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Abstract. We extend the notion of a natural fibre bundle by requiring dif-
feomorphisms of the base to lift to automorphisms of the bundle only infinites-
imally, i.e. at the level of the Lie algebra of vector fields. We classify the
principal fibre bundles with this property. A version of the main result in
this paper (theorem 4.4) can be found in Lecomte’s work [12]. Our approach
was developed independently, uses the language of Lie algebroids, and can be
generalized in several directions.

1. Introduction. A smooth principal fibre bundle π : P → M with structure
group G determines a sequence of groups

1→ Γc(Ad(P ))→ Autc(P )→ Diffc(M)→ 1 . (1)

In this expression, Diffc(M) is the group of compactly supported diffeomorphisms
of M , and Autc(P ) is the group of automorphisms of P that are trivial outside the
preimage under π of a compact set. We have identified the gauge group of vertical
automorphisms with the group of sections of the adjoint bundle Ad(P ) = P ×AdG,
and Γc(Ad(P )) is the subgroup of compactly supported ones.

On the infinitesimal level, we have a corresponding exact sequence of Lie algebras

0→ Γc(ad(P )) −→ Γc(TP )G
π∗−→ Γc(TM)→ 0 . (2)

The last term, Γc(TM), is the Lie algebra of smooth, compactly supported vector
fields on M . The middle term, Γc(TP )G, is the Lie algebra of G-invariant vector
fields on P such that the support lies in the preimage under π of a compact set. The
projection defines a Lie algebra homomorphism π∗ : Γc(TP )G → Γc(TM) because
of G-invariance, and its kernel Γc(TP )Gv is the ideal of vertical, G-invariant vector
fields with support in the preimage under π of a compact set. We identify Γc(TP )Gv
with the Lie algebra Γc(ad(P )) of smooth, compactly supported sections of the
adjoint Lie algebra bundle ad(P ) := P ×ad g.

Definition 1.1. A natural principal fibre bundle is a principal fibre bundle P
for which (1) is split exact, together with a distinguished splitting homomorphism
Σ : Diffc(M) → Autc(P ). Moreover, Σ is required to be local in the sense that
Σ(φ)(p) depends only on the germ of φ around π(p).
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Natural bundles were introduced1 by Nijenhuis [18, 19], building on the theory
of ‘geometric objects’ [24, 29, 17]. A classification theorem of Palais and Terng [20],
completed by Epstein and Thurston [5] and based on earlier work of Salvioli [23],
states that any natural fibre bundle is associated to the kth order frame bundle
F k(M).

Definition 1.2. An infinitesimally natural principal fibre bundle is a principal
fibre bundle π : P → M , together with a distinguished Lie algebra homomorphism
σ : Γc(TM)→ Γc(TP )G that splits the exact sequence of Lie algebras (2).

This extends the notion of a natural fibre bundle in two separate ways. First
of all, we do not require locality, but prove it. And secondly, we only require
diffeomorphisms of the base to lift to automorphisms of the bundle infinitesimally,
i.e., at the level of Lie algebras.

The outline of the paper is as follows. Sections 2, 3 and 4 are devoted to the
classification of infinitesimally natural principal fibre bundles. The central result is
theorem 4.4, which states the following.

Theorem. Any infinitesimally natural principal fibre bundle is associated to the
universal cover F̃+k(M) of the connected component of the kth order frame bundle.

The number k is at most dim(G), unless dim(M) = 1 and dim(G) = 2, in which
case also k = 3 may occur.

A version of this result was obtained earlier by Lecomte [12], using the theory
of distributions and foliations. In the present paper, we use instead the theory of
Lie algebroids and groupoids, which opens the door to generalizations in a context
where additional structure or symmetry is present on the underlying manifold.

We extend Theorem 4.4 to fibre bundles with a finite dimensional structure
group in Section 5, with special attention for vector bundles. Finally, in Section 6,
we exhibit conditions under which a splitting of (2) gives rise to a flat connection.

2. Principal bundles as Lie algebra extensions. We seek to classify infinites-
imally natural principal fibre bundles. It is to this end that we study Lie algebra
homomorphisms σ that split (2). In this section, we will prove that σ must be a
differential operator of finite order.

The first step, to be taken in Section 2.1, is to show that maximal ideals in
Γc(TM) correspond precisely to points inM . Using this, we will prove in Section 2.2
that σ must be a local map. We will then prove, in Section 2.3, that σ is in fact a
differential operator of finite order.

2.1. Ideals of the Lie algebra of vector fields. The following proposition, due
to Shanks and Pursell [25], constitutes the linchpin of the proof. It identifies the
maximal ideals of the Lie algebra Γc(TM) of smooth, compactly supported vector
fields on M . The proof is taken from [25], with some minor clarifications.

For q ∈ M , define Iq ⊆ Γc(TM) to be the ideal of vector fields v ∈ Γc(TM)
which are zero and flat at q, that is, v(q) = 0 and (ad(wi1) . . . ad(win)v)(q) = 0 for
all wi1 , . . . win ,∈ Γc(TM).

1Every natural principal bundle in the sense of Definition 1.1 induces a functor from the
category of open subsets ofM with local diffeomorphisms to the category of principal fibre bundles
with bundle morphisms. To an object U it assigns the principal bundle π−1(U) → U and to
a morphism φ : U → V it assigns the bundle morphism π−1(U) → π−1(V ) defined by p 7→
Σ(germπp(φ))(p). Nijenhuis’ definition of a natural fibre bundle is in terms of this induced functor.
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Proposition 1. The set of maximal ideals of Γc(TM) is {Iq ; q ∈M}.
To prove Proposition 1, we need the following, somewhat technical result.

Lemma 2.1. Suppose that a maximal ideal I of Γc(TM) contains a vector field
which does not vanish at q ∈M . Then q has a neighbourhood Uq such that for every
w ∈ Γc(TM) with Supp(w) ⊂ Uq, there exist vector fields v ∈ I and u ∈ Γc(TM)
such that w = [v, u].

Although one can easily find u ∈ Γc(TM) and v ∈ I such that w = [u, v] locally, it
is not always clear how to extend these to global vector fields while simultaneously
satisfying w = [u, v]. For instance, with M the circle S1 and v = w = ∂θ, the
solution u = θ∂θ does not globally exist. We need to do some work in order to
define a proper cutoff procedure.

Proof. Choose v ∈ I with v(q) 6= 0. There exist local co-ordinates x1, . . . , xn and
an open neighbourhood W of q such that v|W = ∂1. Choose W to be a block
centred around q, and nest two smaller blocks (in local co-ordinates) inside, so that
W ⊃ V ⊃ U .

We take W = (−ε, ε)n, V = (− 2
3ε,

2
3ε)

n, and U = (− 1
3ε,

1
3ε)

n. Choose a smooth
function g onM such that g|U = x1 and g|M\V = 0. Require also that ∂ig(x) = 0 for
i 6= 1 and (x2, . . . , xn) ∈ (− 1

3ε,
1
3ε)

n−1. Define h := ∂1g, and set ṽ := [v, g∂1] = h∂1.
Then ṽ|U = ∂1, ṽ|M\V = 0, and most importantly ṽ ∈ I.

Now let w ∈ Γc(TM) with Supp(w) ⊂ U . We will find a global vector field
u ∈ Γc(TM) that realises [ṽ, u] = w.

For i 6= 1, the ith component of the above reads h∂1ui = wi. In the region
x1 ≤ 1

3ε, we set ui(x1, . . . , xn) =
∫ x1

−∞ wi(t, x2 . . . , xn)dt. On U , where ṽ = ∂1, we
then have ∂1ui = wi and therefore h∂1ui = wi. This is obviously also correct for
points outside U with x1 ≤ 1

3ε, as both u
i and wi are zero.

For 1
3ε ≤ x1 ≤

2
3ε, where w = 0, we let ui(x1, x2, . . . , xn) be a constant function of

x1, so that ui(x1, x2, . . . , xn) = ui( 1
3ε, x2, . . . , xn). We then have ∂1ui(x1, . . . , xn) =

0, guaranteeing h∂1ui = wi. Note that this does not effect the smoothness of ui.
Finally, for 2

3ε ≤ x1 ≤ ε, let ui tend to zero, and let ui be zero for x1 ≥ ε. This
can be done in such a way that ui remains smooth. Since both h and w are zero,
we have h∂1ui = wi on all of M .

The case i = 1 is handled similarly, the only difference being that the first
component of [ṽ, u] = w is now h∂1u

1 −
∑
j u

j∂jh = w1, the term u1∂1h of which
cannot be dispensed with. We have arranged that ui(x) with i 6= 1 is zero if
(x2, . . . , xn) /∈ (− 1

3ε,
1
3ε)

n−1, and that ∂ih(x) with i 6= 1 is zero if (x2, . . . , xn) ∈
(− 1

3ε,
1
3ε)

n−1. It follows that ui∂ih = 0 for i 6= 1, and hence h∂1u1 − u1∂1h = w1.
For x1 ≤ 1

3ε, we once again set u1(x1, . . . , xn) =
∫ x1

−∞ w1(t, x2 . . . , xn)dt. For
1
3ε ≤ x1 ≤ 2

3ε however, one now has to define u1(x1, . . . , xn) = h(x1, . . . , xn)

u1( 1
3ε, x2, . . . , xn) in order for h∂1u1 − u1∂1h = w1 to hold. Since this renders

u1 zero on a neighbourhood of the boundary of V , one is then free to define u1 to
be zero on M\V .

