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ABSTRACT

Eye movement modeling examples (EMME) are demonstrations of a computer-based task by a human
model (e.g., a teacher), with the model's eye movements superimposed on the task to guide learners’
attention. EMME have been shown to enhance learning of perceptual classification tasks; however, it is
an open question whether EMME would also improve learning of procedural problem-solving tasks. We
investigated this question in two experiments. In Experiment 1 (72 university students, Mgge = 19.94),
the effectiveness of EMME for learning simple geometry problems was addressed, in which the eye
movements cued the underlying principle for calculating an angle. The only significant difference be-
tween the EMME and a no eye movement control condition was that participants in the EMME condition
required less time for solving the transfer test problems. In Experiment 2 (68 university students,
Mgge = 21.12), we investigated the effectiveness of EMME for more complex geometry problems. Again,
we found no significant effects on performance except for time spent on transfer test problems, although
it was now in the opposite direction: participants who had studied EMME took longer to solve those
items. These findings suggest that EMME may not be more effective than regular video examples for

teaching procedural problem-solving skills.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Worked examples or modeling examples, in which it is
demonstrated how to perform a task, are an effective way to pro-
mote learning, especially when learners have no or limited prior
knowledge (for reviews, see Renkl, 2014; Van Gog & Rummel,
2010). Indeed, video modeling examples have never been more
prominent than they are today, thanks to technological advance-
ments, such as digital cameras to record them, online learning
environments to store and deliver them, and the availability of
digital devices with internet connections (e.g., smartboards, lap-
tops, and tablet PC's) in classrooms and at home to replay them.
Video modeling examples come in many forms; for instance,
showing the model (partly) who is manipulating objects as part of
the demonstration of the task (Braaksma, Rijlaarsdam, & van den
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Bergh, 2002; Groenendijk, Janssen, Rijlaarsdam, & Van den Bergh,
2013; Hoogerheide, Loyens, & Van Gog, 2014; Van Gog, Verveer,
& Verveer, 2014); showing the model in a lecture-style situation
next to a screen on which a slideshow is projected that shows the
steps needed to complete the task (Ouwehand, van Gog, & Paas,
2015) or on which the model is writing out those steps (Fiorella
& Mayer, 2015; Exp. 1); showing only the slides or the model's
writing in the form of a computer screen-recording with a voice-
over explanation (Fiorella & Mayer, 2015; Exp. 3; see also www.
khanacademy.org); or showing a screen-recording of the model
working on a computer-based task, with or without a voice-over
explaining the procedure (McLaren, Van Gog, Ganoe, Karabinos, &
Yaron, 2016; Van Gog, Jarodzka, Scheiter, Gerjets, & Paas, 2009).

It has been suggested that the effectiveness of the latter type of
screen recording examples, in which the model is demonstrating a
computer-based task, may be enhanced by showing the model's
eye movements overlaid on the screen recording (Van Gog et al.,
2009). In such Eye Movement Modeling Examples (Jarodzka et al.,
2012; Jarodzka, Van Gog, Dorr, Scheiter, & Gerjets, 2013; Mason,
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Pluchino, & Tornatora, 2015a; Van Gog et al., 2009; see for a review
Van Gog & Jarodzka, 2013) the model's eye movements are visu-
alized by, for instance, a colored dot. It is expected that by showing
the model's eye movements, learners' visual attention is synchro-
nized with that of the model; in other words, that learners are
attending to the relevant information at the right time.

That such guidance might be necessary, is suggested by research
showing that novices attend to task irrelevant information (i.e.,
information that is high in visual contrast and therefore more
salient), whereas experts attend to task relevant information faster
and more often and are able to ignore irrelevant information
(Charness, Reingold, Pomplun, & Stampe, 2001; Haider & Frensch,
1999; Jarodzka, Scheiter, Gerjets, & Van Gog, 2010; Van Gog, Paas,
& Van Merriénboer, 2005; Wolff, Jarodzka, Van den Bogert, &
Boshuizen, 2016). Hence, when novice learners are observing an
expert's demonstration of the task, it is likely that their attention is
not directed at the information the expert is attending to or refer-
ring to at the same time. Especially in cases in which the visual or
verbal information in the video modeling example is transient, this
might result in the learner missing out on the relevant information,
which might hamper learning (see Ayres & Paas, 2007, for a dis-
cussion of transience and need for attention guidance in anima-
tions). By displaying the models' eye movements in the example,
however, the learner not only sees what the model is doing on the
computer, but also where the model is looking, which is hypothe-
sized to guide learners' attention and to improve their learning
outcomes by helping them to optimally process the video example
(e.g., Jarodzka et al., 2012, 2013; Van Gog et al., 2009).

1.1. Attention guidance based on eye movement displays

Several different approaches have been taken to designing
attention guidance based on the differences in attention allocation
between experts and novices or successful and unsuccessful
problem solvers. First, the observation that successful problem
solvers allocate their visual attention to other information than
unsuccessful problem solvers, has been used to design visual cues
to guide visual attention to the information successful problem
solvers attended to (Grant & Spivey, 2003; Groen & Noyes, 2010).
And indeed, such cues resulted in higher solution rates on an
insight problem-solving task (i.e., Duncker's radiation problem;
Grant & Spivey, 2003; Thomas & Lleras, 2007).

Second, the eye movements themselves can be displayed to
function as a visual cue. Also using Duncker's radiation problem,
Litchfield and Ball (2011) investigated whether dynamically dis-
playing a solution-related sequence of eye movements for 30 s
would increase performance. In Duncker's radiation problem a
schematic drawing of a tumor is presented surrounded by healthy
tissue and skin. The goal is to destroy the tumor without damaging
healthy surrounding tissue by means of converging low intensity
lasers from multiple sides. Litchfield and Ball (2011) showed that a
didactic (very deliberate, ‘clean’) or a natural (more chaotic)
sequence of eye movements related to the solution (i.e., crossing
the skin area from different angles), led to enhanced solution rates
compared to eye movements focused on other areas of the task.
Similar results of displaying another person's eye movements to
guide attention and improve performance were obtained in studies
with visual search tasks, in which people had to search for faults in
software code (Stein & Brennan, 2004), faults on printed circuit
boards (Nalanagula, Greenstein, & Gramopadhye, 2006), or lung-
nodules on X-ray scans (Litchfield, Ball, Donovan, Manning, &
Crawford, 2010). These studies show that attention guidance by
displaying eye movements improved performance. However, they
did not consider potential effects on learning (i.e., later performance
in the absence of such guidance), which is the objective of

displaying eye movements in modeling examples.
1.2. Learning from eye movement modeling examples

