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1. Introduction

We  extend and apply the theory of repeated games to the river sharing problem. Our main contri-
bution is the design of agreements that are sustainable to stochastic river flow in a dynamic setting.
Doing so, we  add to the rapidly growing literature on the analysis of solutions to the river sharing
problem (cf. Béal et al., 2013; van den Brink et al., 2012; Ambec et al., 2013), which has largely ignored
dynamics and stochasticity.

In an international river basin, when water is scarce, countries may  exchange water for side pay-
ments (Dinar, 2006; Carraro et al., 2007). This type of exchange is generally formalized in a river sharing
agreement. The aim of river sharing agreements is to increase the overall efficiency of water use. This
increase in efficiency can be obstructed by the stochastic nature of river flow, because countries may
find it profitable to break the agreement in case of drought (Dinar et al., 2015; Ward, 2013). A recent
example is Mexico’s failure to meet its required average water deliveries under the 1944 US-Mexico
Water Treaty in the years 1992–1997 (Gastélum et al., 2009). Additional case study evidence on agree-
ment breakdowns because of droughts can be found, for instance, in Barrett (1994) and Beach et al.
(2000). Only a minority of current international agreements take into account the variability of river
flow (de Stefano et al., 2012). Most agreements do not; they either allocate fixed or proportional shares,
or they are ambiguous in their schedule for water allocation. Both the efficiency and stability (Bennett
and Howe, 1998; Bennett et al., 2000; Ansink and Ruijs, 2008; Ambec et al., 2013) of such agreements
may  be hampered. These effects could be worsened by the impacts of climate change on river flow.

In order to accommodate for stochastic river flow, Kilgour and Dinar (2001) developed a flexible
river sharing agreement that provides an efficient allocation for every possible level of river flow. This
agreement maximizes the overall benefits of water use, after which side payments are made such that
each country benefits from cooperation. This flexible agreement assures efficiency, but not stability
because it ignores the repeated interaction of countries over time. Countries have an incentive to
defect from the agreement when the benefits of defecting outweigh the benefits of compliance. Note
that there is no supra-national authority that can enforce this type of international agreements. This
implies that a stable agreement has to be self-enforcing or sustainable, in the sense that each agent
should have an incentive to comply with the agreement. In such a setting, application of repeated-
game theory to the setting of river sharing seems natural, but to the best of our knowledge, this has
not been done yet.1

Given the asymmetry imposed by the geography of the river, we adopt an infinitely-repeated
sequential game, in which upstream agents move before downstream agents.2 The Folk Theorem for
infinitely-repeated sequential games is a limit result on the discount factor. For practical purposes,
the issue is firstly, given some discount factor, how to construct sustainable agreements, and secondly
whether certain classes of agreements have properties that may  be appealing for implementation by
policy makers. For instance, we will assess the effects of restrictions on per-period payoffs and we will
look at some disadvantages of fixed-payment agreements, which are common in practice.

To derive our main results we apply the Folk Theorem to the river sharing problem using the
equilibrium concepts of subgame-perfect equilibrium and renegotiation-proof equilibrium. We  will
see that, given the upstream–downstream asymmetry, sustainable agreements allow downstream
agents to reap the larger share of the benefits of cooperation. This distribution of gains is the opposite
of some papers that assess agreements on river sharing in a static setting (e.g. Ambec et al., 2013). Our
results provide economic intuition for an empirical result (downstream states managing to negotiate

1 This paper is therefore a contribution to the challenge raised by Carraro et al. (2007): “Water resources are intrinsically
unpredictable, and the wide fluctuations in water availability are likely to become more severe over the years. Formally addressing
the  stochasticity of the resource, as well as the political, social, and strategic feasibility of any allocation scheme, would significantly
contribute to decreasing conflicts over water.”

2 This sequence of moves according to the agents’ geographical location seems most natural. There are two  additional argu-
ment  to support this sequence. One is that payments to compensate for water deliveries can easily be deferred while water
deliveries themselves cannot. The second argument relates to observability of river flow. The logical alternative to a sequential
game is a game with simultaneous moves. Such a game, however, is equivalent to a game with sequential moves in which
the  second agent does not observe the action of the first agent. Since, in practice, most transboundary rivers are monitored –
meaning that downstream observes the river flow – we  prefer the sequential game over its simultaneous alternative.
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a substantial share of upstream river water) that has, up till now, mostly been explained by political
factors (Dinar, 2009; Katz and Moore, 2011).

In the next section we introduce our model. We  derive equilibrium conditions in Section 3, which
we use in an example in Section 4. After an intermezzo in Section 5 on the trade-off between efficiency
and stability, we continue in Sections 6 and 7 with a detailed analysis of actual agreements. Finally,
in Section 8, we provide some concluding remarks. Two appendices contain proofs as well as detailed
information on context and generalization of our analysis.

2. Model

2.1. Preliminaries

Consider two agents i = 1, 2 with agent 1 upstream of agent 2 along a river. Denote river flow in
period t = 1, 2, . . . by the vector (e1,t, e2,t), which includes flow contributions on the territory of agents
1 and 2. River flow is stochastic and is drawn in each period from a bivariate probability distribution
with density function f(e1, e2) on a compact subset of [e1, ē1] × [e2, ē2] ⊂ R2

+ and marginal distributions
f1(e1) =

∫
f(e1, e2) de2 and f2(e2) =

∫
f(e1, e2) de1. Denote water use of agent i in period t by xi,t. We  assume

perfect information so that water use is observed by both agents. Any water that was  not used by agent
1 flows to the territory of agent 2. For simplicity, we  suppress time when confusion cannot occur.

Benefits of water use bi(xi) are increasing3 and strictly concave with b′
i(xi) > 0, b

′′
i
(xi) < 0, and

bi(0) = 0. We  assume that utility is transferable through monetary payments s from agent 2 to agent
1, which is positive when agent 2 pays |s| to agent 1. The per-period utility of agent i depends on his
water use xi and payments s, and is given by the following quasi-linear utility function:{

u1(x1, s) = b1(x1) + s,

u2(x2, s) = b2(x2) − s.
(1)

There are several focal allocations of river flow that will be used extensively in the remainder of
the paper: the Nash allocation,4 the efficient allocation and the minmax allocation. Definitions of the
Nash allocation and efficient allocation are given below, while the minmax allocation is the subject of
Proposition 1.

Definition 1 (Nash allocation).  For every realization (e1, e2), the Nash allocation xN(e1, e2) =
(xN

1 (e1, e2), xN
2 (e1, e2)) is the unique allocation in which each agent uses his own endowment of river

flow such that xN
1 (e1, e2) = e1, xN

2 (e1, e2) = e2, and s = 0.

Because of increasing benefits of water use, the Nash allocation is evident in the absence of water
trade or other types of agreements on water use.

Definition 2 (Efficient allocation).  For every realization (e1, e2), the efficient allocation x∗(e1, e2) =
(x∗

1(e1, e2), x∗
2(e1, e2)) is the unique maximizer of the utilitarian welfare b1(x1) + b2(x2) subject to the

feasibility constraints x1 ≤ e1 and x2 ≤ e1 + e2 − x1.

With a strictly concave quasi-linear utility function as in (1), the efficient allocation is unique and
equal to utilitarian welfare maximization as in e.g. Kilgour and Dinar (2001) and Houba et al. (2014).

The interesting and non-trivial case occurs when water is scarce:

Assumption 1 (Water scarcity). Water is scarce such that there are incentives to cooperate for every
realization (e1, e2): x∗

1(e1, e2) < e1 and x∗
2(e1, e2) = e1 + e2 − x∗

1(e1, e2) > e2.

Realizations without incentives to cooperate can be ignored because any efficient agreement will
specify no cooperation for each of these realizations, which is trivially sustainable.

3 We  defer discussing the implications of this assumption to Appendix A.
4 We  prefer to call the unique subgame-perfect equilibrium of the non-repeated river game the Nash equilibrium in order to

distinguish single-period play from repeated play.
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Remark 1. Our model setup is consistent with much of the river sharing literature. The case of two
agents (Ansink and Ruijs, 2008; Houba, 2008) provides no limitation for reasons similar to infinitely-
repeated games with n players and full dimensionality. Full dimensionality is assured in river sharing
problems because with n players the monetary transfers allow redistribution of transferable utility in
all n utility dimensions. By focusing on two agents instead of the general case with more agents and
more realistic river geographies (Ansink and Houba, 2012; van den Brink et al., 2012), we are able to
avoid some complexity and excessive notation. It also provides a better understanding of the issues
involved in repeated interaction of the agents over time in the presence of stochastic river flow. In
Appendix A, we elaborate on the general case.

2.2. River sharing agreements

We  proceed to describe the possibility of river sharing agreements between the two  agents. Our
focus is on what we call ‘implicit’ agreements. Such an agreement coincides with a set of agents’
strategies in the infinitely-repeated sequential game that can be sustained in equilibrium, and which
improves upon the Nash allocation. It does not require outside enforcement. An agreement (and
thereby the agents’ strategies) specifies the following three elements:

1. An allocation rule for river flow;
2. A payment rule for monetary transfers; and
3. Punishment strategies in case one of the agents deviates from the agreement (which may  also

involve monetary transfers).

In the infinitely-repeated sequential game, that we  introduce below, both the allocation of water
and the payment may  be contingent on realized river flow as in Kilgour and Dinar (2001). In real-
ity, however, we also observe lump-sum payments and simpler allocation rules, including fixed and
proportional allocations (Ansink and Ruijs, 2008; Drieschova et al., 2008). Punishment strategies are
essential for the sustainability of the agreement because, in absence of a supra-national authority,
agreements are non-binding. Punishment strategies determine what happens upon deviation and
range from simple trigger strategies to more advanced strategies that assure ex post credibility of the
punishment. In actual agreements on river flow allocations, punishment strategies are often lacking,
although many do contain clauses on conflict resolution (Beach et al., 2000; Ward, 2013).

To assess possible agreement specifications, we model each period as an extensive game with three
stages:

1. Nature draws a realization of (e1, e2), which is revealed to both agents;
2. Agent 1 chooses x1(e1, e2);
3. After observing x1(e1, e2), agent 2 chooses x2(e1, e2) and, in case of an agreement, agent 2 also

decides whether to make the payment s(e1, e2).

Cooperative play consists of a stochastic sequence of water resources (e1, e2) that induce the water use
vector xc(e1, e2) = (xc

1(e1, e2), xc
2(e1, e2)) and the payment sc(e1, e2) as specified in the agreement. Non-

cooperative play consists of the Nash allocation and a zero payment. Assuming an optimal deviation
decision, the choice of xi(e1, e2), i = 1, 2, can be limited to the binary strategy set {xc

i
(e1, e2), ei} and the

choice of s to the binary strategy set {sc(e1, e2), 0}. Only if the agreement maximizes utilitarian welfare
we have xc(e1, e2) = x*(e1, e2) for every realization (e1, e2), but this is not necessarily the case, as agents
may  agree otherwise.