Thus, for every vector field w with support in U , we have constructed vector
fields ṽ ∈ I and u ∈ Γc(TM) such that w = [ṽ, u].

Using Lemma 2.1, one readily proves the following.

Lemma 2.2. Suppose that I is an ideal such that for all q ∈ M , there exists a
v ∈ I with v(q) 6= 0. Then I = Γc(TM).
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Proof. Let w ∈ Γc(TM). Cover the support Supp(w) of w by finitely many neigh-
bourhoods Uq1 . . . UqN with the properties described in Lemma 2.1. Using a par-
tition of unity, write w =

∑N
j=1 wj with Supp(wj) ⊆ Uqj . By Lemma 2.1, there

exist vj ∈ I and uj ∈ Γc(TM) such that wj = [vj , uj ]. In particular, every wj is an
element of I. It follows that also w =

∑N
j=1 wj is in I.

Using Lemma 2.2, we now prove Proposition 1.

Proof of Proposition 1. For every proper ideal I ⊂ Γc(TM), there exists a q ∈ M
such that I ⊆ Iq. Indeed, Lemma 2.2 guarantees the existence of a q ∈ M such
that v(q) = 0 for all v ∈ I. Since ad(w1) . . . ad(wn)v ∈ I for all v ∈ I and
w1, . . . , wn ∈ Γc(TM), it follows that also (ad(w1) . . . ad(wn)v)(q) = 0. Every v ∈ I
is therefore not only zero at q, but also flat. We conclude that I ⊆ Iq.

It remains to show that for every q ∈M , the ideal Iq is indeed maximal. Suppose
that Iq ⊆ I for a proper ideal I ⊂ Γc(TM). Then there exists a point q̃ ∈ M such
that I ⊆ Iq̃, and hence Iq ⊆ Iq̃. It follows that q̃ = q. Since Iq ⊆ I ⊆ Iq̃, it follows
that I = Iq, so that the ideal Iq is maximal.

A maximal subalgebra A of a Lie algebra L is either self-normalizing or ideal.
Indeed it is contained in its normaliser, which therefore equals either A or L. A
theorem of Barnes [2] states that a finite-dimensional Lie algebra is nilpotent if and
only if2 every maximal subalgebra is an ideal. On the other extreme:

Proposition 2. Let L be a Lie algebra over a field K, and let S be the set of
subspaces A ⊂ L such that A is both an ideal and a maximal subalgebra. Then

[L,L] =
⋂
A∈S
A

if S 6= ∅, and [L,L] = L if S = ∅. In particular, L is perfect ([L,L] = L) if and
only if every maximal subalgebra is self-normalizing.

Proof. Let X /∈ [L,L]. Choose [L,L] ⊆ A ( L where A has codimension 1 in L,
and X /∈ A. Then A is an ideal maximal subalgebra, which does not contain X.
Thus

⋂
A∈S A ⊆ [L,L].

Let A be an ideal maximal subalgebra, and X /∈ A. Then A+KX is a subalgebra
strictly containingA, so that it must equal L. Thus [L,L] = [A+KX,A+KX] ⊆ A,
whence [L,L] ⊆

⋂
A∈S A.

As a corollary, we have the following well known statement (cf. e.g. [1, Thm. 1.4.3])

Corollary 1. The Lie algebra Γc(TM) is perfect;

[Γc(TM),Γc(TM)] = Γc(TM) .

Proof. According to lemma 1, the maximal ideals are precisely the ideals Iq of
vector fields in Γc(TM) which are zero and flat at q. Iq is strictly contained in the
subalgebra Aq of vector fields which are zero at q, so that no ideal is a maximal
subalgebra. So every maximal subalgebra is self-normalizing, and the result follows
from Proposition (2).

2 Actually, the ‘only if’ part in Barnes’ theorem is not written down in [2], but this is immedi-
ately clear from the proof of Engel’s theorem. (See e.g. [9]).
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2.2. The splitting as a local map. With the main technical obstacles out of the
way, we turn our attention to the sequence (2). We now prove that σ is a local map.

Recall that the Lie algebra Γc(TP )Gv of vertical, G-invariant vector fields on P
with support in the preimage of a compact subset of M is identified with the Lie
algebra Γc(ad(P )) of compactly supported sections of the adjoint Lie algebra bundle
ad(P ). Concretely, the section m 7→ [pm, X] of ad(P ) := P ×ad g is identified with
the vertical, G-invariant vector field vp = d

dt |0pme
tX on P .

Lemma 2.3. Let P →M be a principal G-bundle over M , with G any Lie group.
Let σ : Γc(TM) → Γc(TP )G be a Lie algebra homomorphism splitting the exact
sequence of Lie algebras

0→ Γc(ad(P ))→ Γc(TP )G → Γc(TM)→ 0 . (3)

Then σ is local in the sense that π(Supp(σ(v))) ⊆ Supp(v).

Proof. Let Am := {v ∈ Γc(TM) | v(m) = 0} be the subalgebra of vector fields that
vanish at the point m ∈M . Since π∗ ◦σ(v) = v, the lift σ(v) ∈ Γc(TP )G of v ∈ Am
is vertical on the fibre Pm = π−1(m). Identifying the G-equivariant vector field
σ(v)|Pm

∈ Γ(TPm)G with an element of the Lie algebra ad(P )m ' g, we obtain a
Lie algebra homomorphism

σ̃m : Am → g .

Denote by σ̂m : Γc(T (M−{m}))→ Am its restriction to the ideal Γc(T (M−{m})) ⊆
Am. Since σ̂m is a Lie algebra homomorphism into a finite dimensional Lie algebra,
its kernel Ker(σ̂m) is an ideal in Γc(T (M − {m})) of finite codimension. Accord-
ing to Lemma 1, however, all proper ideals are of infinite codimension. There-
fore Ker(σ̂m) = Γc(T (M − {m})), and σ̂m is identically zero for all m ∈ M .
Since σ(v)|Pm

= 0 if m /∈ Supp(v), the section σ is local, in the sense that
π(Supp(σ(v))) ⊆ Supp(v).

We identify Γc(TP )G with Γc(TP/G), the compactly supported sections of the
vector bundle TP/G → M that arises as the quotient of TP by the pushforward
of the right G-action on P . This allows us to consider the splitting σ as a map
σ : Γc(TM) → Γc(TP/G). Since σ is local by Lemma 2.3, it defines a morphism
from the sheaf of smooth sections of TM → M to the sheaf of smooth sections of
TP/G→M . By Peetre’s Theorem ([21]), the map σ : Γc(TM)→ Γc(TP/G) must
be a differential operator of locally finite order.

2.3. The splitting as a differential operator. In this section, we will prove that
σ is a differential operator of finite order. Since we already know that it is of locally
finite order, it remains to find a global bound on the order.

Recall that Am ⊆ Γc(TM) is the subalgebra of vector fields that vanish at m,
and σ̃m : Am → g is the restriction of σ to Am, followed by the map Γ(ad(P ))→ g
that picks out the fibre over m and identifies it with g.

The fact that σ is a differential operator of locally finite order implies that for
each m ∈ M , the Lie algebra homomorphism σ̃m : Am → g factors through the jet
Lie algebra Jr,0m (TM) := Am/Hr

m, with Hr
m = {v ∈ Am | jrm(v) = 0} the ideal of

vector fields that vanish up to order r.
Local co-ordinates provide one with a basis x~α∂i of Jr,0m (TM), where x~α is short-

hand for xα1
1 · · ·xαn

n . With Veckn = Span{x~α∂i | |~α| = k + 1 , i = 1 . . . n}, we have
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Jr,0m (TM) '
⊕r

k=0 Veckn. Since we do not know r, we define

Vecn =

∞⊕
k=0

Veckn ,

and remark that σ̃m induces a Lie algebra homomorphism Vecn → g.
The Lie algebra Vecn depends on M only through its dimension n. Note that

Veckn is the k-eigenspace of the Euler vector field E :=
∑n
i=1 x

i∂i, and that each
element of Vecn can be uniquely written as a finite sum of homogeneous vector
fields. If I is an ideal containing v =

∑N
k=0 vk, then ad(E)jv =

∑N
k=0 k

jvk ∈ I for
all j. By taking suitable linear combinations, one sees that vk ∈ I. Thus any ideal
splits into homogeneous components

I =

∞⊕
k=0

Ik

with Ik = I ∩Veckn. This renders the ideal structure of Vecn more or less tractable,
enabling us to prove the following bound on the order of σ̃m.

