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Introduction

Background of the Thesis

Hopf Algebroids
The main objects of study in this thesis are generalised symmetries and their associated
(co)homologies within the realm of noncommutative geometry. Some parts of the back-
ground picture for the notion of generalised symmetries in noncommutative geometry are
summarised in the following table (see further down for a similar table for the respective
(co)homology theories).

Differential Algebraic Noncommutative
Geometry Geometry Geometry

Spaces Manifolds Commutative Algebras Noncommutative Algebras
(, . . . , Schemes) (, . . . , Spectral Triples)

Symmetries Lie Groups Algebraic Groups, Hopf Algebras
Group Schemes

Generalised Lie Groupoids Groupoid Schemes
Symmetries and Pseudogroups ?

We now explain some of the entries of this table.

Noncommutative Geometry
The main idea of noncommutative is to study ‘spaces’ by means of their algebras of (continu-
ous, smooth, etc.) functions. The novelty stems from the fact that these algebras are allowed
to be noncommutative. In a certain sense, noncommutativity may be seen as a manifestation
of the singular behaviour of the spaces involved. For instance, in many examples such
as quotients by group actions or leaf spaces of foliations, the naive spaces may be highly
pathological. Indeed, the noncommutative approach to such spaces starts by associating a
noncommutative algebra to them, as the ‘algebra of functions on the noncommutative space’.

Hopf Algebras
The concept of symmetry in noncommutative geometry, i.e. the noncommutative analogue
of Lie groups from classical differential geometry, is given by the notion of Hopf algebras.
More precisely, noncommutative symmetries are encoded in the action or coaction of some
Hopf algebra on some algebra or coalgebra.

Roughly speaking, when passing from a Lie group G to its algebra of (say) continuous
functions CG, the group multiplication transforms into a map CG → C(G × G) or, using

1



2 INTRODUCTION

the appropriate tensor product, into a comultiplication ∆ : CG → CG ⊗ CG. Moreover,
the inversion in G gives an involution S : CG → CG. The algebra CG together with the
comultiplication ∆ and the involution (antipode) S is the basic example of a Hopf algebra.
Enveloping algebras of Lie algebras provide another (dual) basic example. Deforming a Lie
group inside the larger world of noncommutative geometry refers to deforming the Hopf
algebras associated to it. Hence typical examples of Hopf algebras arise as algebras of
coordinates of a quantum group or, on some dual space, as the convolution algebra or the
enveloping algebra of a quantum group.

It is important to note that the notion of Hopf algebra is self-dual: roughly speaking,
under suitable circumstances the dual of a Hopf algebra is automatically a Hopf algebra
again. From this point of view, the classical examples of enveloping algebras and function
algebras are dual to each other.

Hopf algebras can be deployed to give a description of internal quantum symmetries
of certain models in (low-dimensional) quantum field theory. More applications of
Hopf algebras comprise e.g. the construction of invariants in topology and knot theory
[OKoLeRoTu, Tu], and appear in connection with solutions of the quantum Yang-Baxter
equation [Str]. As another example, (faithfully flat) Galois extensions by Hopf algebras
may be considered as the right generalisation of principal bundles towards the realm of
noncommutative geometry [HPu, Kas4].

Generalised (Noncommutative) Symmetries
In classical differential geometry, generalised symmetries are encoded in the notions of Lie
groupoids and pseudogroups—a fact that already emerges in the work of Lie [Lie] and Car-
tan [Car1, Car2]. Lie groupoids are a joint generalisation of manifolds and Lie groups and
provide a symmetry concept that has found many applications, e.g. in the theory of folia-
tions or for describing internal ‘classical’ symmetries (cf. e.g. [Mac, MoeMrč1, L2]. It is
very natural to ask what the generalised symmetries in noncommutative geometry are (cor-
responding to the question mark in the table above). In other words, one is interested in the
correct notion of:

Noncommutative Groupoids⇔ Quantum Groupoids⇔ Hopf Algebroids. (A)

An infinitesimal consideration of Lie groupoids leads to Lie algebroids (or, in an algebraic
context, to Lie-Rinehart algebras). Hence, one could extend the picture by asking for the
correct notion of

Noncommutative Lie Algebroids/Lie-Rinehart Algebras⇔ Hopf Algebroids. (A′)

The clear need for the generalisation of Hopf algebras was presumably stated for the first
time in [Sw2] in the context of classification problems of algebras. A more recent motiva-
tion for such an extension of Hopf algebra concepts came from research on the index theory
of transverse elliptic operators in [CoMos5], generalising the local approach in [CoMos2]
towards non-flat transversals, globally described by an ‘extended Hopf algebra’ HFM asso-
ciated to the frame bundle of a manifold (cf. also [CoMos6]).

Other examples that require extension of the Hopf algebraic framework are certain
invariants [NiTuVai] in topology, or in Poisson geometry, where solutions of the dynamical
Yang-Baxter equation that correspond to dynamical quantum groups elude a description by
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Hopf algebras, cf. [EtNi, NiVai, Lu, X3, DonMu, Kar]. In low-dimensional quantum field
theories non-integral values of the quantum dimensions cannot be seen as a Hopf algebra
symmetry [BSz1], emphasising the need for a noncommutative generalisation thereof.

Quantum Groupoids
In many of these approaches, problems have been handled by allowing for a not necessarily
commutative ring A replacing the commutative ground ring k of a Hopf algebra. Consider-
ing a Hopf algebra as a k-bialgebra with an antipode, a Hopf algebroid should involve the
notions of a generalised bialgebra over A as well as an analogue of an antipode. Such a
generalised bialgebra is commonly referred to as bialgebroid: it generalises a k-bialgebra
towards an object (to which we will refer as the total ring) that is both a coalgebra and an
algebra in (different) bimodule categories, determined by the ring A, to which we will refer
as the base ring from now on. With the help of a new definition of tensor products over
noncommutative rings (the so-called ×A-products), bialgebroids were (presumably for the
first time) introduced under the name ×A-bialgebras in [Tak]. Ordinary k-bialgebras can
be recovered if one uses the ground ring k as base ring. Bialgebroids (under this name)
were introduced in [Lu] (apparently independently of the work in [Tak]), and, motivated by
problems in Poisson geometry, as bialgebroids with anchor in [X1, X3]. These notions were
shown to be equivalent to that of a ×A-bialgebra in [BrzMi].

Viewing bialgebroids as noncommutative analogues of groupoids, parallel to the rela-
tionship of bialgebras to groups as mentioned above, one also may justify the name quantum
groupoid for (certain) bialgebroids. A precursor in this direction is [Mal1] for commutative
base rings, and [Mal2] for an extension to the general, noncommutative case. From this
viewpoint of quantum groupoids, one can also deduce what should be the basic ingredients
of a bialgebroid. Recall first that a groupoid consists of a set of (invertible) arrows, a set of
objects, two maps called source and target mapping arrows into objects, as well as a partially
defined multiplication in the space of arrows, an inclusion of objects as zero arrows, and all
these maps are subject to certain conditions which we conceal for the moment. A bialge-
broid may then be considered to be a noncommutative analogue of the function algebra on
a groupoid. More precisely, the total ring would play the rôle of the function algebra of the
‘quantum space’ of morphisms, whereas the base ring should be considered to be the func-
tion algebra on the ‘quantum space’ of objects. Since each arrow is provided with a source
and a target, it is natural to assume corresponding source and target maps (in the opposite
direction) to be part of the structure. The fact that composition of arrows in a groupoid is
only partially defined is reflected in a bialgebroid by defining a comultiplication that takes
values in a subspace of some tensor product of the total ring with itself, and only in this
subspace a well-defined ring structure is given.

However, the precise definition of bialgebroids is quite technical, but evidence that it is
the ‘right’ one is given in [Schau1]. Recall that a k-algebra U is a k-bialgebra if and only if
the category of left U -modules is a monoidal category such that the underlying (forgetful)
functor to k-modules is monoidal: this means that the k-tensor product of two U -modules
is again a U -module. This is a fundamental feature for Tannaka duality or reconstruction
theory for quantum groups which make explicit use of their monoidal module categories
[JoStr]. In an analogous fashion, a bialgebroid U over some base ring A is characterised by
the fact that the category of its modules is again monoidal, with the (crucial) difference that
only the forgetful functor from U -modules to (A,A)-bimodules (rather than k-modules) is
monoidal. Hence the tensor product over A of two U -modules is a U -module again.
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Concepts of Hopf Algebroids
The next step in defining a Hopf algebroid consists in equipping a bialgebroid with some
sort of antipode. In the preceding consideration of quantum groupoids, this would simply
correspond to the inversion of arrows of a groupoid. The main difficulty here derives from
the fact that the tensor category of (A,A)-bimodules is not symmetric, which impedes a
straightforward generalisation of antipodes for Hopf algebras.

Motivated by topics in algebraic topology, Hopf algebroids were originally introduced as
cogroupoid objects in the category of commutative algebras (see e.g. [Mor, Ra, Hov]), while
they also arose in algebraic geometry in connection with stacks [FCha].

The underlying bialgebroids of the Hopf algebroids defined in [Ra] are special cases of
the construction in [Tak] since the underlying algebra structure on both the total and base
ring is commutative. Nevertheless, this is more general than a Hopf algebra since it is al-
ready equipped with characteristic features with respect to bimodule categories as mentioned
above. In [Mrč1, Mrč2], non-commutative Hopf algebroids (but still over a commutative
base ring) have been used for the study of principal fibre bundles with groupoid symmetry.
The first general definition of a Hopf algebroid, in which both the total and base rings are not
necessarily commutative, is presumably given in [Lu], although some auxiliary assumptions
had to be made that in a sense lack a geometric or intuitive interpretation. More precisely,
a section of a certain projection map is needed, so as to be able to impose axioms one
would expect from a natural generalisation of the Hopf algebra axioms. Motivated by prob-
lems in cyclic cohomology (see below), the notion of para-Hopf algebroid was introduced
in [KhR3]. Here, a para-antipode is introduced that avoids the section mentioned above,
but as a price to be paid needs axioms that do not look like a conceptually straightforward
generalisation of the Hopf algebra axioms anymore.

An alternative definition of Hopf algebroids from [B1, BSz2] steers clear of these prob-
lems by defining, roughly speaking, two distinct bialgebroid structures, assumed to exist
on a given algebra: one considers left and right bialgebroids as introduced in [KSz] over
an algebra A and its opposite, and an antipode is then understood as a map intertwining
them. In particular, this way one is able to circumvent another crucial problem when defin-
ing antipodes: in Hopf algebra theory, such a map is an anti-coalgebra morphism, a feature
which is a priori not well-defined for bialgebroids. In the approach of [B1, BSz2] the an-
tipode is still an anti-coalgebra morphism, but for different coalgebras, passing from the
underlying left bialgebroid to the underlying right one. Not all information (left bialgebroid,
right algebroid, antipode) is actually needed, but this way the axioms look most natural and
symmetric. For example, one could equally well express (up to automorphisms) the right
bialgebroid in terms of the left one and the antipode (provided it is invertible), but this does
not quite reduce the amount of complexity. It is this definition which we consider the best
suited for our purposes, and whenever no contrary mention is made, the term Hopf algebroid
refers to this definition throughout the subsequent chapters. For example, we will see that
étale groupoids and Lie-Rinehart algebras, and in particular their corresponding homology
and cohomology operators, naturally ask for the existence of two bialgebroid structures of
different kind. We also mention here that already [Mrč1, Mrč2] is tacitly dealing with both
left and right bialgebroid structures for convolution algebras over étale groupoids, without,
however, regarding these as being part of one global structure.

Furthermore, notice that for simplicity all ‘competing’ approaches [Lu, KhR3, BSz2]
assume the antipode to be bijective (although this assumption was recently dropped in [B3],
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a slight reformulation of the definition in [B1, BSz2]). This is a class large enough for
most interesting examples (if the antipode exists at all), such as quantum groups and certain
quantum groupoids.

However, one should be aware of the fact that, in contrast to Hopf algebras, the notion of
Hopf algebroid is not self-dual: the construction of a Hopf algebroid structure on (a suitable
definition of) a dual of a Hopf algebroid is in general quite intricate [BSz2, KSz], and this
also causes difficulties in the corresponding cyclic theory (see below).

Let us finally mention that a weaker approach of generalising Hopf algebras towards
possibly noncommutative base algebras is given by the so-called ×A-Hopf algebras from
[Schau2]. We shall mostly refer to them as left Hopf algebroids, inasmuch as the Hopf
algebroids from [B1, BSz2] are special cases of them. We are going to explain this later in
more detail.

Cyclic Theory of Hopf Algebras and Hopf Algebroids
Let us now depict the situation for the associated cohomologies:

Cohomology in + Differential Noncommutative
for

+

Geometry Geometry
Spaces De Rham Cohomology Cyclic Cohomology

Symmetries Lie Algebra Cohomology Hopf-Cyclic Cohomologies
Generalised Symmetries Lie Algebroid Cohomology ?

A similar table can be formulated for the respective homology theories. Some of the entries
of this table will be explained now.

Cyclic (Co)Homology
Among the first basic constructions in noncommutative geometry was the cyclic
(co)homology of algebras, which may be seen as the correct noncommutative ana-
logue of de Rham (co)homology. The building pieces for cyclic homology theories can be
axiomatised so as to produce the more general notion of cyclic objects. There are two main
avenues to cyclic cohomology: Connes [Co3] developed a cohomological theory in order
to interpret index theorems of noncommutative Banach algebras, via a generalisation of the
Chern character. The homological approach, introduced by Tsygan [Ts1] and Loday and
Quillen [LoQ], shows that cyclic homology can be considered a Lie analogue of algebraic
K-theory.

Hopf-Cyclic Cohomology for Hopf Algebras
Cyclic cohomology for Hopf algebras, or Hopf-cyclic cohomology, is the noncommutative
analogue of Lie algebra homology (which is recovered in the case of universal envelop-
ing algebras of Lie algebras). This was launched in the work of Connes and Moscovici
[CoMos2] on the transversal index theorem for foliations and defined in general in [Cr3] (cf.
also [CoMos3, CoMos4]).

In the transversal index theorem of Connes and Moscovici, the characteristic classes
involved are a priori cyclic cocycles on the algebra A modeling the (singular) leaf space of
the foliation. Computing these cocycles turned out to be tremendously complicated, even
in the 1-dimensional case. The key remark for understanding these cyclic cocycles is that
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they are quite special: their expression involves only some ‘transversal differential operators’
originating from the transversal geometry, and an ‘integration map’, determined by a trace
on the algebra A. This translates into two conceptual pieces:

(i ) The operators involved may be organised in a Hopf algebra H acting on the algebra
A of functions on the leaf space (analogous to the description of universal enveloping
algebras of Lie algebras as differential operators on the Lie group).

(ii ) By means of the action of H on A and the trace, the cyclic theory of the algebra A is
reflected into a new cyclic theory, which is associated to H (making use of the entire
Hopf algebra structure).

With these conceptual pieces in mind, the special nature of the cyclic cocycles takes the
following precise form: they arise from the cyclic cohomology of the Hopf algebra, via a
canonical map (the characteristic map) associated to the action and the trace. In contrast to
the cyclic cohomology of the algebra (which is pretty wild), the cyclic cohomology of H is
much easier to compute as Gel’fand-Fuchs cohomology.

Moreover, it is shown in [CoMos3, CoMos4, Cr3] that the cyclic theory makes sense
for any Hopf algebra equipped with a so-called modular pair in involution (or twisted
antipode). It is useful to keep in mind (as made clear in [Cr3]) that the resulting theory
primarily makes use of the coalgebra structure of H and of certain coinvariants.

Dual Hopf-Cyclic Homology for Hopf Algebras
While the notion of Hopf algebra is self-dual, Hopf-cyclic cohomology is not. For
instance, while it gives interesting results for universal enveloping algebras of Lie algebras
(recovering Lie algebra homology), it tends to be quite trivial for algebras of functions
or group algebras (or whenever a Haar measure exists). The dual Hopf-cyclic homology
appears as a companion to Hopf-cyclic cohomology that is better behaved for e.g. function
algebras. In what sense these are dual to each other is best explained using the so-called
cyclic duality [Co2], see also below. While the Hopf-cyclic cohomology depends primarily
on the coproduct, the unit and coinvariants, the dual theory makes use of the product, the
counit and certain invariants [Cr2, KhR2, KhR4, Tai]. It also shows that the passage from
cyclic homology of algebras to the dual Hopf-cyclic cohomology has some similarities
to the interpretation of Lie algebra cohomology (for a Lie algebra of a Lie group) as
invariant de Rham cohomology of its Lie group manifold structure [CheE]. The need
for such a dual theory is furthermore evident if one studies e.g. coactions of Hopf alge-
bras (rather than the actions mentioned in the example of the transverse Hopf algebra above).

In general, Hopf-cyclic cohomology (and likewise dual Hopf-cyclic homology) cannot be
seen as the cyclic cohomology of some coalgebra, but only makes sense as the cohomology
of some specific cocyclic modules (which was known to describe the same theory right from
the beginning [Co2], see e.g. [Lo1] for a full account). This observation will carry over to
the cyclic theory of Hopf algebroids, see below.

The Action and Coaction Picture
As already mentioned, both theories of Hopf algebra cohomology and homology are
‘parametrised’ by a Hopf algebra character (to define coinvariants) and a grouplike element
(to define invariants). In particular, this allows for cyclic cohomology (or dual homology)
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with coefficients, which is not possible for the ‘standard’ cosimplicial modules associated
to coassociative coalgebras. General type (co)cyclic modules for Hopf-cyclic (co)homology
with values in certain suitable modules were introduced in [HKhRSo2, HKhRSo1]. The
need for this came from quantum groups and invariants of K-theory. Here, so-called stable
anti-Yetter-Drinfel’d modules arise as generalisations of modular pairs in involution (more
precisely, a modular pair in involution is equivalent to such a module structure on the
ground ring k), and a generalisation of the characteristic map as a ‘transfer’ map allows
to generally define para-(co)cyclic structures on (co)algebras on which a Hopf algebra
acts or coacts, cf. [HKhRSo2, HKhRSo1, KhR2, Kay1] and also [JŞ] for a dual approach.
Even more, a universal form suited to describe all examples of cyclic (co)homology arising
from Hopf algebras (up to cyclic duality) was given in [Kay2], based on a construction of
para-(co)cyclic objects in symmetric monoidal categories in terms of (co)monoids.

The Cyclic Theory for Hopf Algebroids
The generalisation of Hopf-cyclic cohomology to noncommutative base ringsA, i.e. to Hopf
algebroids, has been less explored. For instance, the general machinery from [Kay2] does
not apply to this context (because the relevant category of modules is not symmetric, and
in general is not even braided). Cyclic cohomology of Hopf algebroids appeared for the
first time in the context of the transversal ‘extended’ Hopf algebra HFM mentioned above
[CoMos5], i.e. in the case of a particular example rather than as a general theory. In this
context, certain bialgebroids (in fact, left Hopf algebroids) carrying a cocyclic structure arise
naturally. Extending this situation to general Hopf algebroids is not a totally straightforward
issue. First of all, one encounters the problem what a Hopf algebroid is. For example, the
notion of Hopf algebroid in [Lu] is apparently not well-suited to the problem. This led in
[KhR3] to the definition of para-Hopf algebroids, in which the antipode of [Lu] is replaced
by a para-antipode. Its axioms are principally designed for the cocyclic structure to be
easily defined by just adapting the Hopf algebra case. However, the para-antipode axioms
remain—as we think—too complicated to comprehend their intrinsic structure and purpose,
beyond defining (co)cyclic structures; in particular, guessing an antipode (and hence the
cyclic operator) in concrete examples remains intricate.

A general theory in [BŞ] that deals with cyclic (co)homology of bialgebroids (and ×A-
Hopf algebras) appeared while this thesis was written. There, a cyclic theory (in terms of
so-called (co)monads) is developed that works in an arbitrary category and hence embraces
the construction in [Kay2] for symmetric monoidal categories (in case the (co)monads in
question are induced by (co)monoids). This approach is certainly related to our own method,
but the precise relation is not completely clear to us.

Principal Results of this Thesis

The main objective of this thesis is to clarify the notion and concepts of generalised symme-
tries in noncommutative geometry and their associated (co)homologies—that is, the question
marks in the previous tables.

As for the notion of a Hopf algebroid itself, i.e. the question mark in the first table,
we do not claim that we have developed this notion ourselves. Instead, we present our
own point of view on the theory and in particular which of the ‘competing’ notions
[B1, BSz2, KhR3, Lu, Schau2] appears to be best suited for our purposes (i.e. the question
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mark in the second table), with some contributions along the way.

New Examples of Hopf Algebroids
We reveal that the universal enveloping algebra of a Lie-Rinehart algebra (of a Lie algebroid)
is always a left Hopf algebroid (×A-Hopf algebra) in a canonical way (Subsection 4.2.1).
However, despite of what was originally believed, these enveloping algebras may fail to be
Hopf algebroids—an aspect we completely clarify. In particular, we show that the right
connections from [Hue2] are precisely the extra datum needed: we prove that a well-defined
Hopf algebroid structure is only given in case of existence of such a connection, provided
it is flat (Theorem 4.2.4, Proposition 4.2.9, Proposition 4.2.11). The next example deals
with jet spaces associated to Lie-Rinehart algebras, which may be seen as a construction
‘dual’ to the previous example. This time, the Hopf algebroid structure only depends on the
aforementioned canonical left Hopf algebroid structure on the universal enveloping algebra
and hence always exists (Theorem 4.3.1), in contrast to the previous example.

Another class of natural examples for Hopf algebroids is given by convolution algebras
over étale groupoids. As already mentioned, the existence of two (opposite) bialgebroid
structures was already observed in [Mrč2], and we only need to connect these to give a Hopf
algebroid in the sense of [B1, BSz2] (Proposition 4.4.1).

Further examples of Hopf algebroids and bialgebroids we give include function algebras
over étale groupoids (Proposition 4.5.6) and (generalised) Connes-Moscovici algebras
(or rather bialgebroids), i.e. the space of transverse differential operators on arbitrary
étale groupoids, see below for further statements. These should be seen as a step towards
the construction of Hopf algebroids associated to (Lie) pseudogroups. Because of these
examples—together with the (co)homology computations, see below—we feel sufficiently
encouraged to consider Hopf algebroids (in the sense of [B1, BSz2]) as the right non-
commutative analogue of both Lie groupoids and Lie algebroids/Lie-Rinehart algebras,
respectively (see the analogies (A) and (A’) above).

Left Hopf Algebroids versus Hopf Algebroids
As a spin-off of the examples mentioned above, we give a first counterexample (see §4.2.13)
that not each ×A-Hopf algebra originates in a Hopf algebroid, answering a question in [B3].
This motivates us to refer to ×A-Hopf algebras as left Hopf algebroids (which also solves a
problem of pronunciation).

Bicrossed Products; Connes-Moscovici Algebras
As already outlined above, we use the bialgebroid examples arising from function algebras,
Lie-Rinehart algebras and Connes-Moscovici algebras to describe the general ‘background’
procedure of the constructions in [CoMos5, CoMos6, MosR]. To this end, we introduce
the concept of matched pairs of bialgebroids and develop the construction of a bicrossed
product bialgebroid (Theorem 3.3.5), as a generalisation of similar considerations for
bialgebras in [Maj]. This is a construction that establishes a (left or right) bialgebroid
structure on a certain tensor product of (left or right) bialgebroids over commutative bases.
The Connes-Moscovici algebras can then be shown to arise in such a way (Theorem 4.7.1,
Proposition 4.7.3).

Duality and (Co)Modules
Another construction of how to produce new bialgebroids out of known ones is the
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construction of left and right (Hom-)duals for left bialgebroids from [KSz]. We add to this
theory a theorem that proves a categorical equivalence between left bialgebroid comodules
and modules over its duals (Theorem 3.1.11 and Proposition 3.1.9). Also, we prove
an equivalence between grouplike elements of a left bialgebroid and generalised right
characters, i.e. maps that behave like a right counit on the duals (Proposition 3.1.14). This
generalises a similar statement for bialgebras and their duals (see e.g. [Sw1]).

Hopf-Cyclic Cohomology for Hopf Algebroids
Central to this thesis is our argument that Hopf-cyclic cohomology is naturally defined when
using the Hopf algebroids from [B1, BSz2]. We are going to explain how Hopf-cyclic co-
homology fits into the monoidal category of (Hopf algebroid) modules and show that it
descends (more precisely: projects) in a canonical way from the cyclic cohomology of coal-
gebras, or rather corings, under the minimal condition S2 = id for the antipode (Proposi-
tion 5.2.1, Theorem 5.2.5). This is a generalisation of the consideration of coinvariants for
Hopf algebras in [Cr3].

Furthermore, we are able to introduce coefficients at the Hochschild level into the
theory, and give an interpretation of the Hopf-Hochschild cohomology groups as a derived
functor (Theorem 5.3.3). The main ingredient here is an appropriate resolution in the
category of left bialgebroid comodules, the so-called cobar complex. We can show that
the cobar complex in case of a commutative Hopf algebroid can be additionally equipped
with a cocyclic structure (Proposition 5.4.2). As a consequence, we can express the cyclic
cohomology of commutative Hopf algebroid by their Hochschild cohomology groups
(Theorem 5.4.4). These statements generalise considerations in [KhR1] from Hopf algebras
to Hopf algebroids.