Research on eye movement modeling examples has found mixed
support for the usefulness of displaying eye movements to guide
attention and enhance learning. It seems that this kind of guidance
is effective for learning tasks relying on visual inspection in order to
classify or diagnose motion patterns from dynamic and visually rich
stimuli. For instance, in the study by Jarodzka et al. (2013), partic-
ipants had to learn how to classify fish locomotion patterns and
were shown either only the video of the fish with the expert
model's explanation, or they additionally saw the expert's eye
movements. Consequently, when the expert verbally explained
which fins the fish used for locomotion, the learners knew which
fins he was referring to because they saw what he was looking at.
The expert model's eye movements (i.e., fixations) were either
visualized as a solid dot or as a ‘spotlight’ by means of blurring the
video except for the part where the expert was fixating. After the
video modeling examples participants were shown novel videos,
without the expert's eye movements and verbal explanations,
displaying fish locomotion patterns that they had to classify. Par-
ticipants who had seen the model's eye movements showed
marginally better performance on this classification task, with the
dot condition outperforming the spotlight condition. In a similar
vein, Jarodzka et al. (2012) showed that attention guidance by
means of displaying the expert's eye movements in modeling ex-
amples, yielded superior learning outcomes. Participants had to
learn to interpret symptoms of epileptic seizures in infants, either
being shown only the video of the infant along with the expert
model's verbal explanation, or they additionally saw the expert's
eye movements being displayed either as a circle or as a spotlight.
The spotlight condition outperformed the condition that did not
receive attention guidance.

Eye movement modeling examples were also shown to be
effective in learning a text-picture processing strategy (Mason et al.,
2015a). Children who were presented with an example that showed
a model's eye movements, with the model deliberately making
transitions between corresponding elements of the text and picture
in order to emphasize integration, showed more text picture inte-
gration (i.e., number of transitions between text and picture) on a
novel text and recalled more information units and performed
better at the transfer test about that novel text than children in the
control condition who did not receive such an example. Recently,
these results were replicated and extended by showing that chil-
dren with lower reading comprehension skills benefitted more
from eye movement modeling examples regarding factual knowl-
edge and the transfer of knowledge, compared to children with
high reading comprehension skills (Mason, Pluchino, & Tornatora,
2015b). Thus, EMME are not only effective for learning a domain-
specific task, but also for learning general processing strategies.

In contrast, when it comes to learning procedural problem-
solving tasks, guiding the learners' attention by displaying the
model's eye movements did not yield beneficial effects on learning,
and even had a negative effect on learning when the modeling
example also contained a verbal explanation (Van Gog et al., 2009).
In this study, participants were shown an example of how to solve
an animated puzzle problem (i.e., frog leap) with or without a
verbal explanation and with or without the model's eye move-
ments being displayed. All examples showed a screen recording of
the solution steps, which were executed by the model clicking on a
frog to move it forward. The verbal information (when present)
explained the different choice options at each step, and indicated
which options were incorrect and why. The displayed eye move-
ments also showed the model considering the various choice
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options. In the conditions in which no verbal explanation was
given, seeing the model's eye movements did not affect learning of
the puzzle problem (although there seemed a slight advantage of
attention guidance with regard to transfer, i.e., completing the
problem in a different order). In the conditions in which a verbal
explanation was present, seeing the model's eye movements had a
negative effect on subsequent test performance. A possible expla-
nation offered by the authors for this negative effect, was that the
verbal explanation might have been sufficient to guide attention to
the right location at the right time. As a result, the cues provided by
the eye movements may have been redundant (and research on the
redundancy effect shows that displaying redundant information
does not help and can even hinder learning; Kalyuga & Sweller,
2014).

Note though, that the procedural problems also differ from the
‘classification’ (Jarodzka et al., 2012, 2013) and ‘strategy’ (Mason
et al, 2015a, 2015b) examples —and for that matter, from the
insight and search problems discussed above-in terms of the
model's interaction with the display of the task. In contrast to the
other tasks, where the model is inspecting a (complex) visual
display but not acting upon it, a procedural problem-solving task
usually requires the model to act upon the objects in the problem
(e.g., by moving the mouse or typing), and such overt actions will
also automatically draw the learners' attention. So although the eye
movements, like the verbal explanations, provide additional in-
formation on covert cognitive actions (e.g., the choice processes)
that are relevant for understanding the overt actions, the executed
steps in the solution procedure will automatically draw the
learners' attention.

1.3. The present study

Based on the literature reviewed above, it seems possible that
attention guidance based on the model's eye movements would be
less effective, or even ineffective, for procedural problem solving
tasks. If that would be the case, this would be relevant for educa-
tional research and practice, as it would provide insight into the
conditions under which attention guidance based on eye move-
ment displays is or is not effective. However, since one cannot draw
a conclusion about a whole category of tasks based on one single
study, the present study aimed to investigate whether attention
guidance based on eye movements can be effective for learning to
solve procedural geometry problems (i.e., higher performance and
faster response times). In Experiment 1, learners were presented
with simple geometry problems without verbal explanations,
whereas in Experiment 2, learners were presented with more
complex geometry problems that did include a verbal explanation.

2. Experiment 1

Experiment 1 investigated whether participants would benefit
from seeing the model's eye movements in examples of simple,
geometry problems that only required solving one angle (from
hereon: one-angle problems). Solving that angle in a task involving
the F-rule, for instance, required the following simple steps to be
(mentally) performed: (1) searching for the asked unknown angle;
(2) locating the parallel sign; (3) searching for the second parallel
sign; (4) identifying the parallel lines; (5) applying the corre-
sponding angle principle (i.e., F-rule) and solving the problem.
Whereas participants in the control condition only saw the model
eventually typing in the answer, participants who additionally
received meaningful guidance additionally saw the model's eye
movements, which signaled to what information the model was
attending, as well as the underlying principle (corresponding/
alternating angles based on the ‘F’/'Z’ rule).