Lemma 2.4. The order of the differential operator σ is at most dim(g) unless
dim(M) = 1 and dim(g) = 2, in which case the order is at most 3.

Proof. We closely follow Epstein and Thurston [5]. One checks by hand that the
only ideals of the Lie algebra Vec1 = Span{xk∂ | k ≥ 1} are Span{x2∂, xk∂ | k ≥ 4}
and Span{xk∂ | k ≥ N} with N ≥ 1.

Consider Vec1 as a subalgebra of Vecn, define K to be the kernel of the homo-
morphism Vecn → g induced by σ̃m, and let K1 := K∩Vec1. We then have injective
homomorphisms

Vec1/K1 ↪→ Vecn/K ↪→ g ,

so that dim(Vec1/K1) ≤ dim(g). AsK1 is an ideal, it must be of the form mentioned
above. This leads us to conclude that xk1∂1 ∈ K for all k > dim(g) unless dim(g) =
2, in which case xk1∂1 ∈ K for all k > 3, and x21∂1 ∈ K.

The following short calculation shows that if dim(g) = 2 and dim(M) > 1, then
also x31∂1 ∈ K. As K contains x21∂1, it also contains [x21∂1, x1∂2] = x21∂2, and thus
[x21∂2, x1x2∂1] = x31∂1−2x21x2∂2. But by bracketing with x21∂2 and x2∂1 respectively,
we see that x31∂1 − 3x21x2∂2 is in K, ergo x31∂1 ∈ K.

The next step is to show that if xs1∂1 ∈ K, then K also contains all x~α∂i with
|~α| = s. First of all, we remain in K if we repeatedly apply ad(xi∂1) to xs1∂1, to
the effect of replacing x1 by xi up to a nonzero factor. This shows that x~α∂1 ∈ K.
Then the relation x~α∂i = [x~α∂1, x1∂i] + x1∂ix

~α∂1 transfers membership of K from
right to left.

In the generic case dim(g) 6= 2, dim(M) 6= 1, we may conclude that the order of
σ is at most dim(g), because Hdim(g)

m ⊂ K. In the exceptional case that dim(g) = 2
and dim(M) = 1, the order of σ is at most 3.

In particular, σ is a differential operator of finite rather than locally finite order.
We summarise our progress so far in the following proposition.

Proposition 3. Let P be an infinitesimally natural principal G-bundle. Then σ :
Γc(TM)→ Γc(TP )G factors through the bundle of k-jets, where k = 3 if dim(M) =
1, dim(g) = 2 and k = dim(g) otherwise. We can therefore define a bundle map
∇ : Jk(TM) → TP/G by ∇(jkm(v)) := σ(v)m. It makes the following diagram
commute:
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Γ(TM) Γ(TP/G)

Γ(Jk(TM)) .

∇

σ

jk

The point is that although σ is defined only on sections, ∇ comes from a veritable
bundle map Jk(TM)→ TP/G.

2.4. The compact support condition. We defined infinitesimally natural prin-
cipal fibre bundles in terms of a splitting σ : Γc(TM) → Γc(TP )G of the sequence
(2) of compactly supported sections. We now see that, equivalently, an infinitesi-
mally natural principal fibre bundle can be defined as a bundle with a continuous
splitting τ : Γ(TM)→ Γ(TP )G of the exact sequence of Fréchet Lie algebras (with
the usual topology of uniform convergence of all derivatives on compact subsets,
cf. [7, Def. 3.8])

0→ Γ(ad(P ))→ Γ(TP )G → Γ(TM)→ 0 , (4)

the non-compactly supported version of (2).
Indeed, the extension σ̃ : Γ(TM) → Γ(TP )G of σ is a splitting of (4), which is

local (in the sense that π(supp(σ̃(v))) ⊆ supp(v)) and continuous because it is a
differential operator. Conversely, one sees from the proof of Lemma 2.3 that every
Lie algebra homomorphism τ : Γ(TM)→ Γ(TP )G that splits (4) maps Γc(TM) to
Γc(TP )G, and hence restricts to a splitting of (2). If, furthermore, τ : Γ(TM) →
Γ(TP )G is continuous, then it is uniquely determined by its restriction to the dense
subalgebra Γc(TM), and hence local. For later use, we formulate this observation
as a proposition.

Proposition 4. Every splitting of (2) induces a continuous splitting of (4). Con-
versely, every splitting of (4), continuous or not, induces a splitting of (2). Conse-
quently, an infinitesimally natural principal fibre bundle can be alternatively char-
acterised as a principal fibre bundle P , together with a distinguished continuous
Lie algebra homomorphism τ : Γ(TM) → Γ(TP )G that splits the exact sequence of
Fréchet Lie algebras (4).

3. Lie groupoids and algebroids of jets. The bundles Jk(TM) and TP/G are
Lie algebroids, and it will be essential for us to prove that ∇ : Jk(TM)→ TP/G is
a homomorphism of Lie algebroids. In order to do this, we will first have a closer
look at Jk(TM) and TP/G, and at their corresponding Lie groupoids.

Let us first set some notation. The jet group Gk0,0(Rn) is the group of k-jets of
diffeomorphisms of Rn that fix 0. It is the semi-direct product of GL(Rn) and the
connected, simply connected, unipotent Lie group of k-jets that equal the identity
to first order.

The subgroup G+k
0,0(Rn) of orientation preserving k-jets is connected, but not

simply connected. As G+k
0,0(Rn) retracts to SO(Rn), its homotopy group is isomor-

phic to {1} if n = 1, to Z if n = 2, and to Z/2Z if n > 2. For brevity, we introduce
the following notation.

Definition 3.1. If k > 0, we denote π1(G+k
0,0(Rn)) by Z.

Thus for n > 2, the universal cover G̃+k
0,0(Rn) → G+k

0,0(Rn) is 2 : 1, and restricts
to the spin group over SO(Rn).
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3.1. The Lie groupoid of k-jets. In this section, we define the Lie groupoid
Gk(M) of k-jets, its maximal source-connected Lie subgroupoid G+k(M), and the
kth order frame bundle F k(M).

Denote by Gkm′,m(M) the manifold of k-jets at m of diffeomorphisms ofM which
map m to m′, and denote by Gk(M) = ∪M×MGkm′,m(M) the groupoid of k-jets. If
jkm(α) is a k-jet at m of a diffeomorphism α, then its source is s(jkm(α)) = m, its
target is t(jkm(α)) = α(m), and multiplication is given by composition.

Remark. For any Lie groupoid G⇒M , one can form the groupoid JkG⇒M of
k-jets of smooth, local bisections of G ⇒ M . The groupoid Gk(M) ⇒ M defined
above is precisely Jk(G) for the pair groupoid G = M ×M , whose bisections are
diffeomorphisms, cf. [13, §II.5].

Denote by Gk∗,m(M) the manifold s−1(m) of k-jets with source m. The target
map t : Gk∗,m(M) → M endows it with a structure of principal fibre bundle, the
structure group Gkm,m(M) ' Gk0,0(Rn) acting freely and transitively on the right.
As G1(M)∗,m is isomorphic to the frame bundle F (M), one calls Gk(M)∗,m the kth

order frame bundle, sometimes denoted F k(M).

Lemma 3.2. Let M be connected and let k ≥ 1. Then Gk(M) is source-connected
if and only if M is not orientable.

Proof. We may as well consider k = 1, because the fibres of Gk(M)→ G1(M) can
be contracted. Each source fibre G1(M)∗,m of G1(M) is isomorphic to the frame
bundle. By definition, M is oriented precisely when the frames can be grouped into
positively and negatively oriented ones.

Definition 3.3. We define G+k(M) to be the maximal source-connected Lie sub-
groupoid of Gk(M), and denote its source fibre by F+k(M).

In the light of the previous lemma, this means that G+k(M) is the Lie groupoid
of k-jets of orientation preserving diffeomorphisms if M is orientable, and simply
Gk(M) if M is not.

Note that the mapD : Diff(M)→ Diff(Gk(M)) defined byDα : jkm(γ) 7→ jkm(αγ)
is a homomorphism of groups. We will call it the kth order derivative. Because Dα
is source-preserving and right invariant, it defines a homomorphism Diff(M) →
AutG

k
m,m(M)(Gk∗,m(M)), splitting the exact sequence of groups (1). This makes

Gk∗,m(M) = F k(M) into a natural bundle. Note that F+k(M) is infinitesimally
natural.

3.2. The Lie algebroid of k-jets. The bundle Jk(TM) possesses a structure of
Lie algebroid, induced by the Lie groupoid Gk(M). We now describe the Lie bracket
on Γ(Jk(TM)) explicitly. Later, in section 3.4, we will use this to show that ∇ is a
Lie algebroid homomorphism.

Remark. If G ⇒ M is a Lie groupoid with Lie algebroid A → M , then the
groupoid JkG⇒M of k-jets of local bisections has Lie algebroid Jk(A)→M . The
following construction makes this Lie algebroid structure explicit in the case of the
pair groupoid G = M ×M , where A = TM and Jk(A) = Jk(TM).