2.3. Minmax values

The Folk Theorem for infinitely-repeated sequential games states that any utility vector that yields
each agent more than his minmax value can be supported as an SPE (subgame-perfect equilibrium)
utility vector for sufficiently large discount factors (Wen, 2002). Following this reference, we start our
analysis by deriving the minmax values in the river sharing problem. We do this in Appendix A, where
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we also discuss the general case (i.e. more than two  agents) as well as the implications of assuming
increasing benefit functions for the minmax values. We  state the following result.

Proposition 1. For every realization (e1, e2), agent i’s minmax value is bi(ei).

The agents’ minmax values coincide with the unique Nash equilibrium utilities and can be sup-
ported as a stationary SPE outcome path for all discount factors ı ∈ [0, 1) by the stationary strategies
‘always play the Nash equilibrium’. Because no SPE strategy is worse than the minmax value, this
stationary SPE not only supports the worst possible outcome, but it also punishes at least as harsh
as more sophisticated stick-and-carrot strategies as in e.g. Abreu (1988). This result has an impor-
tant implication in that the Folk Theorem can be derived within the class of trigger strategies, which
simplifies the analysis (details are in Appendices A and B).

Formally, denote by Vc
i

the ex ante expected value of the cooperative path to agent i = 1, 2 at
the beginning of an arbitrary period (i.e. before nature moves). According to the Folk Theorem for
infinitely repeated sequential games, every pair (Vc

1, Vc
2) > (E{b1(e1)}, E{b2(e2)}) can be supported for

sufficiently high ı.5 All such (Vc
1, Vc

2) can be sustained by trigger strategies as the agreement’s punish-
ment strategies and, for explanatory convenience, we  make this assumption on agreements. It has to
be dropped only when we characterize renegotiation-proof equilibria in Section 7.2.

Assumption 2 (Trigger strategies).  Both agents use trigger strategies in which deviation from cooper-
ative play under the agreement is punished by non-cooperative play forever (i.e. the Nash allocation).

Trigger strategies are based upon simple discontinuous agreements. Agent 1 only delivers his part
of the agreed water allocation if he has received the agreed payment in all previous periods. That is,
e1,t − x1,t = 0 if s� < sc

�(e1,� , e2,�) for any � ≤ t − 1 and e1,t − x1,t = e1,t − xc
1,t(e1,t, e2,t) otherwise. Agent

2 only makes the agreed payment if he received the agreed water allocation in the same period as
well as in all previous periods. That is, st = 0 if e1,t − x1,t < e1,t − xc

1,t(e1,t, e2,t) and st = sc
t (e1,t, e2,t)

otherwise.

3. Equilibrium analysis

In this section, we derive equilibrium conditions for the water allocation and payment rules, using
SPE as our equilibrium concept and assuming trigger strategies. Given such strategies, agent 1’s optimal
deviation is x1 = e1 forever, which implies x1 > xc

1(e1, e2) in the current period and failing the agreed
upon allocation rule in subsequent periods. Likewise, agent 2’s optimal deviation is s(e1, e2) = 0 forever.

Given the trigger punishment strategies, for the cooperative path we  obtain the following ex ante
expected values:

Vc
1 = E{b1(xc

1(e1, e2)) + sc(e1, e2)} + ıVc
1 = E{b1(xc

1(e1, e2))} + E{sc(e1, e2)}
1 − ı

,

Vc
2 = E{b2(xc

2(e1, e2)) − sc(e1, e2)} + ıVc
2 = E{b2(xc

2(e1, e2))} − E{sc(e1, e2)}
1 − ı

.

Likewise, for the non-cooperative path we obtain the following ex ante expected values:

Vn
i = E{bi(ei)} + ıVn

i = E{bi(ei)}
1 − ı

.

Combining these values, we have

Vc
1 ≥ Vn

1 ⇔ E{sc(e1, e2)} ≥ E{b1(e1)} − E{b1(xc
1(e1, e2))},

Vc
2 ≥ Vn

2 ⇔ E{sc(e1, e2)} ≤ E{b2(xc
2(e1, e2))} − E{b2(e2)},

5 Whether boundary solutions such as (E{b1(e1)}, Vc
2 ) and (Vc

1 , E{b2(e2)}) can also be supported by trigger strategies or require
more  complex punishment strategies depends upon the application. Technically speaking, in the limit as ı goes to 1, the
closure of the limit set of SPE utility vectors that can be supported by trigger strategies is the set consisting of (Vc

1 , Vc
2 ) ≥

(E{b1(e1)}, E{b2(e2)}).
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where both right-hand sides are positive. Furthermore, the maximal per-period expected utilitarian
welfare exceeds the per-period E{b1(e1)} + E{b2(e2)}, so a non-empty range of welfare-improving
allocation rules (E{xc

1(e1, e2)}, E{xc
2(e1, e2)}) and payments E{s(e1, e2)} exists, compared to the non-

cooperative path. Note that this range is maximal in case the allocation rule maximizes utilitarian
welfare.

Given the realization of (e1, e2) in period t, the equilibrium conditions state that both agents prefer to
continue cooperation over a single-period deviation,6 knowing that non-cooperation follows forever:

Vc
1(e1, e2) = b1(xc

1(e1, e2)) + sc(e1, e2) + ıVc
1 ≥ b1(e1) + ıVn

1 , (2)

Vc
2(e1, e2) = b2(xc

2(e1, e2)) − sc(e1, e2) + ıVc
2 ≥ b2(xc

2(e1, e2)) + ıVn
2 . (3)

In repeated games it is common to derive a threshold for the discount factor ı above which cooperation
can be sustained, i.e. the derivation of a Folk Theorem. This is not straightforward in our model setup
because, given variable river flow, the lower bound on ı would become a function of the present state,
i.e. the realization of river flow. In Sections 6 and 7 we will analyze this in detail. Here, we  simply show
how a given ı imposes bounds on the payments as a function of the allocation rule for river flow:

sc(e1, e2) + ı

1 − ı
E{sc(e1, e2)} ≥ b1(e1) − b1(xc

1(e1, e2)) + ı

1 − ı
[E{b1(e1)} − E{b1(xc

1(e1, e2))}],
(4)

sc(e1, e2) + ı

1 − ı
E{sc(e1, e2)} ≤ ı

1 − ı
[E{b2(xc

2(e1, e2))} − E{b2(e2)}]. (5)

Any agreement that satisfies both (4) and (5) for each realization (e1, e2) is able to sustain cooper-
ation. This requires a choice of allocation and payment rules that is sufficiently flexible such that the
bounds are not violated for any possible realization of river flow. Note the asymmetry in these bounds
with respect to the payments; the lower bound always depends upon the realization (e1, e2) whereas
the upper bound is independent of this realization and stated in terms of expectation. This asymmetry
is caused by the extensive form of the game, which requires agent 2 to provide a minimum compen-
sation to agent 1 for passed water in the current period, which enters the current realization in the
lower bound. In addition, both bounds contain terms that reflect the expected benefits of cooperation
in future periods. In the next section we use these bounds to illustrate the choice of a payment rule
given the unique allocation rule that maximizes utilitarian welfare.

4. Example

In this section we show how bounds (4) and (5) can be used to construct a payment rule for
monetary transfers given a fixed parameter value for the discount factor, using a simple illustrative
example that will recur throughout the paper. In order to do so, we make two  additional assumptions.

Assumption 3 (Two realizations of river flow). The density function of river flow is simplified to two
possible realizations of river flow (e1, e2), high flow (eH

1 , eH
2 ) with probability p and low flow (eL

1, eL
2)

with probability 1 − p.

Assumption 4 (Efficient agreement).  The agreement maximizes utilitarian welfare so that xc
1(e1, e2) =

x∗
1(e1, e2) and xc

2(e1, e2) = x∗
2(e1, e2).

Given these assumptions, the bounds on the payments in (4) and (5) consist of only exogenous
variables and we can illustrate these bounds graphically by a polygon (or a polytope of higher dimen-
sion if Assumption 3 had allowed a larger range of realizations of river flow). The line segments that

6 For SPE, the one-stage deviation principle states that it is sufficient to check for profitable single-period deviations
(Fudenberg and Tirole, 1991).
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Fig. 1. Combinations of payments that provide sustained cooperation under Assumptions 1–4, for parameter values ı = 0.9,
p  = 0.5, (eL

1, eL
2) = (3,  1), (eH

1 , eH
2 ) = (5,  3), and bi(xi) = −x2

i
+ 10xi for i = 1, 2.

bound the polygon are based on the probability of each realization of river flow. Substituting these
two realizations in (4) and (5) and rearranging terms, we  obtain that the bounds are given by:

low flow: (1 − ı)b1(eL
1) − (1 − ı)b1(xc

1(eL
1, eL

2)) + ı[A1] ≤ (1 − ıp)  · sc(eL
1, eL

2) + (ıp) · sc(eH
1 , eH

2 ) ≤ ı[A2],

high flow: (1 − ı)b1(eH
1 ) − (1 − ı)b1(xc

1(eH
1 , eH

2 )) + ı[A1] ≤ (ı − ıp) · sc(eL
1, eL

2) + (1 − ı + ıp)  · sc(eH
1 , eH

2 ) ≤ ı[A2],

where A1 and A2 denote the terms between square brackets in the right-hand side of, respectively, (4)
and (5). As discussed in Section 3, while both lower bounds depend on the realization of river flow in
the current period, the upper bounds do not.

Fig. 1 shows the polygon for selected parameter values, illustrating the range of possible combi-
nations of payments that provide sustained cooperation under Assumptions 2–4. Any point in the
graph represents a payment rule, but only those in the shaded area sustain cooperation. Somewhat
counter-intuitively, Fig. 1 illustrates the possibility of a negative payment under one of the two  possible
realizations of river flow. This gives the striking possibility that agent 1 delivers water and a payment
to agent 2. Obviously, a negative payment under one realization is accompanied by a relatively large
positive payment under the alternative realization of river flow. This possibility of negative payments
makes clear that, while theoretically sound, some sustainable payment rules may  be inapplicable in
real life situations.

Fig. 2 shows a comparison of results for various values of the discount parameter ı. The figure
illustrates that there is no feasible payment rule for low levels of the discount factor (for the parameter
values in the figure, the threshold is ı = (5/7) ≈ 0.7). At the threshold, the bounds for the realization of
low river flow first converge and below this threshold, they switch place and diverge such that there
are no combinations of payments that provide sustained cooperation. The intuition for this result is
standard in that a lower ı reduces the expected present value of the benefits of cooperation in all
future periods, which are compared with the benefits of non-cooperation in the current period.

