,max and λ2,max are the largest eigenvalues in the x- and y-direction,
respectively.
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A looser CFL-criterion will not improve performance very much. More
severe is the fact that the smallest cell sizes that will occur during mesh
adaptation—typically 5 to 50 times smaller than the original uniform mesh—
limit the overall time step. This is a general problem of adaptive mesh meth-
ods and could be solved by local time stepping. For h-refinement methods
this is widely used, and for moving mesh methods the procedure is essentially
the same and fairly straightforward, although it requires precise bookkeeping
and correction of fluxes to maintain the conservation property over all time
steps. Tan et al. [TZHT04] have done so and report performance improve-
ments by a factor 2 to 3.

4.3.3 Adaptive moving mesh method
The problem domain is discretized as a structured mesh with a fixed number
of mesh points. The moving mesh algorithm moves the mesh points towards
interesting flow phenomena, which are time-dependent.

4.3.3.1 Background
The following background information supports the presentation of the algo-
rithm; a more in-depth discussion of these methods was given in Section 2.3.2.

The adaptation is represented by a mesh map x(ξξξ), where ξξξ := [ξ, η] ∈ Ωc

are the reference coordinates in the computational domain Ωc := [0, 1]× [0, 1].
One of the earliest works on mesh adaptation is by Winslow [Win81] in

which he generalizes the elliptic mesh generator to a solution-adaptive form:

∇ · (D∇ξ) = 0, ∇ · (D∇η) = 0. (4.27)

Here the ‘diffusion’ coefficient D > 0 could depend on the solution gradient.
Instead of inverting (4.27) to obtain x(ξξξ), Ceniceros and Hou [CH01] formulate
the elliptic generator directly in the covariant form:

∇ξ · (G∇ξx) = 0, ∇ξ · (G∇ξy) = 0, (4.28)

where ∇ξ := [∂/∂ξ, ∂/∂η]T is the computational gradient. Solving these equa-
tions directly yields the adaptive mesh [x(ξ, η), y(ξ, η)].

In the above, D and G are still scalar functions (take G = gI), but later
work by, e.g., Cao et al. [CHR99] and Tang [Tan06] proposes to make G
a symmetric positive definite matrix with elements g1,1 6= g2,2 such that the
solution adaptivity becomes directional (comparable with anisotropic local
mesh refinement). This is also what we do.2

All of the above work except Winslow’s uses an elliptic PDE system that
originates from a variational formulation of a minimization problem. For
example the solution to PDE (4.28) is the minimizer of the ‘energy’ functional

E(x(ξξξ)) = 1
2

∫∫
Ωc

[
∇T

ξ G∇ξx +∇T
ξ G∇ξy

]
dξ dη. (4.29)

2Huang [CHR99] even proposes nonzero elements off the diagonal, but we do not consider
that here.
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The moving mesh algorithm aims to find a mesh map with a low energy
value. The lower the energy, the more appropriate is the mesh map x(ξξξ)
according to the monitor function G.

Brackbill and Saltzman [BS82] were amongst the first to start from a varia-
tional formulation and they combined three functionals to control both mesh
smoothness, orthogonality and adaptivity. We will only study adaptivity
here, since the balanced monitor function (4.45) in Section 4.4 helps keeping
the mesh smooth. Still, we do see advantages in orthogonality monitors in
future work.

4.3.3.2 Algorithm

The mesh movement algorithm is similar to the one set out by Tang and
Tang [TT03]. We propose a much more versatile and robust monitor function,
though, which will be described in Section 4.4.

The mesh movement equations (4.28) are solved separately from the phys-
ical PDEs (4.4). In each iteration step, first the mesh is moved to adapt to the
latest solution features. Next, the nonuniform mesh is kept fixed during one
forward time integration step. We omit the time index n in the coordinates
and solution values, since it does not change during the mesh adaptation
step. Algorithm 2 summarizes it all.

Algorithm 2 mmfvsolve – 2D adaptive moving mesh finite volume PDE solver.
1: n← 0; t0 ← 0
2: Generate an initial uniform mesh x0

j,k.
3: Compute initial values Q0

j+1/2,k+1/2.
4: while tn < T do
5: ν ← 0; x[0]

j,k ← xn
j,k; Q[0]

j+1/2,k+1/2 ← Qn
j+1/2,k+1/2.

6: repeat
7: Evaluate monitor function (4.45) and filter it (Section 4.4.5).
8: Move mesh x[ν]

j,k to x[ν+1]
j,k , by Gauss–Seidel of (4.30).

9: Conservative interpolation of Q[ν+1]
j+1/2,k+1/2 by (4.32)

(or re-initialize at t = t0).
10: ν ← ν + 1
11: until ν ≥ νmax or

∥∥x[ν] − x[ν−1]
∥∥

rel ≤ ε
12: Fix new mesh xn ← x[ν] and solution Qn ← Q[ν].
13: tn+1 ← tn + ∆tn by CFL criterion (4.26).
14: Compute Qn+1 using finite volumes (Section 4.3.2).
15: xn+1 ← xn.
16: n← n + 1.
17: end while
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Mesh adaptation
We combine the moving mesh PDEs (4.28) with a directional3 monitor func-
tion G = diag(ω(1), ω(2)). All gradients are discretized by central differences
and the monitor values on the middle of each edge are averaged between
two cell centers. Next, a Gauss–Seidel step is used to compute the new mesh
points:

x[ν+1]
j,k =

ω(1)
j− 1

2 ,k
x[ν+1]

j−1,k + ω(1)
j+ 1

2 ,k
x[ν]

j+1,k

(∆ξ)2 +
ω(2)

j,k− 1
2
x[ν+1]

j,k−1 + ω(2)
j,k+ 1

2
x[ν]

j,k+1

(∆η)2

(ω(1)
j− 1

2 ,k
+ ω(1)

j+ 1
2 ,k

+ ω(2)
j,k− 1

2
+ ω(2)

j,k+ 1
2
)

. (4.30)

Notice how these are in fact two equations: one for x and one for y. The
coefficients for the two are identical, yet the equations for x and y are inde-
pendent, i.e., they do not affect each other directly. The boundary points can
move along the boundary. We do this by setting x0,k = a1, y0,k = y1,k in (4.30)
for the left boundary and similar for the other three.

Conservative solution interpolation
The discrete solution values have to be updated after the mesh cells have
been changed. Conservation of the solution variables (mass, energy, etc.)
is an important requirement for an accurate compressible flow solver. Well-
known is the approach by Tang and Tang [TT03], which considers the velocity
of the mesh points as an artificial flux. Han and Tang [HT07] formulate an
alternative geometrical approach, which may be slightly more accurate. Both
maintain global conservation in the following way:∑

j,k

∣∣∣A[ν+1]
j+ 1

2 ,k+ 1
2

∣∣∣Q[ν+1]
j+ 1

2 ,k+ 1
2

=
∑
j,k

∣∣∣A[ν]
j+ 1

2 ,k+ 1
2

∣∣∣Q[ν]
j+ 1

2 ,k+ 1
2
.

Zhang [Zha06] devises a new approach based on L2-projection, where solu-
tion conservation is even preserved in each cell. We employ the first method,
though, because of our good experiences with it in the past.

The movement of a cell’s edges causes an artificial flux across them. The
difference between the old and new mesh points is defined as

cj,k := x[ν]
j,k − x[ν+1]

j,k . (4.31)

Assuming that this difference is small, the following approximation for the
new solution can be derived:∣∣∣A[ν+1]

j+ 1
2 ,k+ 1

2

∣∣∣Q[ν+1]
j+ 1

2 ,k+ 1
2

=
∣∣∣A[ν]

j+ 1
2 ,k+ 1

2

∣∣∣Q[ν]
j+ 1

2 ,k+ 1
2

−
(

(ĉnQ)j+1,k+ 1
2
|hj+1,k+ 1

2
| − (ĉnQ)j,k+ 1

2
|hj,k+ 1

2
|
)

−
(

(ĉnQ)j+ 1
2 ,k+1|hj+ 1

2 ,k+1| − (ĉnQ)j+ 1
2 ,k|hj+ 1

2 ,k|
)
.

(4.32)

3See Section 4.4.4. The direction indices (1), (2) are in superscript here, to avoid confusion
with point indices j, k.
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The numerical fluxes ĉnQ are defined by upwind fluxes

ĉnQj,k+ 1
2

= (c+
nQ)−

j,k+ 1
2

+ (c−n Q)+
j,k+ 1

2
, (4.33)

where the two MUSCL-type solution reconstructions Q− and Q+ are again
defined by (4.13). The upwind choice is defined by:

c±n = cn ± |cn|
2 (4.34)

and the artificial advection cn through an edge is simply the inner product
of the midpoint movement with the edge’s right- or upward normal, e.g.,

(cn)j,k+ 1
2

= cj,k + cj,k+1

2 · nj,k+ 1
2
, (4.35)

nj,k+ 1
2

= [yj,k+1 − yj,k, −(xj,k+1 − xj,k)]T
‖xj,k+1 − xj,k‖

. (4.36)

Degeneracy of the mesh
The solution of the mesh PDEs (4.28) is a mesh map x(ξξξ), which is unique
and regular as long as the monitor matrix G is diagonal and strictly positive.
This result is a special case of the proof by Clément et al. [CHS96], which
we describe in Section 2.3.2.8. In other words: the mesh map has a strictly
positive Jacobian J := det((∇ξx)T ), so mesh cells can not collapse in the exact
solution.

The nonlinear mesh PDEs (4.28) are linearized and then solved, though, so
nondegeneracy can not be guaranteed anymore. Our experience is that with
our balanced monitor function and monitor filtering, this hardly ever occurs.
One might put a ’barrier’ on the movement of the mesh nodes, as we describe
in Section A.1.2, but this was not necessary for any of the results presented
in this chapter.

The mesh adaptation algorithm is now complete. The next section will
introduce a new monitor function that makes the algorithm very robust.

4.4 M O N I TO R F U NC T I O N S

The key to a successful moving mesh method is a proper monitor function.
Firstly, it should detect the relevant flow features, thereby reducing errors
caused by the physical flow solver. Secondly, it should be widely applicable,
that is, require no or little manual fine-tuning for each new problem at hand.
Finally, it should be relatively smooth in space and time, thereby reducing
errors caused by mesh movement.

4.4.1 What makes a good monitor?
A basic monitor function is quickly defined, but true gain in more complex
flow simulations can only be obtained with a more sophisticated monitor.
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The arc length-based (AL) monitor may be intuitive, since it refines the mesh
where the solution is steep:

ω =
√

1 + α‖∇q‖2. (4.37)

The assumption of a scalar solution q is for simplicity here and will be ex-
tended to vector-valued solutions q in Section 4.4.3. The AL monitor is not
balanced, though, more specifically it has three main disadvantages:

• The AL monitor requires the user to properly choose adaptation param-
eter α, which is problem dependent and not dimensionless.

• The AL monitor has no time-dependent adaptivity, since α is fixed dur-
ing a run. Whenever the solution gradients change significantly over
time, the chosen value for α becomes unsuitable.

• The AL monitor often lacks smoothness, resulting in too rapidly varying
cell sizes.

We solve the above problems by several improvements, which will be dis-
cussed in this and the following sections.

4.4.2 An adaptive monitor function
The disadvantages of the adaptivity parameter α in the AL monitor (4.37)
mentioned in the previous section, can be summarized as follows: α is
not dimensionless, nor scaling invariant, nor time-dependent. Beckett and
Mackenzie (BM) [BM00] have proposed an alternative for the AL-monitor:
α(q) + ‖∇q‖1/m, where the new floor value α(q) is the average value of the
gradient on the entire domain. The smoothness parameter m replaces the
square root in (4.37) and controls the importance given to gradient differ-
ences (the limit m→∞ produces a uniform mesh). We fix it at m = 1 unless
specified otherwise. We start with an ‘average normalization’ of the solution
gradient, which is equivalent to the BM-monitor:

ω(q) = 1 + ‖∇q‖
1

m

α(q) , where α(q) =
∫∫

Ω
‖∇q‖ 1

m dx, m > 0. (4.38)

The next section will generalize this to the case where the solution is a vector
q, i.e., as in (4.4). We call this an adaptive monitor function for the following
reasons. In the above monitor the solution gradients have now become di-
mensionless. There is also a much better balance between large and small
gradients (ω(q) ∈ [1, 2]), so the mesh points are spread in a more balanced
way. Moreover, the normalization by α(q) is time-dependent, since solution
q(x, t) itself is time-dependent. Further smoothness is obtained by using com-
putational gradients∇ξ instead of physical gradients∇. This is also motivated
by the following [CH01]. On the reference domain, the solution q̃(ξξξ) := q(x(ξξξ))
should be more regular. Hence, a good mesh map should minimize the com-
putational gradient ∇ξ q̃(ξξξ) in the functional formulation (4.29).
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The above monitor assigns approximately half of the mesh points to ‘im-
portant’ areas (see for example [Hua01a]). If a solution needs refinement
in only a small part of the domain’s total area, this may be too much. We
include a dimensionless and solution-independent parameter β (see (4.39))
that gives the user generic refinement control. All experiments in Section 4.5
use β = 0.3, which means approximately 30% of the mesh points in impor-
tant areas. It is the only essential parameter that the user may choose for a
particular problem.