The Lie algebroid of Gk(M) is a vector bundle A → M . Its fibre Am is by
definition the subspace of the tangent space of Gk(M) at jkm(id) which is annihilated
by ds. Sections of A therefore correspond to right-invariant vector fields on Gk(M)
tangent to the source fibres.
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Each curve in Gk∗,m(M) through jkm(id) takes the shape c(t) = jkm(αt) with α0 =

id, so that its tangent vector a ∈ Am takes the form a = jkm(v), with v = ∂t|0αt.
This shows that A ' Jk(TM).

The anchor dt : Jk(TM)→ TM is easily seen to be the canonical projection, so
we shall denote it by π. The Lie bracket on Γ(Jk(TM)) however, which is defined
as the restriction of the commutator bracket on Γ(TGk(M)) to the right invariant
source preserving vector fields, perhaps deserves some comment.

Define Jk,0(TM) to be the kernel of π, and consider the exact sequence of Lie
algebras

0→ Γ(Jk,0(TM))→ Γ(Jk(TM))
π→ Γ(TM)→ 0 .

It is split by jk : Γ(TM) → Γ(Jk(TM)), the infinitesimal version of the kth order
derivative. (The sequence of Lie algebroids of course does not split, as differentiation
is not linear over C∞(M).)

We will describe the Lie bracket on Γ(Jk(TM)) by giving it on Γ(TM) and
Γ(Jk,0(TM)) separately, and then giving the action of Γ(TM) on Γ(Jk,0(TM)).

Proposition 5. Let u and u′ be sections of TM , and let τ : m 7→ jkm(vm) and
τ ′ : m 7→ jkm(v′m) be sections of Jk,0(TM), where vm and v′m are different local
sections for each m. Then

[jk(u), jk(u′)]m = jkm([u, u′]) ,

[τ, τ ′]m = jkm([vm, v
′
m]) ,

[jk(u), τ ]m = jkm([u, vm]) + jkm(du|m(x 7→ vx)) ,

where du|m(x 7→ vx) is the ordinary derivative at m along u of a map from M
to Γ(TM). Although both terms on the right hand side depend on the choice of
m 7→ vm, their sum does not.

Proof. The first equality is clear, as jk is a homomorphism of Lie algebras. The
second equality can be seen as follows. Consider the bundle of groups Gk(M)∗,∗ :=
{jkm(α) ∈ Gk(M) |α(m) = m}, with bundle map s = t. Its sections Γ(Gk(M)∗,∗)
form a group under pointwise multiplication, whose Lie algebra is Γ(Jk,0(TM))
with the pointwise bracket. As Γ(Gk(M)∗,∗) acts from the left on Gk(M) by
jkm(γ) 7→ jkm(αm) ◦ jkm(γ), respecting both the source map and right multiplica-
tion, the inclusion Γ(Jk,0(TM))→ Γ(Jk(TM)) is a homomorphism of Lie algebras.
This proves the second line.

To verify the third line, we must choose a smooth map x 7→ vx fromM to Γ(TM)
such that τx = jkx(vx) in a neighbourhood of m. Each vx necessarily has a zero at
x. If we denote m(s) := exp(su)m, then the bracket [jk(u), τ ]m is by definition3
minus the mixed second derivative along s and t at 0 of the groupoid commutator

jkm(s)(exp(−su))jkm(s)(exp(−tvm(s)))j
k
m(exp(su))jkm(exp(tvm)) ,

which is just jkm
(
exp(−su) exp(−tvm(s)) exp(su) exp(tvm)

)
. The terms not involv-

ing derivatives of s 7→ m(s) yield jkm([u, vm]), and the terms which do provide the
extra jkm(du|m(x 7→ vx)).

3The Lie algebra of the diffeomorphism group is the Lie algebra of vector fields, but the
exponential map is given by v 7→ exp(−v), where exp denotes the unit flow along v. This is
why the groupoid commutator might seem odd at first sight.
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3.3. The gauge groupoid and its algebroid. Given a principal G-bundle π :
P → M , one can define the gauge groupoid (P × P )/G, that is the quotient of
the pair groupoid by the diagonal action [13, §II.1]. Source and target come from
projection on the second and first term respectively, M ↪→ (P × P )/G as idπ(p) =
[(p, p)], and multiplication is well defined by [(r, q)] ◦ [(q, p)] = [(r, p)]. An element
[(q, p)] corresponds precisely to a G-equivariant diffeomorphism π−1(p) → π−1(q),
and the product to composition of maps.

Its Lie algebroid TP/G is called the Atiyah algebroid. Indeed, the subspace of
Tidm

((P ×P )/G) which annihilates ds is canonically (TP/G)m. A section of TP/G
can be identified with a G-equivariant section of TP , endowing Γ(TP/G) with the
Lie bracket that comes from Γ(TP )G.

3.4. The splitting as a homomorphism of Lie algebroids. The point of con-
sidering the Lie algebroid structure of Jk(TM) was of course to prove the following.

Lemma 3.4. The map ∇ : Jk(TM)→ TP/G is a homomorphism of Lie algebroids.

Proof. The fact that ∇ respects the anchor is immediate. As π∗ ◦ ∇(jkm(vm)) =
π∗ ◦ σ(vm)(m) = vm(m), it equals π ◦ jk(vm) in the point m.

We now show that ∇ : Γ(Jk(TM)) → Γ(TP/G) is a homomorphism of Lie
algebras. First of all, the restriction of ∇ to jk(Γ(TM)) is a homomorphism. In-
deed, [∇(jk(v)),∇(jk(w))] = [σ(v), σ(w)], which equals σ([v, w]) because σ is a
homomorphism. This in turn is just ∇(jk([v, w])), so that [∇(jk(v)),∇(jk(w))] =
∇([jk(v), jk(w)]).

Secondly, its restriction to Γ(Jk,0(TM)) is a homomorphism. If τx = jkx(vx) and
υx = jkx(wx) are sections of Jk,0(TM), then ∇τ and ∇υ are in the kernel of the
anchor. This implies that their commutator at a certain point m depends only on
their values at m, not on their derivatives. To find the commutator at m, we may
therefore replace jkx(vx) by jkx(vm) and likewise jkx(wx) by jkx(wm). We then see
that [∇jkx(vx),∇jkx(wx)]m = [∇jkx(vm),∇jkx(wm)]m. We already know that this is
∇(jkx([vm, wm]))m, so that [∇(τ),∇(υ)]m = ∇([τ, υ])m.

The last step is to show that ∇ respects the bracket between jk(Γ(TM)) and
Γ(Jk,0(TM)). Again, let jk(v) be an element of the former and τx = jkx(wx) of the
latter. Considered as an equivariant vector field on P , the vertical vector field ∇(τ)
takes the value σp(wπ(p)) at p ∈ P . Then [∇(jk(v)),∇(τ)] is the Lie derivative
along σ(v) of the vertical vector field σp(wπ(p)). Differentiating along σ(v) is done
by considering (p, p′) 7→ σp(wπ(p′)), differentiating w.r.t. p and p′ separately, and
then putting p = p′. This results in [σ(v), σp(wπ(p))]p0 = [σ(v), σ(wπ(p0))]p0 +
σ(dv|π(p0)(x 7→ wx)), which is in turn the same as σp0([v, wπ(p0)] + dv|π(p0)(m 7→
wm))), so that [∇(jk(v)),∇(τ)] = ∇([jk(v), τ ]) as required. Therefore ∇ must be a
homomorphism on all of Γ(Jk(TM)).

Definition 3.5. A connection ∇ of a Lie algebroid A on a vector bundle E is by
definition a bundle map of A into DO1(E), the first order differential operators on
E, which respects the anchor, cf. [13, § III.5]. If moreover it is a morphism of Lie
algebroids, then the connection is called flat. A flat connection of A on E is also
called a representation of A on E.

This explains our notation for the map ∇ induced by σ. Given a representation
V of G, one may form the associated vector bundle E := P ×G V . The map ∇ then
defines a Lie algebroid homomorphism of Γ(Jk(TM)) into the Lie algebroid of first
order differential operators on E. (Simply consider a section of E as a G-equivariant
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function P → V , and let ΓG(TP ) act by Lie derivative.) By definition, this is a flat
connection, or equivalently a Lie algebroid representation.

3.5. Infinitesimally natural transitive Lie algebroids. The above is readily
generalized to transitive Lie algebroids L → M , whose anchor ρ : L → TM is
surjective. The kernel K ⊆ L of ρ is then a Lie algebroid K → M with trivial
anchor. In particular, every fibre Km has a Lie algebra structure. The anchor gives
rise to the exact sequence of Lie algebras

0→ Γc(K) −→ Γc(L)
ρ−→ Γc(TM)→ 0 . (5)

Definition 3.6. An infinitesimally natural transitive Lie algebroid is a transitive
Lie algebroid L→M with a Lie algebra homomorphism σ : Γc(TM)→ Γc(L) that
splits the exact sequence (5) of Lie algebras.