It is possible that seeing eye movements might raise partici-
pants' overall attention to the task, which in itself might result in
learning benefits, irrespective of the usefulness/meaningfulness of
the eye movements (cf. Litchfield et al, 2010). Therefore, we
included a condition in which meaningless eye movements were
displayed. If, despite prior research with a puzzle problem (Van Gog
et al., 2009), attention guidance based on the model's eye move-
ments would be effective for learning procedural problem-solving
tasks, then the meaningful eye movement display condition
should show better learning outcomes (i.e., higher accuracy and
faster response times on the learning and transfer problems)
compared to the meaningless eye movements and no eye move-
ments condition.

2.1. Methods

2.1.1. Participants and design

Seventy-two students of a Social Sciences Faculty of a Dutch
university (the majority from the Psychology program) volunteered
to participate in this study (Mgge = 19.94, SD = 2.10, 18—29 years; 19
male). They were randomly assigned to one of three conditions
(n = 24 in each condition): meaningful eye movement modeling
examples (EMME), meaningless EMME, or control (i.e., modeling
example only). Participants received either a monetary reward or
course credit for participating. All participants had normal or cor-
rected to normal vision.

2.1.2. Materials and apparatus

2.1.2.1. Eye tracking equipment. Eye movements were recorded
with a SMI RED250 eye tracker with a sampling rate of 250 Hz
(SensoMotoric Instruments, GmbH). The experiment was created in
SMI Experiment Center 3.34 software and presented on a monitor
with 1680 x 1050 pixels resolution with a refresh rate of 60 Hz.

2.1.2.2. Pretest. A pretest was administered to check whether the
level of prior knowledge among conditions was equal. The pretest
consisted of four open questions regarding the geometry problems
presented with Experiment Center (e.g., “What is a triangle?”, “What
is a straight line?”, “What is an alternating angle?” and “What is a
corresponding angle?”).

2.1.2.3. Geometry problems. Four types of geometry problems were
created: triangle problem, straight line problem, alternating angle
problem (i.e., Z-rule; see Fig. 1), and corresponding angle problem
(i.e., F-rule). Each problem consisted of line drawings of triangles
and parallel lines. All angles were coded A, B, C etc. Values were
given for some of the angles and unknown values of angles were
marked with a question mark. On top of each line drawing the
problem statement was provided (e.g., “How many degrees is angle
B?”). For each type of problem a modeling example (see below) and
two isomorphic problems were created. One isomorphic problem
of each type was identical to the modeling examples in terms of
layout, but differed in terms of the numbers used for the angles. The
other isomorphic problem had a comparable (but not identical)
layout.

In addition, two transfer problems were created, which had a
visually more complex layout than the example and isomorphic
problems, as they combined more angles, parallel lines, triangles
and straight lines. The geometry problems were created and pre-
sented with the program Geogebra (www.geogebra.org). See Fig. 2
for an example of a transfer problem. The width of the rectangular
area containing both the geometry figure and problem statement
ranged between 747 and 1478 pixels across problems, and the
height ranged between 467 and 780 pixels.
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Hoeveel graden is hoek B?

Hoeveel graden is hoeleB?

Fig. 1. Static representation of the dynamic scan path shown in a meaningful EMME (left) and a meaningless EMME (right) in Experiment 1 for the alternating angle problem. On
top is the problem statement stating (translated from Dutch) “How many degrees is angle B?". The blue dots represent the location of the model's gaze and the numbers represent
the order of the fixations number. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Hoeveel graden is hoek H?

Fig. 2. Example of a transfer problem in Experiment 1 with the problem statement (translated from Dutch) stating “How many degrees is angle H?".

2.1.24. Modeling examples. One example was created for each
problem type, using SMI Experiment Center 3.34 for recording the
eye movements. SMI BeGaze 3.3 was then used for superimposing
the eye movements onto the example problem with the Bee Swarm
function. The model's eye movements were represented as a blue
translucent dot with a diameter of 30 pixels. In the meaningful
EMME condition, the eye movement modeling example showed
how to solve the problem (e.g., for the alternating angle problem
the model's gaze followed a Z-shaped pattern, see the left side of
Fig. 1). In the meaningless EMME condition, the eye movement
modeling example focused on all features of the problem and on
regions between the features but not in a meaningful order (e.g., for
the alternating angle problem, the model's gaze did not move in a
Z-shaped pattern, see the right side of Fig. 1). In the control con-
dition, participants saw the problem being solved without a
model's gaze. In both the meaningful and meaningless modeling
examples, the model's started with reading the problem statement.
All modeling examples, regardless of condition, ended by showing
the solution to the problem statement for 2 s. In the meaningful
condition the model's gaze fixated on the solution when it was
shown, whereas the model's gaze in the meaningless condition
fixated on the problem statement at that time (which would make
students slower to notice the problem solution if they would

indeed follow the meaningless gaze).

The length of the modeling videos for the triangle problem was
between 20.2 and 20.8 s depending on condition, for the straight
line problem it was between 12.5 and 12.9 s, for the alternating
angle problem it was between 32.7 and 33.2 s, and for the corre-
sponding angle problem it was between 33.9 and 34.3 s. The small
differences in video length (up to a maximum of 0.6 s) were caused
by the different eye movement patterns in the two EMME
conditions.

2.1.3. Procedure

The experiment was run in individual sessions of approximately
25 min duration. Participants were briefly instructed about the
general overview of the experiment, when they entered the lab.
Then participants answered the pretest questions. After the pretest,
they were seated properly in front of the eye tracker with the help
of a forehead and chin-rest, which was positioned 57 cm in front of
the monitor.! After the five-point calibration (plus four-point

! Note that we collected eye movement data to be able to explain whether
possible effects of EMME would indeed arise via gaze following behavior during
example study; in the absence of such effects, however, these data were not
analyzed.
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validation) procedure, participants were told that they would be
presented with video examples in which they saw how to solve
geometry problems and that each video showed the solution of the
problem. Participants in both EMME conditions were additionally
informed that they would see the eye movements made by the
model, represented as blue translucent dots. Then, participants
were instructed that after each video example they had to solve a
similar geometry problem themselves as accurately and as fast as
possible. This example-problem sequence was repeated four times,
after which participants completed the remaining geometry
problems (i.e., four isomorphic and two transfer problems). The
order of the example-problem pairs was counterbalanced across
participants and conditions, as was the order of the remaining four
isomorphic test problems. The transfer problems always came last.
Finally, participants were asked to indicate in how many of the
modeling examples they knew the solution before it was shown
(ranging from zero to four) to obtain additional information on
their prior knowledge and an impression of the usefulness of the
modeling example.