For reasons of exposition, the results in this section are constrained by Assumptions 3 and 4, but
they can be easily generalized. Assumption 3 limits the example to two possible realizations of river
flow. Having more possible realizations of river flow, say Low, Normal and High, would require three
payments sc(eL

1, eL
2), sc(eN

1 , eN
2 ), sc(eH

1 , eH
2 ), and produce a three-dimensional figure while the analysis

remains the same. Assumption 4 limits the example to the set of efficient agreements. Its intuition,
however, extends to inefficient agreements, which would yield similar diamond-shaped figures inside
the shaded area.
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Fig. 2. Panel (a) is identical to Fig. 1, panels (b) and (c) differ only in the level of the discount factor ı.

Summarizing, given a fixed parameter value for the discount factor and given trigger strategies,
the illustration in Fig. 1 shows how to construct sustainable agreements. Such agreements are not
possible for a sufficiently low discount factor and some sustainable payment rules may  be unrealistic
if they include negative payments. Because it is not clear how such agreements could ever be put into
practice, we assess several subsets of agreements that do not allow negative payments in Sections 6
and 7, in which we will also drop Assumptions 3 and 4.

5. Efficiency vs. stability

Our analysis in Section 3 implicitly suggests that inefficient allocations of water may actually
improve sustainability by lowering the threshold discount factor for which an agreement can be
sustained.7 Our next result shows that this suggestion holds water. To introduce this result, we use
the lower and upper bounds on the payments (4) and (5) to derive the following inequality:

(1 − ı) max
(e1,e2)

[b1(e1) − b1(xc
1(e1, e2))] ≤ ıE[b1(xc

1(e1, e2)) + b2(xc
2(e1, e2)) − b1(e1) − b2(e2)]. (6)

Following the discussion of bounds (4) and (5) in Section 3, agreements for which this inequality is
satisfied for every realization (e1, e2) are able to sustain cooperation. Notice that the RHS of (6) is inde-
pendent of the realization (e1, e2). Hence, sustainability of the agreement depends on the realization
of (e1, e2) for which the LHS of (6) is maximized.

Denote by ı̂(xc
1, xc

2) the threshold level of ı for which (6) holds with equality. We  prove the following
result, which says that there exist inefficient agreement allocations that are more sustainable than the
efficient agreement allocation, in the sense that they are stable for a larger range of discount factors.

Proposition 2. There exist an inefficient agreement (x̂c
1, x̂c

2) and its corresponding ı̂(x̂c
1, x̂c

2) such that

ı̂(x̂c
1, x̂c

2) <ı̂(x∗
1, x∗

2).

Proof.  Let ε > 0 be sufficiently small. For every realization, take x̃c
1(e1, e2) = x∗

1(e1, e2) + ε and
x̃c

2(e1, e2) = x∗
2(e1, e2) − ε. The first-order decrease in the LHS of (12) evaluated at the efficient agree-

ment is b′1(x∗
1(e1, e2)) · ε > 0 and the first-order decrease in the LHS of (12) evaluated at the efficient

agreement is E[b′1(x∗
1(e1, e2)) + b′2(x∗

2(e1, e2))] · ε = E[0] · ε = 0. By continuity of the functions b1 and
b2, the LHS of (12) decreases faster than the RHS of (12) for all xc

1 between x∗
1(e1, e2) and x∗

1(e1, e2) + ε.

7 We  thank a reviewer for making this observation.



100 E. Ansink, H. Houba / Resource and Energy Economics 44 (2016) 92–117

Fig. 3. Plotting, as a function of ε = xc
1(e1, e2) − x∗

1(e1, e2), i.e. the deviation from the efficient allocation, the LHS (decreasing)

and  RHS (inverted U) of inequality (6). Parameters and variables are identical to Fig. 1. The threshold ı̂ in case of xc = x* = 2 equals
ı* = 5/7. The shaded areas indicate, given ı̂, where cooperation can be sustained.

Consider xc(e1, e2) = x*(e1, e2) and the threshold ı̂(x∗
1, x∗

2). Then, (6) holds – and it holds with equality
at some realization (ê1, ê2). Substitution of x̃c(e1, e2) for x*(e1, e2) implies that

(1 − ı) max
(e1,e2)

[b1(e1) − b1(x̃c
1(e1, e2))] < ı̂(x∗

1, x∗
2)E[b1(x̃c

1(e1, e2)) + b2(x̃c
2(e1, e2)) − b1(e1) − b2(e2)].

Therefore, we obtain that the threshold ı̂(x̂c
1, x̂c

2) < ı̂(x∗
1, x∗

2). �

In other words, for a sufficiently small ε > 0, there exists a non-empty interval (ı̂(x̂c
1, x̂c

2), ı̂(x∗
1, x∗

2))
of ı’s for which x∗

1(e1, e2) + ε and x∗
2(e1, e2) − ε can be sustained as an inefficient agreement, while the

efficient agreement x∗
1(e1, e2) and x∗

2(e1, e2) cannot be sustained.8

An important implication of Proposition 2 is that there exists a trade-off between efficiency and
stability for discount factors below ı̂(x∗

1, x∗
2). Stable agreements may  not be efficient and efficient

agreements may  not be stable. This result is illustrated by Fig. 3 which uses the example of Section
4 to show the difference between the RHS and LHS of (6). In case this difference is positive (and the
inequality holds), agreements can be sustained, which is indicated by the shaded areas for three values
of ı̂(xc

1, xc
2). The figure shows that inefficient agreements – where agent 1 receives more than x∗

1 – are
more sustainable than efficient agreements. Specifically, the figure illustrates for ı = 4/7 that there
exist inefficent agreements (the smallest lens-shaped area) where ε lies between approximately 0.65
and 1. In the limit, when ı̂ goes to 0 the only agreement that can be sustained is the agreement that
implements the Nash allocation xN(e1, e2) = (e1, e2), an intuitive outcome. In Fig. 3, using the example
from Section 4, this is the point (1, 0). Note that also agreements with xc

1 < x∗
1 can be sustained, but

only for ı̂(xc
1, xc

2) > ı̂(x∗
1, x∗

2).

6. The sustainability of actual agreements

In this section we consider two subsets of agreements and assess their sustainability: fixed-
payment agreements and individually-rational agreements. The reasoning for assessing these
particular subsets is as follows. First, most existing agreements with payments explicitly coupled
to water deliveries employ fixed payments. Second – and related – fixed-payment agreements reflect
the lack of flexibility with respect to variability in river flow (de Stefano et al., 2012; Giordano et al.,

8 As illustrated by Fig. 3, this argument applies beyond the ε > 0 that solves −b′1(x∗
1(e1, e2) + ε) = b′1(x∗

1(e1, e2) + ε) +
b′2(x∗

2(e1, e2) − ε).
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Fig. 4. Identical to Fig. 1, but including restrictions imposed by the subsets of agreements. The dark-shaded segment on the 45◦-
line  through (0, 0) displays the subset of fixed payment agreements. The small shaded polygon displays the subset of individually
rational agreements. The dark-shaded segment on the 45◦-line through (5, 1) displays the subset of Nash-bargaining agreements
that  coincides with the subset of renegotiation-proof agreements.

2014). Third, individually-rational agreements offer more flexibility and they exclude the unrealistic
and objectionable option of payoffs lower than minmax payoffs (including negative payments as dis-
cussed in Section 4). Both subsets serve as a realistic benchmark for the design of more sustainable
agreements in Section 7. Note that we will not need Assumptions 3 and 4.

Restricting the full set of agreements assessed in Section 4 comes at a cost. This cost is that the
threshold discount factor for which agreements can be sustained will be (weakly) higher, because not
all agreements are allowed. Before presenting our formal results, we  first illustrate these differences
by expanding on the example presented in Fig. 1. We  do so in Fig. 4. For fixed-payment agreements
(with sc(eL

1, eL
2) = sc(eH

1 , eH
2 ), further introduced below), this figure illustrates that only the small subset

of agreements on the 45◦-line are allowed. For individually-rational agreements, Fig. 4 illustrates that
there are strict minimum and maximum bounds on the level of payments. A detailed explanation
of these restrictions and the corresponding subsets is given below. The figure already hints at the
incompatibility of fixed-payment agreements with e.g. the requirement of renegotiation-proofness,
but we defer a detailed analysis to Section 7.

6.1. Fixed-payment agreements

Fixed-payment agreements are agreements in which the payment rule is not contingent on the
realization of river flow, but constant such that sc(e1, e2) = s̄c . We call the subset of agreements that
satisfies this property fixed-payment agreements.  For such agreements, the equilibrium bounds (4) and
(5) simplify to:

s̄c ≥ (1 − ı)[b1(e1) − b1(xc
1(e1, e2))] + ı[E{b1(e1)} − E{b1(xc

1(e1, e2))}], (7)

s̄c ≤ ı[E{b2(xc
2(e1, e2))} − E{b2(e2)}]. (8)

For sustained cooperation, these bounds have to hold for every realization (e1, e2). Consequently, the
lower bound (7) becomes

s̄c ≥ (1 − ı) max
(e1,e2)

[b1(e1) − b1(xc
1(e1, e2))] + ı[E{b1(e1)} − E{b1(xc

1(e1, e2))}]. (9)
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The interpretation of this lower bound is that the realization (e1, e2) where upstream is tempted most
to deviate determines the lower bound. This observation corresponds to the analysis of stability (or
robustness) of river sharing agreements used by Ansink and Ruijs (2008) and Ambec et al. (2013), the
latter motivating their choice by referring to the literature on self-enforcing contracts (e.g. Gauthier
et al., 1997). Given fixed payments, an agreement can be designed by first selecting the water allo-
cation rule xc(e1, e2) which leaves a range of sustainable fixed payments s̄c to choose from. It seems
natural to select the efficient water allocation, in order to attain the maximal range of payments,
but there are many examples where this is not the case (Giordano et al., 2014). The most common
alternatives are fixed and proportional water allocations, and they can be assessed by simply substi-
tuting either xc

1(e1, e2) = e1 − ec
1 and xc

2(e1, e2) = e2 + ec
1 for fixed water allocation or xc

1(e1, e2) = �e1
and xc

2(e1, e2) = e2 + �e1 for proportional water allocation. We  will focus on the general case only.
The lack of flexibility of fixed-payment agreements may  imply that, for a given discount factor ı

and for the selected water allocation rule, there does not exist any sustainable payment rule. Existence
requires a non-empty range of s̄c that satisfy (8) and (9), which requires that the upper bound on s̄c is
larger than or equal to the lower bound. We  obtain for any given realization (e1, e2):

ıE[b1(xc
1(e1, e2)) + b2(xc

2(e1, e2)) − b1(e1) − b2(e2)] ≥ (1 − ı) max
(e1,e2)

[b1(e1) − b1(xc
1(e1, e2))].