Dual Hopf-Cyclic Homology for Hopf Algebroids
Besides cyclic cohomology of Hopf algebroids, we will also develop a dual cyclic homology
theory for Hopf algebroids, by applying cyclic duality to the underlying cocyclic object (The-
orem 6.1.1). This generalises the corresponding theory for Hopf algebras (see above), and
produces—analogously as for Hopf algebras—interesting results even if the pertinent cyclic
cohomology is trivial. This homology theory is related to a certain category of comodules
over the Hopf algebroid: the main difficulty is here that the underlying (A,A)-bimodule
category fails to be symmetric and on top of that differs from the one for cyclic cohomol-
ogy. More precisely, the tensor product used for defining cochains in cohomology originates
from the monoidal category of modules for the underlying left bialgebroid, whereas the ten-
sor chains in homology make use of the monoidal structure of right bialgebroid comodules.
We came to the conclusion that we need to generalise the Hopf-Galois map (see [Schau2])
and its inverse to ‘higher degrees’ (Lemma 6.1.2), to obtain the necessary tool to translate
the two structures into each other such that cyclic duality can be applied. We remark here
that this complex of problems does not appear for the symmetric category of k-modules in
the Hopf algebra case.

However, since the notion of Hopf algebroid is not self-dual (see above), a statement—
dual to the cohomology case—that dual Hopf-cyclic homology is obtained from the cyclic
homology of algebras in a canonical way (by restriction on invariants) does not seem to hold
in general (see Subsection 6.1.1, although we give such a construction in special cases, see
Section 6.5 and Subsection 6.6.1).

Also in this dual theory, we are able to introduce coefficients at the Hochschild level,
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and give an interpretation of the Hopf-Hochschild homology groups as derived functors
(Theorem 6.2.3), using a generalised bar complex. We can then analogously prove that
the bar complex in case of a cocommmutative Hopf algebroid can be equipped with
a cyclic structure (Proposition 6.3.1), and show in Theorem 6.3.3 that the dual cyclic
homology of cocommutative Hopf algebroids can be expressed by Hopf-Hochschild ho-
mology groups, generalising again the corresponding statement in [KhR1] for Hopf algebras.

Hopf-Cyclic (Co)Homology Computations
We calculate Hopf-cyclic cohomology and dual Hopf-cyclic homology in concrete exam-
ples of Hopf algebroids, such as the universal enveloping algebra of a Lie-Rinehart algebra,
jet spaces and convolution algebras over étale groupoids. The results of these computa-
tions establish a connection between Hopf-cyclic theory and Lie-Rinehart (co)homology
and groupoid homology, respectively (Theorems 5.5.7, 5.6.2, 5.7.1, 6.4.1, 6.5.1, 6.6.4). This
motivates to consider Hopf-cyclic (co)homology as the ‘correct’ noncommutative analogue
of both Lie-Rinehart (co)homology and groupoid homology.

On top of that, we are able to construct a special method to obtain dual Hopf-cyclic
homology for convolution algebras over étale groupoids, which shows how the theory fits
into the monoidal category of (left and right bialgebroid) comodules. The dual Hopf-cyclic
homology is then obtained by restricting the (generalised) algebra cyclic module structure
to invariants (Proposition 6.6.8, Theorem 6.6.10), which is a procedure dual to the consid-
erations of coinvariants in Sections 5.1 and 5.2, working (at least) in this particular example.

Multiplicative Structures and Duality in (Co)Homology Theories
Finally, we prove a theorem that suggests that left Hopf algebroids are a key concept for
multiplicative structures (such as cup, cap and Yoneda products) and certain duality iso-
morphisms in algebraic (co)homology theories (Theorem 7.1.1). In particular, results on
Hochschild (co)homology [VdB] and Lie-Rinehart (co)homology [Hue3] are included this
way.

Outline of the Thesis

Chapter One
In chapter one, we introduce preliminary concepts used throughout the thesis. We give a
presentation of basic concepts in cyclic (co)homology in Section 1.1. We then discuss in
Section 1.2 the fundamental notion of A-rings and A-corings for an arbitrary k-algebra A,
which are the generalisations of k-algebras and k-coalgebras in bimodule categories, and
explain how these generalised (co)algebras give rise to (co)cyclic modules. In Section 1.3,
we proceed to define Hopf algebras and their cyclic cohomology, which are some of
the concepts that will be generalised in the following chapters. Finally, in Sections
1.4 and 1.5 we introduce Lie-Rinehart algebras and groupoids, as a generalisation for Lie
algebras and groups. These will give fundamental examples in the theory of Hopf algebroids.

Chapter Two
Chapter two contains the notion of a Hopf algebroid as introduced in [B1, BSz2]. First,
we will consider left bialgebroids in Section 2.1, and also the corresponding monoidal
categories of bialgebroid modules and bialgebroids comodules in Section 2.3. We proceed
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in Section 2.4 with discussing how these comodules give rise to derived functors, which
will be important for the computations of cyclic (co)homology of chapters five and six.
Section 2.2 deals with a weaker version of Hopf algebroids, the so-called left Hopf
algebroids (×A-Hopf algebras) from [Schau2]. These turn out to be a key concept for our
considerations in chapter seven, and are also important for the construction of antipodes on
jet spaces in chapter four. In the framework of right bialgebroids in Section 2.5, we also
introduce in §2.5.1 the notion of (right) connections, as a generalisation to the Lie-Rinehart
connections in [Hue2, Hue3], which will appear in examples in chapters three and four.
Then, Hopf algebroids are discussed in the final Section 2.6, and we conclude the chapter
by some comments on alternative notions of Hopf algebroids.

Chapter Three
In chapter three, we give several constructions of how to produce new bialgebroids out of
known ones. Section 3.1 discusses the duals for left bialgebroids [KSz], and we prove cate-
gorical equivalences between modules and comodules and study the interplay between grou-
plike elements and (generalised) characters.

Section 3.2 gives a construction how to push forward bialgebroids in case a certain
algebra morphism is given. We use the resulting construction to ‘localise’ certain Hopf
algebroids, so as to give an associated Hopf algebra. The chapter continues with our con-
struction of bicrossed product bialgebroids for matched pairs of bialgebroids in Section 3.3.
The basic ingredients here are the generalised notions of module rings and comodule
corings, as generalised notions of the action and coaction picture for bialgebras, i.e. module
algebras and comodule coalgebras.

Chapter Four
Chapter four deals with examples of Hopf algebroids. We first indicate in Section 4.1 how
enveloping algebras and Hopf algebras (with possibly twisted antipode) fit into the picture.
We then devote our attention in Section 4.2 to construct the canonical left Hopf algebroid
structure for the universal enveloping algebra V L of a Lie-Rinehart algebra (A,L), and to
the relation of (certain) left bialgebroids to their primitive elements. To obtain an antipode
on V L, we need to recall Lie-Rinehart connections [Hue2, Hue3], and can then describe
the full Hopf algebroid structure on V L. In Section 4.3 we construct the Hopf algebroid
structure on a certain dual of V L, the so-called jet spaces. Sections 4.4 and 4.5 indicate
how étale groupoids give rise to Hopf algebroid structures in two different ways, where
the one in Section 4.5 serves as a basic ingredient in Connes-Moscovici algebras (or rather
bialgebroids), which we describe in Section 4.6. This very general construction is shown to
be essentially a bicrossed product bialgebroid in Section 4.7.

Chapter Five
In chapter five we discuss Hopf-cyclic cohomology for Hopf algebroids. A fundamental
step here is to define coinvariants in Section 5.1, which lead to necessary and sufficient
conditions for a well-defined cocyclic module structure to exist on any Hopf algebroid,
as we explain in Section 5.2. Also, we introduce coefficients into the Hochschild theory
and then construct Hopf-Hochschild cohomology as a derived functor in Section 5.3. The
following Section 5.4 specialises to the case of Hopf-cyclic cohomology for commutative
Hopf algebroids. In the following three Example Sections 5.5–5.7, we discuss and compute
Hopf-cyclic cohomology for Lie-Rinehart algebras, jet spaces, and convolution algebras.
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Chapter Six
Chapter six deals with the dual Hopf-cyclic homology. In Section 6.1, we discuss and con-
struct the corresponding chain complex as the cyclic dual of the cochain complex of chapter
five, whereas in Subsection 6.1.1 we discuss a few problems attached to invariants. Parallel
to chapter five, we introduce coefficients at the Hochschild level and consequently give an in-
terpretation of dual Hopf-Hochschild homology as a derived functor in Section 6.2, whereas
in Section 6.3 we discuss and compute dual Hopf-cyclic homology for cocommutative Hopf
algebroids. Again, in the Example Section 6.4, we compute and discuss in detail the cases
of Lie-Rinehart algebras, jet spaces and convolution algebras.

Parts of chapters five and six are versions of parts of our joint work with Hessel
Posthuma [KowPo].

Chapter Seven
Finally, chapter seven is a version of our joint work with Ulrich Krähmer [KowKr]. It is
mainly devoted to the proof of the central Theorem 7.1.1. Section 7.2 is concerned with the
construction of cup and cap products, and with a certain functor that combines left and right
modules over left Hopf algebroids. Section 7.3 explains the duality and concludes the proof
of Theorem 7.1.1.

Appendix
In the Appendix we gather some standard algebraic facts used throughout the text, basically
to fix some of our notation and terminology.

Some conventions
Throughout this work, ‘ring’ means ‘unital associative ring’, and we fix a commutative
ground ring k. All other algebras, coalgebras, modules and comodules will have the un-
derlying structure of an object of the symmetric monoidal category k-Mod of left k-
modules. In general, for any ring U the spaces U -Mod and Uop-Mod (or Mod-U )
denote the category of left U -modules and right U -modules, respectively, in the standard
sense. Also, we fix a (not necessarily commutative) k-algebra A, i.e. a ring with a ring
homomorphism η : k → Z(A) into its centre. We denote by Aop the opposite and by
Ae := A⊗k Aop the enveloping algebra of A. Thus left Ae-modules are (A,A)-bimodules
with symmetric action of k. For U, V any rings, we will write a (U, V )-bimodule M as
UMV if need be. To indicate with respect to which structure a Hom-functor is defined, we
shall write Hom(U,−)(M,N) for Hom(UM, UN ) and analogously Hom(−,V )(M,N) for
Hom(MV , NV ); also Hom(U,V )(M,N) for bimodules appears, and the same kind of no-
tation applies for the sake of uniformity when both M , N or only one of them carries a
one-sided module structure only.



Chapter 1

Preliminaries

1.1 Cyclic Theory
One of the basic constructions in noncommutative geometry is the cyclic (co)homology of
algebras, which arises as the correct de Rham (co)homology in the noncommutative con-
text. Cyclic homology theories can be axiomatised, giving rise to the more general notion of
cyclic objects. In this chapter we recall some of the basic concepts and definitions regarding
cyclic objects and their associated cyclic homologies. The main references for much of the
material presented here are [FeTs, LoQ, Co3, Lo1, W]. We start by discussing simplicial ob-
jects, a notion which comes from algebraic topology and which determines the ‘underlying’
structure of a cyclic object.

1.1.1 The Simplicial Category Let [k] be the ordered set of k+1 points {0 < 1 < . . . < k}.
A map is called nondecreasing if f(i) ≥ f(j) whenever i > j. The simplicial category ∆
has as objects the sets [k] for k ≥ 0 and as morphisms the nondecreasing maps. Of particular
interest are the face morphisms δi : [k − 1] → [k], the injection which misses i, and the
degeneracy morphism σj : [k + 1] → [k], the surjection that sends both j and j + 1 to j.
We denote the set of morphisms between [k] and [m] by hom∆([k], [m]). In particular, one
can show [Lo1, Thm. B.2] that any morphism φ : [n] → [m] can be uniquely written as a
composition of faces and degeneracies, i.e.,

φ = δi1 . . . δirσj1 . . . σjs ,

such that i1 ≤ ir and j1 < . . . js with m = n− s+ r, and φ = id if the index set is empty.
As a corollary one obtains a presentation of ∆ with generators δi, σj for 0 ≤ i, j ≤ n (one
for each n) subject to the relations

δj δi = δi δj−1 if i < j,
σj σi = σi σj+1 if i ≤ j,

σj δi =

 δi σj−1

id[n]

δi−1 σj

if i < j,
if i = j, i = j + 1,
if i > j + 1.

(1.1.1)

The opposite category of ∆ is denoted by ∆op. Observe that the isomorphisms in ∆ are
identities on [k] since the identity is the only nondecreasing map that is bijective.

13
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1.1.2 (Co)Simplicial Objects Let M be an arbitrary category. A simplicial object
(X•, d•, s•) in M is a functor X• : ∆op → M . Write Xn := X([n]) and di = δ∗i ,
sj = σ∗j for the images of the morphisms δi and σj under the functor X . By means of the
presentation of ∆ mentioned above, a simplicial object is therefore given by a set of objects
{Xn}n≥0 in M as well as by two collections of morphisms di : Xn → Xn−1 for 0 ≤ i ≤ n
and sj : Xn → Xn+1 for 0 ≤ j ≤ n for all n ≥ 0, satisfying

di dj = dj−1 di if i < j,
si sj = sj+1 si if i ≤ j,

di sj =

 sj−1 di
id
sj di−1

if i < j,
if i = j, i = j + 1,
if i > j + 1.

(1.1.2)

A cosimplicial object (Y •, δ•, σ•) in M is a functor Y • : ∆ → M ; this time write
Y n := Y ([n]) for the images of the objects in the simplicial category under the functor
Y and δi := δi, σj := σj for the images of the morphisms δi, σj . They fulfill relations
identical to those in (1.1.1). A presimplicial or semisimplicial object is similarly as above, if
one ignores the degeneracies.

The main example for M we will use is the category of modules (over some ring given
by the context); correspondingly, we speak of simplicial modules. Define a morphism f :
X → X ′ of simplicial modules to be a family of linear maps fn : Xn → X ′n of modules
commuting with both faces fn−1di = difn and degeneracies fn+1si = disn for all i and n.

1.1.3 The Cyclic Category Next, we recall the definition of Connes’ cyclic category Λ from
[Co2] and of its generalisations ∆Cr from [FeTs], defined for all integers 1 ≤ r ≤ ∞;
when r = 1, one has ∆C1 = Λ. Although these cyclic categories can be realised explicitly,
for our purposes it suffices to recall their descriptions in terms of generators and relations.
Roughly speaking, ∆Cr is a combination of the simplicial category ∆ and the cyclic groups.
More precisely, ∆Cr has the same objects as ∆, but the morphisms are generated by the
morphisms δi, σj of ∆ and new morphisms τn : [n] → [n], the cyclic operators, one
for each integer n ≥ 0. These operators serve to express elements in the automorphism
groups Aut∆Cr

([n]) ' Z/(n + 1)rZ for the case r < ∞, and Aut∆C∞([n]) ' Z in case
of r = ∞. The relations they satisfy are the simplicial relations (1.1.1) together with new
relations involving the cyclic operator:

τnδi =
{
δi−1τn−1 if 1 ≤ i ≤ n
δn if i = 0,

τnσi =
{
σi−1τn+1 if 1 ≤ i ≤ n
σnτ

2
n+1 if i = 0.

τ (n+1)r
n = id.

In case r =∞, the last equation is void.

1.1.4 Cyclic Objects Let M be a category and 1 ≤ r ≤ ∞. An r-cyclic object [FeTs]
in M is a functor X : ∆Cop

r → M , that is, a simplicial object (X•, d•, s•) together with
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morphisms tn : Xn → Xn which are the images τ∗n of τn under X subject to

ditn =
{
tn−1di−1 if 1 ≤ i ≤ n
dn if i = 0, (1.1.3)

sitn =
{
tn+1si−1 if 1 ≤ i ≤ n
t2n+1sn if i = 0, (1.1.4)

tr(n+1)
n = id. (1.1.5)

Again, in case r = ∞ the last equation (1.1.5) is replaced by the empty relation. The
resulting ∞-objects are also called para-cyclic objects. When r = 1, we recover Connes’
cyclic category ∆C1, also denoted ∆C or Λ and we speak of cyclic objects. Composition
with the obvious functor ∆op → ∆Cop

r reproduces the underlying simplicial object.
Throughout this thesis, we will be mainly interested in cyclic objects in the category of

modules over a (not necessarily commutative) ring. In this case we speak of cyclic modules
(the ring being clear from the context). A morphism of cyclic modules f : X → X̃ is a
morphism of simplicial modules that commutes with the cyclic structure, i.e., fntn = tnfn
for all n. One can also define a cyclic module with signs [Lo1, Def. 2.5.1], with the same set
of axioms but with the factor sign tn = (−1)n appearing in front of tn in (1.1.3) and (1.1.4).

1.1.5 Examples (i ) The standard example (see e.g. [FeTs, Nis]) is the cyclic module as-
sociated to a (unital, associative) k-algebra U : set U \ := {U⊗kn+1}n≥0 with face,
degeneracy and cyclic operators given by

di(u0 ⊗k · · · ⊗k un) =
{
u0 ⊗k · · · ⊗k uiui+1 ⊗k · · · ⊗k un
unu0 ⊗k u1 ⊗k · · · ⊗k un−1

if 0 ≤ i ≤ n− 1,
if i = n,

si(u0 ⊗k · · · ⊗k un) = u0 ⊗k · · · ⊗k ui ⊗k 1⊗k ui+1 ⊗k · · · ⊗k un if 0 ≤ i ≤ n,
tn(u0 ⊗k · · · ⊗k un) = un ⊗k u0 ⊗k u1 ⊗k · · · ⊗k un−1.

(ii ) Smooth Functions on a Compact Manifold. Variations of the previous example arise
when working in various categories of topological algebras and replacing the ten-
sor product by topological (completed) versions of the algebraic one. The central
example is that of smooth functions on a compact manifold M . In this case it
is interesting to consider a completed tensor product ⊗̂π (see e.g. [Gro]) such that
C∞(M)⊗̂πC∞(M ′) ' C∞((M ×M ′)) for any two compact manifolds M,M ′. For
any compact manifold one therefore has an associated cyclic module C∞(M)\ :=
{C∞(M×(n+1))}n≥0, i.e. C∞(M×(n+1)) in degree n. Considering that C∞(M) is
commutative with the pointwise product, the above face, degeneracy and cyclic oper-
ators become, for any f ∈ C∞(M),

dif(x0, . . . , xn−1) =
{
f(x0, . . . , xi, xi, . . . , xn−1)
f(x0, x1, . . . , xn, x0)

if 0 ≤ i ≤ n− 2,
if i = n− 1,

sif(x0, . . . , xn+1) = f(x0, x1, . . . , x̂i+1, . . . , xn, xn+1) if 0 ≤ i ≤ n,
tnf(x0, . . . , xn) = f(x1, . . . , xn, x0).

As long as they fulfill the mentioned property of C∞(M)⊗̂n ' C∞(M×n), differ-
ent tensor products ⊗̂ (e.g. projective or inductive ones [Gro]) also lead to meaning-
ful results in calculating cyclic homology, as will be seen in a moment in Example
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1.1.10(iii). Further possibilities are given by defining tensor products C∞(M)⊗n :=
germs∆C∞(M×n) or C∞(M)⊗n := jets∆C∞(M×n) where ∆ : M →M×n, x 7→
(x, . . . , x) is the diagonal, confer [Ts2, Te] for details.

(iii ) A generalisation of the first example is associated to an algebra U endowed with an
endomorphism φ ∈ Endk U : the resulting cyclic module U \,φ := {U⊗kn+1}n≥0 has
as face, degeneracy and cyclic operators

di(u0 ⊗k · · · ⊗k un) =
{
u0 ⊗k · · · ⊗k uiui+1 ⊗k · · · ⊗k un
φ(un)u0 ⊗k u1 ⊗k · · · ⊗k un−1

if 0 ≤ i ≤ n− 1,
if i = n,

si(u0 ⊗k · · · ⊗k un) = u0 ⊗k · · · ⊗k ui ⊗k 1⊗k ui+1 ⊗k · · · ⊗k un if 0 ≤ i ≤ n,
tn(u0 ⊗k · · · ⊗k un) = φ(un)⊗k u0 ⊗k u1 ⊗k · · · ⊗k un−1.

Then U \,φ is r-cyclic if the order of φ is less than infinity and cyclic if and only if
φ = id. In this case we recover U \ from (i).

(iv ) In §1.2.4 we will discuss another generalisation of Example (i) (and simultaneously of
(iii)) which arises when the commutative ground ring k is replaced by a not necessarily
commutative algebra.

1.1.6 Hochschild and Cyclic Homology for Cyclic Objects Next, we recall the definition
of cyclic homologies associated to cyclic objects in an abelian category. Hence, let M be an
abelian category and let X be an r-cyclic object in M . There are several equivalent ways to
define the cyclic homology of X , all with their own advantages. We dedicate our attention
first to Tsygan’s double complex, which is one of the most complicated methods but has the
best conceptual properties. Firstly, consider the operators

b′n : Xn → Xn−1, b
′
n :=

n−1∑
j=0

(−1)jdj ,

bn : Xn → Xn−1, bn := b′n + (−1)ndn.

(1.1.6)

Note that b and b′ differ by the last face operator only. Secondly, set t̃n := (−1)ntn+1 for r 6=
∞ and define the norm operator

N :=
(n+1)r−1∑

j=0

t̃jn.

The cyclic homology groups HC•(X) may be defined [FeTs] as the homology of the as-
sociated cyclic bicomplex CC•,•X (Tsygan’s double complex, see the figure below). It has
entries CCp,qX := Xq for p, q ≥ 0, independently of p. In this complex, the columns
are periodic of order 2; for p even, the pth column is the Hochschild complex (C•X, b)
(where CnX = Xn); in case p is odd, the respective column is the acyclic complex
Cacyc
• X := (C•X, b′) (where CnX = Xn as before). The qth row is the periodic com-

plex associated to the action of the cyclic group Zq+1 on Xq in which the generator acts by
multiplying with t̃q; thus, the differential Xq → Xq is multiplication by 1 − t̃q when p is
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odd and by N otherwise. Hence, in our sign convention, the bicomplex reads

b
��

b
′

��
b

��
b
′

��
X2

b

��

X2

b
′

��

1−too X2

b

��

Noo X2

b
′

��

1−too . . .Noo

CC•,•X : X1

b

��

X1

b
′

��

1+too X1

b

��

Noo X1

b
′

��

1+too . . .Noo

X0 X0
1−too X0

Noo X0
1−too . . . .Noo

Hochschild homology HH•(X) of X is now the homology of the zeroth column and its
cyclic homology is defined as

HC•(X) := H•(TotCC•,•X),

where we recall that the total complex is defined as

(TotCC•,•X)n :=
⊕

p+q=n
CCp,qX.

Standard homological algebra leads to the fact that short exact sequences 0 → X →
X ′ → X ′′ → 0 of cyclic objects give rise to short exact sequences of both Hochschild
complexes and Tsygan bicomplexes, which, in turn, give rise to long exact sequences in
homology,

. . . −→ HHn(X) −→ HHn(X ′) −→ HHn(X ′′) −→ HHn+1(X) −→ . . .

. . . −→ HCn(X) −→ HCn(X ′) −→ HCn(X ′′) −→ HCn−1(X) −→ . . . .

1.1.7 The SBI-sequence Hochschild and cyclic homology are organised by three basic ho-
momorphisms I, S,B into a long exact sequence

. . . −→ HCn+1(X) S−→ HCn−1(X) B−→ HHn(X) I−→ HCn(X) S−→ . . . ,

also called Connes’ exact sequence, which is often (and often implicitly) used for concrete
calculations. If X is a cyclic object in an abelian category, inclusion of the Hochschild
complex C•X ↪→ CC•,•X into Tsygan’s double complex as zeroth column yields a map
I : HHn(X) → HCn(X). Considering only the zeroth and first column in CC•,•X leads
to a double subcomplex denoted CC{2}•,• X; the inclusion C•X ↪→ CC{2}•,• X induces an
isomorphism

HHn(X) ' Hn(Tot (CC{2}•,• X))

since the quotient is the first column that is acyclic. Also, there is an isomorphism

CC•,•X[−2] := CC•,•X/CC
{2}
•,• X ' CC•,•X

of the quotient complex consisting of columns p ≥ 2 with the original double complex itself,
but shifted two columns to the right. The shifting operator S : HCn(X) → HCn−2(X) is



18 CHAPTER 1. PRELIMINARIES

therefore induced by the quotient map Tot (CC•,•X)→ Tot (CC•,•X[−2]). The resulting
short exact sequence

0 −→ CC{2}•,• X
I−→ CC•,•X

S−→ CC•,•X[−2]→ 0

of double complexes yields a boundary map B : HCn−1(X) → HHn(X) which fits into
Connes’ long exact sequence above. The SBI-sequence is an efficient tool to compute cyclic
homology once the Hochschild homology is known. In particular, it follows by induction as
well as the 5-Lemma that every morphism of cyclic objects that induces an isomorphism on
Hochschild homology induces an isomorphism on cyclic homology (note that HH0(X) =
HC0(X)).

1.1.8 Periodic Cyclic Homology We now come to the most important version of cyclic
homology, the periodic one. This the correct noncommutative analogue to the classical
de Rham cohomology (see Examples 1.1.10(ii)–(iii) for illustrating results). The rôle of
Hochschild and cyclic homology is merely that of intermediate steps towards the final, peri-
odic theory; this philosophy also applies when doing computations.