4.4.3 Balancing monitor components

We now generalize the adaptive monitor function to systems of PDEs, i.e.,
solution vectors q(x, t) ∈ RM , where M is the number of solution components.
Besides, we allow for monitor components other than solution gradients. For
now, the generalized monitor function is defined as a weighted sum of P
nonnegative monitor components φi,p(q):

ωi(q) =
P∑

p=1
ωi,p(q) =

P∑
p=1

[
(1− β) + β

αi,p(q)φi,p(q)
]

, i ∈ {1, 2}, (4.39)

with a separate normalization for each monitor component and spatial direc-
tion:

αi,p(q) = max[
∫∫

Ωc

φi,p(q) dξξξ, ε]. (4.40)

Here, 0 < ε � 1 prevents division by zero if the component φi,p is zero
everywhere on the domain. The normalization by αi,p(q) will be reconsidered
in Section 4.4.3.1.

The default choice for the monitor components is to use all M solution
gradients:

φi,p(q) =
∣∣∣∣∂qp∂ξi

∣∣∣∣1/m

, p = 1, . . . ,M , i.e., P = M. (4.41)

Other monitor components will be used in Sections 4.4.3.2 and 4.5.
Notice how the monitor values and gradients are subscripted by i. This

defines a directional monitor function, which will be discussed in Section 4.4.4.

4.4.3.1 Component imbalance
The adaptive monitor function (4.39) automatically gives proper weight to
both steep and smooth solution parts. This is per component, though. The
function within the summation may have very different ranges for the various
ωi,p. This is because no standard normalization of components φi,p was done.
Instead of divided by the maximum as in (4.42) below, the components were
divided by the average as in (4.43). We will now elaborate on the above.

Without loss of generality, in the following we set β = 0.5 and consider the
monitor components in one direction (ignore i in (4.39,4.40,4.41)). Starting
from the AL monitor (4.37) a possible way of balancing monitor components
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would be standard normalization by dividing by the maximum component
value:

ωp(q) = 1 + φp(q)
maxΩ φp(q) ≡ 1 + φp(q)

Mp(q) ∈ [1, 2]. (4.42)

The disadvantage is that a single very large maximum value Mp(q) will
dominate all other monitor values on the rest of the domain. Instead, the
adaptive monitor (4.39) uses the average value αp(q) for normalization:

ωp(q) = 1 + φp(q)∫∫
Ωc
φp(q)dξξξ

≡ αp(q) + φp(q)
αp(q) ∈

[
1, 1 + Mp(q)

αp(q)

]
.

(4.43)

If one component φp(q) of the P monitor components has a large maximum
and relatively small average it will dominate the other components, because
of the upper limit of its range: Mp(q)/αp(q)� 1. This is solved by a second
normalization of (4.43):

ωp(q) = (αp(q) + φp(q))/αp(q)
max

Ω
[(αp(q) + φp(q))/αp(q)] ≡

αp(q) + φp(q)
αp(q) +Mp(q) ∈

[
αp(q)

αp(q) +Mp(q) , 1
]

⊆ 〈0, 1]. (4.44)

This ’average-max’ normalization defines our final form, hereafter called the
balanced monitor function:

ωi(q) =
P∑

p=1
ωi,p(q) =

P∑
p=1

[
(1− β)αi,p + β φi,p(q)
(1− β)αi,p + βMi,p(q)

]
, i ∈ {1, 2}. (4.45)

There are four important points to note on the above. Firstly, the reason for
using normalizations at all is that all components φp(q) are summed. If one
component has very large values, without normalization the total monitor
value ω =

∑P
p=1 ωp would be large there as well, and all other monitor val-

ues on the rest of the domain would have a negligible effect on the mesh
movement. Secondly, a standard normalization as in (4.42) is balanced across
components, as the range is always equal to [1, 2]. Within one component,
though, all subtle variations may be diminished by a very large maximum
value. We have shown the disadvantages of (4.42) in a 1D MHD setting
[vDZ06] and therefore discard it here. Thirdly, for a single component φp(q),
variants (4.43) and (4.44) are completely equivalent. The latter is obtained
by dividing the former by its maximum value and scalar multiplication of a
monitor function has no effect on the mesh refinement. Hence, the new form
(4.44) is consistent with (4.43) for the case P = 1. Also note that the evaluation
of the new form is hardly anything more expensive than the old form: only
the maximum of all (readily known) component values φp needs to be deter-
mined and added to the already known average. Fourthly, all components ωp
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Figure 4.5 Solving the imbalance between monitor components in the HD22IMPDIAG ex-
ample. Left: solution components at t = 0.4, upper triangular half shows the vorticity, lower
half shows the norm of the density gradient. Middle: mesh detail using the unbalanced
monitor function (4.39). Right: mesh detail using the balanced monitor function (4.45).

are now in better balance with each other, since they share the same upper
limit of 1. There is no risk of dividing by zero, since this minimal value in
〈0, 1] is never reached.

4.4.3.2 Proof of concept
The necessity for replacing variant (4.43) is illustrated by the hd22impdiag
example problem (full specification in Section 4.5.1). We only include the
density gradient and vorticity in the monitor summation:

φi,1(q) =
∣∣∣∣ ∂ρ∂ξi

∣∣∣∣ , φi,2(q) = ‖∇ × v‖ , i ∈ {1, 2}. (4.46)

The left diagram in Figure 4.5 shows the two monitor components at t =
0.4 together, since the solution is symmetric in the diagonal x = y. The
density gradient shows several flow features, spread throughout the domain.
In contrast, the vorticity reveals only one local feature in the jet’s head near
(0.008, 0.04). The ratio M2/α2 for the vorticity will therefore be much larger
than the ratio M1/α1 for the density gradients.

The middle diagram in Figure 4.5 shows the bottom left part of the do-
main. The result is a bad mesh for the unbalanced monitor variant (4.39):
the vorticity attracts the mesh too much towards the two rotational points,
and the other features receive less attention. Also between the two rotational
points, unnecessary mesh skewness occurs. The third diagram shows how the
new monitor variant (4.45) properly balances the two monitor components,
resulting in a high quality adaptive mesh.

4.4.4 The importance of directionality

In two- or higher-dimensional mesh adaptivity a directional—or equivalently:
anisotropic—monitor function is essential. It attracts mesh points from the
direction in which a solution feature is observed; points from other directions
are more or less unaffected. This leads to sharper refinement at points where
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Figure 4.6 Nondirectional (left) and directional (right) mesh adaptation for the
HD22CONF11 example problem. Close-up of mesh near (0.53, 0.2).

multiple solution features from different directions meet, since there is less
competition in attracting points.

In the mesh PDEs (4.28) the monitor matrix G prescribes the monitor val-
ues for all directions. Usually a diagonal matrix is used; if the diagonal
elements are identical, the mesh adaptation is nondirectional (isotropic). We
use directional monitor values as in (4.45), i.e., the second form below:

Gnondir =
[
ω 0
0 ω

]
, Gdir =

[
ω1 0
0 ω2

]
. (4.47)

The hd22conf11 example problem (full specification in Section 4.5.2) il-
lustrates the improved mesh for a directional monitor. Figure 4.6 shows the
adapted mesh for a nondirectional monitor (left diagram) and a directional
monitor (right diagram). The mesh adaptation across the vertical contact dis-
continuity (CD) is good in both cases. In the nondirectional case, however,
mesh points have been attracted tangential to the CD as well. This is not only
unnecessary, it also pulls mesh points away from the area around (0.53, 0.23)
where the CD and the horizontal shock meet. The directional case shows
a higher quality mesh near all of these features. Also the spirals, e.g., near
(0.46, 0.35), are better captured in this case.

4.4.5 Monitor filtering

Flow phenomena are now properly captured, but since they generally move,
it is sensible to also refine the mesh in a small region around them. This
is done by filtering of the discrete monitor values. We apply the following



102 4. Balanced Monitoring of Flow Phenomena

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 4.7 Time evolution of the HD22IMPDIAG problem. The colors and 50 contours show
the density (range [.125, 1.15]). The snapshots are at t = 0.05, 0.175, 0.7 and 1.5.

widely-used Gaussian filter, typically 2 to 5 times:

ω(i),filter
j,k :=

(
4ω(i)

j,k + 2 · (ω(i)
j−1,k + ω(i)

j+1,k + ω(i)
j,k−1 + ω(i)

j,k+1)

+ω(i)
j−1,k−1 + ω(i)

j+1,k−1 + ω(i)
j−1,k+1 + ω(i)

j+1,k+1

)
/16 (4.48)

for i = 1 and 2 independently.

4.5 E X P E R I M E N T S

4.5.1 hd22impdiag: a symmetric implosion with jets
The implosion problem (hd22impdiag) by Hui et al. [HLL99]—also extensively
studied by Liska and Wendroff [LW03]—describes an initial discontinuity
across the line x + y = 0.15 on a domain [0, 0.3]× [0, 0.3]:

[ρ, u, v, p] = [0.125, 0, 0, 0.14], if x + y ≤ 0.15,
[ρ, u, v, p] = [ 1, 0, 0, 1], otherwise.

Actually, this forms only the first quadrant of the full configuration, but the
full solution can be obtained by symmetry in both coordinate axes. All bound-
aries are reflective, i.e., homogeneous Neumann conditions except for the
antisymmetric normal velocity component.

Figure 4.7 shows the density evolution over time. Along the diagonal, the
initial discontinuity breaks up into a shock, a contact discontinuity (CD) and
a rarefaction fan. The shock causes a Mach reflection, and the reflected wave
causes a second Mach reflection where it meets the CD (see first diagram).
Along the axes x = 0 and y = 0 two jets emanate from this CD (see second
diagram). This wall-jetting effect has been studied extensively, e.g., by Hen-
derson et al. [HVBDE03]. However, quantitative analysis is very complicated
and rarely seen. We will study the sharpness of the jet front and its velocity
in Section 4.5.1.3.

After some time, the two jets meet at the origin and merge into one jet that
continues to move up the diagonal (see fourth diagram). The evolution of
this and following jets are often watched to test numerical methods on sym-
metry preservation. In the meantime the shock and its reflections repeatedly
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Figure 4.8 Non-adaptive local Lax–Friedrichs versus HLLC flux. Close-up of the
HD22IMPDIAG problem on a uniform 250× 250 mesh at t = 0.45. The colors and contours
show the density. HLLC is much less diffusive.

interact with these jets and the original CD, causing Richtmyer–Meshkov in-
stabilities along the latter. Also, along the interface between forward moving
jets and the outward expanding surroundings, Kelvin–Helmholtz instabilities
are formed (see third diagram).

We will first make a comparison between the LLF and HLLC fluxes from
Section 4.3.2.2. Next, we will illustrate the monitor component balancing from
Section 4.4.3. Finally, we will focus on details of the jets and the formation of
instabilities.

4.5.1.1 Local Lax–Friedrichs and HLLC

The LLF and HLLC fluxes from Section 4.3.2.2 are now compared on a uni-
form (250 × 250) mesh. This will serve as the motivation for the further use
of HLLC. Two simulations are set up identically except for the numerical flux
function: both use Van Leer limiting of the primitive variables and use a CFL
limit of 0.5.

Figure 4.8 shows a close-up of the solution near the origin at t = 0.45. In the
exact solution, the two jets along the axes reach the origin just before t = 0.2
already, but the more numerical viscosity there is, the slower the jets move
(See Section 4.5.1.3). The left diagram shows the result for LLF. The jets have
formed, but are not sharp at all, just like the CD itself. The difference with
the right diagram for HLLC is striking. The jets have formed and already
reached the origin and are now starting to merge onto the diagonal. Not
only the speed, but also the sharpness of the jet head—and the CD itself—is
much sharper.

The HLLC results are significantly better. The amount of discrete time
steps is almost identical, and the HLLC flux evaluations increase the total
CPU time by a mere 10 %. Clearly, this is well worth it. Therefore in all
following experiments we will use HLLC fluxes.
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Figure 4.9 Detail of one of the jets in the HD22IMPDIAG problem. The top left diagram
shows a high-resolution version (N = 500, adaptive). The other five show the results
for adaptive meshes (N = 250) with several choices of monitor components, unbalanced
versus unbalanced, i.e., Equation (4.43) versus (4.44). The colors and 50 contours depict
density (range [0.58, 1.1]).

4.5.1.2 Balancing monitor components
The main purpose of this paper is the improved monitoring of flow fea-
tures. We will now consider the ability of three different monitor functions
to capture the jets and various instabilities. Moreover, we will compare the
unbalanced adaptive monitor variant (4.39) with the balanced variant (4.45) for
each of these three functions.