By Assumption 1 on water scarcity, the left-hand side is positive for xc(e1, e2) = x*(e1, e2) and these
belong to a well-defined compact set of agreements xc(e1, e2) that admit a non-negative left-hand
side. For the subset of agreements xc(e1, e2) that admit a positive left-hand side, as ı goes to 1, the
left-hand side converges to some positive number while the right-hand side converges to 0, so that
the inequality holds. Therefore, we know that for this particular subset of agreements xc(e1, e2) there
exists a threshold discount factor above which the range of sustainable payment rules is non-empty.
Obviously, agreements xc(e1, e2) for which the left-hand side is either zero or negative cannot be
sustained for any ı ∈ [0, 1).

This threshold, which has to hold for all realizations (e1, e2), is given by

ı ≥ max
(e1,e2)

b1(e1) − b1(xc
1(e1, e2))

b1(e1) − b1(xc
1(e1, e2)) + E{b1(xc

1(e1, e2)) + b2(xc
2(e1, e2)) − b1(e1) − b2(e2)} ,

and it is attained for max
(e1,e2)

[b1(e1) − b1(xc
1(e1, e2))], i.e. where the temptation to deviate is highest to

agent 1. For the example of Section 4, this threshold for existence of a sustainable fixed-payment rule
occurs for (e1, e2) = (eL

1, eL
2) = (3,  1) and it lies at ı = (5/7) ≈ 0.7, similar to the threshold for the general

case in Section 4. Apparently, for this particular example, the limitation to fixed-payment agreements
would not constrain the possibility of sustainable agreements, but this is not a general result.

Remark 2. One may  interpret fixed-payment agreements as insurance contracts where downstream
pays a fixed amount for a flexible scheme of water deliveries. In this interpretation, there is nothing
against such agreements. One problem of fixed-payment rules, however, is that they may  cause pay-
offs lower than minmax payoffs for some realizations of river flow. This property makes such rules
unattractive for application in practice. We  will see in Section 6.2 that, for the example of Section 4,
any fixed-payment agreement violates this condition.

6.2. Individually-rational agreements

We  now focus on agreements that offer more flexibility than the fixed-payment agreements by
dropping the requirement that payments are fixed. We  also introduce a condition that excludes the
unrealistic and objectionable option of payoffs lower than minmax payoffs. This condition thereby
also excludes the possibility of negative payments that occurred in the example of Section 49:

b1(xc
1(e1, e2)) + sc(e1, e2) ≥ b1(e1) for any (e1, e2), (10)

9 In Footnote 5, we mentioned that, in general, boundary payoff vectors in repeated games are hard to sustain. Here, with
trigger strategies, we  can sustain (b1(e1), Vc

2 ) for all realizations, but not (Vc
1 , b2(e2)).
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b2(xc
2(e1, e2)) − sc(e1, e2) > b2(e2) for any (e1, e2). (11)

Hence, in expectations

E{b1(xc
1(e1, e2)) + sc(e1, e2)} ≥ E{b1(e1)},

E{b2(xc
2(e1, e2)) − sc(e1, e2)} > E{b2(e2)}.

We  call the subset of agreements that satisfies (10) and (11) individually-rational agreements. Note that
the sum of expected utilities under any agreement in this subset is larger than the sum of the expected
utilities under noncooperation, i.e., Vc

1 + Vc
2 > E{b1(e1)} + E{b2(e2)}. This covers the entire triangle of

individually-rational utility vectors under the Pareto frontier, neglecting the boundary (Vc
1, b2(e2)).

For individually-rational agreements, we show in our next result that any agreement that improves
upon the utilities under the minmax allocation xN(e1, e2) = (e1, e2) is an SPE for sufficiently large ı < 1.
To do so, we first define the threshold level

ı(xc
1, xc

2, sc) = max
(e1,e2)

sc(e1, e2)
sc(e1, e2) + E{b2(xc

2(e1, e2)) − b2(e2)} − E{sc(e1, e2)} . (12)

In the proof of the following result, we show that ı(xc
1, xc

2, sc) < 1. The following result can be inter-
preted as the Folk Theorem for river sharing problems.

Proposition 3. For any ı ≥ ı(xc
1, xc

2, sc), the individually-rational agreement with allocation rule
(xc

1(e1, e2), xc
2(e1, e2)) and payment rule sc(e1, e2) satisfying (10) and (11) can be sustained in equilibrium.

Proof. Conditions (2) and (3) state the equilibrium conditions for trigger strategies, which have to
hold for every realization (e1, e2). Rewriting (2) yields

(1 − ı)[b1(xc
1(e1, e2)) + sc(e1, e2)] + ıE{b1(xc

1(e1, e2)) + sc(e1, e2) − b1(e1)} ≥ (1 − ı)b1(e1).

By (10) the first term on the left-hand side is weakly larger than the right-hand side, and the
second term on the left-hand side is non-negative. Therefore this inequality holds for all ı ∈ [0, 1] and
independent of the realization (e1, e2). So, agent 1 will not deviate for any ı ∈ [0, 1], independent of
the realization of river flow. Next, (3) can be simplified to sc(e1, e2) ≤ ı(Vc

2 − Vn
2 ).10 Rewriting further

yields

(1 − ı)sc(e1, e2) ≤ ı(E{b2(xc
2(e1, e2)) − b2(e2)} − E{sc(e1, e2)}).

By (11), the right-hand side is positive. As ı goes to 1, the left-hand side goes to 0 and the right-hand
side increases to some positive number. So, there exists a nonempty interval of ı including 1 for which
this inequality holds. Solving for ı yields that agent 2 has no incentive to deviate if:

ı ≥ sc(e1, e2)
sc(e1, e2) + E{b2(xc

2(e1, e2)) − b2(e2)} − E{sc(e1, e2)} .

As noted in Section 3, this threshold depends on the realization of river flow. Also, it depends upon
the allocation rule xc(e1, e2) and payment rule sc(e1, e2). Because this has to hold for every realization
(e1, e2), we must have that ı ≥ ı(xc

1, xc
2, sc). �

Note that (10) implies that sc(e1, e2) ≥ b1(e1) − b1(xc
1(e1, e2)) ≥ 0. This class of agreements excludes

the negative sc that we observed in the example of Fig. 1. Also interesting, the simplification of (3) to
sc(e1, e2) ≤ ı(Vc

2 − Vn
2 ) in the proof of Proposition 3, imposes, once more, a fixed upper bound on the

payment, independent of realization (e1, e2). In the example of Section 4, however, this upper bound

10 For Vc
2 = Vn

2 , only sc(e1, e2) = 0 would be feasible. So, without compensating the upstream agent in the future, cooperation
is  impossible.
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is dominated by the upper bounds given by (11). Specifically, for individually-rational agreements,
the restrictions given by (10) and (11) on the (efficient) example in Fig. 1 are:

sc(eL
1, eL

2) ≥ b1(e1 = 3) − b1(xc
1 = 2) = 21 − 16 = 5,

sc(eH
1 , eH

2 ) ≥ b1(e1 = 5) − b1(xc
1 = 4) = 25 − 24 = 1,

sc(eL
1, eL

2) ≤ b1(xc
2 = 2) − b1(e2 = 1) = 16 − 9 = 7,

sc(eH
1 , eH

2 ) ≤ b1(xc
2 = 4) − b1(e2 = 3) = 24 − 21 = 3.

These restrictions are shown in the dark-shaded polygon in Fig. 4.
Whether these restrictions hold in practice is an open question. The concept of individual rationality

directly suggests that countries would never sign an agreement that yields them payoffs lower than
their minmax payoffs. Yet, this situation could occur for fixed payment agreements as is illustrated by
Fig. 4. Even proportional allocation rules, often advocated as offering flexibility to adapt to variability
of river flow (cf. McCaffrey, 2003; Drieschova et al., 2008) fall within this class if they rely on fixed
payments and may  therefore not be individually rational (Ansink and Ruijs, 2008). When payments
are flexible rather than fixed – and individually rational agreements allow for this – this barrier is
resolved.

The combination of a flexible allocation rule and flexible payments was  suggested by Kilgour and
Dinar (2001) to achieve an “efficient schedule” of river water allocation. Kilgour and Dinar (2001) con-
sider efficient and individually rational agreements and therefore our Proposition 3 can be compared
to their result. Specifically, this proposition indicates that their efficiency result may  hold, but these
“efficient schedules” are not stable for sufficiently low ı. This difference illustrates the importance
of considering repeated interaction between agents in a river basin. In addition, the consideration of
repeated interaction may  cause two additional effects. One is that it may  affect the distribution of the
benefits of cooperation (see below). The other consequence is that stability may come at the cost of
reduced efficiency (see Section 5). Both effects are absent in the (static) model by Kilgour and Dinar
(2001).

Proposition 3 and its proof convey two  important messages. The first is that, by construction of
individually-rational agreements, agent 1 has no incentive to deviate, irrespective of the discount
factor nor the realization of river flow. This is an important observation for the design of stable agree-
ments. The second message is that the threshold discount factor ı(xc

1, xc
2, sc) increases in the payment

that agent 2 makes to agent 1. Consequentially, the scope for agent 2’s compliance with the agree-
ment increases when the payments, contingent on the realized river flow and subject to (10) and (11),
are minimized. Specifically, it is easy to check that the lowest threshold ı(xc

1, xc
2, sc) occurs for the

agreement (xc
1, xc

2, sc) that solves

min
xc

1
,xc

2
,sc

max
(e1,e2)

sc(e1, e2)
sc(e1, e2) + E{b2(xc

2(e1, e2)) − b2(e2)} − E{sc(e1, e2)}

among all possible individually-rational agreements. The solution to this problem is xc(e1, e2) = x*(e1,
e2) and sc(e1, e2) = b1(e1) − b1(x∗

1(e1, e2)) for every realization (e1, e2). This solution selects the efficient
allocation and a payment that assigns all benefits of cooperation downstream, to agent 2. We  will
continue discussing this solution in the context of asymmetric Nash-bargaining solutions in Section
7.1.

Remark 3. Note that the subset of individually-rational agreements contains various types of agree-
ments. One example is a price-dependent agreement, in which the allocation rule is the efficient
allocation and the payment implements the efficient water price, such that marginal benefits of water
use are equal to both agents. This type of agreement mimics an international water market (cf. Ansink
and Houba, 2012). An alternative example is the (asymmetric) Nash-bargaining solution, which we
analyze in Section 7.1.

Remark 4. Recall the interpretation of fixed-payment agreements as insurance contracts.
Individually-rational agreements can also be interpreted as insurance contracts with a stochastic price
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sc(e1, e2) that depends upon the realization of river flow. This means that next to the risk over the allo-
cation of water there is also risk with respect to this price. Because monetary payments enter the
agents’ quasi-linear utility functions in (1) as the linear term, agents are risk neutral with respect to
this category of risk. Consequently, they are indifferent between individually-rational agreements and
fixed-payment contracts with the same allocation and payment E{sc(e1, e2)}.