Remark. Every infinitesimally natural principal bundle P gives rise to an infinites-
imally natural structure on the Atiyah Lie algebroid TP/G → M . However, these
are not the only examples of infinitesimally transitive Lie algebroids; the present
setting also covers transitive Lie algebroids which are not integrable.

Theorem 3.7. Let L → M be an infinitesimally natural transitive Lie algebroid.
Then the splitting σ factors through a Lie algebroid homomorphism

∇ : Jk(TM)→ L ,

that is, σ(v)m = ∇(jkmv) for all m ∈ M and v ∈ Γc(TM). The order k of the
differential operator σ satisfies k ≤ rank(K), except when n = 1 and rank(K) = 2,
in which case k ≤ 3.

Proof. Let Am ⊆ Γc(TM) be the subalgebra of compactly supported vector fields
v that vanish at the point m ∈ M . Since vm = ρ ◦ σ(v)m vanishes for v ∈ Am, we
have σ(v)m ∈ Km. The map σ̃m : Am → Km defined by σ̃m(v) = σ(v)m is a Lie
algebra homomorphism. Consider its restriction σ̂m : Γc(T (M−{m}))→ Km. Since
Km is finite dimensional, its kermel Ker(σ̂m) is an ideal of finite codimension. By
Proposition 1, the maximal ideals of Γc(T (M−{m})) are all of infinite codimension.
It follows that the kernel of σ̂m is the full Lie algebra Γc(T (M − {m})), and that
σ̂m = 0. Since σ(v)m = 0 if m /∈ Supp(v), the map σ defines a morphism from the
sheaf of smooth sections of TM to the sheaf of smooth sections of L. By Peetre’s
Theorem, it is a differential operator of locally finite order. If we choose local
coordinates x1, . . . xn around m, then the Lie algebra homomorphism σ̃m : Am →
Km corresponds to a Lie algebra homomorphism Vecn → Km. The global bound
on k follows from Lemma 2.4. This shows that σ is a differential operator of order
k, and factors through a vector bundle map ∇ : Jk(TM)→ L. The proof that ∇ is
a morphism of Lie algebroids is analogous to that of Lemma 3.4.

4. The classification theorem. We use the fact that ∇ : Jk(TM) → TP/G
is a homomorphism of Lie algebroids to find a corresponding homomorphism of
Lie groupoids. This will give us the desired classification of infinitesimally natural
principal fibre bundles.

4.1. Integrating a homomorphism of Lie algebroids. The following theo-
rem states that homomorphisms of Lie algebroids induce homomorphisms of Lie
groupoids if the initial groupoid is source-simply connected.
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Theorem 4.1 (Lie II for algebroids). Let G and H be Lie groupoids, with corre-
sponding Lie algebroids A and B respectively. Let ∇ : A→ B be a homomorphism
of Lie algebroids. If G is source-simply connected, then there exists a unique homo-
morphism G→ H of Lie groupoids which integrates ∇.

Remark. The result was probably announced first in [22], and proofs have appeared
e.g. in [16] and [14]. We follow [4], which the reader may consult for details.

Sketch of proof. The idea is that ∇ allows one to lift piecewise smooth paths of
constant source in G to piecewise smooth paths of constant source in H. Source-
preserving piecewise smooth homotopies in G of course do not affect the endpoint of
the path in H, so that, if G is source-simply connected, one obtains a map G→ H
by identifying elements g of G with equivalence classes of source preserving paths
from ids(g) to g. One checks that this is the unique homomorphism of Lie groupoids
integrating ∇.

Unfortunately, Gk(M) is not always source connected, let alone source-simply
connected. Recall that G+k(M) is the maximal source-connected Lie subgroupoid
of Gk(M), and therefore has the same Lie algebroid Jk(TM).

We define G̃+k(M) to be the set of piecewise smooth, source preserving paths
in G+k(M) beginning at an identity, modulo piecewise smooth, source preserving
homotopies. It is a smooth manifold because G+k(M) is, and a Lie groupoid under
the unique structure making the projection on the endpoint G̃+k(M) → G+k(M)
into a morphism of groupoids. Explicitly, the multiplication is given as follows. If
g(t) a path from idm to g(1)m′m, and h(t) a path from idm′ to h(1)m′′m′ , then the
product [h]◦ [g] is [(h · g(1))∗ g], where the dot denotes groupoid multiplication and
the star concatenation of paths. The proof of associativity is the usual one.

Note that the source fibre G̃+k(M)∗,m is precisely the universal cover of the
connected component of the kth order frame bundle G+k(M)∗,m = F+k(M). In
order to cut down on the subscripts, we introduce new notation for G̃+k(M)∗,m
and its structure group G̃+k(M)m,m.

Definition 4.2. We denote the universal cover of the connected component of the
kth order frame bundle by F̃+k(M), and its structure group by G(k,M).

It is an infinitesimally natural bundle because F+k(M) is. Note that G(k,M) is
not the universal cover of G+k

m,m(M), but rather its extension by π1(F k(M)). As
π1(F k(M)) = π1(F (M)), we have the exact sequence of groups

1→ π1(F (M))→ G(k,M)→ G+k
m,m(M)→ 1 .

The group G+k
m,m(M) in turn is isomorphic to G+k

0,0(Rn) if M is orientable, and to
Gk0,0(Rn) if it is not.

4.2. Classification. Now that we have found a source-simply connected Lie grou-
poid with Jk(TM) as Lie algebroid, we can finally apply Lie’s second theorem for
algebroids to obtain the following.

Proposition 6. If σ splits the exact sequence of Lie algebras (2), then it induces a
morphism of groupoids exp∇ : G̃+k → (P × P )/G such that the following diagram
commutes, with expm the flow along a vector field starting at idm.
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Γ(TM) Γ(TP/G)

Γ(Jk(TM))

(P × P )/G

G̃+k(M)

jk exp∇∇

σ expm

expm

Proof. As G̃+k(M) is a source-simply connected Lie groupoid with Jk(TM) as Lie
algebroid, we can apply Lie’s second theorem for algebroids.

It is perhaps worthwhile to formulate this for general transitive Lie groupoids,
as it clarifies the link with the recent work of Grabowski, Kotov and Poncin [8].
For the Atiyah algebroid A of a principal fibre bundle with a connected, reductive
structure group, they classify Lie algebra isomorphisms of Γ(A) in terms of the Lie
algebroid isomorphisms of A.

Theorem 4.3. Let G ⇒M be a transitive Lie groupoid, with Lie algebroid A. The
kernel of the anchor K is then a bundle of Lie algebras with fixed dimension d.
Suppose that the sequence

0→ Γ(K)→ Γ(A)→ Γ(TM)→ 0 ,

with K the kernel of the anchor, splits as a sequence of Lie algebras. Then this
splitting is induced by a morphism of Lie algebroids ∇ : Jk(TM) → A, and there
is a corresponding morphism of Lie groupoids G̃+k(M) → G. The number k is at
most 3 if d is 2 and dim(M) = 1, and at most d otherwise.

Sketch of proof. Using Theorem 3.7, this is analogous to the case of the gauge
groupoid.

We have paved the way for a classification of infinitesimally natural principal
fibre bundles.

Theorem 4.4. Let π : P →M be an infinitesimally natural principal G-bundle with
a splitting σ of (2). Then there exists a group homomorphism ρ : G(k,M) → G

such that the bundle P is associated to F̃+k(M) through ρ, i.e.

P ' F̃+k(M)×ρ G .

Moreover, σ is induced by the canonical splitting for F̃+k(M).

Proof. Fix a base point m onM . The map exp∇ yields a homomorphism of groups
ρ : G̃+k

m,m(M)→ ((P×P )/G)m,m, the latter isomorphic toG, the former toG(k,M).
The map G̃+k

∗,m(M)×ρ((P×P )/G)m,m → ((P×P )/G)∗,m that takes (gm′,m, pm,m)
to (exp∇(gm′,m)) · pm,m is well defined and injective because two pairs share the
same image if and only if they are equivalent modulo G̃+k

m,m(M). It is also sur-
jective and G-equivariant, and hence an isomorphism of principal G-bundles. As
((P × P )/G)∗,m ' P and G̃+k

∗,m(M) ×ρ ((P × P )/G)m,m ' F̃+k(M)×ρ G, the
equivalence is proven. The remark on σ follows from the construction.

This classifies the infinitesimally natural principal fibre bundles. They are all
associated (via a group homomorphism) to the bundle G̃+k

∗,m = F̃+k(M).
The classification of natural principal fibre bundles is now an easy corollary.

The following well known result ([20, 28]) states that they are precisely the ones
associated to Gk∗,m(M) = F k(M).
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Corollary 2. Let π : P → M be a natural principal G-bundle with local splitting
Σ of (1). Then P is associated to F k(M). That is, there exists a homomorphism
ρ : Gk0,0(Rn)→ G such that

P ' F k(M)×ρ G .
Moreover, Σ is induced by the canonical one for F k(M).