As above, let X be an r-cyclic object in an abelian category M , where we assume that
r 6= ∞. Due to its obvious periodicity, Tsygan’s double complex can be extended to the
left to form the upper half plane complex CP•,•X . The periodic cyclic homology, denoted
HP•(X), is the homology of the ‘product’ total complex

HP•(X) = H•(Tot
∏
(CP•,•X)).

Here, by product total complex Tot
∏

we mean the total complex formed by using products
(thought of as ‘infinite sums’) rather than sums. Recall [Lo1, 5.1.2] that the homology of the
standard ‘sum’ total complex does not lead to meaningful results (observe that in contrast to
CC•,•X there is now an infinite number of non-zero modules CCp,q with p + q = n). It is
visually evident from the periodicity of CP•,•X that each of the maps S : HPn+2(X) →
HPn(X) is an isomorphism; hence its name: the modules HPn(X) are periodic of order 2.

1.1.9 Mixed Complexes There is another (simpler) double complex computing the cyclic
homologies—Connes’ double complex—which we now recall. This double complex arises
as a simplification of Tsygan’s double complex due to the fact that some of its columns are
contractible: exploiting the fact that a cyclic object X has degeneracies, one can eliminate
the acyclic columns applying the ‘killing contractible complexes lemma’ [Lo1, Lem. 2.1.6]
to obtain a double complex BC•,•X , called Connes’ double complex. To this end, introduce
the ‘extra’ degeneracy

s−1 := tn+1sn : Xn → Xn+1, (1.1.7)

which can be shown to be a chain contraction of Cacyc
• (X) (one may equally consider

sn+1 := t−1
n+1s0). Also, define

B := (1− t̃n)s−1N : Xn −→ Xn+1,

which is commonly called Connes’ coboundary map or Connes’ cyclic operator (notice,
however, that it already appears in the early work of Rinehart [Rin]). One can easily see that
B2 = 0, Bb + bB = 0, besides b2 = 0 for the Hochschild boundary. Define BC•,•X by
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BCp,q(X) := Xq−p for 0 ≤ p ≤ q and zero otherwise, and organise it into the following
double complex:

BC•,•X :

X3 X2 X1 X0

X2 X1 X0

X1 X0

X0.

?

b

?

b

?

b

?

b

?

b

?

b

�B

?

b

�B �B

?

b

?

b

�B �B

?

b

�B

Again, one obtains an exact sequence of complexes

0 −→ C•X −→ TotBC•,•X
S−→ TotBC•,•X[2] −→ 0, (1.1.8)

from which one may derive the SBI-sequence again, showing basically that the two opera-
tors which we both denoted by B actually coincide.

The homology of the zeroth column in BC•,•X is still the Hochschild homol-
ogy HH•(X) = H•(C•X, b), whereas the morphism of complexes TotCC•,•X ←
TotBC•,•X is a quasi-isomorphism. Hence

HC•(X) = H•(TotCC•,•X) '←− H•(TotBC•,•X) (1.1.9)

is an isomorphism if X is a cyclic object, so that BC•,•X can be taken to compute cyclic
homology. IfX happens to be a cyclic module for some ring k, each column can be replaced
by its normalised version. That is, put X̄i := Xi/k = Coker (k → Xi) in place of Xi

which leads to a new complex denoted B̄C•,•X with horizontal differential of the form
B := s−1N . The main issue here is that one can replace BC•,•X in both (1.1.8) and (1.1.9)
by BC•,•X , hence it computes the same homology.

In a general framework, such an object that is both a chain and a cochain complex is
called a mixed complex [Kas1]: this is a graded object {Xn}n≥0 with two families of oper-
ators b : Xn → Xn−1 and B : Xn → Xn+1 subject to b2 = B2 = Bb + bB = 0. Hence
each cyclic object gives rise to a mixed complex (but not necessarily the other way round).
In any case, the isomorphism in (1.1.9) may serve as a definition of Hochschild and cyclic
homologies of a mixed complex.

1.1.10 Examples Here we will give some typical ‘classical’ illustrations which will possibly
be helpful later on.
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(i ) The cyclic homology of a k-algebra U (as originally defined in [Co3]) is the cyclic
homology of the cyclic object U \ of Example 1.1.5(i). In particular, HC0(U) =
U/[U,U ].

(ii ) The Algebraic HKR-Theorem [HoKoRos, LoQ] If U is a unital commutative algebra
over a commutative ring k containing Q, its U -module of Kähler differentials Ω1

U |k is
generated over U by symbols du, u ∈ U subject to the conditions

d(au) = a du, d(u+ v) = du+ dv, d(uv) = u dv + v du

for all u, v ∈ U , a ∈ k. Denote by Ω•U |k := ∧•UΩ1
U |k the U -exterior algebra

of Kähler differentials where Ω0
U |k := U and write typical elements in ΩnU |k as

u0 du1 · · · dun := u0 du1 ∧ · · · ∧ dun. The de Rham differential d is the family of
maps

d : ΩnU |k → Ωn+1
U |k , d(u0 du1 · · · dun) = du0 du1 · · · dun,

for ui ∈ U . It fulfills d2 = 0, so that one may define the de Rham cohomology of U
as H•dR(U) := H•(ΩU |k).

One now has two natural maps, the antisymmetrisation map and its section, respec-
tively,

πn : HHn(U)→ ΩnU |k, (u0, u1, . . . , un) 7→ u0 du1 · · · dun,

εn : ΩnU |k → HHn(U), u0 du1 · · · dun 7→
∑
σ∈Sn

signσ(u0, uσ−1(1), . . . , uσ−1(n)),

and πn εn = n!id holds. In particular, both maps commute with the map B∗ :
HHn(U) → HHn+1(U) induced by B, that is B∗ εn = εn+1 d and (n + 1)d πn =
πn+1B∗; hence B is compatible with d. Under the assumption that k contains Q, the
map 1

n!πn induces a morphism of mixed complexes

(C•U, b,B)→ (Ω•U |k, 0, d),

and if U is smooth (confer [Lo1, App. E] for the precise definition), one can prove

1.1.11 Theorem If U is a smooth algebra over k, the antisymmetrisation map ε :
Ω•U |k → HH•(U) is an isomorphism of graded algebras . As a consequence, if k
contains Q, one additionally has a canonical isomorphism

HCn(U) ' ΩnU |k/dΩ
n−1
U |k ⊕H

n−2
dR (U)⊕Hn−4

dR (U)⊕ . . . ,

the last summand beingH0
dR(U) orH1

dR(U) depending on n even or odd, respectively.
Finally,

HPn(U) '
∏
m∈Z

Hn+2m
dR (U).

Since HC•(U) is defined even for noncommutative U , one may think of (periodic)
cyclic homology as a generalisation of de Rham cohomology to a noncommutative
setting.
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(iii ) Connes’ Theorem [Co3] A differential geometric version of the preceding example is
as follows. The algebraic theory HC•(U) for a general algebra U is usually hard to
calculate; in applications, however, U is often determined more specifically, for exam-
ple it is given as a topological locally convex algebra. In such a situation the algebraic
tensor product in Example 1.1.5(i) has to be replaced by one that does not ignore the
topology since already in the case C∞c (M) of compactly supported smooth functions
on a manifold M the algebraic cyclic homology is not known. As already discussed
in Example 1.1.5(ii), one has different possibilities for choosing such a tensor prod-
uct ⊗̂, as long as the property C∞(M)⊗̂n ' C∞(M×n) is fulfilled. In either case,
for C•(C∞(M)) = C∞(M)⊗•+1 using any of the tensor products with the desired
property, the map

µ : f0 ⊗ f1 ⊗ · · · ⊗ fn 7→
1
n!
f0df1 · · · dfn

defines a quasi-isomorphism of complexes

(C•(C∞(M)), b) 7→ (Ω•M, 0)

as well as a map of mixed complexes

(C•(C∞(M)), b, B) 7→ (Ω•M, 0, ddR).

Note that the fact that µ is a map of mixed complexes indicates that, up to a factor, B
seems to be the correct replacement of ddR to a noncommutative setting. In particular,
if the manifold M is compact one has the isomorphisms [Co3]

HH•(C∞(M)) ' Ω•M and hence HP•(C∞(M)) ' Heven
dR (M)⊕Hodd

dR (M).

(iv ) Almost Symmetric Algebras Let (U, ·) be a non-negatively filtered algebra over a com-
mutative ring k, i.e., there is a sequence of k-modules {FiU}i≥0 such that

F0U ⊂ F1U ⊂ F2U ⊂ . . . ,
∪iFiU = U, ∩iFiU = 0, (FiU) · (FjU) ⊂ Fi+jU for i, j ≥ 0.

Now U is called an almost symmetric algebra if its associated graded algebra grU =
⊕igri U , where gri U = FiU/Fi−1U , is isomorphic to the symmetric algebra SV
where V := F1U/F0U ; this requires in particular F0U = k and grU to be commuta-
tive. Moreover, grU becomes a Poisson algebra, that is, a (possibly unital and com-
mutative) associative algebra together with a Lie bracket that satisfies a Leibniz deriva-
tion rule in each of its arguments. Now consider the canonical map pi : FiU → grU ,
take two elements f ∈ gri U and g ∈ grj U , and choose u ∈ FiU , u′ ∈ FjU
such that f = pi(u) and g = pj(u′). Since grU is commutative, the commutator
[u, u′] = uu′ − u′u lies in Fi+j−1U and one verifies that {f, g} := pi+j−1([u, u′])
only depends on f, g and indeed defines a Poisson structure on grU . Finally, the
symmetric algebra SV inherits a Poisson structure by pullback and the degree −1
differential

δ(v0 dv1 · · · dvn) :=
n∑
i=1

(−1)i{v0, v1}dv1 · · · d̂vi · · · dvn

+
∑

1≤i<j<n

(−1)i+jv0d{vi, vj}dv1 · · · d̂vi · · · ˆdvj · · · dvn
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on Ω•SV |k anti-commutes with the degree +1 de Rham differential d. Hence this con-
struction defines a mixed complex (Ω•SV |k, δ, d). Then one can prove [Kas2, Lo1]:

1.1.12 Theorem If k contains Q and U is almost symmetric, one obtains isomor-
phisms

HH•(U) '−→ H•(Ω•SV |k, δ),

HC•(U) '−→ HC•(Ω•SV |k, δ, d),

HP•(U) '−→ HP•(Ω•SV |k, δ, d).

In particular, one can apply this theorem to the universal enveloping algebra UL of a
(free as a k-module) Lie algebra L, reproducing e.g. the classical result HH•(UL) '
H•(L,ULad) of [CarE, Chapt. XIII, Thm. 7.1], or to a similar construction in the
framework of Lie-Rinehart algebras (provided one is interested in their algebra ho-
mology). We will, however, take a different route to the same result, see Theorem
6.4.1(i).

1.1.13 Cocyclic Objects As before, let N be an abelian category and pick 1 ≤ r ≤ ∞. An
r-cocyclic object in N is a functor Y : ∆Cr → N , that is, a cosimplicial object (Y •, δ•, σ•)
together with a morphism τn : Y n → Y n, subject to

τnδi =
{
δi−1τi−1

δn

if 1 ≤ i ≤ n,
if i = 0,

τnσi =
{
σi−1τn+1

σnτ
2
n+1

if 1 ≤ i ≤ n,
if i = 0,

τ
r(n+1)
n = id.

(1.1.10)

Again, in case r = ∞ the last equation is replaced by the empty relation. In such a case
the resulting∞-cocyclic objects are also called para-cocyclic objects; if r = 1, we simply
speak of cocyclic objects. As before, we will be often dealing with the case in which N is
the category of modules over a ring, that is, we will be considering cocyclic modules. On the
other hand, natural objects to deal with in this context are actually comodules with respect
to some coalgebra and some ring (hence still some modules over some ring, see §1.2.2 for
more details). In those cases we shall speak of cocyclic comodules.

1.1.14 Example Dually to Example 1.2.4(i), one can assign to each k-coalgebra C and ψ ∈
Endk C a cocyclic module Cψ\ ; cf. [FeTs]. We do not give the details here, but rather refer
to the generalised version in §1.2.5, where k is replaced by an arbitrary k-algebra.

1.1.15 Hochschild and Cyclic Cohomology for Cocyclic Objects For a cocyclic object Y •,
define

β′n : Y n −→ Y n+1, β′n :=
n∑
j=0

(−1)jδj ,

βn : Y n −→ Y n+1, βn := β′n + (−1)n+1δn+1,

(1.1.11)
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along with the extra codegeneracy σ−1 := σnτn+1 which serves here as contracting homo-
topy (one could also take σn+1 = σ0τ

−1
n+1), and λn := (−1)nτn for r 6= ∞. Moreover,

set

N :=
(n+1)r−1∑

j=0

λjn, B := Nσ−1(1− λn+1).

Then the resulting mixed complex (Y •, β,B) defines the Hochschild and cyclic cohomolo-
gies HH•(Y ) and HC•(Y ), respectively; again, if r = ∞, set HH•(Y ) = H•(Y, β). As
before, one could alternatively consider a ‘cocyclic’ bicomplex, but we refrain from spelling
out the details here. See, however, (5.2.14) for an example of a reduced (normalised) bicom-
plex where Y • is in the category of cocyclic modules.

1.1.16 Tor and Ext Interpretation of Cyclic (Co)Homology One can apply methods of
homological algebra in the abelian category of (co)simplicial k-modules. IfX is a simplicial
and Y is a cosimplicial k-module, the groups Tor∆

op

n (Y,X) are well-defined and in fact
are k-modules. The trivial simplicial or cosimplicial module k is the functor [n] 7→ k for
all n ≥ 0 with (co)faces and (co)degeneracies given by the identity; one can show that
Tor∆

op

n (k,X) ' HHn(X) and Extn∆op(Y, k) ' HHn(Y ), cf. e.g. [Lo1].
The interpretation of cyclic homology and cohomology as Tor and Ext functors, respec-

tively, consists essentially in replacing the simplicial category ∆ by ∆C. A theorem in [Co2]
(see also [Lo1, 6.2.8] for a proof) establishes canonical isomorphisms

Tor∆
opC

n (k,X) ' HCn(X) Extn∆opC(Y, k) ' HCn(Y )

for X,Y cyclic and cocyclic, respectively. The proof works essentially in an analogous
manner as the one for Hochschild homology and simplicial modules; however, instead of
constructing a particular resolution for the trivial cyclic module k\ as in the case of simpli-
cial modules, one rather constructs a certain biresolution; see [Lo1] for details. In case of
Example 1.2.4(i), one obtains in a canonical way for a unital associative k-algebra U

Tor∆
opC

n (k, U \) ' HCn(U), Extn∆opC(U \, k) = HCn(U).

1.1.17 The Cyclic Dual A remarkable property of the cyclic category ∆Cr is the existence
of a natural isomorphism to its opposite category ∆opCr, so to say a self-duality. For the sake
of simplicity we give the explicit construction for r = 1; confer [FeTs] for the more general
case. Roughly speaking, the corresponding duality functor ∆C → ∆opC is the identity on
objects, exchanges (co)faces and (co)degeneracies and sends the (co)cyclic operator to its
inverse. More precisely, if X = (X•, d•, s•, t•) is a para-cyclic object with tn assumed to
be invertible for all n ≥ 0, define its cyclic dual X̂ := (X̂•, δ•, σ•, τ•) where X̂n := Xn in
degree n and

δi := si−1 : X̂n → X̂n+1, 1 ≤ i ≤ n,
δ0 := tnsn : X̂n → X̂n+1,

σi := di : X̂n → X̂n−1, 0 ≤ i ≤ n− 1,
τn := t−1

n : X̂n → X̂n.
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Also, if Y = (Y •, δ•, σ•, τ•) is a para-cocyclic object with invertible operator τ , its cyclic
dual is defined as Y̌ := (Y̌•, d•, s•, t•), where Y̌n := Y n in degree n and

di := σi−1 : Y̌n → Y̌n−1, 1 ≤ i ≤ n,
d0 := σn−1τn : Y̌n → Y̌n−1,
si := δi : Y̌n → Y̌n+1, 0 ≤ i ≤ n− 1,
tn := τ−1

n : Y̌n → Y̌n.

Note, however, that there are other possible formulae for an isomorphism ∆C → ∆opC
since ∆C has nontrivial automorphisms (see e.g. [Lo1, 6.1.14]). One easily proves [Co2]:

1.1.18 Lemma Let X be a para-cyclic object and Y a para-cocyclic object, as above.

(i ) The quadruple X̂ = (X̂•, δ•, σ•, τ•) is a para-cocyclic object and is cocyclic if X is
cyclic.

(ii ) Analogously, the quadruple Y̌ = (Y̌•, d•, s•, t•) carries the structure of a para-cyclic
object and is cyclic if Y carries a cocyclic structure.

The following proposition (see e.g. [KhR4]) reveals that the respective Hochschild
(co)homology groups of the (co)cyclic duals of Examples 1.1.5(i) and 1.1.14 turn out not
to cause enormous excitement.

1.1.19 Proposition Let U be a unital algebra and let C be a (counital) coalgebra, both over
some field k.

(i ) The Hochschild cohomology of the cocyclic module Û \ is trivial in positive dimen-
sions.

(ii ) In the same fashion, the Hochschild homology groups of the cyclic module Č\ are
trivial in positive dimensions.

PROOF: The proof of both statements relies on giving a contracting homotopy. If φ : U →
k is a linear functional with the property φ(1U ) = 1k, defining

σ : U⊗kn+1 → U⊗kn, u0 ⊗k · · · ⊗k un 7→ φ(u0)u1 ⊗k · · · ⊗k un

and remembering that Ûn := U⊗n+1 in degree n ≥ 0, one can verify that this defines a
contracting homotopy for the Hochschild complex of Û \. Likewise, for an element τ ∈ C
with ε(τ) = 1k, for example a grouplike element, the map

s : C⊗kn+1 → C⊗kn+2, c0 ⊗k · · · ⊗k cn 7→ τ ⊗k c0 ⊗k · · · ⊗k cn

defines a contracting homotopy for the Hochschild complex of Č\. 2

This homological triviality generally fails; confer Chapter 6 for meaningful results for the
homology of a cyclic dual.
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1.2 A-rings and A-corings
This section presents the generalisations from k-algebras and k-coalgebras to algebras and
coalgebras over not necessarily commutative ground rings; we also discuss their associated
cyclic objects. The content of this section will be needed throughout all subsequent chapters.

1.2.1 A-rings An A-ring (cf. e.g. [BrzWi, B3, Str]) is a monoid in the monoidal category
(Ae-Mod,⊗A, A) of (A,A)-bimodules over a not necessarily commutative k-algebra A.
We refer to A as the base ring (or base algebra) whereas k will still be called the ground
ring. Let Ae := A⊗k Aop be the enveloping algebra of A.

An A-ring U is therefore a triple (U,mU , η) where U ∈ Ae-Mod and mU : U ⊗A U →
U, u⊗ v 7→ uv as well as η : A→ U are (A,A)-bimodule maps such that

mU(mU ⊗ idU ) = mU(idU ⊗mU) (associativity),
mU(η ⊗ idU ) = mU(idU ⊗ η) (unitality).

We refer to U as the total ring. Moreover, we will make frequent use of the well-known fact
that A-rings U correspond bijectively to k-algebra homomorphisms

η : A→ U, (1.2.1)

see e.g. [B3] for a proof. With this characterisation, we may express the (A,A)-bimodule
structure by aub := η(a)uη(b) for a, b ∈ A and u ∈ U , hence for a ∈ A, u, v ∈ U one has

a(uv) = (au)v, u(va) = (uv)a, (ua)v = u(av), (1.2.2)

A morphism of A-rings f : U → V is an (A,A)-bimodule morphism satisfying µ(f ⊗ f) =
fµ as well as the property fη = η, which we shall baptise unitality again. Let A-Ring
denote the category of A-rings and (unital) A-ring morphisms. If A = k coincides with the
commutative ground ring, k being mapped into the centre of U by means of η, one recovers
the conventional notion of a k-algebra.

1.2.2 A-corings Dual to the notion of an A-ring is the concept of an A-coring: this is a
comonoid in the monoidal category (Ae-Mod,⊗A, A) of (A,A)-bimodules for a k-algebra
A. Explicitly, an A-coring C is a triple (C,∆, ε), where C is an (A,A)-bimodule (with left
and right actions LA and RA) and ∆ : C → C ⊗A C, ε : C → A are (A,A)-bimodule maps
(called coproduct and counit) such that

(∆⊗ idC)∆ = (idC ⊗∆)∆ (coassociativity),
LA(ε⊗C idC)∆ = RA(idC ⊗ ε)∆ = idC (counitality).

The notion of a cocommutative A-coring only makes sense if A is commutative and LA and
RA coincide. It is then defined by the condition σC,C∆ = ∆ where σC,C(c⊗A c′) = c′⊗A c
is the tensor flip. An A-coring morphism is an (A,A)-bimodule morphism f : C → D
with ∆f = (f ⊗A f)∆ and εf = ε, which we call counitality again. Denote by A-Coring
the category of (counital coassociative) A-corings and (counital) A-coring morphisms. If
A = k coincides with the commutative ground ring, one recovers the conventional notion of
k-coalgebra. See [BrzWi] for more details on A-corings.
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1.2.3 Cyclic Tensor Products In order to give a well-defined meaning to the cyclic theories
for A-(co)rings, we first have to discuss the notion of cyclic tensor product of [Q2]. The
tensor product M1 ⊗A · · · ⊗AMn of a sequence of (A,A)-bimodules Mi, i = 1, . . . , n, is
again an (A,A)-bimodule and can be therefore equipped with the structure of a (say, right)
Ae-module by means of

(m1 ⊗A · · · ⊗A mn) · (a⊗k b) := bm1 ⊗A · · · ⊗A mna, ∀ a, b ∈ A.

On the other hand,A itself carries a leftAe-action by (a⊗kb)·c := acbwhere a, b, c ∈ A,
and one forms the cyclic tensor product

M1 ⊗A · · · ⊗AMn⊗A := M1 ⊗A · · · ⊗AMn ⊗Ae A.

Analogously to usual tensor products, this k-module is universal for multilinear func-
tions f : M1 × · · · × Mn → V into any space V satisfying f(. . . ,mia,mi+1, . . .) =
f(. . . ,mi, ami+1, . . .) as well as f(m1, . . . ,mna) = f(am1, . . . ,mn) for a ∈ A, mi ∈
M . In particular, for the lowest degree one has

M ⊗Ae A = M/[A,M ],

where [A,M ] = {am − ma|a ∈ A, m ∈ M}. Of course, one can also consider A ⊗Ae

M1 ⊗A · · · ⊗A Mn, i.e., consider the left Ae-action on M1 × · · · ×Mn and the right Ae-
action on A: this leads to the same universal k-module. For notational reasons we always
put the abbreviation −⊗A on the right, even if A ⊗Ae − stands on the left. If all Mi = M ,
i = 1, . . . , n, are identical, its n-fold cyclic tensor product M ⊗A · · · ⊗AM⊗A carries two
natural actions of the cyclic group Z/nZ, the generators of which are either given by

t(m1 ⊗A · · · ⊗A mn⊗A) = mn ⊗A m1 ⊗A · · · ⊗A mn−1⊗A,

or by the operators λ = (−1)n−1t.

1.2.4 A-rings as Cyclic Objects There is a functor \ : A-Ring→M∆Cr from the category
of A-rings to the category of cyclic modules, defined as follows. For an A-ring U , the right
Ae-action on the (n+ 1)-th tensor power U⊗An+1 is, as before, given by

(u0 ⊗A · · · ⊗A un) · (a⊗k b) := bu0 ⊗A · · · ⊗A una.

Let
BAn U := U⊗An+1 ⊗Ae A = U⊗An+1 ⊗A .

For φ ∈ End(A,A)(U), we associate in degree n the face, degeneracy and cyclic operators

di(u0 ⊗A · · · ⊗A un⊗A) =
{
u0 ⊗A · · · ⊗A uiui+1 ⊗A · · · ⊗A un⊗A

φ(un)u0 ⊗A u1 ⊗A · · · ⊗A un−1⊗A

if 0 ≤ i ≤ n− 1,
if i = n,

si(u0 ⊗A · · · ⊗A un⊗A) =u0 ⊗A · · · ⊗A ui ⊗A 1U ⊗A ui+1 ⊗A · · · ⊗A if 0 ≤ i ≤ n,
tn(u0 ⊗A · · · ⊗A un⊗A) =φ(un)⊗A u0 ⊗A u1 ⊗A · · · ⊗A un−1⊗A

(1.2.3)
to the space U \,φA := {BAn U}n≥0. Then U \,φA is r-cyclic if the order of φ is less than
infinity, and cyclic if and only if φ = id, in which case we will write U \A. The notion of
cyclic tensor products is required here to make these operators well-defined and allows one
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to drop the condition that η(A) ⊂ Z(U) lies in the centre of U . The condition (1.2.2) is
required to make the face operators well-defined. A unital A-ring morphism f : U → V
induces a morphism of cyclic modules f \ : U \,φA → V \,f◦φA by f \(u0 ⊗A · · · ⊗A un⊗A) :=
f(u0)⊗A · · ·⊗A f(an)⊗A. In case thatA = k, the commutative ground ring (as a k-module
over itself), the cyclic structure given here specialises to the conventional one for k-algebras
from e.g. [FeTs] or [Nis] as presented in Example 1.1.5(iii).