7. Negotiating a sustainable agreement

In this section, we focus on agreements that are the outcome of a negotiation procedure and assess
under which conditions such agreements can be sustained in equilibrium. Compared with the agree-
ments assessed in Section 6, the current agreements potentially offer more flexibility. Here, our aim
is not to assess an exogenously given subset of agreements, but rather to endogenize the agreement
given exogenous model parameters (e.g. the discount factor ı and a weight ˛, introduced below).
Nevertheless, to guide our assessment we do need some structure on the types of agreements to
assess and, through our selection of equilibrium concepts, we focus on efficient agreements only. We
will approach such agreements using the equilibrium concepts of subgame-perfect equilibrium and
renegotiation-proof equilibrium. Nash-bargaining agreements are assessed to illustrate how negoti-
ations may  lead to efficient and stable agreements. Renegotiation-proof agreements show how this
additional stability requirement affects the agreement design. As before, we will not need Assumptions
3 and 4.

7.1. Nash-bargaining agreements

When considering negotiation procedures, the obvious solution concept is the asymmetric Nash-
bargaining solutions (ANBS). The ANBS maximizes the product of agents’ gains over a disagreement
payoff, given asymmetric bargaining strengths. Applied to the problem of river sharing in a determi-
nistic setting, the allocation rule is the efficient allocation and the payment is based on the relative
bargaining strength of the agents (Houba et al., 2014). In our stochastic setting, the ANBS will also
specify the efficient allocation and the expected payment based on the relative bargaining strength of
the agents. There are many ways to implement the expected payment over all possible realizations
(e1, e2) and we choose a natural one: Applying the ANBS with bargaining weight  ̨ ∈ [0, 1) for agent
1,11 we take

s˛(e1, e2) = b1(e1) − b1(x∗
1(e1, e2)) + ˛[b1(x∗

1(e1, e2)) + b2(x∗
2(e1, e2)) − b1(e1) − b2(e2)], (13)

for each realization of river flow (e1, e2), which then allows us to derive E{s˛(e1, e2)}. This implemen-
tation of the ANBS chooses the efficient allocation and distributes the gains of cooperation according
to the bargaining strength parameter ˛.12

Note that application of the ANBS implies that we  assume, to some extent, an ‘ideal’ setting where
bargaining strengths are readily available and there are no restrictions imposed by sustainability
considerations or other factors at play (see Fig. 5 and its discussion below). In general, the bargaining
strength parameter can be based on factors related to economic, political, or military dominance in the
river basin. For specific case studies, an empirical estimate of bargaining strength can be obtained by
evaluation of an existing agreement. Assuming that such an agreement is a Nash bargaining solution
obtained in a setting not too different from the ‘ideal’ setting, its outcome can be used to derive the
corresponding  ̨ parameter. Houba et al. (2014) provide a framework for making such a derivation.

The set of Nash-bargaining agreements coincides with the set of efficient individually-rational
agreements. This coincidence implies that any efficient individually rational agreements can be imple-
mented by a Nash-bargaining agreement for some  ̨ ∈ [0, 1), and vice versa. Since the example of

11 For reasons explained in Footnotes 5 and 9, we allow for  ̨ = 0, i.e. agent 2 is a dictator, but not for  ̨ = 1 .
12 The choice for payment rule (13) limits the scope of the results presented in this section and in Section 7.2, since they

depend on it. Yet, we see no plausible alternative to (13) which could generalize our results. In addition, we  consider it a very
natural payment rule in the context of our model.
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Fig. 5. The ANBS for  ̨ = 0.5 (point a where the red level curve touches the Pareto frontier) and  ̨ = 0.9 (point b where the blue
level  curve touches the Pareto frontier), given p = 0.5, for the example illustrated in Fig. 1. For sufficiently low ı part of the
individually rational utility vectors under the Pareto frontier cannot be sustained in equilibrium because agent 2 will deviate
(shaded area). This may  shift the ANBS for agreements with high ˛, as indicated by point b′ for  ̨ = 0.9. (For interpretation of the
references to color in this figure legend, the reader is referred to the web  version of the article.)

Section 4 assumed efficient allocations, the small shaded polygon in Fig. 4 includes the set of Nash-
bargaining agreements. Substituting the parameters from the example into (13), we obtain a set of
Nash-bargaining agreements with s˛(eL

1, eL
2) = 5 + 2  ̨ and s˛(eH

1 , eH
2 ) = 1 + 2˛. In Fig. 4, this set lies on

a segment through (5, 1) with slope 45◦ due to the equal probability of low and high river flow (p = 0.5).
For Nash-bargaining agreements, given weight ˛, we  show in our next result that any efficient

agreement that improves upon the utilities under the minmax allocation xN(e1, e2) = (e1, e2) is an SPE for
sufficiently large ı < 1. The difference with Proposition 3 is subtle. By construction, the ANBS as applied
in (13) satisfies Conditions (10) and (11) that describe the set of individually-rational agreements
and, therefore, Nash-bargaining agreements are a subset of this set. The Pareto efficiency of Nash-
bargaining agreements implies that the threshold discount factor for which an agreement can be
sustained will coincide with the one for the associated Pareto efficient individually-rational agreement.
As is standard in the literature on repeated games, we  present our result in terms of a threshold
discount factor, above which subsets of agreements can be sustained in equilibrium. For the practical
purpose of this paper, however, the real issue is how to construct sustainable agreements when ı is
given. In our case this means how to construct the range of sustainable Nash bargaining agreements.
This is why our next result consists of two parts: one in terms of a threshold lower bound on ı and
one in terms of a threshold upper bound on ˛.

Before we present our result, we first define these threshold levels:

ı˛(x∗
1, x∗

2) ≡ max
(e1,e2)

s˛(e1, e2)
s˛(e1, e2) + E{b2(x∗

2(e1, e2)) − b2(e2)} − E{s˛(e1, e2)} , (14)

˛ı(x∗
1, x∗

2) ≡ min
(e1,e2)

ıE{h(e1, e2)} − (1 − ı)[b1(e1) − b1(x∗
1(e1, e2))]

ıE{h(e1, e2)} + (1 − ı)[h(e1, e2)]
< 1. (15)

Proposition 4. This proposition contains two parts:

1. For any  ̨ ∈ [0, 1) and ı ≥ ı˛(x∗
1, x∗

2), the Nash-bargaining agreement with allocation rule
(x∗

1(e1, e2), x∗
2(e1, e2)) and payment rule s˛(e1, e2) satisfying (13) can be sustained in equilibrium.

2. For any ı ∈ [0, 1) and  ̨ ≤ ˛ı(x∗
1, x∗

2), the Nash-bargaining agreement with allocation rule
(x∗

1(e1, e2), x∗
2(e1, e2)) and payment rule s˛(e1, e2) satisfying (13) can be sustained in equilibrium.
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Proof.  The proof of Part 1 is similar to the proof of Proposition 3, with two  small differences. One is
that, without implications, (13) is used rather than (10) and (11). The second difference is that xc(e1,
e2) and sc(e1, e2) are replaced by x*(e1, e2) and s˛(e1, e2), following the definition of ANBS and (13).
Again, agent 1 will not deviate for any ı ∈ [0, 1], and we  know that there exists a nonempty interval
of ı for which agent 2 will also not deviate, which is given by

ı ≥ s˛(e1, e2)
s˛(e1, e2) + E{b2(x∗

2(e1, e2)) − b2(e2)} − E{s˛(e1, e2)} .

Finally, because this has to hold for every realization (e1, e2), we must have that ı ≥ ı˛(x∗
1, x∗

2).
The proof of Part 2 consists of rewriting the equilibrium condition from Part 1, using (13) and (14).

To do so, denote the cooperative surplus by h(e1, e2) ≡ b1(x∗
1(e1, e2)) + b2(x∗

2(e1, e2)) − b1(e1) − b2(e2).
Rewriting and substituting for s˛(e1, e2) we obtain

 ̨ ≤ ıE{h(e1, e2)} − (1 − ı)[b1(e1) − b1(x∗
1(e1, e2))]

ıE{h(e1, e2)} + (1 − ı)[h(e1, e2)]
< 1.

Because this inequality has to hold for every realization (e1, e2), we  must have that  ̨ ≤ ˛ı(x∗
1, x∗

2). �

Before discussing these results, we stress that Proposition 4 depends on the specific payment rule
adopted in (13) which limits its scope, see Footnote 12.

From (12), we know that ı(xc
1, xc

2, sc) is increasing in the payment scheme sc(e1, e2). Because the
payment s˛(e1, e2) in (13) is increasing in ˛, we immediately obtain that ı˛(x∗

1, x∗
2) in (14) is increasing

in ˛. Similarly, we have that ˛ı(x∗
1, x∗

2) is increasing in ı. The interpretation of these relations is that
the threshold discount factor for which Nash-bargaining agreements can be sustained is increasing in
the bargaining strength of agent 1. As agents become more patient a larger subset of Nash bargaining
agreements can be sustained. In other words, the scope for sustainable Nash-bargaining agreements
decreases when the upstream agent gets a larger share of the pie or when agents are less patient.
Likewise, this scope increases when the downstream agent gains most or when agents are more
patient. Specifically, ˛ı(x∗

1, x∗
2) converges to 1.13 When both agents become perfectly patient this allows

the complete range of  ̨ ∈ [0, 1).
We further illustrate Nash-bargaining agreements in Fig. 5, using the example of Section 4 for two

values of ˛. Given transferable utility, the Pareto frontier is linear and given by the set of efficient
agreements where total utility equals

2[p  · bi(x
c
i (eH

1 , eH
2 )) + (1 − p) · bi(x

c
i (eL

1, eL
2))].

Using the parameter values of Fig. 1, but without specifying p and ı, total utility equals
2[p · 24 + (1 − p) · 16] = 32 + 16p  per period. The disagreement point for agent 1 equals 21 + 4p per period
and the disagreement point for agent 2 equals 9 + 12p per period. For  ̨ = 0.5, the (symmetric) ANBS
is the unconstrained optimum in point a of Fig. 5, located at the intersection of the Pareto frontier
and a 45◦ line through the disagreement point. For  ̨ = 0.9, the ANBS may  be constrained if ı is suf-
ficiently low as indicated by the shaded area in the figure. This shaded area relates to the result in
Proposition 4 that agent 2 deviates for ı < ı˛(x∗

1, x∗
2), indicating that the expected utility of the coop-

erative path to agent 2 is not sufficiently high to prevent deviation for low ı. Hence, when agent 2 is
sufficiently impatient, agreements in the shaded area cannot be sustained and only the largest ˛′ such
that ı˛′(x∗

1, x∗
2) ≤ ı can be implemented. This is ˛′ = ˛ı(x∗

1, x∗
2) of Proposition 4. The interpretation of

this situation is that the bargaining strength of upstream agent 1 may  be limited by the absence of a
supra-national authority that can enforce agreements. For  ̨ = 0.9, this implies that the ANBS at point
b shifts to the corner solution at point b′, where the agreement can be sustained. Agent 2’s impatience
yields him a higher payoff at the cost of agent 1.