2.14. Data analysis

On the pretest, one point was given for each correctly answered
question and a half point was given for partially correct answers,
resulting in a maximum score of 4 points. Because these were open
questions, a second independent rater scored a randomly selected
subset (16.67%) of answers. The percentage absolute agreement
between the raters was 93.75% with a linear weighted Cohen's
kappa (Cohen, 1968), which takes into account the agreement
based on chance and the degree of disagreement, of kw = 0.712,
indicating substantial agreement (Landis & Koch, 1977).

For each correctly solved isomorphic and transfer problem, one
point was given, resulting in a maximum score of 8 for the
isomorphic problems, and a maximum score of 2 for the transfer
problems. A half point was given when participants made a minor
calculation error (i.e., the given answer deviated 1, 10 or 100° from
the correct answer; n = 19) but showed they knew how to solve the
problem. Performance scores on isomorphic and transfer problems
were summed and then converted to a proportion of the maximum
score. Besides task performance, mean response times (RT) for
correctly completed problems were computed for the eight
isomorphic and two transfer problems separately. Only correctly
solved items were included as it is uninformative to know how
much time is needed to incorrectly ‘solve’ a problem and the RT for
incorrectly answered problems can affect the average RT in several
ways. On the one hand participants who struggle from the start
might ‘give-up’ early on, which results in a lower average RT. On the
other hand struggling participants might keep on trying to solve
the problem resulting in higher RT's. To avoid any kind of bias, only
the RT for correct solved problems were used.

For several reasons, 5 problems had to be excluded from the
performance and RT data analysis (i.e., technical issues: n = 2,
participant asking question during problem solving: n = 3) and 8
problems were excluded from the RT analysis only (i.e., technical
issues: n = 4, mouse cursor lost: n = 1, software bug: n = 3). In
those cases the average performance or RT were calculated based
on the data of the remaining problems.

2.2. Results

The data were analyzed with one-way ANOVAs, except when
the assumption of normality was violated or the group sizes were
small (in case of the response time analysis of the transfer prob-
lems, see below) or unequal, in which case the more conservative
non-parametric Kruskal-Wallis test was conducted. In case the
assumption of homogeneity was violated we analyzed the data

with a one-way ANOVA using Welch's corrected F value (Field,
2009). See Table 1 for the complete overview of the number of
participants and items for each analysis. There were no significant
differences in pre-test performance among conditions (M = 0.44
points; SD = 0.66), F (2, 69) = 1.20, p = 0.309, nor did they differ
significantly in terms of how many modeling examples they knew
the answer to before it was shown (M = 2.76; SD = 1.16),
F(2,69) = 0.75, p = 0475.

2.2.1. Performance

To address our research question of whether seeing a mean-
ingful EMME resulted in enhanced performance as compared to the
meaningless EMME and control condition, non-parametric Krus-
kal-Wallis tests were conducted with condition as between-
subjects variable and performance on the isomorphic and transfer
problems as dependent variables. Neither performance on the
isomorphic problems, H (2) = 0.34, p = 0.842, nor performance on
the transfer problems, H (2) = 1.35, p = 0.509, differed significantly
among the conditions (see Fig. 3).

2.2.2. Response times

We then examined the question of whether the meaningful
EMME condition needed less time to correctly solve the isomorphic
and transfer problems as compared to the meaningless and control
condition. On the isomorphic problems, a one-way ANOVA was
conducted using Welch's corrected F value with condition as
between-subject variable and RT as dependent variable. This
analysis did not reach statistical significance, F (2, 43.507) = 2.67,
p = 0.081, nf, = 0.10 (see Fig. 4), yet we decided to exploratively
conduct Games-Howell post hoc tests (more suited for data with
unequal variances; Field, 2009), revealing: meaningful vs. mean-
ingless EMME (p = 0.127), meaningful vs. control condition
(p = 0.836), and meaningless vs. control (p = 0.068, r = 0.32).
Despite not reaching statistical significance, this last, medium effect
size, suggests that it took participants in the meaningless EMME
condition more time to correctly solve the isomorphic problems
than participants in the control condition.

For the transfer problems the non-parametric Kruskal-Wallis
test was conducted with condition as between-subject variable and
RT as dependent variable (see Table 1). The difference in RT among
the modeling conditions did not reach statistical significance, H
(2) = 5.16, p = 0.076 (see Fig. 4), yet we decided to exploratively
conduct Hochberg's GT2 post-hoc test (more suited for data with
unequal group sizes; Field, 2009), revealing: meaningful vs.
meaningless EMME (p = 0.826), meaningless vs. control (p = 0.153),
and meaningful vs. control (p = 0.038, r = 0.42). This last, medium
effect size suggests that it took participants in the meaningful
EMME condition less time to correctly solve the transfer problems
than participants in the control condition.

2.3. Discussion

The hypothesis that meaningful EMME would yield higher
performance was not confirmed, as there were no significant per-
formance differences among conditions. Regarding response times,
our hypothesis was not confirmed either, although there were
trends suggesting that participants who had observed meaningful
EMME were faster in solving the transfer problems than partici-
pants in the control condition and that participants in the mean-
ingless EMME condition were slower in solving the isomorphic
problems than participants in the control condition, but this dif-
ference did not reach statistical significance. This suggests that
participants were somewhat hindered (meaningless EMME) or
helped (meaningful EMME) by the displayed eye movements, but
this was not sufficient to affect their performance —possibly
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Table 1

Mean (and SD) of performance, number of participants, and number of items excluded/included in each analysis in Experiment 1.