Proof. As the homomorphism Σ : Diffc(M)→ Autc(P ) is local, it induces a homo-
morphism of groupoids Σ : Germ(M) → (P × P )/G, with Germ(M) the groupoid
of germs of diffeomorphisms of M . We need but show that Σ factors through
jk : Germ(M)→ Gk(M) for some k > 0, cf. the proof of theorem 4.4.

The Lie algebra homomorphism σ : Γc(TM) → TP/G defined by σ(v) :=
∂t|0Σ(exp(tv)) is local by assumption, and according to proposition 3 it factors
through the k-jets for some k > 0. It suffices to show that Σ(φ)m,m = idm,m for
any φ ∈ Germm,m(M) that agrees with the identity to kth order at m.

In local co-ordinates {xi}, we write φi(x) = xi + vi(x), where v : Rn → Rn van-
ishes to kth order. We define the one parameter family of germs of diffeomorphisms
φit(x) := xi+ tvi(x). Then ∂t|τΣ(φτ )−1Σ(φt)m = 0, as it equals σm(∂t|τφ−1τ φt), the
image of a vector field that vanishes to order k at m. Therefore t 7→ Σ(φt)m,m is
constant, and Σ(φ)m,m = idm,m as required.

To summarise: natural principal fibre bundles are associated to a higher frame
bundle, whereas infinitesimally natural principal fibre bundles are associated to the
universal cover of a higher frame bundle.

4.3. The Bundle F̃+k(M). The above considerations prompt a few remarks on
the universal cover of the connected component of the frame bundle F̃+k(M), and
on its (disconnected) structure group G(k,M). Recall that they are just the source
fibre G̃+k

∗,m(M) and isotropy group G̃+k
m,m(M) of G̃+k(M).

4.3.1. General manifolds. If π1(M) is the homotopy groupoid of M , define the
homomorphism of groupoids Pr : π1(M)m′,m → π0(Gm′,m(M)) by lifting a path in
M to a path in Gk(M) with fixed source, and taking the connected component of
its end point. It makes

G̃+k
m′,m(M)

π1(M)m′,m

Gkm′,m(M)

π0(Gkm′,m(M))

into a commutative diagram.
Define (Gk(M)×π1(M))Pr to be the groupoid of pairs (g, [f ]) such that π0(g) =

Pr([f ]). If M is orientable, this is simply G+k(M)× π1(M). The map of groupoids
G̃+k(M) → (Gk(M) × π1(M))Pr is well defined and surjective. It restricts to a
covering map of principal fibre bundles

τ : G̃+k
∗,m(M)→ (Gk(M)× π1(M))Pr

∗,m . (6)

The kernel of the corresponding cover of groups is precisely i∗π1(G+k
m,m(M)), with

i : G+k
m,m(M)→ G+k

∗,m(M) the inclusion. Note that i∗ has a nonzero kernel precisely
when a vertical loop is contractible in G+k

∗,m(M), but not by a homotopy which stays
inside the fibre. Denoting π1(G+k

m,m(M)) by Z, we obtain the exact sequence

1→ Z/Ker(i∗)
i∗→ G̃+k

m,m(M)
τ→ (Gk(M)× π1(M))Pr

m,m → 1 . (7)
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A moment’s thought reveals that this extension is central: if g(t) is a path in
G+k
m,m(M) and h(t) one in G+k

∗,m(M), then both h ∗ (i ◦ g) and (i ◦ g) · h(1) ∗ h can
be homotoped into t 7→ h(t)g(t).

We may as well restrict attention to the case k = 1, in whichG1
∗,m(M) is the frame

bundle F (M). Indeed, as G+k
∗,m(M)→ G1,+

∗,m(M) has contractible fibres, G̃+k
∗,m(M)

is just the pullback of G+k
∗,m(M) along G̃1,+

∗,m(M)→ G1,+
∗,m(M).

4.3.2. Orientable manifolds. For orientable manifolds, the situation simplifies. If
we identify the connected component of G1

m,m(M) with GL+(Rn), we obtain a
homomorphism i∗ of G̃L+(Rn) into G̃1,+

m,m(M). There is a second homomorphism
π1(F (M))→ G̃1,+

m,m(M). Their images intersect in Z/Ker(i∗), and commute by an
argument similar to the one on centrality of (7). The group (G̃L+(Rn)×π1(F (M)))Z
is defined as the quotient of G̃L+(Rn) × π1(F (M)) by the equivalence relation
(gz, h) ∼ (g, zh), and can be regarded as a subgroup of G̃1,+

m,m(M). Note that if
Ker(i∗) is nonzero, the above equivalence relation sets it to 1.

If M is orientable, we may restrict our attention to F+(M), which then has
connected fibres. Any path in F+(M) which starts and ends in the same fibre can
therefore be obtained by combining a closed loop with a path in GL+(Rn). For
orientable manifolds, we thus have G̃1,+

m,m(M) ' (G̃L+(Rn)× π1(F+(M)))Z , and in
the same vein

G(k,M) ' (G(k,Rn)× π1(F+(M)))Z . (8)

Remark. Note that an infinitesimally natural bundle P is natural, i.e. associated to
F k(M) rather than F̃ k(M), if and only if the group homomorphism ρ : G(k,M)→
G of Theorem 4.4 is trivial on π1(F+(M)).

4.3.3. Spin manifolds. Let M be an orientable manifold, equipped with a pseudo-
Riemannian metric g of signature η ∈ Bil(Rn). Then

OF+
g := {f ∈ F+(M) | f∗g = η}

is the bundle of positively oriented orthogonal frames. A spin structure is then by
definition an S̃O(η)-bundle4 Q over M , plus a map u : Q → OF+

g such that the
following diagram commutes, with κ the canonical homomorphism S̃O(η)→ SO(η).

S̃O(η) SO(η)
xx

Q OF+
g

M

κ

u

4 There is a subtlety here. Suppose η has indefinite signature, say (3, 1). The group SO(3, 1)
has 2 connected components, so that a universal cover does not exist. As it is a subgroup of
the simply connected group GL+(R4), we simply define S̃O(3, 1) to be κ−1(SO(3, 1)) with κ :

G̃L+(R4) → G̃L+(R4) the covering map. Thus S̃O(3, 1) is, perhaps surprisingly, not isomorphic
to the 2-component spin group Spin(3, 1). Indeed, if T is time inversion and P is the inversion
of 3 space co-ordinates, then (PT )2 = 1 in S̃O(3, 1), as opposed to (PT )2 = −1 in Spin(3, 1).
Therefore π−1(±1) ' Z/2Z× Z/2Z in S̃O(3, 1), whereas π−1(±1) = Z/4Z in Spin(3, 1) (see [3]).

Of course the connected component of unity of S̃O(3, 1) and that of Spin(3, 1) are both isomor-
phic to SL(C2), so that none of this is relevant if M is both orientable and time-orientable, i.e. if
the structure group of the frame bundle reduces to SO↑(3, 1).
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A manifold is called spin if it admits a spin structure.
Define Q̂ := Q×

S̃O(η)
G̃L+(Rn), and let us again denote the induced map Q̂ →

F+(M) by u. As any cover of F+(M) by a G̃L+(Rn)-bundle can be obtained in this
way, there is a 1:1 correspondence between spin covers of OF+

g (M) and F+(M). In
particular, whether or not M is spin does not depend on the metric.

The Serre homotopy exact sequence gives rise to the exact sequence

1→ Z/Ker(i∗)→ π1(F+(M))→ π1(M)→ 1 . (9)

The following proposition is well known.

Proposition 7. A spin structure exists if and only if i∗ : Z → π1(F+(M)) is injec-
tive and (9) splits as a sequence of groups. If spin structures exist, then equivalence
classes of spin covers correspond to splittings of (9).

Proof. See for example [15]. Our criterion for M to be spin is equivalent to the
vanishing of the second Stiefel-Whitney class, see e.g. [11].

Remark. In terms of group cohomology, one can consider the sequence (9) as a
cohomology class [ω] in H2(π1(M), Z/Ker(i∗)). Spin bundles exist if and only if
both Ker(i∗) and [ω] are trivial, in which case they are indexed by H1(π1(M), Z).

If a spin structure exists, then F̃+ is simply the pullback along the universal
cover M̃ →M of Q̂→M . The picture then becomes

u∗
(
F+k(M)

)

Q̂

F̃+k(M) F+k(M)

F̃+(M) F+(M)

MM̃

u

with each of the three squares a pullback square.

5. More general fibre bundles. In this section, we will prove a version of the-
orem 4.4 for fibre bundles which are not principal. It would however be overly
optimistic to expect an analogue of of theorem 4.4 to hold for arbitrary smooth
fibre bundles, so we will restrict ourselves to those bundles that carry a sufficiently
rigid structure on their fibres, such as vector bundles.

5.1. Structured fibre bundles. We start by making this statement more precise.
The following definition is modelled after the definition of a vector bundle, to which
it reduces in the case that C is the category of vector spaces.