13 Formally, from substituting ı = 1 in ˛ı(x∗
1, x∗

2) we  obtain lim
ı→1

˛ı(x∗
1, x∗

2) = E{h(e1,e2)}
E{h(e1,e2)} = 1.
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This impact of impatience illustrates the (lack of) robustness of Nash-bargaining agreements.
Because agent 1 has no incentive to deviate, the most robust ANBS occurs for  ̨ = 0 in the sense
that this solution brings about the lowest threshold level ı˛(xc

1, xc
2) and is always contained in the

sustainable range of Nash bargaining agreements. By (13), when  ̨ = 0, agent 1 is only compensated
for his forgone benefits but does not share in the surplus generated by the agreement. This extreme
solution in terms of the distribution of the surplus of cooperation coincides with the two-agent ver-
sion of the downstream incremental distribution, proposed by Ambec and Sprumont (2002) as a
compromise between two legal doctrines for river sharing. This solution is assessed for robustness
in by Ambec et al. (2013), assessed for time-consistency in a dynamic cooperative game by Beard
and McDonald (2007), and characterized by van den Brink et al. (2014) for the domain of coop-
erative river sharing problems and by Ansink and Weikard (2015) for the domain of river claims
problems.

The result by Ambec et al. (2013) is particularly noteworthy, since they find that the downstream
incremental distribution is actually the least sustainable agreement (Ambec et al., 2013, Proposition 3).
This result is the converse of our result. The reason for this opposite result is the setting of the analysis;
Ambec et al. (2013) present a static analysis and thereby ignore the importance of repeated interac-
tion. This repetition turns out to completely reverse the relative advantage of upstream–downstream
location in the river basin. In a static setting, the upstream agent can act like the hegemon to exploit
his geographic advantage. In a dynamic setting, however, agents depend on each other and the down-
stream agent has an advantage in timing as explained in Footnote 2. The downstream incremental
distribution has been criticized for being an extreme solution. In the next subsection, however, we
will see that the requirement of renegotiation-proofness adds even more credibility to this ‘extreme’
solution.

7.2. Renegotiation-proof equilibria

In this section we assess the implications of requiring agreements to satisfy renegotiation-
proofness. Up till here, we assumed trigger strategies, but these strategies have an important
disadvantage: the agent who carries out the punishment by switching to non-cooperative play is also
punishing himself. This gives the punisher an incentive to abolish his punishment, and re-negotiate
with the defector in order to revert to cooperative play, which Pareto-dominates the non-cooperative
path. As a result, punishments by trigger strategies lack credibility.

In response to this lack of credibility, the key idea of renegotiation-proof equilibria (RPE) is to
construct strategy profiles with punishments that include a non-negative reward to the punisher.
Based on the concept of weakly renegotiation-proof equilibrium proposed by Farrell and Maskin (1989),
our following result provides additional support for solutions in which the downstream agent gains
most. Appendix B contains additional background information on RPE as well as an extensive proof of
Proposition 5.

We  will first summarize the results of Appendix B before stating our main results. Since we are
interested in Pareto efficient solutions, we focus, without loss of generality, on sustaining Nash bar-
gaining agreements in RPE. In order to sustain the Nash bargaining agreement ˛0 ∈ [0, 1), we  introduce
two punishment paths, one for each agent. The punishment path for agent 1 corresponds to the Nash
bargaining agreement ˛1 = 0 in every period, a path on which agent 1 has no incentive to deviate.
The punishment path for agent 2 is somewhat more involved. In the first period of this path, agent 1
does not deliver any water and agent 2 pays a penalty that is equal to the present value of the entire
expected net surplus of all future periods from the second period onwards, which is independent of
the current realization. From the second period onward, we  switch to the Nash bargaining agreement
˛2 = 0 in every period, which equals agent 1’s punishment path (we postpone an explanation). For the
moment, agent 2’s punishment path coincides with agent 1’s best RPE path. Therefore, agent 2’s pun-
ishment path is Pareto efficient from the second period onwards with unavoidable efficiency losses
only in the first period.

In our next results, we state the theoretically largest set of Pareto efficient RPE Nash bargaining
agreements that are derived in Appendix B, using the thresholds in (14) and (15).
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Proposition 5. This proposition contains two parts:

1. For any ˛0 ∈ [0, 1) and ı ≥ ı˛0
(x∗

1, x∗
2), the Nash bargaining agreement with allocation rule

(x∗
1(e1, e2), x∗

2(e1, e2)) and payment rule s˛0
(e1, e2) satisfying (13) can be sustained in weakly

renegotiation-proof equilibrium.
2. For any ı ∈ [0, 1) and ˛0 ≤ ˛ı(x∗

1, x∗
2), the Nash bargaining agreement with allocation rule

(x∗
1(e1, e2), x∗

2(e1, e2)) and payment rule s˛0
(e1, e2) satisfying (13) can be sustained in weakly

renegotiation-proof equilibrium.

Before discussing this result, we stress that Proposition 5 is linked to Proposition 4 and thereby
depends on the specific payment rule adopted in (13) which limits its scope, see Footnote 12.

The positive news is that weakly renegotiation-proof equilibria exist and that the underlying strate-
gies can replace trigger strategies. Surprisingly, imposing a more restrictive equilibrium concept does
not result in a higher threshold level for the discount factor or a reduced upper bound on agents 1’s
bargaining weight. In Appendix B we show that agent 2 obtains exactly his minmax payoff on his pun-
ishment path. Since this is the same payoff as under the trigger strategies, both strategies employed
as punishment strategies are payoff-equivalent to agent 2. As before, only agent 2 has an incentive to
deviate. Given the payoff-equivalent punishments to agent 2, this must result in the same thresholds
as derived under trigger strategies.

In Appendix B we also derive that ı˛(x∗
1, x∗

2) is increasing in  ̨ so that the threshold discount factor
for which RPE can be sustained is increasing in the payment s˛(e1, e2). Analogous to the interpretation
of Proposition 4 on Nash-bargaining agreements, the most robust agreement occurs for ˛0 = 0 in the
sense that this solution brings about the lowest threshold level ı˛(x∗

1, x∗
2) and thereby maximizes

the scope for sustainable agreements. As mentioned in the previous section, for  ̨ = 0 agent 1 is only
compensated for his forgone benefits, while agent 2 receives the complete surplus of cooperation.

We close this section with several remarks on the implications of the penalty in player 2’s pun-
ishment path. Note that agent 2’s worst RPE payoff consists of his expected payoff E{b2(e2)} minus
a penalty in the first period, which is below his minmax value, followed by his expected maximum
RPE payoff in all future periods, which is above his minmax value. Although we objected against pay-
offs below the minmax value in Remark 2, this argument does not apply here because, by paying the
penalty, agent 2 invests in restoring the cooperation, which might be interpreted as either to repent
and show remorse, or to regain agent 1’s trust.

Furthermore, the penalty equals the present value of the entire expected net surplus of all future
periods from the second period onwards, which can be quite substantial. Even though agent 1 receives
his minmax payoff in all future periods from the second period onwards, this agent receives almost
the entire present value of the overall net surplus as the penalty in the first period (he only misses
out on the net surplus of the first period, in which he only receives E{b1(e1)}). Theoretically, such a
substantial penalty is fine, but in practice it might not be realistic.

For practical purposes, one might resort to weights ˛1 < ˛0 < ˛2 that are closer together and con-
struct paths similar as described above with one exception: the punishment path for agent 2 specifies
(e1, e2) and some small penalty in the first period, followed by the Nash bargaining agreement ˛2

for several periods before it continues forever with Nash bargaining agreement ˛0 (instead of ˛1).14

Then, as before, agent 1 has no incentive to deviate and agent 2 should be given enough incentives to
undergo any of these three paths. We  leave this option for future research.

The main message of this section is that Pareto efficient weakly renegotiation-proof equilibria can
be derived and that we characterized its theoretically largest set, which happens to coincide with the
set of sustainable Nash bargaining agreements in SPE.

14 This construction mimics the Pareto efficient RPE in van Damme  (1989) for the infinitely repeated Prisoners’ Dilemma,
in  which both agents return to cooperate forever after undergoing their punishment for several periods, in each agent’s
punishment.
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8. Conclusion

This paper is the first to systematically assess the implications of repeated interaction for the
sustainability of river sharing agreements between riparian neighbors. We  obtain an interesting
combination of results. First, our Folk Theorem for river sharing problems in Proposition 3, further
refined in Propositions 4 and 5, provides clear conditions for sustainable agreements in terms of the
distribution of the gains from cooperation. Remarkably, the complete set of sustainable Nash bar-
gaining agreements under subgame-perfect equilibrium can also be sustained by the more restrictive
weakly renegotiation-proof equilibrium. Second, in Proposition 2 we establish a trade-off between
the efficiency and stability of agreements, which illustrates the importance of considering repeated
interaction.

Repeated interaction tends to favor the downstream agent, which may  seem counterintuitive at
first, but may  explain empirical observations on downstream states managing to negotiate a substan-
tial share of upstream river water. Our results provide non-cooperative support for solutions that
assign larger shares of the pie to downstream agents. At the lowest possible threshold on the discount
factor, only the downstream incremental distribution, proposed by Ambec and Sprumont (2002), that
assigns all gains from cooperation to downstream agents can be sustained and this distribution remains
sustainable for higher discount factors.

Finally, the model developed in this paper offers ample scope for extensions and applications. One
obvious extension is to allow for more general river geographies as in Khmelnitskaya (2010), Ansink
and Houba (2012), or van den Brink et al. (2012). One obvious application is to repeat the analysis of the
Bishkek Treaty in the Aral Sea basin by Ambec et al. (2013) in the dynamic setting of this paper. Their
static analysis showed that actual payments under this agreement approximate the payment rule
induced by the downstream incremental distribution. In a static setting, this result implies instability.
When considering repeated interaction, however, the results in our paper suggest that this payment
rule may  actually be well-chosen.

Appendix A. On minmax values

In this appendix, we derive the minmax values for each agent, which proves Proposition 1. We
also discuss the implications of assuming increasing benefit functions and we describe how to derive
minmax values in the general case with more than two agents.

A.1. Proof of Proposition 1

Since the infinitely-repeated river sharing problem is an infinitely-repeated sequential game, the
characterization of minmax values in Wen  (2002) is appropriate. The order of moves in the river
sharing problem is given by the agents’ location: agent 1 moves before agent 2 (see Footnote 2). Each
minmax value is solved recursively and backward.