We take a look at the bottom jet some time after the shock has hit it for
the first time. A small trail of the jet was hit rightward but has now curled
back up into the jet head again, see the top left diagram in Figure 4.9. The
other five diagrams show the results of simulations on a 250× 250 mesh.

The first simulation, bottom left diagram, was obtained by simply including
all solution components in the balanced monitor, i.e., (4.41) and (4.45). The
high-density sheet at the front of the head is properly captured, but the inner
of the head is somewhat diffused. The unbalanced variant produced almost
identical results, because none of the solution components severely dominates
the others.

We try to improve the inner of the jet head by including the vorticity in
the monitor, combined with density gradients. See also Equation (4.46) in
Section 4.4.3.2. However, there is only large vorticity within the back of the
jet head. The mesh in the first diagram in Figure 4.10 shows the strongly
localized refinement in the two points with high vorticity. The top middle
diagram in Figure 4.9 shows how this harms the solution: a strong spiral is
formed, but the outer of the jet head is not sharp at all. The balanced version
in the bottom middle diagram performs a lot better: the solution features
closely resemble those in the top left diagram.

The vorticity is now replaced by the entropy gradient in the monitor, i.e.,

φi,1(q) =
∣∣∣∣ ∂ρ∂ξi

∣∣∣∣ , φi,2(q) =
∣∣∣∣ ∂S∂ξi

∣∣∣∣ , i ∈ {1, 2}. (4.49)
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Figure 4.10 Monitor components: vorticity versus entropy gradients. Adaptive mesh de-
tails for the HD22IMPDIAG problem at t = 0.15. Left: 250× 250, ρ+vorticity monitor, right:
250× 250, ρ + S monitor.

The two rightmost diagrams show the unbalanced and balanced variant, no-
tice how they are hardly any different. Compared to the balanced vorticity
result, the jet head is rounder and still very sharp. Also, the roll-up in its
inner and the split-off trail at its tail is properly captured. Entropy gradients
turn out to be a very good solution monitor. This is because it captures both
density and pressure fluctuations.

Figure 4.10 illustrates the above observations. The density-vorticity moni-
tor refines mainly at the back of the jet head. The mesh adaptation is much
better for the density-entropy-monitor, which captures all shocks, reflections
and rotations. For the unbalanced monitor, the large vorticity dominates the
density gradients so much that hardly any adaptation occurs outside of the
vortices, as was previously shown in Figure 4.5.

In conclusion, firstly the component balancing proved effective for the vor-
ticity monitor. Even though this was not necessary for the entropy monitor,
component balancing is always our preferred method, since one can not know
in advance whether it is necessary or not. Besides, as we mentioned before
it is hardly anything more expensive. Secondly, the vorticity does improve
results, although it is still quite localized, the combination with density is
crucial. The entropy gradients proved very effective and will be used hence-
forth.

4.5.1.3 Details of the jet formation
We now turn to a more quantitative look at the jets. All of our simulations
use Van Leer limiting of the primitive solution variables and HLLC fluxes.
Figure 4.11 shows the position of the jet front over time for several simulations.
The bottommost line is a reference solution by Athena, an astrophysical gas
dynamics code [SGT+08], with third-order spatial reconstruction and Roe’s
Riemann solver on a uniform 1000 × 1000 mesh. All other lines are by our
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Figure 4.11 Position of the jet front in the HD22IMPDIAG problem for several numerical
methods.

own software. The line just above the Athena line is a uniform 1000 × 1000
run. These runs show that the movement of the jet occurs in two stages: first it
forms at the CD and starts moving with constant speed−1.17. All simulations
agree with this. Then at t ≈ 0.85 the shock wave that was reflected at the
origin has returned and collides with the jets. The jets lose some speed, but
still continue towards the origin. The interior of the jet heads was already
rotating, but after the impact the vorticity values have doubled. As a result,
the head widens a little because of material that was hit backwards but now
curls back up again into it.

The figure shows two more ’groups’ of lines: the first group above the
reference lines is around the uniform 500 × 500 run. The second is around
the uniform 250 × 250 run (both have dashed lines). Clearly, an increase in
numerical viscosity leads to slower jets after the impact. Interestingly, all
other waves in the solution maintain correct speed. Simulations at various
mesh sizes and various amounts of adaptivity have shown this up to late in
the simulation, e.g., t = 2.5.

The solid lines represent three adaptive runs with density and entropy
gradients in the monitor. What strikes is that the segments after the impact
are indeed somewhat steeper than for the uniform runs, but the increase in
accuracy is generally less than 10 %. Possibly at the moment of impact a
bigger region needs high resolution, now it is mainly the shock line and the
jet contour that are refined. The N = 500 adaptive run with increased monitor
filtering (10 times) achieves this, but still is only 5 % better.

The adaptive runs do achieve much better sharpness of shocks, CDs, jet
heads and instabilities, though. Figure 4.12 shows the N = 500 and N = 1000
uniform and adaptive runs at t = 0.125. The contour lines indicate the sharper
CD and jet in the adaptive runs. The jet’s front and the rotation in its head in
the N = 500 adaptive run are even significantly sharper than in the N = 1000
uniform run. The adaptive N = 500 run took 57 % more CPU time than
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Figure 4.12 Detail of the horizontal jet in the HD22IMPDIAG problem at t = 0.125. The
two uniform runs (N = 500 and N = 1000) are both expectedly more diffusive than the
N = 500 adaptive run.

the N = 1000 uniform run. The mesh movement costs in terms of CPU are
approximately 25 %. The significantly smaller time step (due to the small
mesh cell sizes in (4.26) is the major cause of the increased running time. To
get equally accurate results with a uniform mesh is not feasible: it would
increase the running time by several factors. For example, doubling the mesh
points in both directions would give an approximately eightfold larger CPU
time.

In conclusion, adaptive methods produce sharp results, both for shocks
and smaller rotations. Concerning jet movement, it turns out that the wall-
jetting effect is very sensitive to numerical errors, as opposed to the shocks,
which have an accurate speed. Quantitative analysis is difficult and rarely
seen in other research. Simulations with higher-order solvers will have to
reveal a truly accurate solution.

4.5.1.4 Formation of instabilities
We conclude with the formation of physical instabilities in this implosion
problem. The two jets have a ‘negative’ velocity directed towards the ori-
gin. In contrast, their surrounding area is expanding due to the reflected
shock. The resulting slip lines (CDs) along the two coordinate axes, which
form the tails of the jets can develop Kelvin–Helmholtz (KH) instabilities over
time. Figure 4.13 shows these in the small bottom left part of the domain at
t = 0.5 for simulations by three different packages. We use the Athena run
on a 1000 × 1000 mesh with Roe solver and third-order reconstruction as a
reference solution. Next, we compare our r-refinement with h-refinement in
AMRVAC [NK02, vdHK07] for an approximately equal amount of mesh cells
and identical finite volume solver (HLLC+Van Leer). The middle diagram
shows our moving mesh solver on a 500 × 500 mesh. The smallest mesh
cell widths give an effective resolution of approximately 3000 × 3000. The
right diagram shows an AMRVAC run with a 100 × 100 mesh with 4 levels
of refinement, giving an effective resolution of 800× 800 and resulting in ap-
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Figure 4.13 Formation of Kelvin–Helmholtz instabilities in the HD22IMPDIAG problem at
t = 0.5. Left diagram: Athena with third-order Roe solver N = 1000, middle diagram:
moving mesh with HLLC N = 500, right diagram: AMRVAC with HLLC N = 100 and
4 refinement levels (colors do not correspond exactly). For Athena, the jet has already
moved beyond the top right corner.

proximately 300000 mesh cells. It is hard to speak of exact solutions in this
sensitive case of instability growth, but evidently, the higher-order Athena
run is considered the most accurate. Notice that the merged jet along the
diagonal has already moved beyond the top right corner in the Athena run,
but this was already discussed in Section 4.5.1.3. Our adaptive result in the
middle diagram does show several KH instabilities along both slip lines very
similar to the Athena solution. Since the jet has not jet crossed the CD, the
CD looks different in our case. Still, the emergence of four instabilities on the
CD is already visible.

The AMRVAC run has refined approximately 75 % of its domain up to the
finest level, giving maximal detail there. The slip lines show no KH insta-
bilities, apparently the resolution is still too low there. On the CD, though,
instabilities have formed since the beginning—even earlier than in the Athena
run—and have formed big structures. We see that qualitatively the same
physical phenomena show up in the three simulations, but that there is still
a big quantitative difference as to how strong and when instabilities develop.
This is inherent to simulation of instabilities, though. Also, honest compar-
isons between different packages is difficult. Our solver achieves very good
refinement (up to 3000× 3000 effective resolution in this example), but lacks
local time stepping. AMRVAC on the other hand, has efficient time step-
ping, but can suffer from a very large number of mesh points when more
refinement levels are allowed.

When we continue the simulation for an even longer time, the shock and its
reflections will return from the top right direction and hit the CD repeatedly.
This increases the vorticity on the CD. At some point, Richtmyer–Meshkov
instabilities emerge from this. Note that this is a longer term process than
the formation of the initial jets. Figure 4.14 shows two detailed views of the
adaptive mesh at an early time t = 0.5, i.e., as in Figure 4.13, and a much later
time t = 2.25. The mesh details show that both strong, isolated structures and
widespread, subtle structures are captured by the mesh adaptation, without
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Figure 4.14 Moving mesh details (N = 500) showing Richtmyer–Meshkov instabilities in
the HD22IMPDIAG problem. Left diagram: t = 0.5, right diagram: t = 2.25.

any change of parameters; both diagrams were taken from the same run.

4.5.2 hd22conf11: A Riemann problem with spirals

The hd22conf11 problem is one of the nineteen different Riemann problems
classified by Lax and Liu [LL98]. It is set on the unit square, and in each
quadrant the solution state is constant:

[ρ,v, p] =


[ 1, 0.1, 0, 1], in the first quadrant,
[ 0.5313, 0.8276, 0, 0.4], in the second quadrant,
[ 0.8, 0.1, 0, 0.4], in the third quadrant,
[ 0.5313, 0.1, 0.7276, 0.4], in the fourth quadrant.

A backward shock will form between quadrant 2 and 1 and between 4 and
1. Between 2 and 3, and between 3 and 4 a CD will form.

In Figure 4.6 this problem was used to show the effect of a directional
monitor function. The directionality is crucial to properly represent the two
main challenging parts to this problem. Firstly, the proper representation of
the Mach stem between the CD and the shock. Secondly, the proper repre-
sentation of the spiral at the end of each CD. We refer to Section 4.4.4 for
further details.

4.5.3 hd22dmr: Double Mach reflection

The double Mach reflection problem (DMR) by Woodward and Colella [WC84]
is a standard test problem that consists of a rightward moving Mach 10 shock
hitting an inclined floor. We keep the domain [0, 4] × [0, 1] horizontal and
incline the shock at an angle π/3 with the reflective bottom wall at x = 1/6,
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Figure 4.15 Left: Pressure detail for the double Mach reflection problem at t=0.25. The
black lines are streamlines of the self-similar velocity field. Right: Adaptive mesh detail for
the same problem. Total mesh size is 160×80 and the density-entropy monitor was used.

which gives the following initial conditions:

[ρ,v, p]post = [ 8, 8.25 cos(−π
6 ), 8.25 sin(−π

6 ), 116.5],
[ρ,v, p]pre = [1.4, 0, 0, 1].

The initial post-shock, i.e., left state is prescribed by y > tan(π/3)(x − 1/6).
The left, top and bottom boundary for x ≤ 1/6 have Dirichlet conditions with
the exact shock solution. The bottom boundary for x > 1/6 is reflective, and
the right boundary has a homogeneous Neumann outflow condition.

Henderson et al. [HVBDE03] have analyzed the wall-jetting effect that
occurs here. The left diagram in Figure 4.15 shows an interesting part of
an adaptive result at t = 0.25. The color represents pressure, and the black
lines are streamlines of the self-similar flow field. A part of the flow has gone
through both the initial shock and the reflected shock (i.e., the triangular part
that contains, e.g., (3, 0.4)). The other part has only gone through the Mach
stem near x ≈ 3.4. The former part has a higher kinetic energy, resulting
in increased pressure in the left part of the subdomain shown. This high
pressure drives the formation of a jet that connects to the slip line (CD),
which is the line through (3, 0.25) and the triple point near (3.4, 0.55).

We performed the adaptive simulation on a 160×80 mesh, again using the
balanced monitor function with density and entropy components. The right
diagram in Figure 4.15 shows the adapted mesh in the subdomain where the
double Mach reflection is present at t = 0.25. The initial and reflected shocks
as well as the CDs and Mach stems are properly captured. Moreover, along
the jet stream and its head the mesh has also been adapted.

The vorticity is again not so useful here if we want to attract mesh points
to the slip line and the jet. This is due to the triple point near (3.4, 0.55). The
vorticity there is almost ten times larger than at the slip line: even with the
balanced monitoring this will attract little points.