Isomorphic problems

Transfer problems

Proportion correct

Response time (s)

Proportion correct Response time (s)

Meaningful EMME 0.90 (0.13) 11.91 (2.97) 0.38 (0.42) 106.86 (34.80)
N 24 24 24 12
Excluded items 0 18 (9.38%)* 1(2.08%) 29 (60.42%)*
Included items 192 174 47 19

Meaningless EMME 0.90 (0.13) 14.64 (5.98) 0.34 (0.37) 119.63 (43.01)
N 24 24 24 13
Excluded items 1(0.52%) 18 (9.38%)" 0 30 (62.5%)*
Included items 191 174 48 18

Control 0.86 (0.19) 11.37 (3.59) 0.26 (0.40) 156.88 (47.94)
N 24 24 24 8
Excluded items 3 (1.56%) 33 (17.19%)* 0 35 (72.91%)"
Included items 189 159 48 13

2 Note that only correctly solved problems were included in the response times analyses. Thus, the number of excluded items represents both items excluded due to

technical difficulties and items excluded due to performance errors.
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Fig. 3. Proportion correct for the isomorphic and transfer problems in Experiment 1
for the meaningful eye movements modeling condition (M+), meaningless eye
movements modeling condition (M-), and control condition (MO). Error bars represent
the 95% confidence interval of the mean.
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Fig. 4. Response times expressed in seconds for correctly answered isomorphic and
transfer items for the meaningful eye movements modeling condition (M+), mean-
ingless eye movements modeling condition (M—), and control condition (MO). Error-
bars represent the 95% confidence interval.

because of ceiling effects on the isomorphic problems.

In addition, the geometry problems presented in Experiment 1
might not have been complex enough to require attention guid-
ance: the problems consisted of simple geometrical shapes that
could be solved almost on-sight when the principle was under-
stood. Indeed, participants indicated they knew the answer to most
of the examples before it was shown. The materials used in

previous studies that found positive effects of displaying another
person's eye movements prior to problem solving (Litchfield & Ball,
2011; Litchfield et al., 2010) or during example study (Jarodzka
et al., 2012, 2013; Mason et al., 2015b, 2015a) were more visually
complex. Seeing a model's eye movements is arguably most useful
when a student cannot automatically infer what the model is doing.
Therefore, a second experiment was conducted with more proce-
durally and visually complex geometry problems that required
more solution steps.

3. Experiment 2

The geometry problems in Experiment 2 were more complex
than the one-angle problems from Experiment 1, as they required
four angles to be solved and included known and unknown angles
that were irrelevant for the solution procedure. A pilot study
showed very poor performance on such problems. Because of the
increase in complexity, verbal explanations were added to the
modeling examples. The meaningless EMME condition was omitted
from Experiment 2.

As in Experiment 1, we predicted that if seeing an EMME suc-
cessfully guides students' attention to the right location at the right
time, this would result in higher learning outcomes (i.e., perfor-
mance) and faster problem solving (i.e., faster response times) as
compared to the control condition. To establish whether EMME
indeed guide attention, eye tracking was used to explore whether
participants in the EMME condition would fixate the relevant areas
mentioned in the verbal explanation more often, faster, and longer
compared to participants in the control condition.

3.1. Methods

3.1.1. Participants and design

Sixty-eight students of a Social Sciences Faculty of a Dutch
university (the majority from the Psychology program) volunteered
to participate in this experiment (Mgg = 21.12, SD = 1.93; 18—26
years 23 male). They were randomly assigned to the EMME or the
control condition. Two participants had to be excluded from all
analyses because they accidentally skipped one of the video
modeling examples. In addition, four participants had to be
excluded as they already participated in Experiment 1 (this was not
noticed beforehand due to an error in the registration system). This
left n = 30 in the control condition and n = 32 in the EMME con-
dition. Participants received either a monetary reward or course
credit for participating. All participants had normal or corrected to
normal vision.
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3.1.2. Materials and apparatus

3.1.2.1. Eye tracking equipment. The eye tracking equipment used in
Experiment 2 was the same as in Experiment 1. Experiment Center
3.4.165 (SensoMotoric Instruments, GmbH) software was used for
the creation and presentation of the experiment. The screen
recording function of the Experiment Center software was used to
record participants' eye movements. The geometry problems were
presented with the program Flash Adobe CC and programmed with
ActionScript 3.0.

3.1.2.2. Pretest. A pretest was administered to check whether the
amount of prior knowledge among conditions was equal. The
pretest consisted of three multiple-choice questions and two open
short-answer questions. The questions tested the geometry
knowledge regarding triangles, straight lines, corresponding an-
gles, and alternating angles.

3.1.2.3. Geometry problems. Geometry problems were created in a
similar way as in Experiment 1, but the problems were made more
complex in that they combined different geometrical principles
within one problem/example, required four angles to be solved,
and contained a total of thirteen angles. Two modeling examples
were created along with two isomorphic problems (i.e., an identical
layout but different numbers) and four transfer problems with
different visual layouts and numbers. To prevent participants from
making calculation errors a digital calculator was added at the top-
right corner of the screen. The width of the rectangular area con-
taining the geometry figure, the problem statement, and the
calculator ranged between 1092 and 1351 pixels across problems
and the height ranged between 787 and 847 pixels (see Fig. 5).

3.1.2.4. Modeling examples. The modeling examples were recorded
in a similar fashion as in experiment 1, using SMI Experiment
Center 3.4.165 to record the eye movements and SMI BeGaze 3.4.52
for creating the video examples. The EMME and control versions of
the modeling examples both contained a male model's narration
explaining the different steps (see Appendix for a screenshot of a
modeling example and for the corresponding transcript of the

Hoeveel graden is hoek A?

verbal explanation steps). The model first identified the location of
the to-be-solved angle. Once the angle was identified, the model
started looking for a starting point for the solution by working
backwards. Then, the model began solving the geometry problem
and explained each solution step until the problem was solved. In
the control condition, participants heard the verbal explanation
and saw the answers to each step appear. In addition, participants
in the EMME condition, saw the model's eye movements super-
imposed onto the modeling example. As in Experiment 1, the eye
movements were displayed as a blue translucent dot with a
diameter of 30 pixels. The duration of the two modeling example
videos was identical across conditions (with the first lasting 122
and the second lasting 131 s).

3.1.3. Procedure

The procedure was similar as in Experiment 1 with the excep-
tion of the number of video examples and transfer problems pre-
sented. In addition, a short EMME demonstration video of a model
looking at a picture of a living room was added in Experiment 2 as
part of the general instruction. This was done to familiarize par-
ticipants in the EMME condition with the representation of the
model's eye movements. After this instruction they were presented
with two example-problem pairs. Subsequently, the eye tracker
was re-calibrated and participants were presented with the four
transfer problems. The order of the example-problem pairs was
counterbalanced across participants and the four transfer problems
were presented in a fixed order. For each problem, participants’
performance, response times, and eye movements were recorded.