First, for any realization (e1, e2), agent 2’s best response to any strategy x1(e1, e2) by agent 1 is
x2 = e1 + e2 − x1(e1, e2) due to his increasing benefit function. The strategy of agent 1 that minmaxes
agent 2 is therefore given by min

x1 ∈ [0,e1]
b2(e1 + e2 − x1). This implies x1(e1, e2) = e1. So, b2(e2) is agent 2’s

minmax value and it is equal to

min
x1 ∈ [0,e1]

max
x2 ∈ [0,e1+e2−x1]

b2(x2). (16)

Second, for any realization (e1, e2) and agent 1’s strategy x1, any strategy x2 ∈ [0, e1 + e2 − x1] does
not affect agent 1’s benefit function b1(x1), which implies that agent 2 cannot punish agent 1. So, in
deriving agent 1’s minmax value agent 1 maximizes first over x1 taking into account the minmax
response of agent 2. Formally,

max
x1 ∈ [0,e1]

min
x2 ∈ [0,e1+e2−x1]

b1(x1), (17)
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which yields minmax value b1(e1) because b1 is increasing in e1. This completes the derivation of
minmax values.

For our analysis of the infinitely-repeated river sharing game, the implication of this result is that
forever playing the Nash equilibrium is not only the worst punishment for both agents but it is also a
credible punishment in terms of the SPE.

A.2. Remark on increasing benefit functions

In the derivation of minmax values in Appendix A.1, we invoked that the benefit functions are
increasing. We  will assess the importance of this assumption for our main results by determining
the minmax values when we allow for satiation. Recall that [e1, ē1] × [e2, ē2] is the domain of the
probability distribution. Denote xS

i
as agent i’s satiation point. By strict concavity, benefit function bi

increases on the interval [0,  xS
i
) and decreases for xi > xS

i
. We will not investigate all possible cases,

but rather concentrate on the case xS
1 < e1 and xS

2 > ē2 for explanatory simplicity.15 Assumption 1 on
water scarcity further imposes x∗

1(e1, e2) < xS
1 for all realizations (e1, e2). Then, for any realization (e1,

e2), the unique Nash equilibrium features x̂N
1 (e1, e2) = xS

1 and

x̂N
2 (e1, e2) = min{xS

2, e1 + e2 − xS
1} > e2.

Obviously, x∗
2(e1, e2) > x̂N

2 (e1, e2).
First, in order to derive agent 1’s minmax value we  apply (17) and obtain that this agent’s minmax

value is b1(xS
1) > b1(e1). Similar to the case without satiation, agent 1’s minmax value is supported by

the Nash equilibrium and only quantitatively we  have to deal with the difference b1(xS
1) > b1(e1). The

implication for our analysis of the infinitely-repeated river sharing game is that forever playing the
Nash equilibrium remains available as the worst punishment for agent 1 that is also credible.

Second, agent 2’s minmax value is again derived from (16) and we  obtain that

x1 = e1 > xS
1 and x2 = min{xS

2, e2} = e2 < x̂N
2 (e1, e2)

support this agent’s minmax value b2(e2) < b2(x̂N
2 (e1, e2)). So, agent 2’s minmax value remains similar

to the case without satiation, but it is no longer supported by the Nash equilibrium. In punishing agent
2, agent 1 incurs opportunity costs b1(e1) − b1(xS

1) > 0 due to overconsumption. Care should be taken
in designing punishments if agent 1 would choose not to minmax agent 2. This can be seen as a
standard exercise in repeated games that we forgo.

Summarizing, the restriction to increasing benefit functions is convenient because it avoids some
technicalities in sustaining credible punishments and it allows to consider the simple class of trigger
strategies in sustaining SPE. Increasing benefit functions are also notationally convenient, because all
minmax values become bi(ei).

A.3. Remark on the general case

Finally, we discuss the minmax values for the general case with n agents and more realistic river
geographies (Ansink and Houba, 2012; van den Brink et al., 2012). Then, applying the characterization
of minmax values in Wen  (2002) to river sharing problems implies that only upstream agents can
minimize some agent’s payoff while all downstream agents (and agents on disjoint tributaries) cannot
affect this agent. Consider some agent i = 1, . . .,  n, denote by Pi the set of all agents upstream of i, and
denote the vector of these upstream agents’ water uses by (xj)j ∈ Pi . Then, (16) becomes

min
(xj)j  ∈  Pi :�

j  ∈  Pi xj≤�
j ∈  Pi ej

max
xi ∈ [0,ei+�

j  ∈  Pi (ej−xj)]
bi(xi).

15 Note that for xS
1 ∈ [e1, ē1], all realizations e1 ≤ xS

1 are equivalent to non-satiation and, similar, all e1 > xS
1 correspond to

satiation. For xS
2 ∈ [e2, ē2], all realizations (e1, e2) such that e1 + e2 − xS

1 ≤ xS
2 are equivalent to non-satiation and otherwise we

have  satiation and no incentives for agent 2 to cooperate, which is trivial. For completeness, xS
1 > ē1 corresponds to non-satiation

and  xS
2 < e2 implies agent 2 also has no incentives to cooperate, violating Assumption 1 on water scarcity.
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Note that for any most-upstream agent i that cannot receive inflow from any other agent, the set Pi =∅
and, consequently, this agent’s minmax value is his Nash equilibrium benefit bi(xN

i
(e1, . . .,  en)), where

xN
i

(e1, . . .,  en) = ei denotes agent i’s Nash equilibrium water use. Again, the worst punishment for the
most-upstream agents is the Nash equilibrium, which is also credible. For all other agents, under
mild assumptions, their minmax values are bi(ei) ≤ bi(xN

i
(e1, . . .,  en)). To be specific, in case agent i’s

satiation water use xS
i

is larger than the upper bound of his own stochastic resources, denoted ēi, then
agent i’s minmax value is bi(ei), for similar reasons as before.

Summarizing, the restriction to two  agents is, from a conceptual point of view, qualitatively similar
to the case of more than two  agents while it requires less notation and is more insightful.

Appendix B. On renegotiation-proof equilibria

In this appendix, we derive the subset of weakly renegotiation-proof equilibria (RPE), as defined in
Farrell and Maskin (1989), that are also Pareto efficient. Before doing so, we first summarize some key
ideas from the literature on repeated normal-form games that we need to modify in order to derive
our results.

B.1. Repeated normal-form games and RPE

For standard infinitely-repeated games, Abreu (1988) showed that in n-player games it suffices
to consider n + 1 infinite paths of actions in the stage game. These paths are often denoted as �0, �1,
. . .,  �n, a notation that we will follow. Path �0 represents the intended (subgame-perfect) equilibrium
path and path �i, i = 1, . . .,  n, represents player i’s worst (subgame-perfect) equilibrium path. Sustaining
these n + 1 paths in equilibrium is based upon the following key ideas: First, the worst equilibrium path
can be used as a credible punishment to sustain any equilibrium path �0. If the worst equilibrium path
cannot sustain �0 as an equilibrium, then there does not exist any equilibrium punishment strategy
that can sustain �0. Second, if player i deviates from any of these paths, including �i, then all players
immediately switch to playing path �i, an idea called equilibrium switching. So, if player i does not
comply to �i, �i will be started over and over again. Of course, in equilibrium player i is given sufficient
incentives to follow �i and such non-compliance will not occur.

Trigger strategies, which we have used so far in the main text have a very simple structure, namely
�1 = · · · = �n describe to always play the same Nash equilibrium. If this Nash equilibrium supports
each player’s minmax value then it becomes the credible worst punishment. Trigger strategies are
criticized, however, because the n − 1 players who carry out the punishment of a deviating player also
hurt themselves. For two-player games, this gives the punisher an incentive to forgive the defector
and continue playing �0 instead, but then �0 becomes unsustainable because each player knows that
punishments, which are supposed to make �0 stable, are never carried out.

In response to this criticism, the key idea of RPE is to construct punishments that include a non-
negative reward to the punisher. A weakly renegotiation-proof equilibrium is an SPE that additionally
requires that for all player j’s, j /= i, the equilibrium payoffs associated with �i are larger or equal
to player j’s payoffs of following �0. Also, along each path the equilibrium payoffs should be non-
decreasing for reasons that we forgo. It gives each path a stick and carrot flavor.

B.2. Proof of Proposition 5

We  start with Part 1 and we first focus on characterizing the �1 and �2 (initially imposing �0 = �1) to
sustain RPEs and then extend the analysis to characterize all Pareto efficient �0 that can be supported
by �1 and �2 as RPE. We  denote agent i’s minimum expected RPE payoff (before the realization of
river flow) as mi, and his maximum expected RPE payoff as Mi. We  must derive these RPE payoffs in
characterizing �1 and �2.

The results for sustainable individually-rational agreements in Section 6.2 suggest the following
very convenient punishment path for agent 1 that gives agent 2 the highest expected payoff attainable
in the set of individually-rational expected payoff vectors (V1, V2):
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• �1 : In every period, x1(e1, e2) = x*(e1, e2) and s1(e1, e2) = b1(e1) − b1(x∗
1(e1, e2)).

For similar reasons as before, agent 1 is kept to his minmax value E{b1(e1)} and has no incentive
to deviate for all ı ∈ [0, 1]. Under the hypothesis that �1 sustains agent 1’s worst punishment in the
RPE that we try to construct, it must be that

m1 = E{b1(e1)}
1 − ı

,

M2 = E{b1(x∗
1(e1, e2)) + b2(x∗

2(e1, e2))} − E{b1(e1)}
1 − ı

.

Note that M2 can be rewritten as (1/(1 − ı)) · E{b2(e2)} plus the maximal net expected surplus from
cooperation.

If agent 2 deviates by not paying s1(e1, e2), then he will be punished by an immediate switch to the
yet unknown path �2 with unknown m2 as his worst RPE payoff. Agent 2 will comply to every period
of �2 if the following equilibrium condition holds for any realization (e1, e2):

−s1(e1, e2) + ıM2 ≥ 0 + ım2. (18)

This condition reveals the minimal difference between M2 and m2, that we  will use below. Under the
hypothesis that �1, m1 and M2 are part of the RPE we  are after, we will now characterize �2, m2, M1
and the threshold on ı that sustain �1 and �2 as an RPE.

As discussed above, the path �2 needs a stick and carrot flavor. The stick is a non-negative monetary
payment, denoted p(e1, e2) ≥ 0, that agent 2 has to pay to agent 1 in the first period of the infinite path
�2 in case of realization (e1, e2). Agent i’s expected continuation RPE payoff from the second period
of �2 onwards is denoted by vi, where vi ∈ [mi, Mi]. Given realization (e1, e2) and that �2 will be
restarted next period if agent 2 does not pay, which yields him his worst continuation RPE payoff of
m2, we obtain the following equilibrium condition for agent 2 to comply to the first period of �2:

−p(e1, e2) + ıv2 ≥ 0 + ım2.