4.6 Conclusions 111

4.6 CO NC LU S I O N S

The main contribution of this work is the introduction of a new balanced
monitor function. To prevent spurious solution features, the mesh should not
be overly distorted, e.g., as the unbalanced vorticity monitor in Section 4.4.3.2
did. The new monitor balancing has negligible extra costs, results in robust
mesh adaptation, and leaves the user with only one intuitive parameter: the
relative percentage β of refinement.

The motive for the new balancing was the inclusion of additional physical
quantities in the monitor function. Solution variables such as density have
proved themselves capable of capturing the important discontinuities in many
problems. However, the more subtle features such as jets and instabilities
along contact discontinuities have smaller monitor values and hence receive
less mesh refinement. The vorticity in flow problems adds detail to jets, for
example, but still has the problem that it is extremely localized. The triple
point in the double Mach reflection (DMR) problem (Section 4.5.3) is a good
example of this. Entropy is a much more meaningful quantity. In both the
DMR and the implosion problem (Section 4.5.1) it adds more resolution to
the jets.

In an earlier state of this work we still used the local Lax–Friedrichs nu-
merical flux, which we now replaced by the HLLC approximate Riemann
solver. The tremendous improvement in the implosion problem showed that
the strength of a solver lies not only in adaptivity, but also significantly in the
numerical method used.

Future work could involve the combination of our r-refinement with h-
refinement. This will improve the resolution of instabilities along contact
discontinuities or other interfaces. This will require major research effort,
though. More feasible improvements could be local time stepping, or flux
limiters such as the Woodward or Koren limiter.
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A Moving Mesh Solver for 2D
Magnetohydrodynamics

5This chapter contains recent work on the application of the developed moving
mesh method to two-dimensional ideal magnetohydrodynamics (MHD). In
Chapter 3 we already found that the one-dimensional model is very rich
in physical features, which makes proper and automatic solution adaptivity
indispensable, even more so in two dimensions. Multidimensional MHD
imposes an additional constraint on the solver: the magnetic field should
be divergence-free. We use the well-known vector potential formulation to
ensure this, which requires some additions to the original moving mesh finite
volume solver from the previous chapter.

The results presented are a first investigation of the applicability of our
mesh adaptation to new models. Another contribution of this chapter are
the perfectly periodic and shifted periodic boundaries conditions, which is a
definite improvement over the previous chapter where boundary points were
kept restricted to the boundary.

5.1 I N T RO D U C T I O N

Multidimensional magnetohydrodynamics has been the subject of many re-
search work. Firstly, most high-order numerical solvers developed for gas
dynamics can also be extended to handle MHD problems. Tóth and Odstrčil
[TO96] compare several methods on a range of problems.

Secondly, the experience of physicists with the MHD laws can lead to
model-specific modifications to the numerical solvers. An example of this are
the various model formulations that aim to keep the magnetic field divergence-
free (see Tóth [Tót00] for an overview). In this chapter we derive the magnetic
field from a vector potential, which ensures the divergence-free condition but
also requires modifications to the original scheme.

Finally, the small spatial scale at which MHD flow features occur, has moti-
vated the development of many adaptive (mainly h-refinement) solvers. The
AMRVAC code by Keppens and coworkers [vdHK07, vdHKM08] has been
mentioned before. It offers (parallel) block-AMR and finite volume solver
with several approximate Riemann solvers. The divergence property is ap-
proximated by adding diffusive source terms to the original PDEs, such that
the nonzero ∇ ·B is constantly damped.

The NIRVANA package by Ziegler [Zie98, Zie08] offers similar schemes
as AMRVAC, but handles the divergence property exactly by a constrained
transport approach on a staggered mesh.

Very few research has been done on moving mesh adaptivity for two-
dimensional MHD problems. Zegeling [Zeg05] uses the inverse Winslow
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method on resistive MHD problems. Tan [Tan07] uses the same approach
and obtains comparable results. The incompressibility and lack of shocks
makes this model fairly easy in terms of adaptivity. Han and Tang [HT07]
apply the direct version of Winslow’s method to ideal MHD. They capture
shocks and other sharp flow features well.

This chapter is organized as follows. In Section 5.2 we briefly recall the
MHD equations in two dimensions. In Section 5.3 we outline the vector
potential formulation and its discretization in a finite volume method. Next,
we summarize the modifications we made to the moving mesh solver to
support MHD problems. We show some first results in Section 5.5, followed
by conclusions in Section 5.6.

5.2 I D E A L M AG N E TO H Y D RO DY NA M I C S

The partial differential equations (PDEs) for ideal MHD have the general form
of a nonlinear system of hyperbolic PDEs (4.4) as introduced in the previous
chapter. The conservative solution variable is defined as q := [ρ, ρv,B, E]T ,
containing density, momentum, magnetic field and total energy, respectively.
The fully multidimensional conservation laws for ideal MHD were already
presented in Equations (3.1)–(3.4). Here we restrict ourselves to two-dimen-
sional domains, i.e., two columns in the flux tensor. The velocity and magnetic
field may be three-dimensional, though, which is called ‘2.5D’. It is similar
to the 1.5D and 1.75D models derived in Section 3.2.1. The flux tensor now
becomes:

[f (q),g(q)] = F(q) =



ρv1 ρv2
ρv2

1 + ptot −B2
1 ρv2v1 −B2B1

ρv1v2 −B1B2 ρv2
2 + ptot −B2

2
ρv1v3 −B1B3 ρv2v3 −B3B1

0 v2B1 −B2v1
v1B2 −B1v2 0
v1B3 −B1v3 v2B3 −B2v3

(E + ptot)v1 −B1B · v (E + ptot)v2 −B2B · v


. (5.1)

The eigenstructure for the first flux vector f was already given in Section 3.2.2.
It is similar for g, with all scalar v1 and B1 terms replaced by v2 and B2.

The two-dimensional moving mesh finite volume solver from the previous
chapter can directly solve ideal MHD problems, but an important physical
property is then ignored. The build-up of magnetic ‘charge’ (or: magnetic
monopoles) is prohibited, so the divergence of the magnetic field should be
zero: ∇ · B = 0, given that ∇ · B|t=0 = 0. The finite volume method does
guarantee conservation of all conservative variables, but something similar
does not hold for this divergence-free property of the magnetic field. In the
next section, we will describe the vector potential formulation that remedies
this problem.
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5.3 T H E V E C TO R P OT E N T I A L FO R M U L AT I O N

Several approaches exist to ensure or approximate the divergence-free prop-
erty of the magnetic field. We refer to Tóth’s review paper [Tót00] for a
description of seven possible approaches and their accuracy for several test
problems.

The rotation of any vector field has zero divergence (∇ · ∇ × v ≡ 0), so
it is attractive to define the magnetic field as the curl of a potential field.
The divergence-free property is then analytically satisfied and for proper dis-
cretizations of the derivatives, the property is also maintained up to machine
precision. An additional benefit in two dimensions is that the vector field
only needs to have a z-component:

AAA := [0, 0,A]T , (5.2)
B := ∇×AAA = [Ay,−Ax, 0]T . (5.3)

The magnetic field can now be obtained directly from an appropriate finite
difference discretization of Ay and Ax, so the PDEs for B are discarded from
the original system. Instead, one new equation describes the evolution of the
potential A. Inserting (5.3) into the induction equation (3.3) yields:

∂A
∂t

= v1B2 − v2B1 (5.4)

= −
(
v1
∂A
∂x

+ v2
∂A
∂y

)
. (5.5)

5.3.1 Discretization of the vector potential
The magnetic field components are no longer pure solution variables in q, but
derived quantities from (central discretizations of) derivatives of the potential.
Some form of mesh staggering will result from this. Han and Tang [HT07]
place the vector potential at cell corners: Aj,k, we avoid staggering and place
them at cell centers instead: Aj+ 1

2 ,k+ 1
2
. This is no problem, as the B-values

are only needed at edge centers to evaluate the fluxes.
The discrete divergence at cell centers has to be written into computational

derivatives:

∇ ·B|j+ 1
2 ,k+ 1

2
=
[ ∂
∂x
Ay + ∂

∂y
(−Ax)

]∣∣∣
j+ 1

2 ,k+ 1
2

=
[(
Aξ
−xη

J
+Aη

xξ

J

)
ξ
· yη

J
+
(
Aξ
−xη

J
+Aη

xξ

J

)
η
· −yξ

J

−
(
Aξ

yη

J
+Aη

−yξ

J

)
ξ
· −xη

J
−
(
Aξ

yη

J
+Aη

−yξ

J

)
η
· xξ

J

]∣∣∣
j+ 1

2 ,k+ 1
2

.

(5.6)

For all derivatives, central differences are used. This means that the Aξ and
Aη between cell corners end up at edge centers (j + 1

2 , k) and (j, k+ 1
2 ), respec-

tively. Figure 5.1 compares the cell-centered and cell-cornered variants. In
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Figure 5.1 Central differences to evaluate∇·B (5.6). Left: vector potential at cell centers.
Right: vector potential at cell corners. In both cases, ∇ ·B vanishes at cell centers. A set
of arrows averages two central differences. Arches indicate a normal central difference.
The dashed lines indicate the outermost ∂/∂ξ and ∂/∂η-derivatives in (5.6).

our cell-centered approach the discretized divergence uses 9 cell centers for A
derivatives and 16 cell corners for x derivatives. Both satisfy the divergence-
free property at cell centers.

In the actual implementation, ∇ ·B does not need to be evaluated. Only
the magnetic field at each cell edge is needed for the flux evaluation. This
simply follows from a central difference of the potential across each edge. For
example, for a vertical edge (j, k + 1

2 ):

B1|j,k+ 1
2

= Ay|j,k+ 1
2

=
[
Aξ
−xη

J
+Aη

xξ

J

]
|j,k+ 1

2

≈
Aj+ 1

2 ,k+ 1
2
−Aj− 1

2 ,k+ 1
2

∆ξ · −xη

J

∣∣∣
j,k+ 1

2

+
Aj− 1

2 ,k+ 3
2
−Aj− 1

2 ,k− 1
2

+Aj+ 1
2 ,k+ 3

2
−Aj+ 1

2 ,k− 1
2

4∆η · xξ

J

∣∣∣
j,k+ 1

2

, (5.7)

where the coordinate derivatives are approximated in a similar central way:

xξ|j,k+ 1
2
≈ xj+1,k − xj−1,k + xj+1,k+1 − xj−1,k+1

4∆ξ , (5.8)

xη|j,k+ 1
2
≈ xj,k+1 − xj,k

4∆η , (5.9)

and similar for B2 and at the other three edges. The resulting stencil for each
edge contains six cells. Had we used a cell-cornered representation of the
potential, this stencil size would have been just the same.
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5.3.2 Combination with finite volumes

The vector potential A is an auxiliary variable that will yield magnetic field
values at cell edges, which are needed for the flux evaluations in a finite
volume approach. Besides, a new PDE for A is included.

The magnetic field variables B1 and B2 are now inferred from the vec-
tor potential, so they are removed from the conservative solution variables:
q := [ρ, ρv, B3, E]T . The next section discusses the evaluation of the B3 com-
ponent, for now we just consider a two-dimensional field without B3 compo-
nent. Before, the field B was transferred to the edges by a limited upwind
reconstruction (Section 4.3.2.1). Now it follows from the central difference
approximation (5.7).

We first take a basic approach for the time integration of the potential PDE
(5.5), namely the second-order Heun scheme and a first-order upwind spatial
discretization of Ax and Ay . A more accurate alternative is to use the ODE
form (5.4) and average the right hand side |v ×B| between tn and tn+1 (see,
e.g., [Tót00] or [HT07]). In this case, the magnetic field PDE has to remain
in the original system and its finite volume solution for Bn+1 then acts as a
predictor value. Algorithm 3 sketches a single time step by finite volumes
and the above potential differencing. It is performed on a nonuniform mesh
that remains fixed during the time step. The mesh movement takes place
just before each finite volume step and is almost identical to the approach in
Algorithm 2. Only the interpolation of A is new. Section 5.4 contains details
on this mesh adaptation step.

Algorithm 3 Finite volume step for vector potential for of ideal MHD on a
nonuniform (frozen) mesh.

1: Q∗
j+ 1

2 ,k+ 1
2
← Qn

j+ 1
2 ,k+ 1

2
+ ∆t Lj+ 1

2 ,k+ 1
2
(Qn,Bn) (2nd order MUSCL).

2: A∗
j+ 1

2 ,k+ 1
2
← An

j+ 1
2 ,k+ 1

2
+ ∆t LA

j+ 1
2 ,k+ 1

2
(Qn,An) (upwind).

3: B∗
j,k+ 1

2
← LB

j,k+ 1
2
(A∗); B∗

j+ 1
2 ,k
← LB

j+ 1
2 ,k

(A∗) by (5.7).