1.2.5 A-corings as Cocyclic Objects Similarly, there is a functor \ : A-Coring → N∆Cr

from the category of A-corings to the category of cocyclic modules, defined as follows: Let
(C,∆, ε) be an A-coring, and use Sweedler’s [Sw1] shorthand notation ∆c =: c(1) ⊗A c(2)
for the coproduct. Recall that the left Ae-action on the (n + 1)-th tensor power C⊗An+1 is
given by

(a⊗k b) · (c0 ⊗A · · · ⊗A cn) := ac0 ⊗A · · · ⊗A cnb.
On the other hand, a right Ae-action on Aop is given by a · (b⊗k c) := cab and we consider
the cyclic tensor products

C ⊗A · · · ⊗A C⊗A := Aop ⊗Ae C ⊗A · · · ⊗A C.

For ψ ∈ End(A,A)(C), define the cocyclic module Cψ\ := {BnAC}n≥0 where BnAC :=
Aop ⊗Ae C⊗An+1 =: C⊗An+1⊗A in degree n with coface, codegeneracies and cocyclic
operators

δi(c0 ⊗A · · · ⊗A c
n⊗A) =

{
c0 ⊗A · · · ⊗A ∆ci ⊗A · · · ⊗A c

n⊗A

c0(2) ⊗A c
1 ⊗A · · · ⊗A ψ(c0(1))⊗A

if 0 ≤ i ≤ n
if i = n+ 1,

σi(c0 ⊗A · · · ⊗A c
n⊗A) = c0 ⊗A · · · ⊗A c

iε(ci+1)⊗A c
i+2 ⊗A · · · ⊗A if 0 ≤ i ≤ n− 1,

τn(c0 ⊗A · · · ⊗A c
n⊗A) = c1 ⊗A c

2 ⊗A · · · ⊗A ψ(c0)⊗A .
(1.2.4)

Again, CA\,ψ is r-cocyclic if the order r of ψ is less than infinity and cocyclic if and only
if ψ = id in which case we will only write CA\ . Similarly as before, a counital coalgebra
morphism f : C → D induces a morphism of cocyclic modules f\ : CA\,ψ → DA

\,f◦ψ by
f\(c0⊗A · · · ⊗A cn⊗A) = f(c0)⊗A · · · ⊗A f(cn)⊗A in degree n. In case A = k coincides
with the commutative ground ring (as k-module over itself), the cocyclic structure given here
specialises with the conventional one for k-coalgebras as given e.g. in [FeTs].

1.3 Hopf Algebras and Their Cyclic Cohomology
Hopf algebras can be seen as a noncommutative analogue of Lie groups. More precisely,
symmetries in noncommutative geometry are determined by the action or coaction of some
Hopf algebra on an algebra or coalgebra.

A large part of this thesis is devoted to generalisations of Hopf algebra theories towards
Hopf algebroids We therefore briefly give an overview on Hopf algebras and their Hopf-
cyclic cohomology.

1.3.1 Bialgebras and Hopf Algebras
Let U be a k-module equipped simultaneously with a k-algebra structure (U,mU , η) (cf.
§1.2.1) and a k-coalgebra structure (cf. §1.2.2). Equip U ⊗k U with the induced structure
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of a tensor product of algebras (by factorwise multiplication and unit 1U ⊗k 1U ) and also
with the induced structure of a tensor product of coalgebras (with comultiplication (idU ⊗k
σU,U ⊗k idU)(∆⊗∆) and counit ε⊗ ε). The proof of the following classical lemma can be
e.g. found in [Kas3, Str]

1.3.1 Lemma The following statements are equivalent

(i ) The maps mU and η are morphisms of k-coalgebras.

(ii ) The maps ∆ and ε are morphisms of k-algebras.

This leads to the following definition.

1.3.2 Definition (i ) A k-bialgebra is a quintuple (U,mU , η,∆, ε), where (U,mU , η) is a
k-algebra and (U,∆, ε) a k-coalgebra verifying the equivalent conditions of the pre-
ceding lemma. A morphism of k-bialgebras is a morphism for both the underlying
k-algebra and k-coalgebra.

(ii ) Let (H,mH , η,∆, ε) be a k-bialgebra. An endomorphism S : H → H is called an
antipode for H if

mH(S ⊗ idH)∆ = mH(idH ⊗ S)∆ = ηε.

A Hopf algebra is a k-bialgebra with an antipode. A morphism of Hopf algebras
is a morphism between the underlying k-bialgebras commuting with the respective
antipodes.

It can be shown that the antipode is unique (if it exists) and is both an anti-algebra mor-
phism and anti-coalgebra morphism.

1.3.3 Examples Commutative or cocommutative Hopf algebras arise naturally from groups
and Lie algebras.

(i ) Let Γ be a discrete (not necessarily finite) group with group algebra CΓ. Extending
the maps

∆g = g ⊗C g, εg = 1C, Sg = g−1, ∀g ∈ Γ,

linearly to all of CΓ, one obtains a cocommutative Hopf algebra structure on CΓ. This
Hopf algebra is commutative if and only if Γ is commutative.

(ii ) The universal enveloping algebra Ug of a Lie algebra g is a cocommutative Hopf
algebra. The structure maps have the defining properties

∆X = X ⊗C 1 + 1⊗C X, εX = 0, SX = −X ∀X ∈ g.

Ug is a commutative Hopf algebra if and only if g is abelian, in which case Ug coin-
cides with the symmetric algebra Sg of g.

See e.g. [Sw1, Kas3, Str, ChPr] for extensive material on Hopf algebras.
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1.3.2 Hopf-Cyclic Cohomology
In [CoMos2] a new cohomology theory of Hopf algebras was launched, nowadays referred
to as Hopf-cyclic (co)homology. One may consider this as the correct noncommutative
analogue of both group and Lie algebra homology, see below. The original motivation was
to obtain a noncommutative characteristic map

χtr : HC•δ,σ(H)→ HC•(A) (1.3.1)

from a certain cyclic cohomology group to the standard cyclic cohomology group of an
algebra A needed for the study of transverse elliptic operators, induced on the cochain level
by a map

χtr : H⊗kn → CnA, χtr(h1, . . . , hn)(a0, . . . , an) = tr (a0h1(a1), . . . , hn(an)) (1.3.2)

in degree n. Here, H is a Hopf algebra (with structure maps as before) acting on a unital
k-algebra A by the assignment (h, a) 7→ h(a), satisfying in particular the Leibniz rule

h(ab) = h(1)(a)h(2)(b), a, b ∈ A, h ∈ H.

Such a Hopf algebra action may be seen as a notion of ‘quantum’ symmetry on a noncom-
mutative space, see e.g. [CoMos1]. The data (δ, σ) that appears in (1.3.1) form an algebraic
analogue of the modular function of a locally compact group:

1.3.4 Definition A character δ ∈ H∗ (i.e. a ring homomorphism δ : H → k) together with
a grouplike element σ ∈ H (i.e. an element that fulfills ∆σ = σ ⊗k σ, εσ = 1k) related to
each other by the condition δσ = 1k is called a modular pair.

Modular pairs turns out to be self-dual in some sense when passing to the dual Hopf algebra,
see [CoMos4]. Finally, the linear map tr : A → k that appears in (1.3.2) is a σ-invariant
δ-trace, i.e. a map fulfilling

tr (h(a)) = δ(h)tr (a), tr (ab) = tr (bσ(a)), a, b ∈ A.

Maps of the kind (1.3.2), originally introduced in [Co1], are typical ingredients in cyclic
cohomology.

1.3.5 Twisted Antipodes The character δ gives rise to a twisted antipode S̃ : H → H ,
defined by [CoMos4]

S̃h := η(δh(1))Sh(2), h ∈ H, (1.3.3)

where S is the antipode of the Hopf algebra H . The twisted antipode S̃ is an anti-algebra
morphism and a twisted anti-coalgebra morphism, that is

∆S̃h = Sh(2) ⊗k S̃h(1), h ∈ H. (1.3.4)

Furthermore, it satisfies
εS̃ = δ, δS̃ = ε. (1.3.5)

If A is unital, one also proves that δ-invariance of tr is equivalent to partial integration

tr (h(a)b) = tr (a(S̃h)(b)), a, b ∈ A, h ∈ H,
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and (δ, σ) is called a modular pair in involution if

S̃2h = σhσ−1, h ∈ H, (1.3.6)

where σ−1 := Sσ.

1.3.6 Example For any commutative or cocommutative Hopf algebra we have S2 = idH

(cf. e.g. [Kas3]). Hence (ε, 1H) is a modular pair in involution. See, however, [CoMos2] for
a less trivial example.

1.3.7 The Hopf-Cocyclic Module In [CoMos2] a cocyclic module is attached to the triple
(H, δ, σ) as follows. SetHδ,σ

\ := {H⊗n}n≥0, i.e.H⊗n in degree n andH⊗0 := k in degree
zero. The cosimplicial operators are then given as

δi(h1 ⊗k · · · ⊗k hn) =

 1⊗k h1 ⊗k · · · ⊗k hn
h1 ⊗k · · · ⊗k ∆`h

i ⊗k · · · ⊗k hn
h1 ⊗k · · · ⊗k hn ⊗k σ

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

σi(h1 ⊗k · · · ⊗A hk) = h1 ⊗k · · · ⊗k εhi+1 ⊗k · · · ⊗k hn if 0 ≤ i ≤ n− 1,

and in degree zero

δj1k =
{

1H if j = 0,
σ if j = 1.

Finally, the cocyclic operator is defined as

τn(h1 ⊗k · · · ⊗k hn) = (∆n−1
` S̃h1)(h2 ⊗k · · · ⊗k hn ⊗k σ)

= S(h1
(n))h

2 ⊗k · · · ⊗k S(h1
(2))h

n ⊗k S̃(h1
(1))σ.

These operators were originally obtained by pulling back the cocyclic structure of C•A
and were dictated by requiring the characteristic map (1.3.2) to be a morphism of cocyclic
modules. One can now show [CoMos4] thatHδ,σ

\ is cocyclic if and only if (1.3.6) is fulfilled.
In such a case we speak of the Hopf-cyclic cohomology of the triple (H, δ, σ), denoted
HC•δ,σ(H) and HP •δ,σ(H), respectively.

1.3.8 Examples Let us state two results corresponding to the Examples 1.3.3; cf. [CoMos2,
Cr3] for the proofs.

(i ) For the group algebra CΓ of a discrete not necessarily finite group Γ one obtains

HP 0
ε,1(CΓ) ' C, HP 1

ε,1(CΓ) ' 0.

(ii ) For a Lie algebra g, a character δ : g→ C is a linear map with δ|[g,g] = 0, and denote
its unique extension to an algebra morphism Ug→ C by the same symbol δ. We write
Cδ for C, seen as a g-module via δ. For elementsX ∈ g one obtains S̃X = −X+δX ,
hence σ = 1: this is the unimodular case. One then computes [CoMos2, Cr3]

HP •δ,1(Ug) ' Hodd(g,Cδ)⊕Heven(g,Cδ),

where the right hand side denotes the Chevalley-Eilenberg homology of Lie algebras
with values in the g-module Cδ .
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Example 1.3.8(ii) gives a hint why one should consider Hopf-cyclic cohomology as a non-
commutative analogue of Lie algebra homology. We will make a similar statement in the
generalised context of Hopf algebroids and Lie algebroids (Lie-Rinehart algebras, respec-
tively) as a consequence of Theorem 5.5.7(ii) below.

See e.g. [CoMos4, CoMos2, Cr3, HKhRSo1, HKhRSo2] for more material on Hopf-
cyclic (co)homology of Hopf algebras. There is also a Hopf-cyclic homology theory dual to
the one above in the sense of cyclic duality. We will not give the details here (cf. [KhR1,
KhR4, KhR2, Tai]), but will immediately extend this theory to the realm of Hopf algebroids
in Chapter 6.

1.4 Lie-Rinehart Algebras
In this section we collect some material on Lie-Rinehart algebras. Lie-Rinehart algebras can
be thought of as algebraic versions of Lie algebroids. As for Lie algebroids (cf. [NisWeiX]),
there is an associated universal enveloping object associated to it. In Section 4.2 we will
discuss the possibilities how this object can be considered an example of a ‘generalised
Hopf algebra’.

As before, let k be a commutative unital ring (containing Q) and A a commutative k-
algebra. For the subsequent definition unitality of A is not strictly required, but for conve-
nience we will assume this as well.

1.4.1 Definition [Rin] Let L be a k-Lie algebra L, a⊗k X 7→ aX for a ∈ A, X ∈ L a left
A-module structure on L, and ω : L → Derk A, X 7→ {a 7→ X(a)} a morphism of k-Lie
algebras. The pair (A,L) is called a Lie-Rinehart algebra with anchor ω, provided

(aX)(b) = a(X(b)) X ∈ L, a, b ∈ A, (1.4.1)
[X, aY ] = a[X,Y ] +X(a)Y X, Y ∈ L, a ∈ A. (1.4.2)

A morphism (A,L)→ (A′, L′) of Lie-Rinehart algebras is a pair of maps (φ : A→ A′, ψ :
L→ L′) where φ is a morphism of k-algebras and ψ a morphism of k-Lie algebras with the
properties ψ(aX) = φ(a)ψ(X) and φ(X(a)) = ψ(X)(φ(a)).

1.4.2 Examples Two immediate examples are given by the following:

(i ) The pair (A,Derk A) of a commutative algebra A and its k-derivations with obvious
anchor yields a Lie-Rinehart algebra.

(ii ) A Lie algebroid is a vector bundle E →M over a smooth manifold M , together with
a map ω : E → TM of vector bundles and a (real) Lie algebra structure [., .] on the
vector space ΓE of sections of E, such that the induced map Γ(ω) : ΓE → X (M)
is a Lie algebra homomorphism, and for all X,Y ∈ ΓE and any f ∈ C∞(M), one
has [X, fY ] = f [X,Y ] +Γ(ω)(X)(f)Y . Then the pair (C∞(M),ΓE) is obviously a
Lie-Rinehart algebra; see e.g. [CanWei] and [Mac] for more details on Lie algebroids.

1.4.3 Definition [Rin, Hue1] The universal object (V L, iL, iA) of a Lie-Rinehart algebra
(A,L) is a k-algebra V L with two morphisms iA : A → V L and iL : L → V L of
k-algebras and k-Lie algebras, respectively, subject to the conditions

iA(a)iL(X) = iL(aX), iL(X)iA(a)− iA(a)iL(X) = iA(X(a)), a ∈ A, X ∈ L,
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universal in the following sense: for any other triple (W,φL, φA) of a k-algebra W and two
morphisms φA : A → W , φL : L → WL of k-algebras and k-Lie algebras, respectively
(where WL is the commutator Lie algebra) that obey

φA(a)φL(X) = φL(aX), φL(X)φA(a)− φA(a)φL(X) = φA(X(a)), (1.4.3)

there is a unique morphism
Φ : V L→W (1.4.4)

of k-algebras such that ΦiA = φA and ΦiL = φL.

Note that in case of a trivial anchor one obtains the universal enveloping algebra of L as an
A-Lie algebra.

1.4.4 Remark An alternative construction [Hue1] describes V L as a Massey-Peterson al-
gebra [MasPe]: this coincides with what we will call a ‘smash ring’ in Lemma 3.3.2, see
below. Let UL be the universal enveloping algebra of the k-Lie algebra L with coproduct
∆ULu = u(1) ⊗k u(2). Then clearly A is a left UL-module ring (under the canonical action
(2.3.3) and considering (2.3.4)), and one can set V L = A>CAUL with product

(a>CAu)(a′>CAv
′) = au(1)(a′)>CAu(2)u

′, a, a′ ∈ A, u, u′ ∈ UL.

We may now obviously set iL : L → V L, X 7→ 1A>CAX and iA : A → V L, a 7→
a>CA1UL; from this description it is obvious that iA is an algebra morphism and iL is a
morphism of Lie algebras.

1.4.5 The Poincaré-Birkhoff-Witt Theorem for V L The algebra V L carries a natural fil-
tration

V0L ⊂ V1L ⊂ V2L ⊂ . . . ,

where V−1L := 0, V0L := A and for p ≥ 0, VpL is the left A-submodule of V L generated
by iL(L)p, i.e. products of the image of L in V L of length at most p. Since au−ua ∈ Vp−1L
for any a ∈ A and u ∈ VpL, left and right A-module structures coincide on VpL/Vp−1L.
It follows that the associated graded object gr V L inherits the structure of a graded com-
mutative A-algebra. Denote the symmetric A-algebra by SAL and define SpAL as the pth

symmetric power of L. If L is projective over A, the canonical A-linear epimorphism
SAL

'−→ gr V L is an isomorphism of A-algebras (cf. [Rin, Thm. 3.1] see also [NisWeiX]
for a more differential geometric version). Hence iL and iA are injective; we may therefore
identify elements a ∈ A and X ∈ L with their images in V L. As in the classical Lie algebra
case, the symmetrisation

π : SpAV → VpL, v1 · · · vp 7→
1
p!

∑
σ∈P (p)

vσ(1) ⊗A · · · ⊗A vσ(p), (1.4.5)

(where vi ∈ L or vi ∈ A) induces an isomorphism of (left) A-modules SAL → V L. As
an algebra with multiplication mV L, we may also describe V L as generated by elements
X ∈ L and a ∈ A respecting the relations mV L(a,X) = aX and [X, a] := mV L(X, a) −
mV L(a,X) = X(a).
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1.5 Groupoids
This section contains some basic material on groupoids.

1.5.1 (Etale) Groupoids A groupoidG is a small category in which each arrow is invertible.
Somewhat more explicitly, a groupoid consists of a space of objects G0, a space of arrows
G1 (often denoted G as well) and five structure maps relating the two:

(i ) source and target maps s, t : G1 → G0, assigning to each arrow g its source s(g) and
target t(g); we say that g ‘goes from s(g) to t(g)’;

(ii ) a partially defined composition of arrows, that is, only for those arrows g, h for
which source and target match, s(g) = t(h), i.e. a map m : G2 := G1

s×tG0
G1 →

G1, (g, h) 7→ gh that is associative whenever defined, producing the composite arrow
going from s(gh) = s(h) to t(gh) = t(g);

(iii ) a unit map 1 : G0 → G1, x 7→ 1x that has the property 1t(g)g = g1s(g);

(iv ) an inversion inv : G1 → G1, g 7→ g−1 that produces the inverse arrow going from
s(g−1) = t(g) to t(g−1) = s(g), fulfilling g−1g = 1s(g), gg−1 = 1t(g).

These maps can be assembled into a diagram

G2
m // G1

inv // G1

s //
t

// G0
1 // G1 .

An arrow may be denoted x
g←− y to indicate that y = s(g) and x = t(g), but usually we

abbreviate this to · g←− ·.
A topological groupoid is a groupoid in which G1, G0 are topological spaces and all

the structure maps are continuous. Mutatis mutandis one defines smooth groupoids, where
in addition s and t are required to be surjective submersions in order to guarantee that
G2 = G1

s×tG0
G1 remains a manifold. A topological (or smooth) groupoid is called étale if

the source map is a local homeomorphism (or local diffeomorphism). This implies that all
structure maps are local homeomorphisms (or local diffeomorphisms, respectively). In the
smooth case, this equivalently amounts to saying that dimG1 = dimG0. In particular, an
étale groupoid has zero-dimensional source and target fibres, hence they are discrete. See
e.g. [CanWei, L1, Mac, MoeMrč2] for more material on groupoids.

1.5.2 Local Bisections and Germs A local bisection of a Lie groupoid G is a local section
σ : U → G of s : G → G0 defined on an open subset U ⊂ G0 such that tσ is an open
embedding. IfG is étale, any arrow g induces a germ of a homeomorphism σg : (U, s(g))→
(V, t(g)) from a neighbourhood U of s(g) to a neighbourhood V of t(g): choosing U small
enough such that a bisection σ exists and t|σU is a homeomorphism into V := t(σU), we
simply set σg := tσ. We usually do not distinguish between σg and the ‘actual’ germ of this
map at the point s(g).

1.5.3 Fibre Sum. Notation For a space X we denote the set of sheaves over X by Sh(X)
(cf. [Br]). If F ∈ Sh(X), E ∈ Sh(Y ) are (c-soft [Br]) sheaves over some spaces X,Y ,
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respectively, φ : X → Y an étale map (i.e. a local homeomorphism) and α : F → φ−1E a
sheaf morphism, we often consider maps of type

(α, φ)∗ : Γc(X,F)→ Γc(Y, E), ((α, φ)∗u)(y) =
∑

y=φ(x)

αx(u(x)) ∈ Ey, x ∈ X, y ∈ Y,

where Γc(−,−) denote the groups of compactly supported sections (cf. e.g. [Br], and [Cr2]
for an extension of the functor Γc to non-Hausdorff spaces). This map is abbreviated to

(α, φ)∗ : Γc(X,F)→ Γc(Y, E), (u | x) 7→ (α(u) | φ(x)), x ∈ X,u ∈ Fx.

In particular, if X,Y are two manifolds and C∞X , C∞Y the sheaves of smooth functions
over X and Y , respectively, a smooth map φ : X → Y yields a homomorphism of com-
mutative algebras φ∗x : C∞Y,φ(x) → C

∞
X,x on each stalk for x ∈ X . If φ is étale, i.e. a local

diffeomorphism, φ∗x is an isomorphism with inverse φ∗x, and φ induces the linear map

φ+ : C∞c (X)→ C∞c (Y ), φ+(u)y = ((φ∗, φ)∗u)(y) =
∑

y=φ(x)

φ∗x(ux), (1.5.1)

the sum over the φ-fibres.



Chapter 2

Hopf Algebroids

Roughly speaking, a Hopf algebroid is an algebra carrying simultaneously

(1) a ‘left’ coalgebra structure,

(2) a ‘right’ coalgebra structure,

(3) an ‘antipode’ intertwining these two structures.

We emphasise here that although the information given in (1)–(3) is partly redundant, the
Hopf algebroid axioms and resulting identities are much more natural and symmetric if one
distinguishes the three different structures. For instance, the right coalgebra structure can be
reconstructed from (1) and (3), but the Hopf algebroid axioms written just in terms of the
left coalgebra structure and the antipode would then become unnatural and complicated.

More precisely, a Hopf algebroid should be a kind of generalised bialgebra—a so-called
bialgebroid—with a certain notion of an antipode on it. A typical generalisation of a k-
bialgebra consists in replacing the commutative ground ring k by a noncommutative ring,
involving the concepts of A-ring and coring from §1.2.1 and §1.2.2, respectively, and a cer-
tain interaction between them. However, as said, instead of only one even two such gener-
alised bialgebra structures (left and right bialgebroids) of a different nature will be required,
two concepts that we recall below.

2.1 Left Bialgebroid Structures
Like k-bialgebras, bialgebroids are both algebras and coalgebras, but over different base
rings. In other words, they are monoids and comonoids in different monoidal categories
and the interplay between these is far from obvious. The correct setup presumably appeared
for the first time in [Tak] under the name ×A-bialgebras. They were rediscovered several
times, apparently independently, and baptised bialgebroid in [Lu], bialgebroid with anchor
in [X3, X1], and all these notions were shown to be equivalent in [BrzMi].

Recall from §1.2.1 that an Ae-ring U can be described by a k-algebra map ηU = η :
Ae → U . Equivalently, one can consider its restrictions

s := η(−⊗k 1A) : A→ U and t := η(1A ⊗k −) : Aop → U,

35
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and call these the source and target map of the Ae-ring U ; hence an Ae-ring may be equally
given by such a triple (U, s, t), which is also called an (s, t)-ring [Tak]. Using the left Ae-
module structure (a⊗k ã, u) 7→ η(a⊗k ã)u on U , one considers

U ⊗A U :=U ⊗k U/span{η(1⊗k a)u⊗k u′ − u⊗k η(a⊗k 1)u′ | a ∈ A, u, u′ ∈ U}
=U ⊗k U/span{t(a)u⊗k u′ − u⊗k s(a)u′ | a ∈ A, u, u′ ∈ U}.

(2.1.1)

Note that by (a⊗k ã) · (u⊗A u′) := s(a)u⊗A t(ã)u′, the tensor product U ⊗A U becomes
a left Ae-module or (A,A)-bimodule in a standard way (see (A.1.1)).

2.1.1 Definition The k-submodule U ×A U ⊂ U ⊗A U defined by

U ×A U := {
∑
i

ui ⊗A u′i ∈ U ⊗A U |
∑
i

uit(a)⊗A u′i =
∑
i

ui ⊗A u′is(a), ∀a ∈ A}

(2.1.2)
is called the (left) Takeuchi product of the Ae-ring U with itself.

One easily verifies that U×AU is anAe-ring via factorwise multiplication, with unit element
1U ⊗A 1U and ηU×AU (a⊗ ã) = s(a)⊗A t(ã). On the other hand, there is no well-defined
algebra structure on U ⊗A U , not even if A were commutative, since we do not assume
η(Ae) ⊂ ZU , the centre of U : it is precisely the defining property of U ×A U which makes
factorwise multiplication well-defined on this subspace.