Definition 5.1. Let C be a category with a faithful functor F to the category of
manifolds. Let C0 be an object in C such that Aut(C0) is a finite dimensional Lie
group, and F induces a smooth action on F0 := F(C0).

Then a ‘structured fibre bundle’ with fibre C0 is a smooth fibre bundle π : F →
M with generic fibre F0 = F(C0), and for each m ∈ M a choice of structure
Cm ∈ ob(C) such that F(Cm) = π−1(m). We also require that for each m ∈ M ,
there exist a trivialisation φ : π−1(U) → F0 × U over some neighbourhood U of
m which is structure preserving in the sense that for each x ∈ U , there exists an
isomorphism φ̂x : Cx → C0 such that F(φ̂x) = φ|π−1(x).
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Every vector bundle is associated to its frame bundle. We generalise this to
structured fibre bundles.

Proposition 8. Let π : F → M be a structured fibre bundle with fibre C0. Then
Fr(F ) :=

⊔
x∈M Iso(C0, Cx) is a smooth principal fibre bundle over M with structure

group Aut(C0), and F is isomorphic to Fr(E)×Aut(C0) F0 as a smooth fibre bundle.

Proof. If φ is a local trivialisation of F over U , then the bijection

φ̂ :
⊔
x∈U

Iso(C0, Cx)
∼−→ U ×Aut(C0)

given by φ̂ : αx 7→ (x, φ̂x ◦ αx) is an Aut(C0)-equivariant local trivialisation of
Fr(E). We need to prove that for any two local trivialisations φ and ψ over U and
V respectively, the equivariant bijection

ψ̂ ◦ φ̂−1 : U ∩ V ×Aut(C0)
∼−→ U ∩ V ×Aut(C0)

is a smooth map, or equivalently that the map γ̂ : U ∩ V → Aut(C0) defined by
γ̂(x) := pr2ψ̂φ̂

−1(x, id) is smooth. Once we have established this, smoothness of
φ̂◦ψ̂−1 will imply that ψ̂◦ φ̂−1 is a diffeomorphism, that Fr(F ) is a smooth principal
fibre bundle, and that the map Fr(F )×Aut(C0) F0 → F given by [α, f ] 7→ F(α)f is
an isomorphism of smooth fibre bundles.

The fact that γ̂ is continuous w.r.t. the topology of pointwise convergence on
Aut(C0) (induced by its action on F0) follows directly from the fact that ψ ◦ φ−1 :

U ∩ V × F0
∼−→ U ∩ V × F0 is a homeomorphism.

The action of Aut(C0) on F0 is smooth by assumption, and effective because F
is faithful. We can therefore choose (f1, . . . , fk) ∈ F0

k with k = dim(Aut(C0)) such
that the map Lie(Aut(C0))→ Tf1F0× . . .×TfkF0 is injective. On a neighbourhood
N ⊂ Aut(C0) of the identity, the map A : Aut(C0) → F k0 : α 7→ (α(f1), . . . , α(fk))
is thus a diffeomorphism onto its image, and if Rβ is right multiplication by β ∈
Aut(C0), the same goes for A ◦ Rβ : Rβ−1(N) → A(N). Since γ̂ is continuous, we
can choose W ⊂ U ∩ V and β ∈ Aut(C0) such that γ̂(x) ∈ Rβ−1(N) for all x ∈W .
Since the map A ◦Rβ ◦ γ̂ : W → A(N) is given by

x 7→ (pr2ψ ◦ φ−1(x,F(β)(f1)), . . . ,pr2ψ ◦ φ−1(x,F(β)(fk))) ,

it is certainly smooth. Since A ◦ β−1 is a diffeomorphism, γ̂ is smooth as well.

If π : F → M is any smooth fibre bundle, then an automorphism of π is by
definition a diffeomorphism α of F such that π(f) = π(f ′) implies π(α(f)) =
π(α(f ′)). It is called vertical if it maps each fibre to itself.

Definition 5.2. An automorphism of a structured fibre bundle F → M is an
automorphism of the smooth bundle such that for every m ∈ M , there exists an
isomorphism α̂m : Cm → Cm′ such that F(α̂m) = α|π−1(m). The group of automor-
phisms is denoted AutC(F ).

One can then construct a sequence of groups

1→ AutCc (F )V → AutCc (F )→ DiffFc (M)→ 1 (10)

and its corresponding exact sequence of Lie algebras

0→ ΓC
c (TF )V → ΓC

c (TF )P → Γc(TM)→ 0 , (11)
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where ‘V ’ is for vertical, ‘P ’ for projectable, and c again stands for ‘0 outside a
compact subset of M ’. The proof of the following corollary of theorem 4.4 is now a
formality.

Corollary 3. Let π : F → M be a structured fibre bundle with fibre C0 such
that (11) splits as a sequence of Lie algebras. Then there exists a homomorphism
ρ : G(k,M)→ Aut(C0) such that

F ' F̃+k(M)×ρ F0 .

Proof. Using proposition 8, one constructs a natural isomorphism from AutC(F ) to
Aut(Fr(F )) under which the vertical subgroups of the two correspond, so that the
exact sequence (10) is isomorphic to (1), and therefore (11) to (2). In view of the
isomorphism F ' Fr(F ) ×Aut(C0) F0, we can apply theorem 4.4 to Fr(F ) in order
to substantiate our claim.

5.2. Vector bundles. We specialise to the case of vector bundles. These are pre-
cisely structured fibre bundles in the category of finite dimensional vector spaces.

The exact sequence of Lie algebras (11) for a vector bundle E with fibre V is
then

1→ DO0
c(E)→ DO1

c(E)→ Γc(TM)→ 0 , (12)

where DO1
c(E) is the Lie algebra of compactly supported 1st order differential

operators on Γ(E), and DO0
c(E) is the ideal of 0th order ones, that is to say

DO0
c(E) ' Γc(E ⊗ E∗).
Corollary 3 then says that (12) splits as a sequence of Lie algebras if and only if

there is a representation ρ of G(k,M) on V such that E ' F̃+k(M)×ρ V .
But thanks to the fact that all finite dimensional representations of the universal

cover of GL+(Rn) factor through GL+(Rn) itself, we can even say something slightly
stronger.

Proposition 9. Let E →M be a vector bundle for which (12) splits as a sequence
of Lie algebras. Then there exists a representation ρ of the group (Gk×π1(M))Pr

m,m

on V such that
E ' (Gk(M)× π1(M))Pr

∗,m ×ρ V .

Remark. If M is orientable, this reads E ' π∗F+k(M) ×ρ V . In this expression,
π∗F+k(M) is the pullback of F+k(M) along π : M̃ →M , considered as a principal
G+k

0,0(Rn)× π1(M)-bundle over M .

Proof. Consider the restriction of the map τ in equation (6) to the group G̃+k
m,m(M).

In order to prove the proposition, we need but show that its kernel Z acts trivially
on V . For k = 0, this is clear.

If k is at least 1, the homomorphism G̃L+(Rn)→ G̃+k
m,m(M) makes V into a finite

dimensional representation space for G̃L+(Rn). But it is known (see [10, p. 311])
that all finite dimensional representations of its cover factor through GL+(Rn) itself.
This implies that the subgroup Z which covers the identity must act trivially on V ,
and we may consider

G̃+k
∗,m(M)/Z ' (Gk(M)× π1(M))Pr

∗,m

to be the underlying bundle, as announced.
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This reduces the problem of classifying vector bundles with split sequence (12)
to the representation theory of (Gk × π1(M))Pr

m,m.
The above extends a result [28] of Terng, in which she classifies vector bundles

which allow for a local splitting of the sequence of groups (10). It is an extension
first of all in the sense that we prove, rather than assume, that the splitting is local.
Secondly, we have shown that in classifying vector bundles with split sequence (12)
of Lie algebras rather than groups, one encounters only slightly more. Intuitively
speaking, the extra bit is the representation theory of π1(M). We refer to [28] for
a thorough exposition of the representation theory of Gk0,0(Rn).

6. Flat connections. In this section, we investigate splittings that come from a
flat equivariant connection on a principal G-bundle P → M . We will prove that if
the Lie algebra g of G does not contain sl(Rn) as a subalgebra, then the sequence
of Lie algebras (2) splits if and only if P admits a flat equivariant connection. In
other words, the sequence (2) then splits as a sequence of Lie algebras if and only
if it splits as a sequence of Lie algebras and C∞(M)-modules.

Note that this is certainly not the case for general groups G. The frame bundle
for example always allows for a splitting of (2), but usually not for a flat connection.

Remark. For general Lie groups G, Lecomte has shown ([12, Thm. 3.1]) that the
existence of a splitting is obstructed by the image of the Chern-Weil homomorphism
under the map from de Rham cohomology to the Lie algebra cohomology of Γ(TM)
with values in C∞(M). Combined with results of Shiga–Tsujishita [26], this implies
that the characteristic classes of P → M are contained in the ideal generated by
the Pontrjagin classes of M .