Use the predictor values for the actual time step:
4: Qn+1

j+ 1
2 ,k+ 1

2
← Qn

j+ 1
2 ,k+ 1

2
+ ∆t

(
Lj+ 1

2 ,k+ 1
2
(Qn,Bn) + Lj+ 1

2 ,k+ 1
2
(Q∗,B∗)

)
/2.

5: An+1
j+ 1

2 ,k+ 1
2
← An

j+ 1
2 ,k+ 1

2
+ ∆t

(
LA

j+ 1
2 ,k+ 1

2
(Qn,An) + LA

j+ 1
2 ,k+ 1

2
(Q∗,A∗)

)
/2.

6: Bn+1
j,k+ 1

2
← LB

j,k+ 1
2
(An+1); Bn+1

j+ 1
2 ,k
← LB

j+ 1
2 ,k

(An+1).

5.3.3 Vector potential and 2.5D models

The unique specification of the magnetic field through the vector potential as
in (5.3) is only possible due to the two-dimensional nature of the model. In a
purely 2D model, the B3 component is absent, such that the vector potential
AAA can have zeros as its first two components. In a 2.5D model, there is a third
magnetic field component. We do not want to give up the simple form of
the vector potential, though. The trick is to derive B1 and B2 as usual from
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(5.3). Next, B3 is simply included as a conservative solution variable in the
original hyperbolic PDEs (remember that the PDEs for B1 and B2 have been
discarded). The divergence-free property is still maintained:

∇ ·B = ∂B1

∂x
+ ∂B2

∂y
+ ∂B3

∂z

= ∂

∂x
Ay + ∂

∂y
(−Ax) + 0 = 0,

since all ∂/∂z-derivatives are zero by definition on two-dimensional domains.

5.4 M E S H M OV E M E N T FO R M AG N E TO H Y D RO DY NA M I C S

The new form of the MHD PDEs requires an additional interpolation step
of the magnetic potential A after mesh movement. Besides, additional mon-
itor components than the ones from the previous chapter may be useful for
good solution adaptivity. Finally, a perfect representation of periodic domains
should greatly improve the robustness and accuracy of the solver for periodic
MHD problems.

5.4.1 Interpolation of the vector potential

When the mesh points have been moved, all discrete solution values are
interpolated onto the new mesh. For the conservative variables in q the
conservative interpolation (4.32) is used again. The vector potential does not
need to be conserved. We follow the second-order interpolation approach
by Tang et al. [TTZ03], who interpret the interpolation as the solution to a
Hamilton–Jacobi-type equation:

Ãj+ 1
2 ,k+ 1

2
≈ Aj+ 1

2 ,k+ 1
2

+∇A|j+ 1
2 ,k+ 1

2
· (x̃j+ 1

2 ,k+ 1
2
− xj+ 1

2 ,k+ 1
2
) (5.10)

= Aj+ 1
2 ,k+ 1

2
− cξ

j+ 1
2 ,k+ 1

2
Aξ|j+ 1

2 ,k+ 1
2
− cη

j+ 1
2 ,k+ 1

2
Aη|j+ 1

2 ,k+ 1
2
, (5.11)

where the velocities cξ and cη are the mesh displacement vector projected
onto the normal directions:

cξ := (x̃− x) · ∇ξ, and cη := (x̃− x) · ∇η. (5.12)

The normal vectors ∇ξ and ∇η were previously illustrated in Figure 2.4. All
derivatives are approximated on cell centers by central differences.

5.4.2 Solution monitoring in magnetohydrodynamics

We again employ our new balanced monitor function (4.45) from the previous
chapter. The density and entropy gradients remain equally useful as monitor
components. Besides, the vorticity of the magnetic field could prove useful.
The Orszag–Tang problem is know for the formation of current sheets, where
the large currents j := ∇ × B can result in small ’islands’ that change the
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topology of magnetic field lines. Therefore it may be useful to include a
monitor component

φcurrent := ‖∇ ×B‖,

such that the mesh refines in these areas.

5.4.3 Exactly periodic domains
The boundary treatment of the adaptive mesh in the previous chapter par-
tially fixes boundary points by sliding them on the straight domain edges
( ∂x
∂n = 0 on ∂Ω, i.e., one of the coordinates is fixed). Periodic domains can

only be handled exactly if we release this constraint. Discrete solution val-
ues on and beyond the boundaries can easily be made periodic, but if the
adaptive mesh cells on the facing sides are different, then the solution would
actually not be periodic.

Doubly periodic domains
A doubly periodic domain has periodicity on both the left and right edges
and the bottom and top edges. The domain is discretized as before by Nx×Ny

mesh points (see Equation (4.7)), Figure 3.2 shows the numbering of ghost
points.

A band-aid solution for rectangular doubly periodic domains would be to
make the x-coordinates of mesh points on the bottom and top edges equal to
each other, e.g., by averaging xj,0 and xj,Ny

and similar for the y-coordinates
on the left and right edges. This still keeps the straight domain edges, though.
Ideally, the edges should not be noticed at all, not by the discrete solution,
nor by the mesh movement. After all, a periodic domain is generally just a
trick to run simulations on an infinite domain.

We create an exactly periodic domain by deriving monitor values in ghost
cells from periodicity, e.g.,

ω(i)
j,k = ω(i)

j,Ny+k, for k = −2,−1 (and j = 0, . . . , Nx, i = 1, 2), (5.13)

for the bottom boundary and similar for the other three boundaries. The
periodic solution values are evaluated in the same way. Notice that this
leaves the four 2 × 2 ghost corners; these are handled at the very end. This
allows for monitor filtering (4.48) and mesh point movement (4.30) for both
the four corner points and all edge points, i.e., j = 0, . . . , Nx instead of j =
1, . . . , Nx − 1 and similar for k. The ghost points outside the domain follow
in a straightforward way, e.g.,

xj,k = xj,Ny+k,
yj,k = yj,0 − (yj,Ny

− yj,Ny+k), for k = −2,−1 (and j = 0, . . . , Nx),
(5.14)

for the bottom boundary.
Figure 5.2 shows an adaptive mesh for a two-dimensional advection prob-

lem. The initial solution is a step-like function on the unit square, with value
1 on an ω-shaped part at the center of the domain and 0 elsewhere. The
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Figure 5.2 Doubly periodic boundaries for an advection problem with constant velocity
[−1, 1]. Mesh details at t = 0 and t = 0.15.

advection velocity is [−1, 1]. At t = 0.15 parts of the solution profile have left
the top left corner of the domain and re-entered at the opposite sides. The
mesh has properly aligned with the solution curves, in the same way at the
boundary as in the interior of the domain.

Now that the corner and edge points are completely free to move, the mesh
may actually move away from the original domain. In Figure 5.2 the original
domain [0, 1]× [0, 1] has shifted to approximately [0.2, 1.2]× [−0.2, 0.8]. This
shifted mesh can always be brought back to the original domain by taking
all coordinates modulo the original domain size, without any change to the
solution.

Both the moving mesh and the discrete solution values are perfectly peri-
odic (up to machine precision), so solution features that move across a bound-
ary are not perturbed in any way by this. Clearly, this is desirable, especially
for simulations over long times with multiple passes.

Shifted periodic boundaries

A shifted periodic boundary condition states that two facing boundaries are
periodic after a given tangential shift. It is useful for a certain class of prob-
lems. One-dimensional problems, e.g., the shock tube problems in Section 3.4,
can be made quasi-two-dimensional by keeping the initial solution constant
in the y-direction. This is a first test for validating two-dimensional codes.
A second possible test rotates this initial solution, such that the mesh adap-
tation and PDE solution becomes fully two-dimensional. Without rotation
(or θ = π/2), the conditions on the top and bottom boundary can either be
periodic or homogeneously Neumann. When the initial shock profile is not
exactly vertical (parallel with the y-axis), the only accurate boundary condi-
tion is a shifted periodic boundary.
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Figure 5.3 Handling the shifted periodic boundary condition for the rotated Sod shock
tube. Top diagram: mesh restricted to domain boundary. Bottom diagram: fully periodic
mesh with a shift between the bottom and top boundary.

A shock tube problem on a domain [a1, b1] × [a2, b2] that has the initial
shock line at an angle θ 6= π/2 with the horizontal has a horizontal shift of

∆s := (b2 − a2)/ tan(θ).

The only requirement to the initial domain discretization is that ∆s should be
a multiple of the cell size, such that the index shift

∆j := ∆s/Nx (5.15)

is a whole number. The original periodic boundary condition (5.14) now
changes to:

xj,k = xj+∆j,Nx+k − ∆s,
yj,k = yj,0 − (yj+∆j,Ny

− yj+∆j,Ny+k), for k = −2,−1 (and j = 0, . . . , Nx),
(5.16)

for the bottom boundary. The top boundary is treated similarly, but note
that the solution at the left and right boundaries is generally homogeneously
Neumann or Dirichlet. Whenever the shifted index lies beyond the domain
boundaries (j + ∆j < 0 or j + ∆j > Nx), the point is mapped back periodically
to the other side of the domain.

Motivation
We demonstrate the effect of this special boundary condition with a quasi-2D
variant of Sod’s classical hydrodynamical shock tube problem [Sod78] rotated
by an angle θ = π/4:

[ρ, v1, v2, p] =
{

[ 1, 0, 0, 1], if x− 1.5 ≤ y,
[0.125, 0, 0, 0.1], otherwise. (5.17)
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Figure 5.4 Solution profile for the rotated Sod shock tube problem along a slice y = 0.5.
The fully periodic mesh yields a more accurate solution, particularly after the shock, as
shown in the right diagram.

On a domain [0, 4] × [0, 1] the initial discontinuity goes through the center
point (2, 0.5).

First, we restrict the boundary points to the initial rectangular boundary.
The shifted periodic boundaries at the top and bottom are approximated by
averaging the displacement of each pair of associated boundary points:

x̃j,k := x[ν]
j,k +

(
(x[ν+1]

j,k −x
[ν]
j,k)+(x[ν+1]

j+∆j,Ny+k−x
[ν]
j+∆j,Ny+k)

)
/2 for k = −2,−1, (5.18)

at the bottom boundary and in a similar fashion at the top boundary. The
first diagram in Figure 5.3 shows the mesh at t = 0.16. The colors indicate the
area of each cell relative to the initial uniform cell size. The mesh has been
refined along the shock lines and the rarefaction fan (RF). However, where
the shocks and CD meet the top and bottom edges, mesh cells become more
stretched and the resulting errors propagate into the domain. Moreover, the
points [3, 0] and [1, 1] remain necessarily fixed (they map to the corners [4, 1]
and [0, 0], respectively), which makes them more and more distorted over
time.

The second diagram in Figure 5.3 shows the fully shifted periodic mesh.
Each pair of sides matches exactly and the solution adaptivity is not affected
by any boundary effects. This also yields a better solution. We show the
solution along a slice y = 0.5 in Figure 5.4. The exact solution along this
line is the original one-dimensional solution with the x-coordinates scaled
by x̃ := (x − 2)/ cos(θ) + 2. For the restricted mesh, the solution just after
the shock at [x, y] ≈ [2.6, 0.5] suffers from the boundary perturbation and is
less accurate than the solution on the fully periodic mesh. This difference
becomes even larger over time.
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Figure 5.5 The rotor problem at t = 0.15. Left: adaptive 100×100 mesh. Right: Schlieren
plot of thermal pressure.

5.5 N U M E R I CA L E X P E R I M E N T S

5.5.1 Rotor problem

This problem was originally proposed by Balsara and Spicer [BS99] and was
used by others (see, e.g., [Tót00] and [HT07]) to test MHD solvers. It con-
cerns a rotating disk inside a fluid at rest on the unit square domain with
homogeneous Neumann boundary conditions. The disk with radius r0 = 0.1
is placed in the center and has a constant angular velocity v0 = 2. A thin an-
nulus between the disk and the surrounding fluid has outer radius r1 = 0.115
and transfers the variables linearly from the disc to the fluid at rest. The
magnetic field and thermal pressure are constant everywhere:

[ρ, v1, v2, B1, B2, p] =


[ 10, vd

1 , vd
2 , 5/

√
4π, 0, 1], if r ≤ r0,

[ 1, 0, 0, 5/
√

4π, 0, 1], if r > r1,
[1 + 9f, fvd

1 , fv
d
2 , 5/

√
4π, 0, 1], if r0 < r ≤ r1,

(5.19)
where the radius is r := ‖x − [0.5, 0.5]‖, the disk’s velocity is given by vd

1 :=
−v0(y−0.5)/r0, vd

2 := v0(x−0.5)/r0 and f := (r1−r)/(r1−r0) is a linear function
from 1 to 0 in the annulus.