2.1.2 Definition A left A-bialgebroid or ×A-bialgebra is a k-module U that carries simul-
taneously the structure of an Ae-ring (U, s`, t`) as above and an A-coring (U,∆`, ε) (cf.
§1.2.2), subject to the following compatibility axioms:

(i ) The (A,A)-bimodule structure in the A-coring (U,∆`, ε) is related to the Ae-ring
(U, s`, t`) by

a �u � ã := η`(a⊗ ã)u = s`(a)t`(ã)u, a, ã ∈ A, u ∈ U, (2.1.3)

and we refer to this structure by writing �U� . In particular, we write U� ⊗ �U :=
U ⊗A U .

(ii ) Considering the bimodule �U� , the (left) coproduct ∆` is a (unital) k-algebra mor-
phism taking values in U ×A U .

(iii ) For all a, ã ∈ A, u, u′ ∈ U , the (left) counit ε has the property

ε(s`(a)t`(ã)u) = aε(u)ã and ε(uu′) = ε(us`(εu′)) = ε(ut`(εu′)). (2.1.4)

Observe that, being an Ae-ring, such a left bialgebroid in total carries four A-module struc-
tures: one also has

a Iu J ã := uη`(ã⊗ a) = us`ãt`a, (2.1.5)

and whenever we refer to this situation, we denote it by IUJ . Also note that (i) combined
with (ii) implies that

∆`s
`a = s`a⊗A 1, ∆`t

`a = 1⊗A t`a, for a ∈ A. (2.1.6)
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Hence ∆ is also an Ae-module morphism for the action in (2.1.5), i.e., for both (2.1.3) and
(2.1.5) one has

∆`(a �u � ã) = (a �u(1))⊗A (u(2) � ã),
∆`(a Iu J ã) = (u(1) J ã)⊗A (a Iu(2)).

(2.1.7)

2.1.3 Remarks (i ) Even if A were commutative, source and target do not necessarily
coincide, as we will see in examples.

(ii ) Since this will be of frequent technical use in all that follows, let us also explicitly
state the comonoid identities involved. If mU and mUop denote the multiplication in
U and Uop, respectively, one has

mU (s`ε⊗ idU )∆` = mUop(idU ⊗ t`ε)∆` = idU . (2.1.8)

For the coproduct of a left bialgebroid, we will use the Sweedler notation ∆`u =
u(1) ⊗A u(2) with lower indices: it will become clear in a moment why we stress this
distinction. The identity (2.1.8) then reads

s`(εu(1))u(2) = t`(εu(2))u(1) = idU , u ∈ U.

Finally, let us recall the notion of morphisms of bialgebroids [Sz].

2.1.4 Definition A left bialgebroid morphism (U,A, s`, t`,∆`, ε)→ (U ′, A′, s`′, t`′,∆′`, ε
′)

is a pair (φ : A → A′, ψ : U → U ′) of ring homomorphisms that commute with the
structure maps in the obvious fashion. It is called a left bialgebroid isomorphism if φ and ψ
are bijective ring homomorphisms.

2.1.5 Primitive and Grouplike Elements As for ordinary coalgebras, an element X ∈ U
is called primitive if ∆`X = X ⊗A 1 + 1 ⊗A X . Using (2.1.8), this means εX = 0 if
X is primitive. Likewise, an element σ ∈ U is called grouplike if ∆`σ = σ ⊗A σ and
εσ = 1. We denote the space of primitive elements and grouplike elements by P `U and
G`U , respectively.

2.2 Left Hopf Algebroids
In this section, we present a generalisation of the notion of a Hopf algebra, which is based
upon the notion of left bialgebroids: namely, the so-called ×A-Hopf algebra of [Schau2].
We propose the name left Hopf algebroid instead, the reason for which will be explained in
§2.6.14 (apart from solving a pronunciation problem). We will need this concept at various
points, e.g. in Section 6.1 and Section 4.3. In particular, it will be the main ingredient in
Chapter 7.

Let U be a left bialgebroid over A and define the so-called (Hopf-)Galois map of U by

β : IU ⊗Aop U� → U� ⊗A �U, u⊗Aop v 7→ u(1) ⊗A u(2)v, (2.2.1)

where

IU ⊗Aop U� = U ⊗k U/span{a Iu⊗k v − u⊗k v � a |u, v ∈ U, a ∈ A}. (2.2.2)
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One could flip the tensor components in order to avoid taking the tensor product over Aop,
but we find it more convenient to keep β in a form which is standard for bialgebras over
fields. For the latter it is easily seen that β is bijective if and only if U is a Hopf algebra with
β−1(u⊗k v) := u(1)⊗S(u(2))v, where S is the antipode of U . This motivates the following
definition due to Schauenburg [Schau2]:

2.2.1 Definition A leftA-bialgebroidU is called a left Hopf algebroid (or×A-Hopf algebra)
if β is a bijection.

Following [Schau2], we adopt a Sweedler-type notation

u+ ⊗Aop u− := β−1(u⊗A 1) (2.2.3)

for the so-called translation map

β−1(· ⊗A 1) : U → IU ⊗Aop U� .

Since these are substantial for calculations, e.g. in Chapter 7, we list some properties of β−1

as proven in [Schau2, Proposition 3.7]: one has for all u, v ∈ U , a ∈ A

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ U� ⊗A �U, (2.2.4)
u(1)+ ⊗Aop u(1)−u(2) = u⊗Aop 1 ∈ IU ⊗Aop U� , (2.2.5)

u+ ⊗Aop u− ∈ U ×Aop U, (2.2.6)
u+(1) ⊗A u+(2) ⊗Aop u− = u(1) ⊗A u(2)+ ⊗Aop u(2)−, (2.2.7)
u+ ⊗Aop u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−, (2.2.8)

(uv)+ ⊗Aop (uv)− = u+v+ ⊗Aop v−u−, (2.2.9)
u+u− = η(εu⊗ 1), (2.2.10)

η(a⊗ b)+ ⊗Aop η(a⊗ b)− = η(a⊗ 1)⊗Aop η(b⊗ 1), (2.2.11)

where in (2.2.6) we used the Takeuchi product

U ×Aop U :=
{∑

i

ui ⊗Aop vi ∈ IU ⊗Aop U� |
∑
i

ui � a⊗Aop vi =
∑
i

ui ⊗Aop a I vi

}
(2.2.12)

which is an algebra by factorwise multiplication, but with opposite multiplication on the
second factor. Note that in (2.2.8) the tensor product over Aop links the first and third tensor
component (cf. [Schau2, Equation (3.7)]). By (2.2.4) and (2.2.6) one can write

β−1(u⊗A v) = u+ ⊗Aop u−v, (2.2.13)

which is easily checked to be well-defined over A with (2.2.9) and (2.2.11).

2.2.2 Examples (i ) The enveloping algebra Ae of an associative algebra A that governs
Hochschild (co)homology is an example of a left Hopf algebroid over A, as already
pointed out in [Schau2]; see Subsection 4.1.1 for details.

(ii ) Clearly, Hopf algebras over k—such as universal enveloping algebras of Lie algebras
or group algebras—are also left Hopf algebroids over k. More precisely, it is well-
known [Schau2, p. 9] that Hopf algebras are in bijective correspondence with left
Hopf algebroids over k: the inverse of (2.2.1) for a Hopf algebra (H, η,∆, ε, S) is
given by β−1(h⊗k h′) = h(1) ⊗k Sh(2)h

′. Conversely, if H is a left Hopf algebroid
over k, an antipode for H is given by Sh := η(εh+)h−.
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2.3 Left Bialgebroid Modules and Comodules

2.3.1 The Monoidal category U -Mod

As for rings, one can consider modules over a left bialgebroid. However, there are some
peculiarities attached to it, which we discuss in this subsection.

A standard characterisation [P] of bialgebras (common in quantum group theory) is as
follows. A k-algebra U is a bialgebra if and only if the category U -Mod of left U -modules
is a monoidal category such that the underlying forgetful functor U -Mod → k-Mod is
monoidal. The following theorem indicates that the definition of bialgebroids, though some-
what complicated, appears to be the right notion in this more general context.

2.3.1 Theorem [Schau1, Thm. 5.1] The left A-bialgebroid structures on an Ae-ring η :
Ae → U correspond bijectively to monoidal structures on U -Mod for which the forgetful
functor U -Mod→ Ae-Mod induced by η is strictly monoidal.

In particular, given a left A-bialgebroid structure on U , for M ∈ U -Mod with action
(u,m) 7→ um the induced Ae-module structure is given by

amã := t`ãs`am, m ∈M, a, ã ∈ A. (2.3.1)

The monoidal structure on U -Mod is defined analogously as for bialgebras: for M,M ′ ∈
U -Mod, the tensor product M ⊗A M of A-bimodules carries a U -module structure given
by the diagonal

u(m⊗A m′) := u(1)m⊗A u(2)m
′, m ∈M, m′ ∈M ′, u ∈ U, (2.3.2)

which is well-defined since U is a left bialgebroid. The monoidal unit in U -Mod is A and
U acts on A from the left in a canonical way,

ua := ε(us`a) = ε(ut`a), a ∈ A, u ∈ U, (2.3.3)

where the (A,A)-bimodule structure IUJ appears. This may be called a (left) anchor [X3]
for the bialgebroid. One easily gets the following Leibniz rule,

u(aa′) = ε(us`(aa′)) = ε(us`at`a) = ε(u(1)s
`a)ε(u(2)t

`a′) = (u(1)a)(u(2)b), (2.3.4)

hence PU ⊂ Derk A by means of the canonical action.
On the other hand, for a left bialgebroid U there is in general no canonical monoidal

structure on Uop-Mod, and in particular no right action of U on A.
There is a straightforward generalisation of a (left) module structure to a (left) connec-

tion, a notion with respect to which module structures give the special cases of flat left con-
nections. Since we will need explicit details of this concept only for the ‘opposite’ notion of
right bialgebroids (see below), we refer to Section 2.5.1.

2.3.2 The Monoidal Categories U -Comod and Comod-U
Likewise, similarly as for coalgebras, one may define comodules over bialgebroids. This
section contains some issues characteristic to the situation of bialgebroids.

Let U be a left bialgebroid over A with structure maps as above. For the following
definition confer e.g. [Schau1, B2, BrzWi].
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2.3.2 Definition (i ) A right U -comodule for a left bialgebroid U over A is a right co-
module of the underlying A-coring (U,∆`, ε), i.e. a right A-module N with action
RA : (n, a) 7→ na and a right A-module map

N∆ : N → N ⊗A U, n 7→ n(0) ⊗A n(1), (2.3.5)

where
N ⊗A U := N ⊗k U/span{na⊗ u− n⊗ s`au | a ∈ A},

satisfying the usual coassociativity and counitality axioms, i.e.,

(N∆ ⊗ id)N∆ = (id⊗∆`)N∆ and RA(id⊗ ε)N∆ = id,

respectively. For two right U -comodules N,N ′, the set of right U -comodule mor-
phisms is given as

ComU (N,N ′) := {φ ∈ Hom(−,A)(N,N ′)|(φ⊗ id)N∆ = N′∆φ},

and the corresponding category of right U -comodules and right U -comodule mor-
phisms will be denoted Comod-U .

(ii ) A left U -comodule for a left bialgebroid U over A is a left comodule of the underlying
A-coring (U,∆`, ε), i.e. a left A-module M with action LA : (a,m) 7→ am and a left
A-module map

∆M : M → U ⊗AM, m 7→ m(−1) ⊗A m(0), (2.3.6)

where
U ⊗AM := U ⊗kM/span{t`au⊗m− u⊗ am | a ∈ A},

satisfying the usual coassociativity and counitality axioms

(∆` ⊗ id)∆M = (id⊗∆M)∆M and LA(id⊗ ε)∆M = id.

For two left U -comodules M,M ′, the set of left U -comodule morphisms is given as

ComU (M,M ′) := {ψ ∈ Hom(A,−)(M,M ′)|(id⊗ ψ)∆M = ∆M′ψ},

and the corresponding category of left U -comodules and left U -comodule morphisms
will be denoted U -Comod.

2.3.3 Examples (i ) Obviously, the k-module U underlying a left bialgebroid is both a
left and right U -comodule through the left coproduct.

(ii ) In particular (and in contrast to the situation of U -modules), the base algebraA carries
both right and left coaction. Let σ ∈ G`U be a grouplike element. Then

A∆a = t`(a)σ and ∆Aa = s`(a)σ, a ∈ A, σ ∈ G`U, (2.3.7)

define a right and left U -comodule structure on A, which we shall refer to as induced
by σ.
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Furthermore, on any right U -comodule one can additionally define a left A-action

an := n(0)ε(n(1)t
`a), a ∈ A,n ∈ N, (2.3.8)

being the unique action that turns N into an Ae-module and with respect to which N∆ be-
comes an Ae-module morphism

N∆ : N → N×AU := {
∑
i

ni⊗Aui ∈ N⊗AU |
∑
i

ani⊗ui =
∑
i

ni⊗uis`a, ∀a ∈ A}

(2.3.9)
to the Takeuchi product of N with U . That means, for a, b ∈ A and n ∈ N one obtains the
identities

N∆(anb) = n(0) ⊗A t`bn(1)t
`a,

an(0) ⊗A n(1) = n(0) ⊗A n(1)s
`a.

(2.3.10)

Analogous considerations hold for left U -comodules M : one has an additional right A-
action

ma := ε(m(−1)s
`a)m(0),

and as a result gets the coaction as an Ae-module morphism into yet another Takeuchi prod-
uct

∆N : M → U×AM := {
∑
i

ui⊗Ami ∈ U⊗AM |
∑
i

uit
`a⊗mi =

∑
i

ui⊗mia, ∀a ∈ A},

hence satisfying the identities

∆M(amb) = s`am(−1)s
`b⊗A m(0),

m(−1) ⊗A m(0)a = m(−1)t
`a⊗A m(0).

One can then prove (see [B3, Thm. 3.18] and [Schau1, Prop. 5.6]) that, say, the category
Comod-U of right U -comodules is monoidal such that the forgetful functor Comod-U →
(Aop)e-Mod is monoidal (and similar for U -Comod): for any two comodules N,N ′ ∈
Comod-U , their tensor productN⊗AopN ′ is a right U -comodule by means of the coaction

N⊗AN ′
∆ : N ⊗Aop N ′ → (N ⊗Aop N ′)⊗A U,

n⊗Aop n′ 7→ n(0) ⊗Aop n′(0) ⊗A n(1)n
′
(1),

(2.3.11)

where

N ⊗Aop N ′ := N ⊗k N′/span{an⊗k n′ − n⊗k n′a | a ∈ A} (2.3.12)

is a rightA-module by (n⊗Aopn′)a = na⊗Aopn′. The map N⊗AN ′
∆ is easily checked to be

well-defined. Turning the tensor product around to avoid Aop, this appears to be equivalent
to a right U -coaction

N⊗N ′∆ : N ⊗A N ′ → (N ⊗A N ′)⊗A U, n⊗A n′ 7→ n(0) ⊗A n′(0) ⊗A n
′
(1)n(1),

but for technical reasons in later sections and also because it is the analogue to the form
which is standard for bialgebras we will prefer (2.3.11). All statements can also be made
mutatis mutandis for the category U -Comod.
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2.4 Homological Coalgebra for Left Bialgebroid Comod-
ules

In this section we discuss the notion of cotensor product with its derived functor Cotor forU -
comodules. This will be of importance for our cyclic (co)homology computations in Chapter
5 and 6. Here, the term ‘homological coalgebra’ [Do] refers to the corresponding standard
notions for k-coalgebras (see also [EMo]), which we transfer to the categories U -Comod
and Comod-U for a left bialgebroid U .

2.4.1 Theorem Let U be a left bialgebroid. If �U is flat over A, then the category
Comod-U is abelian. The same statement can be made about U -Comod if U� is flat.

PROOF: The theorem appears in [Ra] in the special situation U andA are commutative, but
can be generalised without major changes to the present situation: the proof relies entirely
on standard arguments from homological algebra, so we omit the details. 2

2.4.2 Definition Let U be a left bialgebroid, and take M ∈ U -Comod and N ∈
Comod-U .

(i ) The cotensor product of N and M over U is the A-module defined by the exact se-
quence

0 // N UM // N ⊗AM
N∆⊗idM−idN⊗∆M // N ⊗A U ⊗AM.

(ii ) Consider the base algebra A as a right U -comodule as in (2.3.7). The subspace

A UM = {m ∈M | |∆Mm = σ ⊗A m} ⊂M, (2.4.1)

where σ ∈ G`U is a grouplike element, will be called the subspace of left bialgebroid
(left) invariants of M .

Form the terminology and (2.3.7) it is clear that one may analogously introduce left bialge-
broid right invariants on a right U -comodule N .

2.4.3 Lemma Let M,M ′ ∈ U -Comod be left U -comodules, with AM finitely generated
projective over A. In such a case

(i ) Hom(A,−)(M,A) is a right U -comodule,

(ii ) ComU (M,M ′) = Hom(A,−)(M,A) UM
′, e.g. ComU (A,M ′) = A UM

′.

PROOF: Part (i): let e1, . . . , en be a generating set of M . Hence, there are elements
e1, . . . , en in M∗ := Hom(A,−)(M,A) such that each element m ∈M can be decomposed
as m =

∑n
i=1 e

i(m)ei. Now consider the map

ζ : Hom(A,−)(M,A)→ Hom(A,−)(M, �U), f 7→ mUop(idU ⊗ t`f)∆M .

Using the isomorphism

ξ : Hom(A,−)(M, �U)→ (Hom(A,−)(M,A))A ⊗ �U, ψ 7→
n∑
i=1

ei ⊗A ψ(ei),



2.4. HOMOLOGICAL COALGEBRA FOR LEFT BIALGEBROID COMODULES 43

we obtain a map

∆∗M : M∗ = Hom(A,−)(M,A)→ (Hom(A,−)(M,A))A⊗ �U, f 7→
n∑
i=1

ei⊗A (ζf)(ei),

and we claim that this defines a right U -coaction on M∗, where Hom(A,−)(M,A) is seen as
a rightA-module with actionRA : (f, a) 7→ fa in the standard way. One verifies counitality
as follows. For f ∈ M∗, m ∈ M , applying the inverse ξ−1 : (g ⊗ u)(m) 7→ g(m)u, we
obtain

mRA
(id⊗ ε)∆∗Mf =

n∑
i=1

(
ei ⊗A ε(ei(−1))f(ei(0)

)
(m) =

n∑
i=1

(
ei ⊗A f(ei)

)
(m) = f(m),

since M ∈ U -Comod. Also, coassociativity is straightforward:

(∆∗M ⊗ id)∆∗Mf =
n∑

i,j=1

ej ⊗A t`ei(ej(0))ej(−1) ⊗A t
`f(ei(0))ei(−1)

=
n∑

i,j=1

ej ⊗A ej(−1) ⊗A t
`f(ei(0))s

`ei(ej(0))ei(−1)

=
n∑

i,j=1

ej ⊗A ej(−1) ⊗A t
`f((ei(ej(0))ei)(0))(e

i(ej(0))ei)(−1)

=
n∑
j=1

ej ⊗A ej(−2) ⊗A t
`f(ej(0))ej(−1)

=
n∑
j=1

(idM∗ ⊗∆`)(idM∗ ⊗mUop)(idM∗ ⊗ idU ⊗ t`f)(idM∗ ⊗∆M )(ej ⊗A ej)

= (id⊗∆`)∆∗Mf.

It remains to show the A-module morphism property. For a ∈ A,

∆∗M (fa) =
n∑
i=1

ei ⊗A t`(f(ei(0))a)ei(−1)

=
n∑
i=1

ei ⊗A t`at`(f(ei(0)))ei(−1) = f(0) ⊗ t`af(1).

Part (ii) can be shown exactly as in [Ra, Lem. A.1.1.6]. 2

As a consequence of part (ii), that is,

A UM ' ComU (A,M) = {f ∈ Hom(A,−)(A,M)|(id⊗ f)∆A = ∆Mf},

applying the isomorphism Hom(A,−)(A,M) ' M, f 7→ f(1A) =: m and using ∆A from
(2.3.7) for a grouplike element σ ∈ G`U , we obtain

σ ⊗A m = (id⊗ f)∆A = ∆Mf(1A) = m(−1) ⊗A m(0) = ∆Mm,

as before.
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2.4.4 Lemma Let I be an injective A-module. Then U ⊗A I is an injective (left) U -
comodule; hence the category of U -Comod has enough injectives.

PROOF: Also this lemma is a generalisation of a result in [Ra] to noncommutative U and
A, and the proof can be taken over with only minor modifications. For a left A-module M
with action LA : (a,m) 7→ am, define a left U -coaction on U⊗AM by ∆U⊗N := ∆`⊗idM .
With Lemma 2.4.3(ii) we get for any N ∈ U -Comod an isomorphism

θ : Hom(A,−)(N,M)→ ComU (N,U ⊗AM), f 7→ (idU ⊗ f)∆N

with inverse θ−1 : ψ 7→ mLA
(ε ⊗ idM )ψ for any ψ ∈ ComU (N,U ⊗AM). To show that

U ⊗A I is injective we need to show now that if P is a U -subcomodule of N (i.e. both an
A-submodule and a subcomodule in the conventional sense), then ψ ∈ ComU (P,U ⊗A I)
extends to a map in ComU (N,U ⊗A I). We have

ComU (P,U ⊗A I) ' Hom(A,−)(P, I) ⊂ Hom(A,−)(N, I) ' ComH(N,U ⊗A I)

as subgroups by injectivity of I . Since the category of left A-modules already has enough
injectives, one can therefore construct enough injectives in U -Comod as well. 2

Now we are in a position to finally define the following derived functors, analogously as
in [Do, EMo]:

2.4.5 Definition (i ) For two left U -comodules M,M ′ ∈ U -Comod, the group
ExtiU (M,M ′) is the i-th right derived functor of ComU (M,M ′), as functor in M ′.

(ii ) ForM ∈ U -Comod andN ∈ Comod-U , the group CotoriU (N,M) is the i-th right
derived functor of N UM , as functor in M .

As already mentioned, these notions will be used in Chapters 5 and 6.

2.5 Right Bialgebroids
In this section we proceed with the ingredients of a Hopf algebroid as mentioned in aspect
(2) at the beginning of this chapter.

If one wants to turn a bialgebra into a Hopf algebra, one needs to hunt for an antipode,
i.e. for a k-bialgebra morphism U → Uop

coop into the opposite and coopposite bialgebra. If
one aims to naturally generalise this idea to the case of (left) bialgebroids, one observes that
the ‘opposite’ bialgebroid (see below) does not fulfill the left bialgebroid axioms any more,
but rather the ones of a ‘mirrored’, or opposite version of it, i.e. of a right bialgebroid. These
objects were introduced in [KSz] for the first time, confer also e.g. [B3] for the subsequent
definition.

Let B be a k-algebra. Similarly as for left bialgebroids, we consider a Be-ring V given
by an k-algebra map ηV = η : Be → V with source and target maps s := η(−⊗k 1B) and
t := η(1B ⊗k −). In contrast to left bialgebroids, one now considers the right Be-module
structure (v, b⊗k b̃) 7→ vη(b⊗k b̃) on V , and forms correspondingly the tensor product

V ⊗B V :=V ⊗k V/span{vη(b⊗k 1)⊗ v′ − v ⊗ v′η(1⊗k b) | b ∈ B, v, v′ ∈ V }
=V ⊗k V/span{vs(b)⊗ v′ − v ⊗ v′t(b) | b ∈ B, v, v′ ∈ V }.

(2.5.1)
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Again, V ⊗B V becomes a (B,B)-bimodule in a standard way (see (A.1.1)), that is (b, v⊗B
v′, b̃) 7→ vt(b) ⊗B v′s(b̃), and as before, V ⊗B V does not carry a well-defined algebra
structure. One correspondingly introduces the (right) Takeuchi product of V with itself, i.e.
the k submodule V ⊗B V ⊂ V ×B V given by

V ×B V := {
∑
i

vi ⊗B v′i ∈ V ⊗B V |
∑
i

s(b)vi ⊗B v′i =
∑
i

vi ⊗B t(b)v′i, ∀b ∈},

and one easily verifies that now this is a Be-ring via factorwise multiplication, with unit
element 1V ⊗B 1V and ηV×BV (b⊗k b̃) = t(b̃)⊗B s(b).

2.5.1 Definition A right B-bialgebroid or ×B-bialgebra is a k-module V which carries
simultaneously the structure of a Be-ring (V, sr, tr) and a B-coring (V,∆r, ∂), subject to
the following compatibility axioms:

(i ) The (B,B)-bimodule structure in the B-coring is related to the Be-ring (V, sr, tr) by

b I v J b̃ := vsr(b̃)tr(b) = vηr(b̃⊗ b), b, b̃ ∈ B, v ∈ V, (2.5.2)

and we refer to this structure as IVJ . In particular, we write VJ ⊗ IV := V ⊗B V .

(ii ) Considering the bimodule IVJ , the (right) coproduct ∆r is a (unital) k-algebra mor-
phism taking values in V ×B V .