3.1.4. Data analysis

3.1.4.1. Prior knowledge. For each question on the pretest only one
answer was correct and for each correct answer one point was
given (i.e., max. score = 5 points).

3.1.4.2. Performance. Two participants were excluded from the
performance analyses due to very poor performance (z-
score < —2.5). In addition, due to a technical issue, two participants
received one geometry problem less (i.e., their proportion scores on

7789.

Fig. 5. An example of a transfer problem in Experiment 2 including the calculator. On top is the problem statement, (translated from Dutch) “How many degrees is angle A?”.
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the transfer problems are based on three instead of four problems).

3.14.3. Response times. For the response times analyses, two
additional participants were excluded due to very high response
times (z-score > —2.5).

3.1.4.4. Eye tracking measures. To explore whether EMME helped
participants to attend to the right visual information at the right
time, we first determined the onset of the verbal referents in the
narration (i.e., in the sentence “Now that you know angle A, you can
calculate angle C.” the letters A and C are the verbal referents; there
were 15 verbal referents in each modeling example) and the cor-
responding areas of interest (AOI) in the geometry problem (e.g.,
the degree of angle A or C). We then determined the proportion of
verbal referents fixated (i.e., number of verbal referents fixated
divided by total number of referents; proportion fixated), how long
it took participants to fixate the referent (time lag) after it was
mentioned in the verbal explanation, and how long the verbal
referent was fixated (fixation duration), with fixations defined as
yielding a peak velocity <40°/s and fixation duration > 100 ms
(cfJarodzka et al., 2013; Litchfield et al., 2010). Only fixations on a
verbal referent's corresponding AOI that occurred within a time
window of 1500 ms after the onset of the verbal referent were
included in the analyses (cf. Dahan & Tanenhaus, 2005). In addition,
fixations occurring within the first 100 ms were excluded from the
analysis, as research indicates that initiating eye movements based
on language input takes approximately 100 ms or longer (Altmann,
2011).

Three participants were excluded from all eye tracking analyses
due to low tracking ratio (i.e., number of gaze points on the screen
recorded by the eye tracker divided by the total duration of the
experiment; z-score < —2.5; n = 2) or bad calibration measures (i.e.,
deviation > 1 deg; 1st calibration deviation: M = 0.42 deg;
SD = 0.12 deg; 2nd calibration deviation: M = 0.41 deg; SD = 0.13
deg; n =1). One additional participant was excluded from the Time
Lag analysis only due to very short time lags (z-score < —2.5). Two
additional participants were excluded from the Fixation Duration
analysis only due to very long fixation durations (z-score > 2.5).

3.2. Results

The data were analyzed with independent samples t-test's. In
the case the assumption of normality was violated the non-
parametric Mann-Whitney U test was conducted and reported.
See Table 2 for the complete overview for the number of partici-
pants and items for the performance and response times analyses
and see Table 3 for a similar overview for the eye-track measures
analyses. There were no significant differences between conditions
in participants' prior knowledge (pretest: M = 3.77; SD = 1.21), t
(60) = 0.162, p = 0.872 (this did not change when excluding the
outliers re. posttest performance: M = 3.83; SD = 118, t
(58) = —0.22, p = 0.829).

3.2.1. Performance

To address our research question of whether seeing an EMME
resulted in enhanced performance as compared to the control
condition, non-parametric Mann-Whitney U tests were conducted.
These revealed that neither performance on the isomorphic prob-
lems, U = 435.00, z = —0.46, p = 0.643, r = 0.06, nor performance
on the transfer problems, U = 448.50, z = —0.02, p = 0.981,
r = —0.003, differed significantly between conditions (see Fig. 6).

3.2.2. Response times
In order to examine whether the EMME condition needed less
time to correctly solve the isomorphic and transfer problems as

compared to the control condition, Mann-Whitney U tests were
conducted on response times (in s) for correctly solved isomorphic
and transfer problems. Participants in the EMME and control con-
dition did not differ significantly in the time they took to solve the
isomorphic problems, U = 345.00, z = —1.17, p = 0.243, r = —0.15.
However, on correctly solved transfer problems, the response times
were higher in the EMME condition (M = 128.15, SD = 30.73) than
the control condition (M = 110.02, SD = 29.50), U = 238.00,
z = —-2.68, p = 0.007, r = —0.35, meaning that participants in the
EMME condition were slower at solving the geometry problems
(see Fig. 7).

3.2.3. Eye tracking measures

To explore whether EMME were beneficial for guiding attention
to the relevant information at the right time in the video modeling
examples, independent samples t-tests were conducted. This
revealed no significant differences in the proportion of timely
fixated Aols mentioned in the verbal explanation (i.e., within
1500 ms after the onset of the referent), between the EMME
(M = 0.43, SD = 0.13) and control condition (M = 0.46, SD = 0.18), t
(57) = 0.64, p = 0.527. In terms of the time (in ms) required to first
fixate the verbal referents after onset, participants in the EMME
condition (M = 663.99, SD = 127.83) were significantly faster than
participants in the control condition (M = 729.63, SD = 110.04), t
(56) = 2.09, p = 0.041, r = 0.27. Finally, there was a significant
difference in fixation duration (in ms), t (55) = —2.41, p = 0.019,
r = 0.31, with a medium effect size showing that participants in the
EMME condition (M = 524.27, SD = 149.02) fixated the verbal ref-
erents longer than the control condition (M = 434.62, SD = 129.39).

3.3. Discussion

The first part of our hypothesis, that EMME would help guide
students' attention to the right information at the right time, was
partly confirmed: participants in the EMME condition fixated the
verbal referents significantly faster and longer; however, there was
no difference between conditions in the proportion of timely
fixated verbal referents. In contrast to our expectation though, the
attention guidance did not result in better learning outcomes
(which is in line with some studies on visual cueing: e.g., De Koning,
Tabbers, Rikers, & Paas, 2010; Jarodzka et al., 2013; Kriz & Hegarty,
2007): performance on the isomorphic and transfer problems did
not differ between conditions and students in the EMME condition
were not faster at problem solving than students in the control
condition. In fact, they were even slower at solving the transfer
problems compared to the control condition.