Figure 5.5 shows the mesh and a Schlieren plot of the thermal pressure at
t = 0.15 for a 100×100 mesh. The monitor function uses the kinetic energy as
single component. The mesh is well adapted and smooth. The pressure plot
shows some perturbations that are unphysical (cf. [HT07, Fig. 7]). Increasing
the mesh points, or lowering the CFL limit does not remedy these errors. The
first-order scheme for the A evolution needs to be improved, which will be
part of our future research.
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Figure 5.6 The Orszag–Tang problem at t = 3.1. Left: adaptive 100 × 100 mesh. Right:
Schlieren plot of density.

5.5.2 Orszag–Tang vortex problem
This problem was originally proposed by Orszag and Tang [OT79] for in-
compressible flows. Picone and Dahlquist [PD91] also used this problem to
study the formation of MHD turbulence in the compressible case. The veloc-
ity field and magnetic field consist of periodic sine waves with two different
wave lengths. The domain is the square [0, 2π]×[0, 2π] and is doubly periodic.
The initial solution is:

ρ = 25/9, v1 = − sin(y), v2 = sin(x),
B1 = − sin(y), B2 = sin(2x), p = 5/3.

(5.20)

Thanks to the periodicity of both the solution and the domain, the initial
value for the vector potential is straightforward:

A = 1
2 cos(2x) + cos(y). (5.21)

The solution forms current sheets (with large j := ∇×B) from which shock
waves depart. The resulting ongoing interactions produce a complicated pat-
tern. In exact ideal MHD the topology of magnetic field lines should not
change. In practice, however, small perturbations in the flow can cause this
to happen. In simulations, numerical errors can do this as well; the current
sheets may break down and form a series of small ‘islands’ of closed mag-
netic field lines. A high order solver and a very fine effective resolution is
needed to capture this behavior. Van der Holst et al. [vdHKM08] achieve this
for a relativistic version of this problem with their h-refinement code, which
produces an effective resolution of approximately 2500× 2500 cells. The non-
relativistic case that we consider here may only form these islands at later
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times. The results that we obtain at t = 3.1 are in accordance with known
solutions (see, e.g., [Tót00]).

Figure 5.6 shows the mesh and a Schlieren plot of the density for a 100×100
mesh at t = 3.1. The monitor function includes density gradients, the current
strength ‖j‖ and B1 gradients. We included the latter, since it turned out to
detect the current sheets at least as good as the current strength itself. Mesh
points have focused near shocks and current sheets and the mesh cells vary
smoothly.

5.6 CO NC LU S I O N S

The moving mesh method from the previous chapter turned out to need no
adjustments to the point movement nor to the balanced monitor function, as
expected. Only the new vector potential A required an additional interpo-
lation step. The potential formulation of the MHD equations requires some
extra bookkeeping of auxiliary variables, and the most sensitive point seems
to be the first-order approximation of the PDE for A. Han and Tang [HT07]
report good results with a second-order variant, so this will be part of our
future research. The solutions that we obtained on relatively coarse 100×100
meshes already does show all main flow features. Once the first-order parts
have been made higher-order and more robust, we expect that the strength
of mesh adaptation can be further increased. This would yield the effective
resolution needed for capturing the islands that may form along the current
sheets at later times.

The perfectly periodic boundary conditions turn out to be a valuable ad-
dition to our solver. The mesh points on the boundary are completely free to
move now, such that flow features that move near or across the boundaries
are not perturbed in any sense, which used to be the case for restricted edge
points.





Software

AThe two-dimensional solvers in Chapters 4 and 5 have been implemented
in Fortran 95. This yields a major performance gain compared to the one-
dimensional MATLAB implementation from Chapter 3. The mesh adaptiv-
ity and finite volume solver are in separate program modules. The differ-
ent physical models (advection, hydrodynamics, magnetohydrodynamics) are
concisely implemented in separate program modules. The user can define
problem-specific initial conditions and boundary conditions, if necessary. Fi-
nally, a run is initialized by a parameter file, in which the user specifies
when and what data to output, what type of slope limiting is used, the CFL
number, etc., and adaptation settings such as monitor function components.
The software has a suspend and resume functionality, such that runs can be
interrupted and resumed at any later time.

A.1 M I S C E L L A N E O U S E N H A NC E M E N T S

The essence of a numerical method may lie in its core algorithm, but in the
end it is the output by the software that counts. Minor practical choices
during the implementation can seriously affect the final outcome. In this
section we highlight some program details that proved important for good
results.

A.1.1 Smooth initial discontinuities

Most problems discussed in this dissertation have some discontinuities in
them. The discretization of the initial solution requires extra attention, since
the discontinuity seldomly aligns with the—initially uniform—mesh. A too
crude discretization can lead to an oscillatory solution. Therefore we perform
anti-aliasing on the discretized discontinuity.

The Double Mach reflection (DMR) problem (Section 4.5.3) by Woodward
and Colella [WC84] serves as an example. It prescribes an initial shock that
starts in [1/6, 0] and stands at an angle of 60 degrees with the bottom bound-
ary. In general, a discontinuity is parameterized by a point [xs, ys] on the
bottom boundary, an angle θ with the horizontal and the pre- and post-shock
solution states qpre and qpost. The solution in a point [x, y] is now prescribed
by1:

q([x, y], t0) =
{

qpost if y − ys > (x− xs) tan θ,
qpre otherwise.

(A.1)

1We assume a rightward motion of the shock. If this is not the case the two solution states
should be swapped. We also assume 0 ≤ θ ≤ π/2; for larger angles the solution states should
again be swapped.
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Figure A.1 Anti-aliasing of a discretized discontinuity. Left: Prescribed solution. Middle:
‘hit-or-miss’ discretization. Right: Anti-aliased discretization.

Figure A.1 shows part of the DMR problem with two possible discretiza-
tions. The middle picture shows a straightforward discretization: if the cell
center lies ahead of the shock the cell’s solution value is set to the pre-shock
state, otherwise to the post-shock state. The right picture shows the result of
a weighted average between the two states. The weight is equal to the relative
area of a cell that is in a certain state.

q|Aj,k
= r qpost + (1− r)qpre, where

r = |part of Aj,k in post state|
|Aj,k|

.

The third picture in Figure A.1 may suggest an overly smoothed solution,
but remember that it is used for the first mesh adaptation, after which the
solution is reinitialized using the exact solution (A.1). These two steps are
repeated several times, during which the mesh will align more and more with
the angled discontinuity.

We now generalize this approach for a set of ns shock lines and ns + 1
solution states. Figure A.2 shows this schematically for three shocks. Note
that due to the adaptivity of all mesh cells the evaluation of intersections is
nontrivial. A shock line is specified by a point [xs, ys] on the line and its
slope. We assume that on the rectangular domain shocks are sorted from left
to right, in other words: all points on one shock line lie right of (or on) the
preceding line. This forbids crossing lines and in particular horizontal lines.
The following algorithm could be further generalized to support these cases
too, but it would become more costly than necessary for our applications.

A.1.1.1 Algorithm
For an adaptive mesh, no assumptions can be made about the relative position
of two neighboring cells. Cell (j+1, k) could lie above or even left of cell (j, k) in
a heavily rotated mesh. We therefore cannot benefit from already evaluated
cell solutions. The solution is initialized on all mesh cells individually by
EVALMULTISHOCKSOL. The following procedures use some specified globally
available variables for notational convenience.
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Figure A.2 Multiple shocks on a mesh cell. The Roman numbers denote shocks, the plain
Arabic numbers denote cell corners and the italic numbers denote cell edges.

Figure A.3 lists the main procedure EVALMULTISHOCKSOL. The outer loop
on line 2 determines the first shock that lies right of or on the mesh cell. In
case of an intersection the loop on line 13 takes over to check whether any of
the following shocks intersect the current cell as well. For each intersecting
shock the relative area between itself and the preceding shock on the current
cell is determined. This defines the relative contribution of the shock’s left
state to the total solution state. Note that for cells that are not intersected, no
expensive areas are computed.

The procedure GETSHOCKSTATE in Figure A.4 determines whether a mesh
cell lies completely left or right of a given shock or is intersected by it. The
four corners are considered by the loop on line 2. We use the following
notation for corner indices:

j, k, (c) := j + δc∈{2,3}, k + δc∈{3,4} c ∈ {1, 2, 3, 4},

where δP evaluates to 1 if the predicate P is true, and 0 otherwise. Figure A.2
also shows the corner and edge numbering. For each corner, an imaginary
horizontal line is drawn through it. The x-coordinate of the point where this
line and the shock line intersect, is used to compare the position of the corner
relative to the shock line. If the state at all corner points is equal the cell’s
state is known, since the mesh cell is a polygon.

The procedure GETRELAREA in Figure A.5 forms the final part of the algo-
rithm; it is used by EVALMULTISHOCKSOL. It first uses GETQUADLINEINTERSEC-
TIONS in Figure A.6 to obtain the two intersection points of the shock line and
the current mesh cell. It does not consider the case where the line and the
cell are disjoint, as it will never be called by EVALMULTISHOCKSOL in such a
case. The intersection splits the cell into two parts. The area of one part is
evaluated and one of its points is used to determine its position relative to
the shock line. There are three cases to handle, depending on how the shock
line crosses the cell.
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EVALMULTISHOCKSOL(j, k)
Computes average solution value in cell (j, k) given ns shocks.
x :: mesh coordinates, q :: solution values, qstates :: ns + 1 solution states.

1 is ← 0
2 while is < ns

3 is ← is + 1 � Consider next shock
4 state← GETSHOCKSTATE(j, k, is)
5 switch state
6 case BEFORE:
7 q(j, k, :)← qstates(is, :)
8 return � Shocks are sorted, the rest will not intersect.
9 case AFTER:

10 cycle � Beyond shock is, try next one.
11 case INTERSECT:
12 sumarea← 0
13 while state = INTERSECT ∧ is ≤ ns

14 relarea← GETRELAREA(j, k, is)
15 q(j, k, :)← q(j, k, :) + (relarea− sumarea) · qstates(is, :)
16 sumarea← sumarea + relarea
17 is ← is + 1
18 state← GETSHOCKSTATE(j, k, is)

� Handle the ‘right’ state of last intersecting shock
19 q(j, k, :)← q(j, k, :) + (1− sumarea) · qstates(is, :)
20 return � Shocks are sorted, the rest will not intersect.
21 q(j, k, :)← qstates(ns + 1, :) � Point lies beyond last shock: state ns + 1.

Figure A.3 EVALMULTISHOCKSOL computes solution state, averaged across shocks
where necessary.

1. The shock line hits the cell in just one corner (line 2). The part’s area
is set to zero, but the opposite corner is used to check at which side of
the shock line it lies, since the intersection point itself lies on the shock.
The area will be swapped later, on line 34.

2. The shock line cuts the cell through two opposite sides (line 9). The
cell is split into two quadrangles, the one that contains corner (j, k) is
used to determine the part’s area. If the area is nonzero this corner
point is also used to determine the part’s position relative to the shock,
otherwise the opposite point is used (and the area swapped accordingly,
see line 27.) If the selected part lies right of the shock, the other of the
two parts should have been chosen in the first place, so the area is
swapped on line 32.
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GETSHOCKSTATE(j, k, is)
Computes whether cell (j, k) lies left ( BEFORE) or right ( AFTER) of shock is or INTER-
SECTs it.
x :: mesh coordinates, shockspecs :: shock parameters.

1 [xs, ys, slope]← shockspecsis

2 for c in [1, 2, 3, 4] � For all corner points...
� Compute x(c) such that [x(c), yj,k,(c)] lies on shock line.

3 if slope =∞
4 x(c) ← xs

5 else
6 x(c) ← xs + (yj,k,(c) − ys)/ slope
7 if xj,k,(c) ≤ x(c)
8 state← BEFORE

9 else
10 state← AFTER

11 if c > 1 ∧ state 6= prevstate
12 state← INTERSECT

13 break
14 else
15 prevstate← state
16 return state

Figure A.4 GETSHOCKSTATE determines the position of a cell relative to a shock.

3. The shock line cuts the cell through two adjoining sides (line 16). The
triangle that is formed in the corner is used to determine the part’s area
and is further handled similar to the preceding case.

The procedures GETQUADRANGLEAREA and GETTRIANGLEAREA are straightfor-
ward and omitted here.

The intersection point(s) of a shock line and a mesh cell are evaluated by
the procedure GETQUADLINEINTERSECTIONS in Figure A.6. It simply considers
all four edges and uses GETINTERSECTIONPOINT to get the intersection of each
edge and the shock line. The latter procedure is straightforward and is not
shown here. When two found intersection points are equal, the latter is
discarded and the remaining edges are considered (line 11). This handles the
case where the line goes through one of the cell’s corners and intersects an
opposite edge as well, see for example the second shock in Figure A.2. Note
that in actual implementations, round off errors will have to be handled. For
example when equality of two points in a cell corner is checked.

In the Double Mach Reflection problem, the top boundary condition is of-
ten the exact shock solution. Since this moves in time, the shock specification
additionally includes a horizontal speed. It is only necessary to change xs

into xs + hspeed · t on lines 4 and 6 in Figure A.4.
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GETRELAREA(j, k, is)
Computes the relative area of cell (j, k) that lies left of shock is.
x, y :: mesh coordinates, q :: solution values, shockspecs :: ns shock parameters.