(iii ) For all b, b̃ ∈ B, v, v′ ∈ V , the (right) counit has the property

∂(vηr(b̃⊗ b)) = b∂(v)b̃ and ∂(vv′) = ∂(sr(∂v)v′) = ∂(tr(∂v)v′). (2.5.3)

For the right coproduct, we will use the Sweedler notation ∆rv = v(1) ⊗B v(2) with upper
indices so as not to confuse it with the left coproduct for objects that carry both structures.
Here V clearly acts on its base algebra B from the right in a canonical way, namely

bv := ∂(sr(b)v) = ∂(tr(b)v), b ∈ B, v ∈ V, (2.5.4)

where the remaining two B-module structures �V� , given by

b � v � b̃ := ηr(b⊗ b̃)v = sr(b)tr(b̃)v, (2.5.5)

appear. Similarly as for left bialgebroids, one has

∆rs
rb = 1⊗B srb, ∆rt

rb = trb⊗B 1, for b ∈ B,

as well as

∆r(b I v J b̃) = (b I v(1))⊗B (v(2)
J b̃), ∆r(b � v � b̃) = (v(1)

� b̃)⊗B (b � v(2)),

and the comonoid identities in this case read

mV (idV ⊗ sr∂)∆r = mV op(tr∂ ⊗ idV )∆r = idV , (2.5.6)

that is, using the Sweedler notation for the right coproduct, we have

v(1)sr∂v(2) = v(2)tr∂v(1) = idV , v ∈ V.
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2.5.2 Remarks (i ) The ‘opposite’ of a left bialgebroid U = (U,A, s`, t`,∆`, ε) is de-
fined as Uop := (Uop, A, t`, s`,∆`, ε). This can be shown to be a right bialgebroid,
whereas its ‘coopposite’ given by Ucoop := (U,Aop, t`, s`,∆coop

` , ε) with ∆coop
` seen

as a map U → �U ⊗Aop U� , h 7→ u(2) ⊗Aop u(1) remains a left bialgebroid. Note
that in both cases source and target map interchange their rôles. In total, the object
Uop

coop will be a right bialgebroid, as announced above.

(ii ) The idea of a right bialgebroid for the first time seems to appear in [KSz]. The neces-
sity of such an analogous bialgebroid structure with some sort of ‘opposite’ properties
became clear to us while considering Lie-Rinehart homology and attempting to intro-
ducing antipodes for (the left bialgebroid associated to) a Lie-Rinehart algebra; see
below.

(iii ) One may be tempted to think that the concepts of left and right counits coincide when-
ever the base algebra is commutative. This is, however, not the case, not even if source
and target map are equal or trivial (in a context-determined sense), as the following
examples will reveal.

2.5.1 Right Bialgebroid Connections
2.5.3 The Monoidal Category Mod-V Of course, all concepts from Sections 2.3 and 2.4
dealing with bialgebroid modules and comodules could be repeated applying all statements
to the opposite Ae-ring. We will refrain from doing so in detail and rather refer to [B3].
However, for later use, let us explicitly mention that any N in the category Mod-V of right
V -modules for a right bialgebroid V carries its induced right Be-structure by

b̃nb := nsrbtr b̃, n ∈ N, b, b̃ ∈ B.

The category Mod-V acquires a monoidal structure by deploying the right coproduct, i.e.,
for N,N ′ ∈Mod-V , their tensor product over B is in Mod-V , with right V -action

(n⊗B n′)v := nv(1) ⊗B n′v(2), n ∈ N,n′ ∈ N ′, v ∈ V.

Similarly as before, one also has B ∈Mod-V , with right V -action

bv := ∂(srbv) = ∂(trbv), b ∈ B, v ∈ V,

and the Leibniz rule this time reads

(bb̃)v = (bv(1))(b̃v(2)), b, b̃ ∈ B, v ∈ V.

One may also vary the notion of a right V -module: consider e.g. a Be-module N and
define a right V -action on N such that the induced Be-module structure coincides with the
a priori given one. For example, B itself already carries a natural Be-module structure (by
left and right multiplication) and one may try to find a right V -module structure on it which
does not originate from the right counit ∂. For certain modules N , we will come back to
a situation like that in Section 4.7. Starting at this point, one also may introduce right V -
connections, which are called flat if they specialise with right V -module structures. We will
encounter these constructions again e.g. in Proposition 3.1.14 and Section 4.2.
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2.5.4 Definition Let N be a Be-module. A right V -connection on N is a map

∇r : N → Hom(B,B)( IVJ , N),

such that the Leibniz rule

∇rv(nb) = ∇rsrbvn, ∇rv(bn) = ∇rtrbvn, v ∈ V, n ∈ N, b ∈ B (2.5.7)

holds. A right V -connection is called flat if ∇rv∇rv′ = ∇rv′v for all v, v′ ∈ U .

One easily verifies that

∇rv(nb) =
(
∇rv(1)n

)
∂srbv(2), ∇rv(bm) = ∂(trbv(1))

(
∇rv(2)m

)
.

Hence for a primitive element Y ∈ P rU one obtains the more familiar formulae

∇rY (nb) = n(bY ) + (∇rY n)b, ∇rY (bn) = b∇rY n+ (bY )n, (2.5.8)

where, as in (2.5.4), we denoted the canonical right V -action on B by bY = ∂(sr(b)Y ) =
∂(tr(b)Y ).

2.5.5 In the particular case N = B, where B carries the natural right Be-module structure
by multiplication, evaluating a right connection on 1B ∈ B defines a k-linear operator D ∈
Hom(B,B)( IUJ , B) by

Dr : V → B, v 7→ ∇rv1B .

If the connection is flat, we have for all v, v′ ∈ V

Dr(vv′) = ∇rvv′1B = ∇rv′∇rv1B = ∇rv′Drv

= ∇rsr(Drv)v′1B = ∇rtr(Drv)v′1B

= Dr(sr(Drv)v′) = Dr(tr(Drv)v′),

(2.5.9)

which is the property (2.5.3) of a right counit. In the terminology of [B3], a map V → B with
such a property is called a right character for the B-rings (V, sr) and (V, tr), respectively.

2.6 Hopf Algebroids
As intimated at the beginning of this chapter, a Hopf algebroid is simultaneously both a
left and a right bialgebroid, with an antipode intertwining these structures. The following
definition is due to Böhm-Szlachányi [BSz2, B1], cf. in particular [B3].

2.6.1 Definition Let A,B be two k-algebras and H a k-module. A (double-sided) Hopf
algebroid structure on H consists of

(1) a left bialgebroid structure (H,A, s`, t`,∆`, ε) on H over A,

(2) a right bialgebroid structure (H,B, sr, tr,∆r, ∂) on H over B, such that the underly-
ing k-algebra structure on H is the same as in (1),

(3) a k-module map S : H → H .
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These structures are subject to the following compatibility axioms:

(i )
s`εtr = tr, t`εsr = sr, sr∂t` = t`, tr∂s` = s`. (2.6.1)

(ii ) Twisted coassociativity holds, that is to say

(∆` ⊗ idH)∆r = (idH ⊗∆r)∆` and (∆r ⊗ idH)∆` = (idH ⊗∆`)∆r. (2.6.2)

(iii )
S(t`ah trb) = srbShs`a a ∈ A, b ∈ B, h ∈ H. (2.6.3)

(iv )
mH(S ⊗A idH)∆` = sr∂ and mH(idH ⊗B S)∆r = s`ε. (2.6.4)

We call S the antipode of the Hopf algebroid.

If particular reference is needed, we will denote the underlying left and right bialgebroid
structures of a Hopf algebroid H by H` and Hr, respectively.

2.6.2 Remarks (i ) Applying ∂ to the first two and ε to the second pair of identities in
(2.6.1), one obtains that A and B are anti-isomorphic, i.e.,

µ := ∂s` : Aop '−→ B, µ−1 := εtr : B '−→ Aop,

ν := ∂t` : A '−→ Bop, ν−1 := εsr : Bop '−→ A.
(2.6.5)

Hence the ranges of s` and tr as well as sr and t`, respectively, are coinciding subal-
gebras in H .

(ii ) In particular, (i) implies that ∆` behaves as follows with respect to the Be-bimodule
structure mentioned in (2.5.2) and (2.5.5). For h ∈ H, b, b̃ ∈ B,

∆`(b Ih J b̃) = (b Ih(1))⊗A (h(2) J b̃),
∆`(b �h � b̃) = (h(1) � b̃)⊗A (b �h(2)).

(2.6.6)

Likewise for ∆r with respect to (2.1.3) and (2.1.5): for h ∈ H, a, ã ∈ A one has

∆r(a �h � ã) = (a �h(1))⊗B (h(2)
� ã),

∆r(a Ih J ã) = (h(1) J ã)⊗B (a Ih(2)).
(2.6.7)

Introducing a (B,B)-bimodule structure on H⊗AH by (b, h⊗A h′, b̃) 7→ (b Ih)⊗A
(h′ J b̃) and an (A,A)-bimodule structure onH⊗BH by (a, h⊗Ah′, ã) 7→ (a �h)⊗B
(h′ � ã), the respective first equations in (2.6.6) and (2.6.7) say that ∆` is also a
(B,B)-bimodule morphism, while ∆r is also an (A,A)-bimodule morphism. This
observation makes axiom (ii) meaningful, the first identity of which can be expressed
as follows,

H

∆r

''OOOOOOOOOOOOOO
∆` // H ⊗A H

idH⊗∆r // H ⊗A (H ⊗B H)

'
��

H ⊗B H
∆`⊗idH // (H ⊗A H)⊗B H,
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and likewise for the second identity. As follows from Example 2.3.3(i), the underlying
left bialgebroid H` of H determines both left and right coactions via ∆`; the same is
true for the underlying right bialgebroid Hr of H with respect to ∆r. Hence in total
there are four bialgebroid coactions on H , and twisted coassociativity states that they
all commute with each other. This can be expressed by saying that the k-module H is
both anH`-Hr-bicomodule and anHr-H`-bicomodule. For future use, let us mention
that twisted coassociativity immediately leads to its ‘higher’ version,

(∆n
` ⊗ id⊗mH )∆m

r = (id⊗nH ⊗∆m
r )∆n

`

(∆n
r ⊗ id⊗mH )∆m

` = (id⊗nH ⊗∆m
` )∆n

r

(2.6.8)

for n,m ∈ N.

(iii ) The axiom (iii) may be expressed by saying that the map S is a morphism of twisted
bimodules. That is, it intertwines the left Ae-module structure (2.1.3) on H` with the
right one from (2.1.5), as a morphismH`

� → H`
J . This is worth mentioning, because

(2.1.5) does not explicitly appear in the axioms of a left bialgebroid. Similarly, it links
the right and left Be-module structures (2.5.2) and (2.5.5) of the right bialgebroid Hr,
i.e., it is a morphism IHr → �Hr .

(iv ) The left hand side of the first equation in (2.6.4) is a composition of maps

H
∆` // H� ⊗ �H

S⊗idH // HJ ⊗ �H
mH // H, (2.6.9)

where H� ⊗ �H = H ⊗A H is given as in (2.1.1), whereas

HJ ⊗ �H = H ⊗k H/span{hs`a⊗ h′ − h⊗ s`ah′ | a ∈ A, h, h′ ∈ H}

is in a sense the tensor product naturally associated to the A-ring (H, s`), and mH

is to be understood the multiplication in this ring. The composition (2.6.9) is well-
defined due to (iii), and a similar consideration holds for the second equation in (2.6.4).
Observe that in this second case mH refers to multiplication in the B-ring (H, sr),
despite of the identical notation.

At the latest at this point one recognises the need for two kinds of Sweedler notations.
Using lower indices for the left and upper ones for the right coproduct, (2.6.4) reads

Sh(1)h(2) = sr∂h and h(1)Sh(2) = s`εh, h ∈ H.

(v ) Although not explicitly required in the definition, we will usually assume S to be
invertible.

2.6.3 Examples For examples one may jump directly to Chapter 4.

See also [BSz2, B1] for further details on Hopf algebroids, discussion, and many exam-
ples, and [B3] for a comparison with alternative notions.

The fact that the antipode of a Hopf algebra is an anti-homomorphism for the algebra
structure and an anti-cohomomorphism for the coalgebra structure has the following coun-
terpart in the bialgebroid framework [BSz2, B3].
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2.6.4 Proposition Let H be a Hopf algebroid with structure maps as before.

(i ) The antipode S is a homomorphism of both Ae-rings (H, s`, t`) → (Hop, srµ, trµ)
and Be-rings (H, sr, tr) → (Hop, s`ν−1, t`ν−1), where the isomorphisms from
(2.6.5) were used. In particular, S is an k-algebra morphism H → Hop.

(ii ) Likewise, S is a cohomomorphism of A-corings (H,∆`, ε) → (H,∆coop
r , ν−1∂) as

well as of B-corings (H,∆r, ∂) → (H,∆coop
` , µε), where ∆coop

r is a map H →
H⊗Bop

H := IH⊗HJ ' H⊗AH by means of ν, and ∆coop
` : H → H⊗AopH :=

�H ⊗H� ' H ⊗B H via µ.

In particular, if H` and Hr denote the underlying left and right bialgebroids of H , respec-
tively, the pair (S, ∂s`) is a morphism H` → (Hr)opcoop of left bialgebroids and (S, εsr) is a
morphism Hr → (H`)opcoop of right bialgebroids.

2.6.5 Remark (i ) If the antipode is invertible, one can make an analogous statement
about S−1, cf. [B1, BSz2]. Moreover, using (i) of the preceding proposition, one
may now consider S both as an (A,A)-bimodule morphism IH`

� → �H`
J and a

(B,B)-bimodule morphism IHr
� → �Hr

J .

(ii ) We want to stress here that S being an algebra anti-homomorphism is a consequence
of the antipode axioms in Definition 2.6.1 and also that the antipode is unique [B1] (if
it exists), provided left and right bialgebroid structures were given.

(iii ) If S2 =id, one obtains µ=ν and hence a canonical identification of Aop with B.

Define the maps

S⊗2
A :H� ⊗A �H → HJ ⊗B IH, h⊗A h′ 7→ Sh′ ⊗B Sh
SB⊗2 :HJ ⊗B IH → H� ⊗A �H, h⊗B h′ 7→ Sh′ ⊗A Sh,

where the tensor products (2.1.1) and (2.5.1) are used. These maps also have ‘higher’ ana-
logues for n factors, consisting in totally reversing the order followed by applying the an-
tipode. The preceding proposition can then be given as a table by (ignore the right hand side
if the antipode is not invertible):

sr∂s` =Ss` s`εsr =Ssr sr∂ t` =S−1s` s`ε tr =S−1sr

tr∂s` =St` t`εsr =Str tr∂ t` =S−1t` t`ε tr =S−1tr

∂s`ε= ∂S εsr∂= εS ∂ t`ε= ∂S−1 ε tr∂= εS−1

S⊗2
A ∆` =∆rS SB⊗2∆r =∆`S (SB⊗2)

−1∆` =∆rS
−1 (S⊗2

A )−1∆r =∆`S
−1.

(2.6.10)

We now collect a list of basic technical identities involving the antipode (which can be
ignored on a first reading; again, ignore the last three lines if the antipode is not invertible).

2.6.6 Lemma For a Hopf algebroid H with the above structure maps, the following identi-
ties hold.

mH(S ⊗ s`ε)∆` = S, mH(sr∂ ⊗ S)∆r = S,
mHop(S2 ⊗ t`εS2)∆` = S2, mHop(tr∂S2 ⊗ S2)∆r = S2,

mHop(S2 ⊗ S)∆` = tr∂S2, mHop(S ⊗ S2)∆r = t`εS2,

mHop(idH ⊗ S−1)∆` = tr∂, mHop(S−1 ⊗ idH)∆r = t`ε,
mHop(t`ε⊗ S−1)∆` = S−1, mHop(S−1 ⊗ tr∂)∆r = S−1,
mH(S−1 ⊗ S−2)∆` = sr∂S−2, mH(S−2 ⊗ S−1)∆r = s`εS−2.

(2.6.11)
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Here mHop is the multiplication in the opposite ring of H .

PROOF: All identities follow from a straightforward computation using (2.6.10), (2.6.4) as
well as the comonoid identities (2.1.8) and (2.5.6). As an example, we prove

mHop(S−1 ⊗ tr∂)∆r = mH(tr∂S ⊗ idH)∆`S
−1

= mH(tr∂s`ε⊗ idH)∆`S
−1

= mH(s`ε⊗ idH)∆`S
−1 = S−1.

2

2.6.7 Remarks (i ) For the identities given in the preceding lemma, the same comment
applies we made in Remark 2.6.2(iv): strictly speaking, the operations mH and mHop

refer to multiplication in one of the various underlying ring structures. For example,
the left hand side of mHop(S−1 ⊗ idH)∆r = t`ε can be decomposed as

H
∆` // HJ ⊗ IH

S−1⊗idH // H� ⊗ IH
mHop // H,

where HJ ⊗ IH = H ⊗B H is given as in (2.5.1), whereas

H� ⊗ IH = H ⊗k H/span{tr(b)h⊗ h′ − h⊗ h′tr(b) | b ∈ B, h, h′ ∈ H}

is the tensor product naturally associated to the Bop-ring (H, tr), and mHop is to be
understood as multiplication in this ring.

(ii ) If (S,mS) is a k-algebra and (C,∆C) a k-coalgebra for some commutative ring k,
the space Homk(C,S) can be given a k-algebra structure by means of the convolution
product (f ∗ f ′) = mS(f ⊗ f ′)∆C for f, f ′ ∈ Homk(C,S) (see e.g. [Str]. We do not
address the question in detail how this can be transferred to the case of monoids and
comonoids in bimodule categories (see, however, [B3, Section 4.5.2]), but the first line
of equalities in the preceding Lemma reflects that ε and ∂ are counits, that is, units in
some generalised convolution algebra. However, in the first equation S is seen as an
(A,A)-bimodule map on IH`

� , whereas ε is an (A,A)-bimodule map with respect
to �H`

� (cf. (2.1.3) and (2.1.5) for the notation). This gives a hint why ε is only a
‘right unit’ for S; analogously in the second case, S is an (B,B)-bimodule map on
IHr

� and ∂ on IHr
J (cf. (2.5.2) and (2.5.5) for the notation). In these terms, also

(2.6.4) can be reformulated saying that S is a convolution inverse to idH , but from left
and right in two different ways (involving different coalgebra structures and over two
different base algebras). As a consequence and in contrast to Hopf algebras, in general
there is no information for terms of the form, say, h(1)Sh(2) or Sh(1)h(2).

2.6.8 Alternative Formulation Evidently, constructing a Hopf algebroid by left and right
bialgebroid structures plus an antipode leads to some redundancy. Alternatively, one may
start with a left bialgebroid (U,A, s`, t`,∆`, ε) only, plus a bijective anti-algebra isomor-
phism S : U → U subject to

(i ) St` = s`,

(ii ) mU (S ⊗ idU )∆` = t`εS,
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(iii ) S⊗2
A ∆`S

−1 = (SA
op

⊗2 )−1∆`S

(iv ) (∆` ⊗ idH)S⊗2
A ∆`S

−1 = (S⊗2
A ∆`S

−1 ⊗ idH)∆`.

It then follows from Proposition 2.6.4 that (up to a trivial bialgebroid isomorphism) the set

(H,B, Ss`ν−1, s`ν−1, S⊗2
A ∆`S

−1, νεS−1)

constitutes a right bialgebroid (where ν : Aop → B is an arbitrary isomorphism). Together
with the given data of a left bialgebroid and the map S this yields a Hopf algebroid, as in
Definition 2.6.1. However, for an arbitrary isomorphism µ : Aop → B, also

(H,B, t`µ−1, S−1t`µ−1, (SB⊗2)
−1

∆`S, µεS),

fulfills the requirements; see [BSz2, Prop. 4.2] for yet another formulations of Hopf alge-
broids in this sense, and their mutual equivalence. However, in our opinion the version cited
here serves best for maintaining a certain transparency in Hopf-cyclic (co)homology.

We already mentioned that if left and right bialgebroid structures are given, the antipode
is unique if it exists. However, in case that only a left bialgebroid structure is given, there is
a certain ambiguity in the choice of the antipode (which corresponds to the choice of certain
connections in Section 4.2). This is different from what is known for (weak) Hopf algebras
and is also reflected in the following definition, which allows Hopf algebroid isomorphisms
that ‘ignore’ the antipode.

2.6.9 Definition A Hopf algebroid (iso)morphism (H,S) → (H ′, S′) is an (iso)morphism
(φ, ψ) of the underlying left bialgebroid structure. It is called strict if ψ commutes with the
respective antipodes, that is, S′ψ = ψS.

2.6.10 Primitive Elements Formally, a Hopf algebroid has two kinds of primitive elements
(cf. §2.1.5) with respect to ∆` and ∆r, denoted P `H and P rH . We have

SX = −X + sr∂X ∀X ∈ P `H (2.6.12)
SX ′ = −X ′ + s`εX ′ ∀X ′ ∈ P rH, (2.6.13)

since P rH is generally not contained in ker ε, and P `H is not in ker ∂ either, again in
contrast to the case of Hopf algebras.

2.6.11 Grouplike Elements Similarly, one has two kinds of grouplike elements (cf. §2.1.5)
for H with respect to the two underlying bialgebroids, denoted by G`H and GrH . These
may be called left and right grouplike, respectively. Proposition 2.6.4 then entails

σ ∈ G`H ⇐⇒ Sσ ∈ GrH.

However, only the set GH := G`H ∩GrH forms a group.

2.6.12 Proposition The sets G`U and GrV for left and right bialgebroids U and V , re-
spectively, are multiplicative monoids with unit 1U and 1V , respectively. If H is a Hopf
algebroid, only an element σ that is both left and right grouplike has (two-sided) inverse Sσ,
hence the set GH = G`H ∩GrH is a group.
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Compare, however, the notions of weakly grouplike elements in [Mrč2] and groupoidlike
elements in [Kap].

2.6.13 Comparison with Alternative Definitions

(i ) In [Lu], a Hopf algebroid is defined to be a certain ‘bialgebroid’ with a concept of an
antipode plus some extra data. The definition of a bialgebroid in [Lu] appears almost
identical to the one we use here, the only difference being that the axiom (2.1.4) is
replaced by asking ker ε to be a left ideal in H . However, this last statement can be
shown [BrzMi] to be equivalent to (2.1.4). Next, such a bialgebroid (H,A, s, t,∆, ε)
is equipped with an anti-algebra homomorphism S : H → H , subject to the properties

(a) St = s,

(b) mH(S ⊗ idH)∆ = tεS,

(c) mH(idH ⊗ S)γ∆ = sε, where a section γ : H ⊗A H → H ⊗H of the natural
projection H ⊗H → H ⊗A H is required to give a meaning to this identity,

is called a Hopf algebroid in [Lu].

(ii ) In [KhR3] a Hopf algebroid (baptised ‘para-Hopf algebroid’ there) consists of a sextu-
ple (H,A, s, t,∆, ε) fulfilling the left bialgebroid axioms we use here, again without
(2.1.4). Furthermore, one requires a map T : H → H obeying the conditions

(a) T : H → H is an anti-algebra homomorphism,

(b) Tt = s,

(c) mH(T ⊗ idH)∆ = tεT ,

(d) T 2 = idH , implying however [KhR3, Lem. 2.1] the ‘missing’ condition (2.1.4),
i.e., ε(h′h) = ε(h′s(h)) = ε(h′t(h)),

(e)
(Th(1))(1)h(2) ⊗A (Th(1))(2) = 1⊗A Th. (2.6.14)

Compared to the formulation in §2.6.8, the notion of Hopf algebroid as given in (i) above
has the obvious handicap that the additional antipode axiom (i)(c) requires a section γ of the
natural projectionH⊗kH →H� ⊗A �H , which does not come into play quite naturally and
seems to be deprived of any geometrical meaning or justification; see [BSz2, KSz, B1] for
a discussion of this complex of problems for bialgebroids associated to a depth-2 Frobenius
extension of rings. There, the authors also give an example of Hopf algebroid which is
not a Hopf algebroid in the sense of point (i) above. Finally, as observed in [KhR3], this
approach does not seem to be suitable for defining (Hopf-)cyclic cohomology. As for the
second approach (point (ii) above), it was shown in [BSz2] to be contained in the concept
we use here (for an invertible antipode), but, as we think, also has certain disadvantages in
dealing with Hopf-cyclic homology; see §5.2.12 for a discussion.

2.6.14 Hopf Algebroids versus Left Hopf Algebroids For a Hopf algebroid H with struc-
ture maps as before, one checks that [BSz2]

β−1(h⊗A h′) = h+ ⊗Aop h−h
′ = h(1)⊗AopSh(2)h′, (2.6.15)
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is an inverse of the Hopf-Galois map (2.2.1). Hence every (Böhm-Szlachányi-)Hopf alge-
broid is a left Hopf algebroid over A (cf. Definition 2.2.1). However, the opposite impli-
cation is not true, as we will show in Example 4.2.13: this answers a question posed in
[B3] whether every left Hopf algebroid over A is the constituent left bialgebroid in a Hopf
algebroid.

As the reader may expect, the Hopf-Galois map (2.2.1) is not the only possibility of such
a kind, given the abundance of tensor products in this context. Indeed, in [BSz2, Prop. 4.2] a
Hopf algebroid with invertible antipode is equivalently characterised as follows: a pair of a
left bialgebroid over A and a right bialgebroid over B ' Aop, subject to (2.6.1) and (2.6.2),
such that not only (2.2.1) is bijective, but also the map

α : �U ⊗Aop UJ → U� ⊗A �U, u⊗Aop v 7→ v(1)u⊗A v(2). (2.6.16)

For a Hopf algebroid with invertible antipode, the inverse α−1 is in this case given by u⊗A
v 7→ S−1(v(1))u⊗Aop v(2).