6.1. Lie algebras that do not contain sl(Rn). Although lemma 2.4 exhibits σ
as a differential operator of finite order, the bound on the order is certainly not
optimal. With full knowledge of the Lie algebras at hand, sharper restrictions can
be put on the kernel of σ. In particular, if g does not contain sl(Rn), there is only
a single relevant ideal, and σ is of order at most 1. For notation, see section 2.2.

Lemma 6.1. Let n = 1, and let g be such that it does not contain two nonzero
elements such that [X,Y ] = Y . Or let n ≥ 2, and let g be such that it does not
admit sl(Rn) as a subalgebra. Then the kernel of the homomorphism f̌m : Vecn → g
contains {v ∈ Vecn |Divm(v) = 0}.
Proof. We start with the case n = 1. Again, we note that the only ideals of
Vec1 = Span{xk∂x | k ≥ 1} are Span{x2∂x, xk∂x | k ≥ 4}, and for each N ≥ 1 an
ideal Span{xk∂x | k ≥ N}. The corresponding quotients all contain two elements X
and Y with [X,Y ] = Y , except the ideals corresponding to N = 1, 2. This means
that also g, containing Vec1/ ker(f̌m) as the image of f̌m, will possess X and Y such
that [X,Y ] = Y unless the kernel of f̌m contains the ideal Span{xk∂x | k ≥ 2} =
{v ∈ Vec1 |Divm(v) = 0}.

Now for n ≥ 2. Under the identification Vec0n ' gl(Rn) given by xi∂j 7→ eij , the
Euler vector field is the identity 1 and Divm becomes the trace. As ker(f̌m)0 is an
ideal in gl(Rn), it can be either 0, R1, sl(Rn) or R1 ⊕ sl(Rn). In the former two
cases, Im(f̌m) ' Vecn/ ker(f̌m), and hence g, would contain sl(Rn) as a subalge-
bra, contradicting the hypothesis. Hence sl(Rn) ⊆ ker(f̌m). If we now show that
[Vecn, sl(Rn)] = sl(Rn)

⊕∞
k=1 Veckn, the proof will be complete.

Let i 6= j. We then have [xi∂j , xjx
~α∂j ] = (αj + 1)xix

~α∂j , showing that xix~α∂j ∈
[Vecn, sl(Rn)]. The only basis elements not of this shape are of the form xkj ∂j . But



218 BAS JANSSENS

[xj∂i, xix
k−1
j ∂j ] = xkj ∂j−xix

k−1
j ∂i. If k ≥ 2, the latter part was just shown to be in

[Vecn, sl(Rn)], so that also xkj ∂j ∈ [Vecn, sl(Rn)]. If k = 1, the elements xj∂j −xi∂i
join xi∂j to form a basis of sl(Rn).

This rather limits the possibilities. Not only can we restrict to first order, but
also the Lie algebroid map ∇ : J1(TM) → TP/G vanishes on the trace-zero jets
Km = { j1m(v) ∈ J1(TM) | v(m) = 0 and tr(v) = 0 }, so that it factors through the
‘trace Lie algebroid’ trm(M) := J1

m(TM)/Km.
This in turn is the Lie algebroid of the ‘determinant groupoid’ Det(M). An ele-

ment [α]m′,m of Det(M)m′,m is by definition an equivalence class of diffeomorphisms
mapping m to m′, with α ∼ β if and only if Det(β−1α) = 1.

As [α]m′,m identifies ∧n(T ∗mM) with ∧n(T ∗m′M), the source fibre Det(M)∗,m is
isomorphic to the determinant line bundle ∧n(T ∗M)→M . Its5 connected compo-
nent ∧n,+(T ∗M) is the the bundle of positive top forms if M is orientable, and the
whole bundle otherwise.

Its universal covering space is the bundle ∧n,+(T ∗M̃) of positive top forms on M̃ .
Indeed, M̃ is always orientable, regardless whetherM is. This means that ∧n(T ∗M̃)

is a trivial bundle, and that its connected component ∧n,+(T ∗M̃) ' M̃ × R+ is
simply connected. The covering map is induced by the map M̃ → M . This leads
to the following version of theorem 4.4.

Proposition 10. Let P be a principal G-bundle over an n-dimensional manifold
M . Let G be such that its Lie algebra g does not contain sl(Rn) if n > 1, or
[X,Y ] = Y if n = 1. Then there is a homomorphism π1(M)× R+→G associating
P to the principal π1(M)× R+-bundle ∧n,+(T ∗M̃)→M .

P ' ∧n,+(T ∗M̃)×π1(M)×R+ G .

We may even classify the possible splittings.

Corollary 4. Under the hypotheses of proposition 10, any Lie-algebra homomor-
phism σ : Γc(TM)→ Γc(TP )G which splits the sequence of Lie algebras (2) can be
written

σ = ∇µ + ΛDivµ , (13)

where ∇µ is a flat equivariant connection on P , and Λ a section of ad(P ) which is
constant w.r.t. the connection induced on ad(P ) by ∇µ.

Remark. In particular, this shows that there exists a flat connection which splits
(2), even though most splittings are not flat connections.

Proof. First, we prove the case P = ∧n,+(T ∗M̃). Pick a nonzero (pseudo-) density µ
on M . This induces an honest density µ̃ on M̃ , which in turn identifies ∧n,+(T ∗M̃)

with M̃ × R+. The local trivialisations of ∧n,+(T ∗M̃)→ M̃ and M̃ →M combine
to locally trivialise ∧n,+(T ∗M̃)→M . This yields a flat equivariant connection ∇µ
on ∧n,+(T ∗M̃), which annihilates µ̃.

The splitting σ is uniquely determined by the action of σ(v) on local sections ν̃,
which reads σ(v)(ν̃) = π∗ ◦ Lv ◦ π∗−1ν̃, where π is the map from M̃ to M . If we

5An isomorphism ∧n(T ∗M) ' Det(M)∗,m is only given after a choice of λ0 ∈ ∧n(T ∗mM). This
determines the connected component.
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define the divergence w.r.t. µ by the requirement that the Lie derivative Lvµ equal
Divµ(v)µ, then we have

σ(v)(fµ̃) = π∗(Lv(fµ))

= π∗(v(f)µ+ Divµ(v)fµ)

= v(f)µ̃+ Divµ(v)fµ̃

= ∇µv (fµ̃) + Divµ(v)fµ̃ .

This shows that σ(v) = ∇µv +ΛDivµ(v), with Λ = ∂r, the equivariant vertical vector
field defined by the action of R+ on ∧n(T ∗M̃). (Equivariant vertical vector fields on
P correspond to sections of ad(P ).) The general case follows by proposition 10.

6.2. Lie algebra cohomology. If we specialise to the case of a trivial bundle over
an abelian group G, we find ourselves in the realm of Lie algebra cohomology. The
continuous cohomology of the Lie algebra of vector fields with values in the functions
has already been unravelled in all degrees [6]. Corollary 5 describes this cohomology
only in degree 1, but now with all cocycles rather than just the continuous ones.

Corollary 5. Let HLA denote Lie algebra cohomology and HdR de Rham cohomol-
ogy. Let g be abelian, and consider the representation C∞c (M, g) of Γc(TM) where
a vector field v acts by the Lie derivative Lv. Then

H1
LA(Γc(TM), C∞c (M, g)) ' H1

dR(M, g)⊕ g .

Proof. Consider the trivial bundle M × G → M over an abelian Lie group G,
which comes equipped with a flat connection ∇0, which acts as Lie derivative.
Note that abelian g certainly satisfy the conditions of propositions 10 and 4. View
Γc(ad(P )) ' C∞c (M, g) as a representation of Γc(TM), and consider its Lie algebra
cohomology. An n-cochain is an alternating linear map Γc(TM)n → C∞c (M, g).
For f1 ∈ C1, closure δf1 = 0 amounts to

Lvf1(w)− Lwf1(v)− f1([v, w]) = 0 .

Due to this cocycle condition, σ = ∇0 + f1 is once again a Lie algebra homo-
morphism splitting π∗. According to corollary 4, it must therefore take the shape
σ = ∇µ + ΛDivµ, where Λ ∈ g is constant. One can write ∇µ = ∇0 + ω1 for some
closed 1-form ω1, so that f1 = ω1 + ΛDivµ. This classifies the closed 1-cocycles.

Exact 1-cocycles satisfy f1(v) = δf0(v) = Lvf0 = df0(v), with f0 a 0-cocycle,
that is an element of C∞(M, g).

Note that a change of density µ′ = ehµ alters f1 by a mere coboundary Λdh, so
that the choice of µ is immaterial. The class of ω1 + ΛDivµ modulo δC0 is thus
determined by [ω1] ∈ H1

dR(M, g) and Λ ∈ g.

Continuity turns out to be implied by the closedness condition. A similar situa-
tion was encountered by Takens in [27], when proving that all derivations of Γc(TM)
are inner, i.e. H1

LA(Γc(TM),Γc(TM)) = 0.
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