1 [p1, p2, e1, e2]← GETLINEQUADINTERSECTIONS(j, k, is)
2 if p2 = NOINTERSECTION ∨ p1 = p2) � ’Hit’ in just one corner.
3 partarea← 0
4 switch e1
5 case (1, 4):
6 oppospoint← (x, y)j+1,k+1
7 case (2, 3):
8 oppospoint← (x, y)j,k
9 elseif |e2 − e1| = 2 � Two opposing sides: two quadrangles.

10 if e2 = 3 � ’Vertical’ intersection.
11 partarea← GETQUADRANGLEAREA((x, y)j,k, p1, p2, (x, y)j,k+1)
12 else � ’Horizontal’ intersection.
13 partarea← GETQUADRANGLEAREA((x, y)j,k, (x, y)j+1,k, p1, p2)
14 partpoint← (x, y)j,k
15 oppospoint← (x, y)j+1,k+1
16 else � One triangle.
17 if e1 = 1
18 if e2 = 2 � Bottom right
19 partpoint← (x, y)j+1,k

20 else � Bottom left
21 partpoint← (x, y)j,k
22 elseif e2 = 4 � Top left
23 partpoint← (x, y)j,k+1
24 else � Top right
25 partpoint← (x, y)j+1,k+1
26 partarea← GETTRIANGLEAREA(p1, partpoint, p2)
27 if partarea = 0
28 partpoint← oppospoint
29 swaparea← TRUE

30 else
31 swaparea← FALSE

32 if partpoint lies right of shock is
33 partarea← cellarea− partarea
34 if swaparea
35 partarea← cellarea− partarea
36 return partarea / cellarea

Figure A.5 GETRELAREA computes the fraction of the left shock state in a mesh cell.
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GETQUADLINEINTERSECTIONS(j, k, is)
Computes the intersection points (two at most) of shock line is and the edges of mesh
cell (j, k). Also returns the edge numbers on which the intersections occurred.

1 ip ← 1
2 for e in [1, 2, 3, 4]
3 pip

← GETINTERSECTIONPOINT(j, k, is, e)
4 if pip = NOINTERSECTION

5 cycle � Try next edge.
6 else
7 eip

← e � Remember p-th edge number.
8 if ip = 2
9 if p1 = p2

10 p2 ← NOINTERSECTION

11 cycle � Discard duplicate point in corner, try next edge.
12 else
13 break � The two intersections have been found.
14 else
15 ip ← ip + 1 � Find next intersection.
16 return [p1, p2, e1, e2]

Figure A.6 GETQUADLINEINTERSECTIONS finds intersections of a shock line and a mesh
cell.

A.1.2 Prevention of collapsing mesh cells

The mesh generator that we employ guarantees a strictly positive Jacobian,
i.e., the mesh map is nonsingular, as proved in Section 2.3.2.8 on page 29.
This only holds for the exact map, though. The iterative solution of the
nonlinear system (4.30) could yield collapsing mesh cells if a mesh point is
moved beyond its opposite edges.

In practice we rarely witnessed this. The only risky situation turned out to
be the imposed time-dependent Dirichlet top boundary in the Double Mach
Reflection Problem (Section 4.5.3). Again, the smooth monitor function pre-
vents rapidly changing mesh point locations. Still, one might consider slow-
ing down the Gauss–Seidel iteration by under-relaxation. This slows down
the mesh convergence at all times, and is therefore not a good choice. A
cheap trick is to perform small time steps in early—often most critical—stages
of the simulation by taking the CFL-limit several factors smaller during, say,
the first ten time steps. Finally, we devise a check that maintains convexity
of all mesh cells, which is a stronger form of ’non-collapsing’. In ’99.9%’ of
our experiments we disabled this check for higher efficiency.

One iteration step of mesh movement gives the new position xn for each
old mesh point xo. We now limit xn to x̄n using the following considerations.
Figure A.7 shows how a mesh point xo is surrounded by four cells and how
it will move into one of them. This is depicted by vector v2 := xn − xo. For
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v1

v0

v2
xo

xn

Figure A.7 Protection against mesh collapse by limiting the mesh velocity vector.

one of these neighboring cells we express v2 in terms of the two edge vectors
v0 and v1 from x0:

v2 = a0v0 + a1v1. (A.2)

We solve this equation per coordinate, which gives:

a0 = v2xv1y − v2yv1x

v0xv1y − v0yv1x
, (A.3)

a1 = v2xv0y − v2yv0x

v1xv0y − v1yv0x
. (A.4)

If any of the two coefficients is negative, the mesh point has moved into one
of the other three neighboring cells. The resulting mesh cell remains convex
if the new mesh point xn has not moved beyond the diagonal between the
tips of vectors v0 and v1, see the dashed line in Figure A.7. In terms of the
coefficients this is equivalent to:

a0 + a1 ≤ 1. (A.5)

The actual mesh point could be limited to stay ’behind’ the diagonal:

x̄n := xo + min
(

1, µ

a0 + a1

)
v2, (A.6)

where 0 < µ ≤ 1 determines how close to the diagonal a point may come.
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1.5D and 1.75D models, 61
2.5D models, 114, 117

a posteriori error estimates, 56
adaptive mesh refinement (AMR), 54
adiabatic constant, 61, 85
Alfvén wave, 62, 73, 76
alignment, 49, 50, 84
AMRVAC, 7, 72

experiments, 73, 81, 107
anisotropic, 49
approximate Riemann solvers, 90
Arbitrary Lagrangian Eulerian (ALE),

34, 40, 42–45
arc length monitor, 4, 46, 67, 97

disadvantages of ∼, 97
Athena, results by ∼, 105, 107

block-structured refinement, 54
blow-up problems, 47
boundary

mapping, 22
of domain, ∂Ω, 16

boundary conditions
Dirichlet ∼, 110
Neumann ∼, 69, 110
periodic ∼, 119–122
reflective ∼, 77, 102

Brackbill & Saltzmann, 24–25
Burgers’ equation, inviscid, 34

Cartesian discretization, 19
cell average, 64, 87
CFL stability criterion, 67, 92
characteristic velocities, 33
characteristic wave, 62
characteristics, method of, 33–34
coarsening, 54
component imbalance, 48, 98
computational

domain, see domain
gradient operator, 17

computational efficiency, 71
conservation laws

from HD, 85
from MHD, 61
hyperbolic system of ∼ in 1D, 61

hyperbolic system of ∼ in 2D, 87
conservative

interpolation, 65, 95
variables, 60, 95

contact discontinuity, 86
contravariant, 19
convex domain, 22
coordinate curve, 18
coordinate surface, 19
coupled system, 43
covariant, 19
CPU time, 71, 106
curvature monitor, 46

DAE system, 43
De Boor (equidistribution), 20
deformation method, 27, 36–39
degenerate mesh, 34
degrees of freedom, 11
density, 60
determinant

Jacobian ∼, 17, 19
of metric tensor, 19

DGCL, 44
diffeomorphism, 26
differential geometry, 18
direct map, 21
directional derivatives, 50
directional monitor function, 49, 100
discontinuous Galerkin, 7
discrete geometric conservation law, 44
discretization

nonuniform ∼, 19
uniform ∼, 19

divergence-free B-field, 62, 114
domain

boundary, 16
computational ∼, 16, 19, 64
convex ∼, 22
discretization, 19–20, 64, 87
nonconvex ∼, 22
physical ∼, 16, 19
reference ∼, 16

efficiency, 71
eigen-structure for MHD, 62
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eigendecomposition of monitor func-
tion, 50

eigenvalues of the flux Jacobian, 62
energy, 60
energy functional, 64, 93
entropy, 86

gradient as monitor component, 104
wave, 62

equation of state, 61, 85
equidistribution

approximate ∼ in 2D, 31–32
in 1D, 20–21, 64

equipotential generator, 21
Euclidean metric, 19
Euler equations, 60, 85
Euler–Lagrange equations, 29, 50, 64,

93
existence of map, 26, 29, 37
experiments, see problems

filter, monitor ∼, see monitor filtering
finite volumes, 63, 87–88, 117

1D algorithm, 66–67
flux

HLL ∼, 91
HLLC ∼, 90
LLF ∼ versus HLLC ∼, 103
local Lax–Friedrichs ∼, 66, 90
Rusanov ∼, 90

flux Jacobian, 62
flux-differencing, 66
folding mesh, see mesh, collapse
forward-facing step, 22
functional

Brackbill & Saltzmann’s ∼, 24
Brackbill’s alignment ∼, 49
GCL ∼, 40
MMPDE ∼, 28
Monge–Kantorovich ∼, 32
moving finite elements ∼, 35
orthogonality ∼, 24
skewness ∼, 53
smoothness ∼, 24
volume ∼, 24
Yanenko’s ∼, 25

gas dynamics, see hydrodynamics
Gauss–Seidel, 29, 63, 65, 95
Geometric Conservation Law (GCL), 38,

39–42
ghost cells, 64, 87

gradient field, 32, 37
gradient-weighted MFE, 35–36

string ∼ (SGWMFE), 35
GWMFE, see gradient-weighted MFE

h-refinement, 11, 54–58
Hamilton–Schoen–Yau theorem, 26
harmonic

function, 27
map, 25–27

Harten–Lax–Van Leer flux, 90
HD, see hydrodynamics
Hessian matrix, 33, 52
Heun’s time integration, 67, 92
HLL flux, 91
HLLC flux, 90
HLLC solver, 88
hr-refinement, 56–58
hydrodynamics, 85

characteristic waves, 86
hyperbolic PDEs

in 1D, 61
in 2D, 87

induction, 60
initial reconstruction, 66
internodal viscosity, 36
interpolation, 45

conservative ∼ in 1D, 65
conservative ∼ in 2D, 95

inverse map, 16, 17, 19
invertible map, 26, 29, 33
isotropic, 49

Jacobian
matrix and determinant, 17
positive ∼, 17, 26, 29, 33

jet formation, 105

Kelvin–Helmholtz instability, 103, 107
Koren limiter, 89

Lagrangian coordinates, 33, 43
Laplace’s equation, 21
Lax–Friedrichs flux, local, 66, 90
limiter

Koren, 89
Van Leer, 67, 89
Woodward, 89

linearized mesh equations, 65, 95
local refinement, 54–58
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local time stepping, 55, 93
location-based adaptation, 20–33
logical space, 16
logically rectangular, 19, 87
Lorentz force, 60

Mach reflection, 86
Mach stem, 109
magnetic field, 60
magnetic monopole, 114
magnetic pressure, 61
magnetohydrodynamics

1D, 60–63
2D, 114
characteristic waves, 62

magnetosonic wave, 62, 80, 81
manifold, 18
mesh

collapse, 22, 65
degenerate, 34, 96
equipotential, 21
skewed, 34
speed, 65

mesh map, 16, 16–20
direct, 21–23
inverse, 16, 17, 19, 21–23

mesh movement
1D algorithm, 63–66
2D algorithm, 94–96
extension for 2D MHD, 118–122

method of characteristics, 33–34
method of lines, 43
metric, 19

tensor or matrix, 18, 19
MHD, see magnetohydrodynamics
minimization of energy functional, 64
MMPDE, 27–28
mollification, 35
momentum, 60
Monge–Ampère equations, 32
Monge–Kantorovich optimization, 26,

32–33
monitor filtering, 53–54, 68, 101
monitor function, 46–54, 64, 84, 118

balanced ∼, 47, 99
based on error-estimates, 52
component imbalance, 98, 99, 104
directional ∼, 49, 84, 100
eigendecomposition of ∼, 50
for r-refinement, 55
second-order derivatives in ∼, 46

monitor matrix, 50
monitor smoothing, see m. filtering
monotonic order of mesh points, 65
moving finite elements (MFE), 34–36
moving mesh, see mesh movement
multi-mesh method, 7
multigrid, 26, 33
MUSCL reconstruction, 67, 89

non-directional monitor function, 49
nonconvex domain, 22
nonuniform discretization, 19
normal flux, construction of ∼, 88
normal vector, 19
numerical viscosity, 66

orientation preservation, 17
orthogonal coordinate system, 19
orthogonality functional, 24

p-refinement, 11
patch-based refinement, 54
periodic boundary conditions, 119–122
physical domain, see domain
plasma, 60
predictor–corrector integration, 67, 92
problems in 1D