However, both β and α use the left coproduct of the underlying left bialgebroid. We
expect that one can equivalently characterise a Hopf algebroid by β and a Hopf-Galois map
α′ which rather uses some right coproduct. More precisely, a left Hopf algebroid and a right
Hopf algebroid (subject to some compatibility conditions) should determine a (double-sided)
Hopf algebroid: hence our new terminology for ×A-Hopf algebras.



Chapter 3

Constructions

3.1 Left and Right Duals of Bialgebroids
The main result in this section is to show that the classical correspondence between modules
and comodules for algebras and their Hom-duals extends to more possibilities when consid-
ering bialgebroids, as we show in Theorem 3.1.11 and Proposition 3.1.9. This is a conse-
quence of the fact that each left bialgebroid comes equipped with two natural duals. Both
of them can be given—under certain projectivity assumptions—a right bialgebroid structure
[KSz, Propositions 2.5 and 2.6], as we recall below, cf. §3.1.6.

Recall that the notion of Hopf algebra is self-dual [Sw1], so if one can define a dual of H
(which is e.g. always possible if H is finite-dimensional, for k a field), then it is automatically
a Hopf algebra. However, this is not necessarily the case for Hopf algebroids, for which
duality is in fact considerably more intricate (see [BSz2]), which is why we do not treat this
complex of problems here. Nevertheless, we conclude this section by an analogue of the
classical statement that a character on a Hopf algebra correspond to a grouplike element on
its dual (see Proposition 3.1.14).

Since any bialgebroid carries four natural A-module structures, we often take the liberty
of somewhat redundantly indicating the module structure in question in the hope of increas-
ing clarity. For further notation see the conventions on page 12 at the end of the Introduction
as well as §A.1.1 for standard constructions on bimodules (implicitly used in the following).

3.1.1 Definition Let U be a left bialgebroid with structure maps as before.

(i ) The left dual of U is the space

U∗ := Hom(A,−)( �U,AA) = {φ : U → A | φ(s`au) = aφ(u),∀ a ∈ A, u ∈ U}.

(ii ) The right dual of U is the space

U∗ := Hom(−,A)(U� , AA) = {ψ : U → A | ψ(t`au) = ψ(u)a,∀ a ∈ A, u ∈ U}.

3.1.2 Notation We write φ(u) =: 〈φ, u〉 for φ ∈ U∗, u ∈ U , and also ψ(u) =: 〈ψ, u〉 for
φ ∈ U∗, u ∈ U , whenever we think that this may increase clarity.

55
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Before we proceed, we will explain how these duals can be made into bialgebroids,
following [KSz]. To this end, we give the details of their ring structures, their various A-
modules structures and their coring structures.

3.1.3 Ring Structures on U∗ and U∗ We recall from [KSz] that both duals can be equipped
with a product structure:

(i ) ‘Target’ transposing of the comonoid structure ofU yields the following monoid struc-
ture mU∗ on U∗ with the (two-sided) unit ε:

mU∗(φ⊗ φ′)(u) = (φφ′)(u) := φ′
(
mUop(id⊗ t`φ)∆`u

)
, (3.1.1)

where φ, φ′ ∈ U∗, u ∈ U .

(ii ) ‘Source’ transposing of the comonoid structure of U yields the following monoid
structure mU∗ on U∗ with the (two-sided) unit ε:

mU∗(ψ ⊗ ψ′)(u) = (ψψ′)(u) := ψ′
(
mU (s`ψ ⊗ id)∆`u

)
, (3.1.2)

where ψ,ψ′ ∈ U∗, u ∈ U .

3.1.4 Remark There are some subtleties attached to the fact that mU∗ and mU∗ are well-
defined as maps acting on a certain tensor product of the (left or right) dual with itself. We
refer to the proof of Proposition 3.1.9 for the technical details, and in particular to (3.1.16)–
(3.1.19) and (3.1.24)–(3.1.26) for further explanation why these ring structures make sense.

3.1.5 A-Module Structures on Left and Right Duals
Beyond the product structure on the duals, we also want them to becomeAe-rings, hence

we equip them with source and target maps. As a straightforward consequence of how Hom-
spaces of bimodules become (bi)modules again (cf. §A.1.1), left and right duals carry four
A-module structures each:

(i ) In case of the left dual U∗, one encounters the following four situations. Let u ∈
U, φ ∈ U∗ and a ∈ A.

(a) The left dual source map sr∗ is defined as

sr∗ : A→ U∗, a 7→ ε(t`(a)(·)) = ε(·)a. (3.1.3)

As in (2.5.2), write φsr∗(a) =: φ J a. Then (φ J a)(u) = (φsr∗(a))(u) = φ(u)a,
and this is the A-module structure that arises from the pair ( �U ,AAA) of A-
(bi)modules, cf. §A.1.1. Analogously to §A.1.1, we denote this situation by
( �U ,AAA) =⇒ U∗ J .

(b) The left dual target map tr∗ is defined as

tr∗ : A→ U∗, a 7→ ε((·)t`(a)). (3.1.4)

As in (2.5.2), write φtr∗(a) =: a Iφ. Hence (a Iφ)(u) = (φtr∗(a))(u) =
φ(us`a), and this corresponds to the situation ( �UJ ,AA) =⇒ IU∗ .

(c) ( I ,�U ,AA) =⇒ U∗ � , given by (φ � a)(u) := φ(ut`a) = (tr∗(a)φ)(u).



3.1. LEFT AND RIGHT DUALS OF BIALGEBROIDS 57

(d) ( �U� ,AA) =⇒ �U∗ , given by (a �φ)(u) := φ(t`au) = (sr∗(a)φ)(u).

(ii ) In case of the right dual U∗, things read as follows. Let u ∈ U, ψ ∈ U∗ and a ∈ A.

(a) Define the right dual source map s∗r by

s∗r : A→ U∗, a 7→ ε((·)s`(a)), (3.1.5)

and write ψs∗r(a) =: ψ J a. Hence (ψ J a)(u) = (ψs∗r(a))(u) = ψ(ut`a),
corresponding to the situation ( IU� , AA) =⇒ U∗ J .

(b) Define the right dual target map t∗r by

t∗r : A→ U∗, a 7→ ε(s`(a)(·)) = aε(·), (3.1.6)

and write ψt∗r(a) =: a Iψ. Hence (a Iψ)(u) = (ψt∗r(a))(u) = aψ(u), corre-
sponding to (U� ,AAA) =⇒ IU

∗ .

(c) (U� ,J , AA) =⇒ �U
∗ , given by (a �ψ)(u) := (s∗r(a)ψ)(u) = ψ(us`a).

(d) ( �U� , AA) =⇒ U∗ � , given by (ψ � a)(u) := (t∗r(a)ψ)(u) = ψ(s`au).

3.1.6 Right Bialgebroid Structures on U∗ and U∗ We recall from [KSz] how the left and
right dual can both be made into a right bialgebroid:

(i ) If �U is finitely generated projective over A, the left dual U∗ can be given the struc-
ture of a right bialgebroid overA∗ ≡ Awith the following structure maps: theAe-ring
structure is determined by the product (3.1.1) and source and target are as in (3.1.3),
(3.1.4). The A-coring structure (U∗,∆r

∗, ∂∗) is given by the following (right) coprod-
uct and (right) counit:

∆r
∗ : U∗ → Hom(A,−)( �(UJ ⊗ �U),AA), φ 7→ {u⊗A u′ 7→ φ(uu′)},
∂∗ : U∗ → A, φ 7→ φ(1U ). (3.1.7)

To see that ∆r
∗ is really a right coproduct, i.e. a map U → U∗ J ⊗ IU∗ , where U∗ J ⊗

IU∗ is defined with respect to (3.1.3) and (3.1.4), we will rewrite it in a different way
that is also more convenient for our following considerations: by projectivity of �U ,
elements in U can be decomposed according to §A.1.2 as u =

∑
i s
`(ei(u))ei, where

{ei}1≤i≤n ∈ U, {ei}1≤i≤n ∈ U∗ is a dual basis of �U . Furthermore, introduce the
following left U -module structures on U∗:

(u ⇁ φ)(u′) := φ(u′u) for u, u′ ∈ U, φ ∈ U∗. (3.1.8)

Using the fact that U∗ J ⊗ IU∗ → Hom(A,−)( �(UJ ⊗ �U),AA), given by

(φ⊗A φ′)(u⊗A u′) := φ′(us`(φu′)),

is an isomorphism because of the projectivity of U (see [KSz] for a proof, or our
similar considerations in the proof of Proposition 3.1.9), one may write

(∆r
∗φ)(u, u′) = φ(uu′) =

∑
i

φ(us`ei(u′)ei) =
∑
i

(ei ⇁ φ)(us`ei(u′)).
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Hence instead of (3.1.7), for the right coproduct and right counit one finds the more
systematic form

∆r
∗ : U∗ → U∗ J ⊗A IU∗ , φ 7→

∑
i e
i ⊗ (ei ⇁ φ),

∂∗ : U∗ → A, φ 7→ φ(1U ). (3.1.9)

(ii ) Likewise, if U� is finitely generated projective over A, the right dual U∗ is a right
bialgebroid as well over the same base A∗ ≡ A. The Ae-ring structure is defined by
the product (3.1.2) and source and target as in (3.1.5), (3.1.6). The A-coring structure
(U∗,∆∗r , ∂

∗) is given by the following (right) coproduct and (right) counit:

∆∗r : U∗ → Hom(−,A)((U� ⊗ IU) � , AA), ψ 7→ {u⊗A u′ 7→ φ(uu′)},
∂∗ : U∗ → A, ψ 7→ ψ(1U ).

Again, by projectivity of U� we may rewrite this, decomposing elements in U� as
v =

∑
j t
`(f j(v))fj , where {fj}1≤j≤m ∈ U, {f j}1≤j≤m ∈ U∗ is a dual basis for

U� . With the left U -action on U∗ given by

(u ⇀ ψ)(u′) := ψ(u′u) for u, u′ ∈ U, ψ ∈ U∗, (3.1.10)

and the isomorphism U∗ J ⊗ IU∗ → Hom(−,A)((U� ⊗ IU) � , AA) given by

(ψ ⊗A ψ′)(u⊗A u′) := ψ(ut`(ψ′u′)),

whereU∗ J⊗ IU∗ is defined with respect to (3.1.5) and (3.1.6), we have the following
expressions for the right coproduct and the right counit:

∆∗r : U∗ → U∗ J ⊗ IU∗ , ψ 7→
∑
j(fj ⇀ ψ)⊗A f j ,

∂∗ : U∗ → A, ψ 7→ ψ(1U ).
(3.1.11)

3.1.7 Remark Under analogous assumptions, a right bialgebroid has two duals as well,
which can be made into left bialgebroids.

3.1.8 Module-Comodule Correspondence Classically [AW, Cart], if U happens to be a
finite dimensional algebra over a field k and DU := Homk(U, k) is its dual (carrying the
structure of a coassociative coalgebra [Sw1, 1.1.2]), rightDU -modules naturally correspond
to left U -comodules, i.e., one has a categorical equivalence

Mod-DU ' U -Comod.

The situation in the bialgebroid context is richer, as summarised by the main result of this
section, Theorem 3.1.11 below. The following proposition explains how module and comod-
ule structures imply each other.

3.1.9 Proposition Let U be a left bialgebroid, as above.

(i ) Given a right U -comodule N ∈ Comod-U with coaction N∆ : N → N ⊗A U, n 7→
n(0) ⊗A n(1), the assignment

µN

∗ : N ⊗ U∗ → N, n⊗A φ 7→ n(0)φ(n(1)) (3.1.12)
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defines a right U∗-module structure on N . Conversely, for each right U∗-module M
with U∗-action (m,φ) 7→ mφ, the assignment

M∆(m)(φ) := mφ ∀m ∈M, φ ∈ U∗ (3.1.13)

defines a map M∆ : M → Hom(−,A)(U∗,M), and if �U is finitely generated pro-
jective over A, this yields a right U -comodule structure M∆ : M → M ⊗A U on M .
In particular, these processes of assigning modules and comodules are inverse to each
other.

(ii ) Similarly, given a left U -comodule N with coaction ∆N : N → U ⊗A N, n 7→
n(−1) ⊗A n(0), the assignment

µ∗N : N ⊗ U∗ → N, n⊗A ψ 7→ ψ(n(−1))n(0) (3.1.14)

defines a right U∗-module structure on N . Conversely, for each right U∗-module M
with U∗-action (m,ψ) 7→ mψ, the assignment

∆M(m)(ψ) := mψ ∀m ∈M, ψ ∈ U∗, (3.1.15)

defines a map ∆M : M → Hom(A,−)(U∗,M), and if U� is finitely generated pro-
jective over A, this yields a left U -comodule structure ∆M : M → U ⊗A M on M .
Again, these two processes of assigning modules and comodules are inverse to each
other.

3.1.10 Remark This result is not totally obvious since the category of (A,A)-bimodules
is not symmetric and even if A is commutative, parts (i) and (ii) will be distinguished by
both the facts that source and target maps do not need to coincide, and in any case do not
necessarily map into the centre of U .

PROOF: To check the respective comodule identities, one expresses the comonoid structure
on U in terms of the monoid structures on U∗ and U∗ to obtain (3.1.13) and (3.1.15), similar
to [KSz], but in a sense dualised again (we give all details only in case of the left dual,
inasmuch this case is less expected, and leave the rigorous elaboration of the second one to
the reader).

(i ) To prove the first statement, we need to show that µN
∗ (idN ⊗mU∗) = µN

∗ (µN
∗ ⊗ idU∗),

where mU∗ is as in (3.1.1). One has

µN

∗ (idN ⊗mU∗)(n⊗A φ⊗A φ′) = n(0)〈φφ′, n(1)〉
= n(0)〈φ′, t`(〈φ, n(2)〉)n(1)〉 =

(
n(0)φ(n(1))

)
(0)
〈φ′,

(
n(0)〈φ, n(1)〉

)
(1)
〉

= µN

∗ (µN

∗ ⊗ idU∗)(n⊗A φ⊗A φ′) = n(0)〈φ′, t`(〈φ, n(2)〉)n(1)〉,

since N is assumed to be a right U -comodule. Hence the two expressions coincide.

For the second claim, consider the (A,A)-bimodule �U∗J (‘source-source’). The
corresponding tensor product U∗ ⊗A U∗ := U∗J ⊗ �U∗ carries an (A,A)-bimodule
structure in the standard way, given by �(U∗ ⊗A U∗)J = �U∗ ⊗A U∗J . As-
suming that �U is finitely generated A-projective with dual basis {ei}1≤i≤n ∈
U, {ei}1≤i≤n ∈ U∗ as before, the map

U ⊗A U → Hom(−,A)((U∗ ⊗A U∗)J , AA),

u⊗A u′ 7→
(
φ⊗A φ′ 7→ φ′(t`(φu′)u) = 〈φ′, t`(〈φ, u′〉)u〉

) (3.1.16)
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is an isomorphism. Its inverse is determined by calculating

u⊗A u′ =
∑
i

u⊗A s`(ei(u′))ei

≡
∑
i

t`(ei(u′))u⊗A ei =
∑
i,j

s`
(
〈ej , t`(〈ei, u′〉)u〉

)
ej ⊗A ei.

Hence the inverse can be expressed as

Φ 7→
∑
i,j

s`(Φ(ei ⊗A ej))ej ⊗A ei.

Now for each u ∈ U the map

φ⊗A φ′ 7→ 〈φφ′, u〉 (3.1.17)

lies in Hom(−,A)((U∗ ⊗A U∗)J , AA), as follows from §3.1.5(i)(a) and the relation of
the monoid structure on U∗. The identity

〈φφ′, u〉 = 〈φ⊗A φ′, u(1) ⊗A u(2)〉 = 〈φ′, t`(〈φ, u(2)〉)u(1)〉 (3.1.18)

can either be read from left to right, in which case it defines the ring structure mU∗ on
the dual in dependence of the coproduct on U , as was done in §3.1.1, i.e.,

mU∗ : U∗ ⊗A U∗ → U∗, φ⊗A φ′ 7→ φφ′. (3.1.19)

Or, (3.1.18) can be read from right to left, so as to express the coproduct on U using
the product in U∗; this is the point of view we adopt here. The coproduct on U then
reads

∆`u =
∑
i,j

s`(〈eiej , u〉)ej ⊗A ei ∀ u ∈ U. (3.1.20)

We need this formula to verify the comodule identities of M∆: let M be a right U∗-
module with action (m,φ) 7→ mφ, so that in particular M is an (A,A)-bimodule.
Define a map

MA ⊗ �U → Hom(−,A)( �U∗J ,MA), m⊗A u 7→ m〈−, u〉. (3.1.21)

Under the hypotheses that �U is finitely generated A-projective, this map is an iso-
morphism, with inverse

Hom(−,A)( �U∗J ,MA)→MA ⊗ �U, f 7→
∑
i

f(ei)⊗A ei. (3.1.22)

Finally, define the right U -comodule structure on M

M∆ : M → Hom(−,A)( �U∗J ,MA), M∆(m)(φ) := mφ ∀m ∈M, φ ∈ U∗,

that is, with the isomorphisms (3.1.22) this amounts to a map M∆ : M → M ⊗A U
that reads

M∆m =
∑
i

mei ⊗A ei. (3.1.23)
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To check the comodule identities, calculate

(M∆ ⊗ idU )M∆m =
∑
i,j

m(eiej)⊗A ej ⊗A ei,

and, by making use of (3.1.20),

(idM ⊗∆`)M∆m =
∑
k

mek ⊗A ∆`ek

=
∑
i,j,k

mek ⊗A s`(〈eiej , ek〉)ej ⊗A ei

=
∑
i,j,k

(mek)〈eiej , ek〉 ⊗A ej ⊗A ei

=
∑
i,j,k

m
(
eksr∗(〈eiej , ek〉)

)
⊗A ej ⊗A ei

=
∑
i,j

m(eiej)⊗A ej ⊗A ei,

where we used the fact that M is a right U∗-module and the projectivity of �U , com-
pare the construction of sr∗ from §3.1.5(i)(a). Furthermore, if RA : (m,a) 7→ ma
denotes the right A-action M , we see that

RA(idM ⊗ ε)M∆m =
∑
i

(mei)ε(ei) =
∑
i

m(eisr∗(εei)) = mε = m,

since ε = 1U∗ , and the right comodule identities are proven. It is now easy to see that
M∆ is a (right) A-module morphism (in fact an (A,A)-bimodule morphism under the
left A-action (2.3.8)). With (3.1.21) one gets

M∆(ma)(φ) = M∆(m)(sr∗(a)φ) = m(0)〈φ, t`(a)m(1)〉,

hence M∆(ma) = m(0) ⊗A t`(a)m(1).

To see that the two processes of defining U∗-modules and U -comodules are inverse
to each other is straightforward. Assume that a right U∗-action on M induces the
right U -coaction M∆ , as in (3.1.13). Then, as in (3.1.12), M∆ induces in turn a right
U∗-action which is given with (3.1.23) as

µN

∗ (m⊗A φ) =
∑
i

mei(φ(ei)) =
∑
i

meisr∗(φ(ei)), m ∈M.

With §3.1.5(i)(a), by projectivity we have for any u ∈ U∑
i

〈eisr∗(φ(ei)), u〉 = 〈
∑
i

ei, u〉〈φ, ei〉 = 〈φ,
∑
i

s`(〈ei, u〉)ei〉 = φ(u).

Hence
∑
im(eisr∗(φei)) = mφ, and the two module structures µN

∗ and (m,φ) 7→ mφ
coincide. Vice versa, if the right U∗-module structure µN

∗ on N originates from a
right U -comodule structure as in (3.1.12), it induces a right U -comodule structure
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N∆′ : n 7→ n(0)′ ⊗A n(1)′ on N by (3.1.13), hence for any n ∈ N and all φ ∈ U∗ one
obtains

n(0)′φ(n(1)′) = N∆′ (n)(φ) = µN

∗ (n⊗A φ) = n(0)φ(n(1)) = N∆(n)(φ).

This means N∆ = N∆′ .

(ii ) The case for the right dual is proven analogously; as said, we just give the analogous
formulae for the second statement for later use, but still in quite some detail due to the
slightly confusing richness of choices in this context.

This time, instead of (3.1.16), consider the (A,A)-bimodule IU∗� (‘target-target’),
and for the tensor product U∗ ⊗A U∗ :=U∗� ⊗ IU∗ , consider the (A,A)-bimodule
I(U∗ ⊗A U∗)� := IU∗ ⊗A U∗� . Assuming that U� is finitely generated A-
projective, with {fj}1≤j≤m ∈ U, {f j}1≤j≤m ∈ U∗ a dual basis of U� , the map

U ⊗A U → Hom(A,−)( I(U∗ ⊗A U∗),AA),

u⊗A u′ 7→
(
ψ ⊗A ψ′ 7→ 〈ψ′, s`(〈ψ, u〉)u′〉

)
is an isomorphism, with inverse

Ψ 7→
∑
i,j

fi ⊗A t`(Ψ(f i ⊗A f j))fj .

For each u ∈ U the map
ψ ⊗A ψ′ 7→ 〈ψ′ψ, u〉 (3.1.24)

lies in Hom(A,−)( I(U∗ ⊗A U∗),AA). This map reverses the order, which makes it
well-defined on the chosen quotient in the tensor product (‘target-target’). Now use
the pairing

〈ψ′ψ, u〉 = 〈ψ ⊗A ψ′, u(1) ⊗A u(2)〉 = 〈ψ, s`(〈ψ′, u(1)〉)u(2)〉 (3.1.25)

to either define a ring structure on the right dual U∗ by

mU∗ : U∗ ⊗A U∗ → U∗, ψ ⊗A ψ′ 7→ ψ′ψ, (3.1.26)

which is well-defined only in this order reversing way (cf. (3.1.2)). Or, deploy (3.1.25)
to obtain the expression

∆`u =
∑
i,j

fi ⊗A t`(〈f jf i, u〉)fj ∀ u ∈ U (3.1.27)

for the coproduct on U . Furthermore, for a right U∗-module M , define

U� ⊗AM → Hom(A,−)( IU∗� ,AM), u⊗A m 7→ 〈−, u〉m,

which, under the hypotheses that U� is finitely generated A-projective, is an isomor-
phism, with inverse

Hom(A,−)( IU∗� ,AM)→ U� ⊗AM, g 7→
∑
j

fj ⊗A g(f j).
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Now, for the left U -comodule structure on M , set

∆M : M → Hom(A,−)( IU∗� ,AM), ∆M(m)(ψ) := mψ ∀m ∈M, ψ ∈ U∗,

so that we finally obtain a map ∆M : M → U ⊗AM given by

∆Mm =
∑
j

fj ⊗A mf j .

With these formulae at hand, the U -comodule identities can be verified as before.

2

We now have all necessary information to state the main result of this section.

3.1.11 Theorem Let U be a left bialgebroid with left and right duals U∗ and U∗, respec-
tively.

(i ) There is a canonical functor Comod-U → Mod-U∗ from the category of right U -
comodules to the category of right U∗-modules, induced by (3.1.12). If �U is finitely
generated A-projective, this functor is an equivalence of categories:

Comod-U 'Mod-U∗.

(ii ) There is a canonical functor U -Comod → Mod-U∗ from the category of left U -
comodules to the category of right U∗-modules, induced by (3.1.14). IfU� is finitely
generated A-projective, this functor is an equivalence of categories:

U -Comod 'Mod-U∗.

PROOF: It remains to show that module and comodule morphisms correspond to each
other. This can be modelled after [Sw1, Thm. 2.1.3.(e)]. We only show the first part, part (ii)
works mutatis mutandis. Recall the space of morphisms of right U -comodules in Definition
2.4.2(ii). Suppose f ∈ ComU (M,N) ⊂ Hom(−,A)(M,N) is a comodule morphisms for
two M,N ∈ Comod-U . With the induced right U -module structure maps µM∗ and µN

∗ as
in (3.1.12), we have for m ∈M and φ ∈ U∗,

µN

∗ (f(m)⊗A φ) = f(m)(0)〈φ, f(m)(1)〉
= f(m(0))〈φ,m(1)〉
= f(m(0)〈φ,m(1)〉)
= f(µM∗ (m⊗A φ)).

Hence f is a morphism of U∗-modules. Conversely, if g ∈ HomU∗(M,N) for M,N ∈
Mod-U∗, we have

g(m)(0)〈φ, g(m)(1)〉 = µN

∗ (g(m)⊗A φ) = g(µM∗ (m⊗A φ)) = g(m(0))〈φ,m(1)〉

for all φ ∈ U∗, m ∈ M , and by the relation between (induced) module and comodule
structures in the preceding Proposition, this implies N∆g(m) = (g ⊗ idU )M∆m, i.e., g ∈
ComU (M,N). Again, (ii) is proven analogously. 2
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3.1.12 Remark As the base algebra of right bialgebroids,A carries a right U∗-action as well
as a right U∗-action, respectively. One may be tempted to think that both of these lead to
left U -coactions, but this is not the case, as shown. Considering A as the base algebra of the
left bialgebroid U , it carries a priori only one left U -action (cf. (2.3.3)), but two U -coactions
from left and right (cf. (2.3.7)). At least conceptually, this is reflected by the preceding
proposition. One has the following chain of structures for the base algebra:

Left U -action⇒ right U∗- as well as right U∗-action⇒ right as well as left U -coaction.