In this respect the findings of Experiment 1 and 2 are seemingly
contradictory. That is, in Experiment 1, participants in the mean-
ingful EMME condition were faster at solving the transfer problems
than participants in the control condition, whereas in Experiment
2, they were slower. One (speculative) explanation for this finding
might be that the geometry problems demonstrated in the video
modeling examples were more complex in Experiment 2 than in
Experiment 1, whilst the transfer problems of both experiments
were comparable in terms of complexity and number of steps.
Having seen the eye movements related to the F or Z rule in the
EMME in Experiment 1 might have allowed participants to locate
the corresponding/alternating angles in the transfer problems
faster, resulting in faster solving speeds, compared to participants
who did not receive any guidance. The EMME in Experiment 2, on
the other hand, showed a much longer and multi-step search and
solution procedure. It is possible that participants in the EMME
condition were attempting to mentally simulate how the model in
the EMME would solve the problem, and since the model explained
and solved the problem in a didactic manner this might have
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Table 2

Mean (and SD) of performance, number of participants, and number of items excluded/included in each analysis in Experiment 2.

Isomorphic problems

Transfer problems

EMME Control EMME Control
Proportion correct 0.95 (0.15) 0.97 (0.13) 0.78 (0.22) 0.77 (0.28)
N 30 30 30 30
Excluded items 4 (6.67%) 0 13 (10.83%) 1(0.83%)
Included items 56 60 107 119
Response time (s) 79.44 (15.14) 89.26 (34.01) 128.16 (30.73) 110.02 (29.50)
N 28 30 28 29
Excluded items 9 (16.07%)* 2 (3.33%)° 34 (28.33%)" 29 (24.17%)*
Included items 47 58 86 91

2 Note that only correctly solved problems were included in the response times analyses. Thus, the number of excluded items represents both items excluded due to

technical difficulties and items excluded due to performance errors.

Table 3
Mean (and SD) of eye tracking measures, number of participants, and number of
items excluded/included in each analysis in Experiment 2.

EMME Control
Proportion fixations 0.43 (0.13) 0.46 (0.18)
N 31 28
Excluded items 0 0
Included items 62 56
Fixation duration (ms) 524.27 (149.02) 455.04 (166.75)
N 30 27
Excluded items 2 (3.23%) 2 (3.70%)
Included items 60 54
Time lag (ms) 663.99 (127.83) 729.63 (110.04)
30 28
Excluded items 2 (3.23%) 0
Included items 60 56
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Fig. 6. Proportion correct for the isomorphic and transfer problems in Experiment 2
for the EMME and control condition. Error bars represent the 95% confidence interval
of the mean.

resulted in longer response times compared to the control condi-
tion. Yet, this explanation is rather speculative and it is also possible
that the explanation might simply lie in the smaller number of
participants and transfer problems in Experiment 1 than Experi-
ment 2 (and the associated power/error issues). Nevertheless,
future research should try to shed more light onto the question of
whether participants attempt to “copy” the modeled eye move-
ments on novel problems.

4. General discussion

In two experiments, we aimed to investigate whether studying
eye movement modeling examples (EMME), in which students not
only see the model performing the problem-solving steps in simple
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Fig. 7. Response times (in seconds) for the isomorphic and transfer problems in
Experiment 2 for the EMME and control condition. Error bars represent the 95%
confidence interval of the mean.

(Experiment 1) and complex (Experiment 2) geometry problems,
but also see what the model is looking at, would enhance learning
outcomes compared to regular examples in which the model's eye
movements are not displayed. Neither experiment revealed bene-
fits of EMME on learning outcomes compared to the control con-
dition. This is in contrast to recent studies that have found EMME to
be more effective than no EMME in enhancing learning of classifi-
cation tasks (Jarodzka et al., 2012, 2013) and text-picture integra-
tion strategies (Mason et al., 2015a, 2015b). However, it is in line
with prior research that failed to find a beneficial effect of EMME on
procedural problem solving tasks (Van Gog et al., 2009).

So do our findings imply that EMME might not be effective for
learning procedural problem-solving tasks compared to examples
that show only the problem-solving steps? As mentioned in the
introduction, this might very well be the case, since the procedural
problems differ from the ‘classification’ (Jarodzka et al., 2012, 2013)
and ‘strategy’ (Mason et al., 2015a, 2015b) examples in terms of the
model's interaction with the task. That is, most procedural
problem-solving tasks require the model to interact with objects
presented on the visual display (e.g., making calculations, typing in
answers, moving or dragging objects with the mouse cursor),
which in itself guides a learner's attention to the right place at the
right time. Although the displayed eye movements provide addi-
tional information on covert cognitive actions (e.g., the choice
processes) that are relevant for understanding the overt actions, the
executed steps in the solution procedure will automatically draw
the learners' attention and are arguably most important for
learning the procedure. When the model does not interact with the
display (cf. Jarodzka et al., 2012; Mason et al., 2015b, 2015a), there
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are no overt actions and consequently, the displayed eye move-
ments (which make covert processes visible) might make a more
important contribution to students' attention and learning.

However, there may be another explanation. Whereas the
tasks in Experiment 1 may have been too easy to establish any
effects of EMME, the verbal explanations that were present in the
examples in Experiment 2, may have further served to guide
students' attention. Although the eye tracking data from Experi-
ment 2 did show that students who studied EMME fixated on
relevant information referred to in the verbal explanation signif-
icantly faster and longer, there were no differences among con-
ditions in the amount of relevant information that was fixated
following the verbal referents. Thus, even though the students
who saw the model's eye movements got there faster, it seems
that the verbal explanation were also sufficient to guide students'
attention to the right location at the right time. As such, the verbal
explanation may have made the guidance provided in the EMME
redundant (see also Van Gog et al., 2009), and it is known that
presentation of redundant information does not contribute to, or
may even hamper learning (Kalyuga & Sweller, 2014). While
studying effects of EMME without verbal information might also
be interesting in future research (if the examples can be under-
stood without explanation), note that the findings by Van Gog
et al. (2009), who included an EMME and no-EMME condition
without verbal explanations, do not give reason to think that this
would have led to significant differences between EMME and
regular examples.