This condition reveals a trade-off between the stick p(e1, e2) and the carrot v2, larger sticks requiring
larger carrots. From rewriting and applying v2 ≤ M2, we  obtain

p(e1, e2) ≤ ı(v2 − m2) ≤ ı(M2 − m2),

which resembles (18). The continuation payoff ım2 can be attained by equating the first inequality,
and the maximal RPE payment that implements ım2 is

p(e1, e2) = ı(M2 − m2), (19)

which makes p(e1, e2) independent of realization (e1, e2). Setting p(e1, e2) = ı(M2 − m2) implies that,
from the second period of �2, we must follow �1, otherwise agent 2 cannot attain M2 and the equilib-
rium condition (18) would fail. So, the harshest stick available is followed by the sweetest carrot
available. To avoid any misunderstanding, s1(e1, e2) = p(e1, e2) also satisfies agent 2’s equilibrium
condition (18) and this agent will comply to paying p(e1, e2) to agent 1.

In order to complete the characterization of �2, we also have to characterize the allocation x2(e1,
e2) in the first period of �2. The equilibrium condition for agent 1 to comply to x2

1(e1, e2), for every
realization (e1, e2), is given by

b1(x2
1(e1, e2)) + p(e1, e2) + ım1 ≥ b1(e1) + ım1, (20)

where p(e1, e2) + ım1 is consistent with �2. Given the non-negativity of p(e1, e2), we have that
x2

1(e1, e2) = e1 trivially satisfies this equilibrium condition for all realizations of (e1, e2) for all ı ∈ [0,
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1). By definition of m2, p(e1, e2) and �2, we have that m2 is the minimal RPE payoff that satisfies the
equilibrium conditions:

m2 = min
x2(e1,e2)

E{b2(x2
2(e1, e2)) − p(e1, e2) + ıM2}, s.t. (18), (19) and (20),

= min
x2(e1,e2)

E{b2(x2
2(e1, e2))} + ım2, s.t. (18) and (20),

= E{b2(e2)} + ım2, s.t. (18),

= E{b2(e2)}
1 − ı

, s.t. (18).

Agent 2 obtains exactly his minmax payoff in his worst RPE. Note, however, that here it consists of
his expected payoff E{b2(e2)} − p(e1, e2) in the first period, which is below his minmax value, followed
by his expected maximum RPE payoff in all future periods, which is above his minmax value. Since this
is the same payoff as under the trigger strategies, both strategies punishments are payoff-equivalent
to agent 2.

Agent 1 does not have an incentive to deviate from x2(e1, e2) = (e1, e2) as his current period utility
will be lower (less benefit from water use and a foregone payment) followed by his worst RPE from
the next period onward. Moreover, note that the difference M2 − m2 is equal to the present value of
the expected net surplus of efficient cooperation and, therefore,

p(e1, e2) = ı
E{b1(x∗

1(e1, e2)) + b2(x∗
2(e1, e2)) − b1(e1) − b2(e2)}
1 − ı

. (21)

Note that this transfer is equal to the present value of the entire expected net surplus of all future
periods from the second period onwards. Theoretically, this is fine, but in practice it might not be
applicable because it can be quite a substantial payment.

So, under the hypothesis that �1, m1 and M2 are part of the RPE, we have characterized the following
punishment path for agent 2:

• �2: In the first period of �2, x2(e1, e2) = (e1, e2) and p(e1, e2) is given by (21). In the second period of
�2: Switch to �1.

Finally, we have to check for which ı ∈ [0, 1) this hypothesis holds. For realization (e1, e2) and s1(e1,
e2) = p(e1, e2), (18) can be rewritten as

(1 − ı)[b1(e1) − b1(x∗
1(e1, e2))] ≤ ı[E{b1(x∗

1(e1, e2)) + b2(x∗
2(e1, e2)) − b1(e1) − b2(e2)}].

Because both terms between square brackets are positive, this conditions holds for sufficiently large
ı < 1. Since this condition has to hold for all realizations (e1, e2), we obtain the threshold

ı ≥ ı∗ ≡ max
e1,e2

b1(e1) − b1(x∗
1(e1, e2))

b1(e1) − b1(x∗
1(e1, e2)) + E{b1(x∗

1(e1, e2)) + b2(x∗
2(e1, e2)) − b1(e1) − b2(e2)} .

This thresholds corresponds to the lowest threshold ı(xc
1, xc

2, sc) to sustain individually-rational agree-
ments in SPE that we derived in Section 6.2. Because the denominator is larger than the numerator,
we have ı∗ < 1. Its maximum level is attained for max

e1,e2
[b1(e1) − b1(x∗

1(e1, e2))]. This is the realization

(e1, e2) where the payment to agent 1 is maximal and, therefore, the temptation for agent 2 to defect
is maximal. This establishes the threshold for which ı is sufficiently large to sustain the pair of paths
�1 and �2 as the agents’ worst possible punishments in any RPE.
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Fig. 6. The range of ex ante expected values associated with �0(˛), �1 and �2 is shown for parameter values as used in Fig. 1.
The  set of �0(˛) is the thick blue segment on the Pareto frontier from payoff pair (m1, M2) up to some payoff pair r in south-east
direction, depending on ı; The red curve is the parametric equation (E{b1(x1)}, E{b2(e1 + e2 − x1)}), assuming without loss of
generality x1(eH

1 , eH
2 ) = x1(eL

1, eL
2) + 2. This curve determines both the location of the Pareto frontier as well as the location of

payoff pair (m1, M2). Using the parameter values of Fig. 1, we obtain (m1, M2) = (230, 170), (M1, m2) = (248, 150), and r = (245,
155). (For interpretation of the references to color in this figure legend, the reader is referred to the web  version of the article.)

For completeness,

M1 = E{b1(e1) + p(e1, e2)} + ım1,

= (1 − ı)E{b1(e1)} + ı[E{b1(x∗
1(e1, e2)) + b2(x∗

2(e1, e2))} − E{b2(e2)}]
1 − ı

<
E{b1(x∗

1(e1, e2)) + b2(x∗
2(e1, e2))} − E{b2(e2)}

1 − ı
,

where the last expression is agent 1’s utopia payoff in the set of individually-rational payoff vectors.
As ı goes to 1, the entire set can be sustained as RPE payoffs. Note that, due to the sequential setting,
agent 1’s best RPE payoff M1 is always less than his utopia payoff, but agent 2 has an RPE in which he
can attain his utopia payoff.

We now extend the analysis to characterize the largest set of Pareto efficient paths �0 that can
be supported by �1 and �2 as an RPE. For parameter  ̨ ∈ [0, 1), we consider the following intended
equilibrium path in order to support ANBS with payment rule (13):

• �0(˛): In every period, x0(e1, e2) = x*(e1, e2) and s˛0
(e1, e2) = b1(e1) − b1(x∗

1(e1, e2)) +
˛[b1(x∗

1(e1, e2)) + b2(x∗
2(e1, e2)) − b1(e1) − b2(e2)].

This path selects the efficient allocation combined with a payment that depends on parameter
 ̨ ∈ [0, 1), which distributes the cooperative surplus. Note that the boundary  ̨ = 1 is not included,

because then �0 Pareto-dominates �2, which is not allowed in RPE.
Fig. 6 illustrates the range of ex ante expected values associated with �0(˛), �1 and �2 for parameter

values as introduced in Fig. 1. Note that �2 is Pareto inefficient because (b1(e1), b2(e)) determines the
first period’s payoff. Because of this inefficiency, the range of Pareto efficient RPEs does not satisfy the
stronger concept of Strong Perfect Equilibrium in e.g. Rubinstein (1980), in which all three paths of
(�0(˛), �1, �2) have to be Pareto efficient.

The final step of this appendix is to check for which  ̨ and ı do (�0(˛), �1, �2) form an RPE. By con-
struction, �0(˛) constitutes a Pareto efficient individually-rational agreement. For similar reasons as
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before, agent 1 has no incentive to deviate for all ı ∈ [0, 1]. Therefore, we  focus on deterring deviations
by agent 2, which would trigger his worst RPE path �2. Denote agent i’s ex ante expected values of the
cooperative path �0(˛) as Vc

i
(˛), i = 1, 2. For realization (e1, e2), agent 2 has no incentive to deviate if

−s˛0
(e1, e2) + ıVc

2(˛) ≥ 0 + ım2 ⇔ s˛0
(e1, e2) ≤ ı(Vc

2(˛) − m2).

By substituting the expressions for ıVc
2(˛) and m2, we obtain

s˛0
(e1, e2) + ı

1 − ı
E{s˛0

(e1, e2)} ≤ ı

1 − ı
[E{b2(x∗

2(e1, e2))} − E{b2(e2)}],

which resembles (5).
We  do not directly substitute for s˛0

(e1, e2) in order to avoid a messy condition. Instead, we  solve
for ı to obtain that agent 2 has no incentive to deviate, for all realizations (e1, e2), if:

ı ≥ ı˛(x∗
1, x∗

2) ≡ max
e1,e2

s˛0
(e1, e2)

s˛0 (e1, e2) + E{b2(x∗
2(e1, e2)) − b2(e2)} − E{s˛0 (e1, e2)}

,

with s˛0
(e1, e2) according to �0. This establishes the threshold ı˛(x∗

1, x∗
2) for which ı is sufficiently

large that (�0(˛), �1, �2) forms an RPE. Because the payment rule is the ANBS payment rule in (13),
this threshold coincides with the ANBS threshold (14), which implies that Part 2 of our proposition
follows directly.

Because s˛0
(e1, e2) is increasing in ˛, also its expectation E{s˛0

(e1, e2)} is increasing in ˛. As a result,
it is straightforward to verify that ı˛(x∗

1, x∗
2) is increasing in ˛. The interpretation of this relation is that

the threshold discount factor for which RPE can be sustained is increasing in the payment within the
bounds set by �0(˛). This interpretation corresponds to the observation made in Section 7.1 with
respect to the bargaining strength of agent 1.

Finally, in the limit when ı goes to 1, division by 1 − ı causes a mathematical problem in deriving
limits of the mi’s and Mi’s. To overcome this problem, the literature on repeated games works with
normalized discounted payoffs, i.e. (1 − ı)

∑∞
t=0ıtut , where ut is the payoff in period t. As ı goes to

1, the limit of these normalized discounted payoffs is well defined. In addition, optimal strategies
are unaffected by this change in payoffs and normalized discounted payoffs converge to the limiting
average of the stream of undiscounted payoffs, i.e. lim

T→∞
1
T

∑T
t=0ut . By taking the limit ı goes to 1 of the

normalized discounted payoffs of the renegotiation-proof equilibria, we obtain that (M1, m2) moves
straight east to the Pareto frontier in Fig. 6, where it coincides with payoff-pair r in the limit at agent
1’s utopia payoff. The limit point cannot be sustained for ı ∈ [0, 1).
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