Brio & Wu shock tube, 69
Keppens shock tube, 73
oscillating plasma sheet, 77
shear Alfvén waves, 76
Woodw. & Colella blast waves, 3

problems in 2D
Lax & Liu conf. 11, 109
Liska & Wendroff implosion, 102
Orszag–Tang vortex (MHD), 124
Richtmyer–Meshkov shock tube, 56
Rotor (MHD), 123
Sod’s shock tube rotated, 121
Woodward dbl. Mach reflectn., 109

quadrangle, 19, 87
quadrilateral, 19, 87
quasi-static generators, 28

r-refinement, 11
Rankine–Hugoniot jump conditions, 91
rarefaction fan, 86
reference domain, 16
reference frame, rotation of ∼, 88
refinement
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h-∼, 11, 54–58, 72
hr-∼, 7, 56–58
p-∼, 11
r-∼, 11, 14–54

relaxation, time ∼, 28, 43
Richardson interpolation, 55
Richtmyer–Meshkov instability, 56, 103,

108
Riemann problem

for HD, 85
for MHD, 62
two-dimensional ∼, 86

Riemann solvers, approximate ∼, 90
rotated reference frame, 88
rotational invariance, 88
Rusanov flux, 90

scaling invariance, 47
secondary-type basis functions, 35
SGWMFE, 35
singular value decomp. of Jacobian, 51
skewed mesh, 34, 41
skewness, 53
slope limiter, 67, 89
smoothness functional, 24
solution reconstruction, 66, 89

multidimensional ∼, 90
stencil, 64, 87
stiffness of coupled system, 43
stretching factor, 53
string gradient-weighted MFE, 35

tangent vector, 18, 19
thermal pressure, 61
Thomson–Thames–Mastin (TTM), 23
time integration, predictor–corr., 67, 92
time relaxation, 28, 43
time stepping, local ∼, 55, 93
transformation of PDEs, 42–45

uncoupled system, 43
uniform discretization, 19
uniqueness of map, 26, 29, 37
upwind flux, 66, 96

Van Leer limiter, 89
variable diffusion, see Winslow’s method
variational formulation, 23–24, 64, 93
vector potential in MHD, 115–118

interpolation on moving mesh, 118
velocity, 60

velocity-based adaptation, 33–42
volume control, 12
volume functional, 24
vorticity, 86

as monitor component, 104

wall-jetting effect, 102, 110
wave

Alfvén ∼, 62, 73, 76
characteristic ∼, 62
entropy ∼, 62
magnetosonic ∼, 62, 80, 81
speeds, 62

Winslow’s method, 23
direct variant of ∼, 28–30, 64, 93

Woodward limiter, 89



Samenvatting

Dit proefschrift valt binnen het vakgebied Computational Science, of precie-
zer: Numerieke Wiskunde. Binnen dit brede gebied richten wij ons op com-
putersimulaties van (veelal) natuurkundige processen, zoals luchtstroming of
stroming van magnetische plasma’s. De natuurkundige wetten die beschrijven
hoe de diverse processen in zo’n luchtstroming verlopen zijn veelal bekend.
Wanneer we een echt ‘stuk lucht’ gaan bekijken en willen voorspellen hoe er
draaiingen of drukgolven zullen optreden, is het echter bijzonder lastig—zeg
maar gerust ondoenlijk—om met pen en papier al deze natuurwetten te gaan
doorrekenen. Zelfs computers doen dit niet exact; we laten ze een benadering
berekenen van de echte oplossing. Zo wordt het dus een echte voorspelling
die een fout bevat; om deze reden zitten weersvoorspellingen er nog wel eens
naast.

Het benaderen van de oplossing gebeurt door het gebied waar je de stro-
ming wilt doorrekenen (het domein) op te delen in kleine hokjes, bijvoorbeeld
allemaal vierkantjes.2 In plaats van op elk willekeurig punt in het domein de
stroming door te rekenen, berekenen we enkel voor elk hokje de gemiddelde
waarden van gasdichtheid, snelheid, etcetera. Het opdelen van het domein
in hokjes en het doorrekenen van de natuurwetten met gemiddelde waarden
hierop wordt discretisatie genoemd.

Hoe groter we de hokjes maken, des te minder er nodig zijn om het hele
domein te bedekken en des te sneller de computer klaar is met het rekenwerk.
Echter, hoe groter een hokje is, des te grover de gemiddelde waarden zijn en
dus ook de fout die we in de voorspelling maken. Het kiezen tussen weinig
hokjes (snelle simulaties) en veel kleine hokjes (nauwkeuriger resultaten) is
een constant dilemma. Dit brengt ons bij het onderwerp van dit proefschrift.
De stroming op een domein zal op bepaalde plaatsen interessant zijn (druk-
golven die tegen elkaar botsen, draaiingen door tegengestelde stromingen),
maar op diverse andere gebieden is de stroming mogelijk heel kalm. Het zou
ideaal zijn om in die interessante gebieden de hokjes veel kleiner te maken
en in de kalme gebieden wat groter. We beginnen met allemaal gelijke vier-
kantjes en trekken vervolgens de kruispunten in dit vierkante rooster richting
de interessante gebieden, zodat de vierhoekjes daar kleiner en mogelijk be-
ter vervormd zijn. In de kalme gebieden zijn de vierhoeken dan automatisch
meer opgerekt. Het vervormde vierkante rooster wordt een adaptief rooster ge-
noemd. Wanneer we de stroming voor langere tijd doorrekenen en het rooster
continu mee beweegt met de stroming, heet dit een bewegend rooster. De tech-
niek wordt ook wel r-verfijning genoemd, naar relocatie.

2In dit voorbeeld neem ik een ’plat’ domein aan, dus tweedimensionaal en niet driedimen-
sionaal zoals in de echte wereld. Het uitvoeren van tweedimensionale simulaties leert ons veel
dat van pas zal komen bij het later uitvoeren van driedimensionale simulaties.
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Een cruciaal onderdeel in deze roosterbeweging is hoe er bepaald wordt
wat ‘interessante’ gebieden zijn. Het menselijk oog herkent wel fenomenen
als schokgolven en draaiingen, maar hoe kunnen we dit automatiseren? De
computer zal aan elke locatie in het rooster een getal toekennen dat aangeeft
hoe belangrijk roosterverfijning daar is. Hoe groter het getal, des te kleiner de
hokjes daar zullen worden. Dit getal komt uit de zogenaamde monitorfunctie
die de oplossing ‘monitort’. Deze meet bijvoorbeeld hoe snel de luchtdicht-
heid ergens verandert of de stromingssnelheid. Een juiste weging van al deze
waarden moet ervoor zorgen dat de roosterbeweging gebalanceerd verloopt.

In de navolgende tekst vatten we alle hoofdstukken inhoudelijk samen,
met meer gebruik van jargon.

In Hoofdstuk 1 geven we een korte historische introductie van bewegende
roostermethoden. We schetsen de meest recente resultaten van anderen op het
gebied van roosterverfijning en oplosmethoden voor fysische vergelijkingen,
en duiden hoe dit proefschrift zich daartussen positioneert.

In Hoofdstuk 2 geven we een uitgebreid overzicht van de diverse metho-
den voor roosterbeweging, hun historie en onderlinge verschillen en over-
eenkomsten. In vergelijking met eerdere overzichtswerken wordt een breed
spectrum aan methoden beschouwd en is bovendien het meest recente werk
(t/m 2009) toegevoegd. De beschouwing gaat uit van drie onderscheidende
factoren: het voorschrift van de roosterbeweging, de combinatie met oplosme-
thoden voor de fysische vergelijkingen en de aansturing van roosterbeweging
door monitorfuncties. Het voorschrijven van roosterbeweging kan globaal ge-
zien op twee verschillende manieren. De locatiegebaseerde methode gebruikt
een partiële differentiaalvergelijking (PDV) of bijvoorbeeld een optimalisatie-
probleem om de coördinaten, oftewel de puntlocaties, te bepalen. Veel van dit
soort methoden zijn te relateren aan het equidistributieprincipe van De Boor
en de variabele-diffusie van Winslow. De recent opgekomen toepassing van
Monge–Kantorovich optimalisatie is ook locatiegebaseerd en garandeert equi-
distributie in willekeurig veel dimensies. Er is nog weinig onderzoek gedaan
naar de efficiëntie van deze methode voor tijdsafhankelijke PDV-problemen.
De snelheidsgebaseerde methode definieert de puntsnelheid, ook middels een
PDV en integreert deze vervolgens in de tijd om de roosterpunten naar de
juiste locatie te bewegen. De deformatiemethode van Liao garandeert hiermee
equidistributie in ruimtes van willekeurig hoge dimensie.

In Hoofdstuk 3 beschrijven we onze eerste eigen toepassing van eendimen-
sionale roosterbeweging op problemen uit de ideale magnetohydrodynamica.
Dit fysische model beschrijft de beweging van een geı̈oniseerd gas (plasma)
en bevat dus naast de drie gaswetten van Euler ook termen voor de Lorentz-
kracht en een extra PDV die inductie van een magnetisch veld beschrijft. Deze
extra vergelijkingen brengen ook extra karakteristieke golven met zich mee,
waardoor testproblemen zeer rijke stromingsfenomenen kunnen vertonen en
roosterbeweging extra belangrijk wordt. De fysische PDV’s worden opgelost
met eindige volumes en de lokale Lax–Friedrichsflux en is een tweedeorde
methode dankzij slope-limiting en MUSCL-type oplossingsreconstructie. De
voornaamste verbetering is de monitorfunctie die een oplossingsgradiënt ba-
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lanceert middels een automatisch gekozen tijdsafhankelijke constante. Voor-
heen werd deze handmatig gezet, dus de nieuwe methode voorkomt een hoop
giswerk door de gebruiker. Hierdoor kunnen onverwachte fenomenen ontdekt
worden. Zo bleek de roosterbeweging bij het ‘oscillating plasma sheet’ pro-
bleem nauwkeurig extra snelle golven op te pikken, en daarmee kwamen we
achter de zogenaamde fysische trapvorming. Voorheen had men dit nog niet
opgemerkt.

In Hoofdstuk 4 begint de werkelijke uitdaging qua rekenkracht: tweedi-
mensionale roosterbeweging voor compressibele gassen. De volledig nieuw
ontwikkelde Fortran 95 code is generiek opgezet voor de brede klasse van hy-
perbolische stelsels van niet-lineaire PDV’s. Voornaamste punt in dit hoofd-
stuk is een extra balancering van de monitorfunctie. Namelijk, die tussen
componenten onderling. De monitorfunctie kan bestaan uit meerdere compo-
nenten, bijvoorbeeld een dichtheidsgradiënt en de vorticiteit van de stroming.
In het voorgaande hoofdstuk werd binnen één component al een balancering
gebruikt, zodat subtiele fenomenen in de oplossing niet volledig gedomi-
neerd werden door sterke fenomenen. Dit blijkt ook nodig te zijn tussen meer-
dere componenten. Preciezer: wanneer de ratio maximum/gemiddelde voor één
component veel groter is dan voor de andere, dan moet dit genormaliseerd
worden. Deze operatie is zeer goedkoop, en levert significante verbetering
van de roosterbeweging op. Een implosie-probleem laat zien dat ook over
zeer lange tijdsintegraties de roosterverfijning goed gebalanceerd blijft, waar-
bij fysische instabiliteiten, zoals Kelvin–Helmholtz en Richtmyer–Meshkov,
scherp gerepresenteerd worden. Een extra verbetering wordt gevormd door
de HLLC-numerieke flux, die met slechts 10% extra kosten veel scherpere
resultaten geeft ten opzichte van de lokale Lax–Friedrichsflux.

In Hoofdstuk 5 hebben we de methode uit Hoofdstuk 4 uitgebreid naar
tweedimensionale ideale magnetohydrodynamica. Was dit in Hoofdstuk 3
nog triviaal, nu speelt een extra fysische eis een belangrijke rol. Het magneet-
veld moet divergentievrij blijven om magnetische monopolen uit te sluiten en
om dit te garanderen gebruiken we de zogenaamde vectorpotentiaalformule-
ring. De PDV voor het magneetveld wordt niet aan de set van hyperbolische
PDV’s toegevoegd, maar het magneetveld wordt afgeleid als de rotatie van
een potentiaalveld. Dit garandeert de divergentie-eis tot op machineprecisie,
maar introduceert wel een extra vergelijking voor het potentiaalveld. Deze
moet niet alleen opgelost worden, maar vereist ook een extra interpolatiestap
in de roosterwegingsfase. De eerste resultaten zijn bemoedigend. De rooster-
aanpassing en oplossingsmonitoring werkt nog steeds goed, zoals verwacht.
Het meest kritieke onderdeel blijkt de evolutie van de vectorpotentiaal te
zijn. Deze is nu van eersteorde nauwkeurigheid, maar voor hogere resolutie
is meer stabiliteit nodig en dus minstens een tweedeorde methode.

Over het geheel genomen is dit proefschrift een toepassingsgestuurde ver-
kenning van roosterbeweging en bijbehorende oplossingsmonitoring. De the-
oretische fundering was al aanwezig, en de generieke oplosmethode en de
automatisch (dubbel) gebalanceerde monitorfunctie maken de resulterende
methode direct toepasbaar op zeer diverse problemen.
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And what have you got? At the end of the day.
What have you got? To take away?

— Dire Straits, Private Investigations
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