Hence, before we can say with certainty whether EMME are not
effective for learning procedural problem-solving tasks, future
research should investigate whether the model's interactions with
the task making the guidance provided by EMME redundant, or
whether the verbal explanations provided by the model do so. This
could be investigated, for instance, by manipulating the extent to
which the verbal explanation can be unambiguously interpreted by
the participant. That is, when the verbal explanation clearly states
what to look for (e.g., “angle B”) and there is only one element of
the visual display that fits the description (i.e., only one angle
labeled ‘B’), as was the case in the present study, then additional
attention guidance may not be required. If, on the other hand, the
verbal explanation is ambiguous for a student, either because of
their knowledge of the referents (e.g., in the study by Jarodzka et al.,
2013, one would have had to know what a dorsolateral fin is in
order to attend to the part of the fish that the model was talking
about), or because of characteristics of the display (e.g., the referent
may refer to one of several locations), then attention guidance
might be necessary to attend to the right information at the right
time, having a stronger effect on learning.

Eye movement research provides support for this idea that
verbal information influences a listener's eye movements and that
the coupling of eye movements between speaker and listener may
affect memory. For instance, in one study by Richardson and Dale
(2005), people listened to someone describing a video-clip of a
TV show while watching pictures of the characters from that show.
It was found that the eye movements of the speakers and listeners
to the various characters referred to by the speaker, were very
similar (with some delay, given that the listener first had to process
the information and then move the eyes to the same location) but
also that the amount of correspondence between the eye move-
ments predicted the score of a comprehension test (Richardson &
Dale, 2005). In a follow-up study on dialogues, participants' prior
knowledge about a painting was manipulated. Interestingly, it was
found that the eye movements of dyads engaged in dialogue
showed greater correspondence when they had previously heard
the same information than when they had heard different infor-
mation about the painting (Richardson, Dale, & Kirkham, 2007;

Experiment 2). This suggests that when there is ambiguity in a
verbal description because of prior knowledge, listeners might not
timely attend to the same information as speakers.

Moreover, ambiguity resulting from the interplay between the
verbal description and visual stimuli can affect eye movements,
resulting in a lower percentage of fixations on a described object
and in more search behavior. For example, in a study by Louwerse
and Bangerter (2010) participants heard ambiguous descriptions of
cartoon faces in a 4 x 3 grid and found that the more ambiguous
descriptions (i.e., containing less specific information about the
location of the cartoon face) not only resulted in less fixations on
the described cartoon face, but participants were also slower in
fixating the described face. In addition, studies using the visual
world paradigm, in which participants are presented with an image
depicting several distinct objects, have shown that participants
attend to the objects that they hear being described in a sentence.
When hearing a verbal description that is ambiguous with respect
to which one of two objects is meant, viewing behavior is affected
(e.g., Allopenna, Magnuson, & Tanenhaus, 1998; for a review see;
Huettig, Rommers, & Meyer, 2011). For instance, in one study an
image would display a bowl, an envelope, an envelope with a
saltshaker on top, and a pencil (Eberhard, Spivey-Knowlton, Sedivy,
& Tanenhaus, 1995). Then participants heard the sentence “Put the
saltshaker on the envelope in the bowl”. Because the display con-
tained two pictures with envelopes it is temporally ambiguous
where the saltshaker should be put until the last part of the sen-
tence (i.e., the bowl) is heard, and eye tracking data revealed that
this made participants fixate both pictures with envelopes. In
contrast, if participants heard the sentence “Put the saltshaker that's
on the envelope in the bowl” they did not fixate the envelope without
the saltshaker. Thus, ambiguous descriptions lead to more visual
search. These studies — albeit conducted in very different para-
digms and not investigating learning-suggest that it is possible that
ambiguous verbal explanations in an example, might result in the
learner being too late in attending the relevant visual information
shortly after being mention, which might hinder integration of the
verbal and visual information, and thereby, learning. Under such
conditions, guidance in the form of EMME could be expected to be
effective in guiding attention and improving learning. Hence, for
future research it would be interesting to address this issue by
investigating how task ambiguity affects the effectiveness of
EMME.

In conclusion, in line with prior research (Van Gog et al., 2009),
we found no evidence that eye movement modeling examples
would enhance learning of procedural problem-solving tasks
compared to regular modeling examples showing only the model's
actions. Future research should examine conditions that may affect
whether displaying the model's eye movements is effective for
learning, such as the model's interaction with the task or the am-
biguity of the verbal explanations. This would contribute to the
development of guidelines for when to use eye movement
modeling examples.
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Appendix. Example of a transcript of the verbal explanation
in a modeling example in Experiment 2.
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Hoeveel graden is hoek A?

c?

1l L = 40°
1

Screenshot of a modeling example (EMME condition) in
Experiment 2 with the blue dot representing the location of the
model's gaze. The following verbal instruction was used during the
modeling example (translated from Dutch): “The question is, how
many degrees is angle A? You start by searching for angle A. Angle A is
part of a triangle. A triangle contains a total of 180 degrees. If two of
the three angles are known in a triangle, you can calculate the third
angle. You calculate the third angle by subtracting the two angles from
180 degrees. You cannot calculate angle A right now, because angle H
is unknown. Angle H is part of a straight line. A straight line contains a
total of 180 degrees. You can calculate the unknown angle in a straight
line by subtracting all known angle from 180 degrees. However, be-
sides angle H angle B is also unknown, so for now it is not possible to
calculate angle H. You cannot calculate angle B directly, but it can be
derived from angle C, because these are equal. This can be seen by the
tilted equal sign, which indicates that the lines are parallel and thus
have the same angle. Because of the parallel lines, you can derive by
means of the corresponding angle principle that the angle B and C are
equal. Angle C is unknown for now but can be calculated. Angle C
equals 180 degrees minus the known angles, equals 58 degrees. Now
angle C is known, you know that angle B, by means of the corre-
sponding angle principle, also equals 58 degrees. With angle B known,
you can now calculate angle H. Angle H equals 180 degrees minus the
known angles, equals 72 degrees. With angle H known, you can now
calculate angle A. Angle A equals 180 degrees minus the known angles,
equals 52 degrees. So angle A is 52 degrees.”
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