We will continue this discussion in the subsequent proposition.

3.1.13 Grouplike Elements and Generalised Right Characters Recall that a character on
the dual U∗ of a Hopf algebra U is equivalent to giving a grouplike element in U and vice
versa, compare the self-duality of a modular pair mentioned in Section 1.3.

A generalised right character [B3] on a right B-bialgebroid V is a (B,B)-bimodule
map IVJ → B with respect to the bimodule structure (2.5.2) which fulfills the property
(2.5.3). Hence every right counit of a right bialgebroid is by definition a generalised right
character.

Using the expressions (3.1.20) and (3.1.27) for the coproduct in U depending respec-
tively on the ring structures on U∗ and U∗, one proves the following result.

3.1.14 Proposition Let U be a left bialgebroid and assume that �U is finitely generated
A-projective. Then there is a bijective correspondence between grouplike elements G`U
and generalised right characters on U∗. Likewise, if U� is finitely generated A-projective,
there is a bijective correspondence between G`U and generalised right characters on U∗. In
particular, each right U∗-action (resp. U∗-action) on A corresponds to a grouplike element
in U , which induces the canonical right (resp. left) U -coaction on A as in (2.3.7). These are
the only ways in which U -coactions on A appear.

PROOF: Denote a right U∗-action on A by ∇rφ : a 7→ ∇rφa. From (3.1.21) follows that
u 7→ 〈−, u〉 gives the isomorphism �U ' Hom(−,A)( �U∗J , AA). Hence set

∇r1A =: σ ∈ U, (3.1.28)

cf. §2.5.5, and for each u ∈ U define correspondingly u(−) := 〈−, u〉 ∈
Hom(−,A)( �U∗J , AA). Using (3.1.18) and §3.1.5(i), it is not difficult to see that σ ful-
fills σ(φφ′) = σ(sr∗(σ(φ))φ′) = σ(tr∗(σ(φ))φ′), i.e. (2.5.3) (cf. also (2.5.9)), and also that
it is an (A,A)-bimodule map with respect to the structures IU∗J . With (3.1.20), it follows
that

∆`σ =
∑
i,j

s`(〈eiej , σ〉)ej ⊗A ei

=
∑
i,j

s`(〈sr∗(σ(ei))ej , σ〉)ej ⊗A ei

=
∑
i,j

s`(〈ej , t`(σ(ei))σ〉)ej ⊗A ei

=
∑
i

t`(σ(ei))σ ⊗A ei

= σ ⊗ σ,

(3.1.29)
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hence σ is a grouplike element in U . The opposite direction is proved by reading all state-
ments backwards; that is, if σ is grouplike, it can be concluded from (3.1.29) (since s` has
the left inverse ε) that the property (2.5.3) holds; defining an operator ∇r by

∇r1A := σ

yields a right U∗-action on A. In particular, we have t`aσ = ∇ra, as seen by 〈φ, t`aσ〉 =
〈sr∗(a)φ, σ〉 and

A∆a =
∑
i

∇reia⊗A ei =
∑
i

〈ei, t`(a)σ〉 ⊗A ei

=
∑
i

1A ⊗A s`
(
〈ei, t`(a)σ〉

)
ei = 1A ⊗A t`(a)σ.

To prove the statement about A we need to make use of (3.1.28) as well as of (3.1.9),
(3.1.3), (3.1.1) and (3.1.8). Since U∗ is a right bialgebroid, one notices that

A∆(a)(φ) = aφ = (1Aφ(1))∂∗(sr∗(a)φ
(2))

=
∑
i

〈ei, σ〉 (sr∗(a)(ei ⇁ φ)(1U ))

=
∑
i

〈ei, σ〉 ((ei ⇁ φ)(t`a))

=
∑
i

〈ei, σ〉〈φ, t`(a)ei〉,

which reads a(0)〈φ, a(1)〉 = 〈φ, t`aσ〉, and in view of (3.1.22) means that A∆a = 1A ⊗A
t`(a)σ. Again, all assertions for U∗ work analogously. 2

It is not by pure coincidence that in the preceding proposition we chose the symbol ∇r. In
fact, ∇r may be seen as a (flat) right connection as in Subsection 2.5.1. We will later see an
example of the intimate relation between flat right connections and right counits (Proposi-
tions 4.2.9 and 4.2.11).

3.2 Push Forward Bialgebroids
In this section we shall construct a new bialgebroid from a known one, provided one has
some extra data; namely, a ring extension of the base algebra.

Let A,B be two k-algebras and σ : A → B a ring homomorphism. This defines an
obvious (A,A)-bimodule structure on B by (a, b, ã) 7→ σ(a)bσ(ã) for a, ã ∈ A and b ∈ B.

Now let U be a left bialgebroid over A with structure maps as before. We set

Bop ⊗A U ⊗A B = Bop ⊗k U ⊗k B/I, (3.2.1)

where

I = span{b⊗k t`ãs`au⊗k b̃− bσ(a)⊗k u⊗k σ(ã)b̃ | a, ã ∈ A, b, b̃ ∈ B, u ∈ U}.
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We furthermore define the Takeuchi product σ∗U := Bop ×A U ×A B, which, similarly as
before, denotes the subspace in Bop ⊗A U ⊗A B given by

σ∗U = {
∑
ibi ⊗A ui ⊗A b̃i ∈ Bop ⊗A U ⊗A B |
|
∑
ibi ⊗A uis`at`ã⊗A b̃i =

∑
iσ(a)bi ⊗A ui ⊗A b̃iσ(ã), a, ã ∈ A}.

(3.2.2)

Then factorwise multiplication (with the opposite product on the first factor) gives a well-
defined k-algebra structure on σ∗U with unit 1B ⊗A 1U ⊗A 1B.

The following statement may appear surprising to some extent.

3.2.1 Proposition Let U be a left bialgebroid. Then the k-algebra σ∗U carries the structure
of a right bialgebroid over B.

PROOF: The right source and target maps are given by

srB : B → σ∗U, b 7→ 1B ⊗A 1U ⊗A b,
trB : B → σ∗U, b 7→ b⊗A 1U ⊗A 1B.

In particular, this defines the structure of a Be-ring with the four B-module structures as in
(2.5.2) and (2.5.5) for right source and target maps. We may also form the tensor product
σ∗U ⊗B σ∗U , which is defined as in (2.5.1). If now ∆`u = u(1) ⊗A u(2) describes the left
coproduct on elements u ∈ U and ε : U → A is the left counit in U , we define the right
coproduct and right counit on σ∗U as

∆B
r : σ∗U → σ∗U ⊗B σ∗U, b⊗A u⊗A b̃ 7→ (b⊗A u(1) ⊗A 1B)⊗B (1B ⊗A u(2) ⊗A b̃),

∂B : σ∗U → B, b⊗A u⊗A b̃ 7→ bσ(εu)b̃,

which are easily seen to be well-defined, also with respect to the presentation of ∆`. While
most of the properties in Definition 2.5.1 of right bialgebroids are obvious, let us just prove
(2.5.6) and (2.5.3). One has

mU (idU ⊗ sr∂B)∆B

r (b⊗A u⊗A b̃) = b⊗A u(1) ⊗A σ(ε(u(2)))b̃ = b⊗A u⊗A b̃,

using (2.1.8), and likewise one proves the second identity in (2.5.6). Furthermore, one has

∂B

(
(b⊗A u⊗A b̃)(b′ ⊗A u′ ⊗A b̃′)

)
= b′bσ

(
ε(uu′)

)
b̃b̃′

= b′bσ
(
ε(us`εu′)

)
b̃b̃′

= b′σ(εu′)bσ(εu)b̃b̃′

= b′σ(εu′)∂B(b⊗A u⊗A b̃)b̃′

= ∂B

(
b′ ⊗ u′ ⊗A ∂B(b⊗A u⊗A b̃)b̃′

)
= ∂B

(
(srB∂B(b⊗A u⊗A b̃))(b′ ⊗ u′ ⊗A ⊗Ab̃)

)
,

where we used the fact that σ∗U is given as a Takeuchi product. Putting t` instead of s` in
the second equation then leads to the second equation in (2.5.3). 2

3.2.2 Remark One may also alter the push forward construction by taking different tensor
products, opposites, coopposites or even σ as an anti-homomorphism; however, none of
these possibilities seem to lead to a left bialgebroid, precisely due to the requirement (2.1.4).
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3.2.3 Examples (Localisation of Hopf algebroids)

(i ) Let E → M be a Lie algebroid over a smooth manifold M with anchor ω. Denote
the corresponding Lie-Rinehart algebra by (C∞(M),ΓE), and let V E := V ΓE be
the associated left C∞(M)-bialgebroid; cf. Subsection 4.2.2 for all details of this con-
struction. Let evx : C∞(M) → C, a 7→ a(x) be the evaluation at a point x ∈ M
and write Cx for C seen as (left or right) C∞(M)-module by this map. By the PBW
Theorem one has a C∞(M)-module isomorphism V E ' Γ(M,SE) on sections of
the symmetric algebra SE, hence in particular V E ⊗C∞(M) Cx ' SEx, given by
u ⊗C∞(M) λ 7→ u(x)λ. The condition (3.2.2) for the right tensor factor for X ∈ ΓE
yields (Xa)(x) = a(x)X(x), which is true if X(a)(x) = 0 for all a ∈ C∞(M).
Hence X ∈ kerωx, the fibre at x of the isotropy of the Lie algebroid; this is a Lie
algebra. An analogous consideration for the left tensor factor yields the same in-
formation (since the source and target maps are equal). By extension, one obtains
evx∗V E ' U(kerωx), i.e. a C-bialgebra.

(ii ) Let s, t : G ⇒ G0 be an étale groupoid over a smooth manifold G0, and denote the
compactly supported functions overG by C∞c (G); see Section 4.4 how this can be seen
as a left bialgebroid over C∞(G0). The left and right C∞(G0)-actions on C∞c (G) used
in (3.2.1) are given in (4.4.4), i.e., (au)(g) = a(t(g))u(g) and (ua)(g) = u(g)a(s(g)),
where u ∈ C∞c (G), a ∈ C∞(G0). Again, let evx : C∞(G0) → C, a 7→ a(x) be the
evaluation at x ∈ G0. Then the right tensor product in (3.2.1) identifies elements
a(t(g))u(g) = a(x)u(g), i.e., C∞c (G) ⊗C∞(G0) Cx ' C∞c (t−1(x)). The subspace in
(3.2.2), however, consists of those elements in C∞c (t−1(x)) for which u(g)a(s(g)) =
u(g)a(x). As in (i), analogous considerations on the first tensor factor do not lead to
any further conditions. Hence if Gx = {g | s(g) = t(g) = x} denotes the isotropy
subgroup of x, which is a discrete group here, one obtains evx∗C∞c (G) ' C∞c (Gx),
i.e. a C-bialgebra again.

3.3 Matched Pairs of Bialgebroids
In this section we present a method to construct a new bialgebroid out of two known ones. It
will give a generalisation of a similar consideration for k-bialgebras (see e.g. [Maj]), which
is needed in Section 4.7 to analyse the structure of (generalised) Connes-Moscovici algebras
(cf. [CoMos5, MosR]). The main ingredients of the construction are:

(i ) two (left) bialgebroids U,F ,

(ii ) an action of U on F , satisfying certain properties,

(iii ) a coaction of F on U , satisfying certain properties.

If the structures from (ii) and (iii) ‘match’ in a sense to be specified, a particular tensor
product F ⊗ U carries the structure of a left bialgebroid again.

Note that already for k-bialgebras there are various possibilities of how to produce new
bialgebras in this spirit (cf. [Maj, Kas3]), corresponding to the various action-coaction pic-
tures but we will only generalise the case of the ‘left-right bicrossproduct bialgebra’ from
[Maj, Thm. 6.2.2] to bialgebroids.
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3.3.1 Left Module Rings for Bialgebroids
Here, we give a more precise sense to the ‘action picture’ of point (ii) above.

The additional structure on a ring U that makes it a left (or right) bialgebroid over A is
precisely a monoidal structure on the category U -Mod of left U -modules (right U -modules,
respectively) together with a strictly monoidal forgetful functor U -Mod → Ae-Mod; see
Theorem 2.3.1 from [Schau1]. Hence the following analogue of a ‘module algebra’ appears
quite naturally. Let (U,A, s`U , t

`
U ,∆

U

` , εU) be a left bialgebroid, as before.

3.3.1 Definition [KSz] A left U -module ring M is a monoid in U -Mod. That is, by strict
monoidality of the forgetful functor U -Mod→ Ae-Mod, the space M carries a canonical
A-ring structure with A-balanced multiplication µM(m ⊗A m′) = mm′ for m,m′ ∈ M ,
and unit map A→M, a 7→ s`U(a)1M = t`U(a)1M such that for u ∈ U, m,m′ ∈M

u(mm′) = (u(1)m)(u(2)m
′), and u1M = s`UεU(u)1M . (3.3.1)

Here the U -action on M is denoted by (u,m) 7→ um.

For example, the base algebra A is a left U -module ring, but U itself usually is not.
Observe in particular that with the induced Ae-module structure on M given by

amb := t`Ubs
`
Uam, (3.3.2)

one has
a(mm′) = s`Ua(mm

′) = (s`Uam)m′ = (am)m′

(mm′)a = t`Ua(mm
′) = m(t`Uam

′) = m(m′a), (3.3.3)

and moreover
m(am′) = m(s`Uam

′) = (t`Uam)m′ = (ma)m′. (3.3.4)

We can then prove the following fact similar as in [KSz].

3.3.2 Lemma Let U be a left bialgebroid as above and M a left U -module ring. Then
M ⊗A U carries an A-ring structure, called the smash ring or crossed product ring, denoted
by M>CAU .

PROOF: Here

M ⊗A U := M ⊗k U/span{ma⊗ u−m⊗ s`Uau | a ∈ A}, (3.3.5)

where ma = t`Uam as above. The Ae-module structure on M ⊗A U is given by

a(m⊗A u)b = am⊗A us`Ub = s`Uam⊗A us`Ub for a, b ∈ A. (3.3.6)

The product structure µ is

(m⊗A u)(m′ ⊗A u′) := µ
(
(m⊗A u)⊗A (m′ ⊗A u′)

)
:= m(u(1)m

′)⊗A u(2)u
′, (3.3.7)

and the unit is

A→M ⊗A U, a 7→ a1M ⊗A 1U = s`Ua1M ⊗A 1U = t`Ua1M ⊗A 1U = 1M ⊗A s`Ua.
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Both maps are clearly Ae-module morphisms. While the associativity and unitality axioms
are easily checked using coassociativity of ∆U

` , we restrict ourselves to showing that (3.3.7)
is actually well-defined over A. One has, for a, b ∈ A,

(ma⊗A u)(m′b⊗A u′) = (ma)(u(1)(m′b))⊗A u(2)u
′ = m((s`Uau(1)t

`
Ub)m

′)⊗A u(2)u
′

= m((s`Uau)(1)m
′)⊗A (s`Uau)(2)s

`
Ubu
′ = (m⊗A s`Uau)(m′ ⊗A s`Ubu′).

Also, if multiplication is thought of as a composition of single maps, one has to show well-
definedness of the Sweedler components, i.e.,

m((t`Uau(1))m′)⊗A u(2)u
′ = m((u(1)m

′)a)⊗A u(2)u
′

= (m(u(1)m
′))a⊗A u(2)u

′ = m(u(1)m
′)⊗A s`Uau(2)u

′.

With the mentioned Ae-module structure on M ⊗A U , the fact that µ is A-balanced is obvi-
ous. 2

For example, the universal enveloping algebra V L of a Lie-Rinehart algebra (A,L) arises in
such a way, i.e., V L = A>CAUL where UL is the universal enveloping algebra of the k-Lie
algebra L; see also Remark 1.4.4 above.

We finally remark that M ⊗A U can even be seen as an M -ring [B3].

3.3.2 Right Comodule Corings for Bialgebroids

Now we specify what we mean by the ‘coaction picture’ mentioned in point (iii) at the
beginning of Section 3.3.

Let (F,A, s`F , t
`
F ,∆

F

` , εF ) be an arbitrary left bialgebroid and denote the Sweedler com-
ponents of its left coproduct by ∆F

` f = f[1] ⊗A f[2] for all f ∈ F .

3.3.3 Definition A right F -comodule coring N is a comonoid in Comod-F . That is, by
strict monoidality of the forgetful functor Comod-F → (Aop)e-Mod, the space N carries
a canonical Aop-coring structure (N,∆N , εN) with an (Aop)e-linear coproduct ∆Nn =:
n(1) ⊗Aop n(2) and a right F -comodule structure N∆n =: n[0] ⊗Aop n[1], such that

mF (s`F εN ⊗ idF )N∆ = t`F εN , (∆N ⊗ idF )N∆ = N⊗N∆∆N . (3.3.8)

Here N⊗N∆ denotes the right F -coaction on N ⊗Aop N from (2.3.11).

Again, the base algebra A is a right F -comodule coring (see (2.3.7)), whereas this is
generally not the case for F itself.

Compare [BŞ] for the analogous definition of a left F -comodule coring. Observe also
that it is this Aop-construction that generalises the bialgebra case (cf. e.g. [Maj]), at least if
one wants the same order of elements in the formulae.

For the reader’s convenience, let us explicitly recall all maps and tensor products in-
volved. For the coproduct on N we have ∆N : N → N ⊗Aop N , where

N ⊗Aop N := N ⊗k N/span{an⊗ n′ − n⊗ n′a | a ∈ A}, (3.3.9)
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andN⊗AopN is an (A,A)-bimodule in a standard way, i.e. by (a, n⊗Aop n′, b) 7→ nb⊗Aop

an′; in particular

∆N(anb) = n(1)b⊗Aop an(2) for all a, b ∈ A. (3.3.10)

For the right F -coaction on N we have N∆ : N → N ⊗A F , where

N ⊗A F := N ⊗k F/span{na⊗k f − n⊗ s`Faf | a ∈ A} (3.3.11)

is the tensor product from (2.3.5). Written explicitly, the conditions (3.3.8) then read

s`F εN(n[0])n[1] = t`F εNn,
n[0](1) ⊗Aop n[0](2) ⊗A n[1] = n(1)[0] ⊗Aop n(2)[0] ⊗A n(1)[1]n(2)[1].

(3.3.12)

Note that these conditions are well-defined by (2.3.10), (3.3.10) and (3.3.11). For example,
on the right hand side in the second equation of (3.3.12) one has

(an(1))[0] ⊗Aop n(2)[0] ⊗A n(1)[1]n(2)[1] = n(1)[0] ⊗Aop n(2)[0] ⊗A n(1)[1]t
`an(2)[1]

= n(1)[0] ⊗Aop (n(2)a)[0] ⊗A n(1)[1]n(2)[1],

from which the well-definedness over the presentation of ∆N follows.

3.3.4 Lemma Let (F,A) be a left bialgebroid and N a right F -comodule coring, with all
structures maps as above. Then the space F ⊗Aop N carries the structure of an A-coring,
called the cocrossed product coring, denoted by FI<AopN .

PROOF: Firstly, we recall that the underlying A-linear space of FI<AopN is

F ⊗Aop N := F ⊗k N/span{ft`Fa⊗ n− f ⊗ na | a ∈ A}, (3.3.13)

which is an (A,A)-bimodule with left A-action LA and right A-action RA given by

a(f ⊗Aop n)b := s`Fat
`
F bf ⊗Aop n, (3.3.14)

with respect to which we define the tensor product (F ⊗Aop N) ⊗A (F ⊗Aop N). The
coproduct and counit are maps ∆ccr

` : F ⊗Aop N → (F ⊗Aop N) ⊗A (F ⊗Aop N) and
εccr : F ⊗Aop N → A, given by

∆ccr
` (fI<Aopn) := (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2)), (3.3.15)

εccr(fI<Aopn) := εF (ft`F εNn). (3.3.16)

While it is trivial to check that the counit is well-defined over A (recall that εN is an
(Aop, Aop)-bimodule map), this is somewhat more tedious for ∆ccr

` . With (2.3.10) and
(3.3.10) one has

∆ccr
` (ft`FaI<Aopn) = (f[1]I<Aopn(1)[0])⊗A (f[2]t`Fan(1)[1]I<Aopn(2))

= (f[1]I<Aop(na)(1)[0])⊗A (f[2](na)(1)[1]I<Aop(na)(2))
= ∆ccr

` (uI<Aopna).
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The well-definedness over the presentation of ∆F

` immediately follows from (3.3.14). More-
over, one has to check the well-definedness over the presentation of N∆ , i.e.,

(f[1]I<Aopn(1)[0]a)⊗A (f[2]n(1)[1]I<Aopn(2)) =

= (f[1]t`FaI<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2))

= (f[1]I<Aopn(1)[0])⊗A (f[2]s`Fan(1)[1]I<Aopn(2)),

by the very definition of all tensor products involved, as well as the property im(∆F

` ) ⊂
F ×A F . Now, by (2.3.10) again, the computation

(f[1]I<Aop(an(1))[0])⊗A (f[2]n(1)[1]I<Aopn(2)) =

= (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]t
`
FaI<Aopn(2))

= (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2)a),

proves that the presentation of ∆N is well-defined. Finally, we are left with checking the
comonoid identities. With (3.3.8), (3.3.12) and (2.3.10) one obtains

LA(εccr ⊗ id)∆ccr
` (fI<Aopn) = s`F εF

(
f[1]t

`
F εN(n(1)[0])

)
f[2]n(1)[1]I<Aopn(2)

= fs`F εN(n(1)[0])n(1)[1]I<Aopn(2)

= ft`F εN(n(1))I<Aopn(2)

= fI<Aopn(2)εN(n(1)) = fI<Aopn,

since N is an Aop-coring. Also, with the same kind of arguments,

RA(id⊗ εccr)∆ccr
` (fI<Aopn) = t`F εF (f[2]n(1)[1]t

`
F εNn(2))f[1]I<Aopn(1)[0]

= t`F εF (f[2](εN(n(2))n(1))[1])f[1]I<Aop(εN(n(2))n(1))[0]
= t`F εF (f[2]n[1])f[1]I<Aopn[0]

= t`F εF (f[2])f[1]t`F εFn[1]I<Aopn[0] = fI<Aopn.

Spelling out the coassociativity condition of ∆ccr
` , one finds

(∆ccr
` ⊗ id)∆ccr

` (fI<Aopn) =
= (f[1]I<Aopn(1)[0](1)[0])⊗A (f[2]n(1)[0](1)[1]I<Aopn(1)[0](2))⊗A (f[3]n(1)[1]I<Aopn(2))
= (f[1]I<Aopn(1)[0])⊗A (f[2]n(1)[1]I<Aopn(2)[0])⊗A (f[3]n(1)[1]n(2)[1]I<Aopn(3))
= (id⊗∆ccr

` )∆ccr
` (fI<Aopn).

Here we used coassociativity of both ∆F

` , ∆N , and in the third line the comodule coring
property (3.3.12) was applied. 2

3.3.3 Matched Pairs
In this subsection we merge the concepts of left U -module rings and right F -comodule
corings to produce a new bialgebroid, which will be called a bicrossed product bialgebroid.
This is possible if F and U and their mutual coaction and action meet certain conditions
(so as to yield a matched pair of bialgebroids; see below). Assume that both M = F in



72 CHAPTER 3. CONSTRUCTIONS

Definition 3.3.1 and N = U in Definition 3.3.3 are (left) bialgebroids; we want to impose
a bialgebroid structure on some tensor product F ⊗ U . The obvious problem that the ring
structure from Lemma 3.3.2 and coring structure from Lemma 3.3.4 are on different tensor
products can be removed by assuming F to be a bialgebroid over Aop and U over A. On the
other hand, further (seemingly unavoidable) compatibility conditions (see below) will force
A to be commutative, such that the tensor products underlying the crossed product ring and
the cocrossed product coring become (automatically) the same.

3.3.5 Theorem Let (F,A, s`F , t
`
F ,∆

F

` , εF ) and (U,A, s`U , t
`
U ,∆

U

` , εU) be left bialgebroids
over some commutative base algebra A, and let F be a left U -module ring and U a right
F -comodule coring with maps

U × F → F, (u, f) 7→ u(f) and U∆ : U → U ⊗A F, u 7→ u[0] ⊗A u[1].

Furthermore, assume that for all f, f ′ ∈ F, u, u′ ∈ U, a ∈ A the compatibility conditions

s`U ≡ t`U , (3.3.17)
t`Faf = ft`Fa, (3.3.18)

u[0] ⊗A s`Fau[1] = u[0] ⊗A u[1]s
`
Fa, (3.3.19)

f[1] ⊗A s`Faf[2] = f[1] ⊗A f[2]s`Fa, (3.3.20)

as well as

εF

(
u(f)

)
= εU

(
us`UεF (f)

)
, (3.3.21)

U∆1U = 1U ⊗A 1F , (3.3.22)
∆F

`

(
u(f)

)
= u(1)[0](f[1])⊗A u(1)[1]u(2)(f[2]), (3.3.23)

u(2)[0] ⊗A u(1)(f)u(2)[1] = u(1)[0] ⊗A u(1)[1]u(2)(f), (3.3.24)

U∆(uu′) = u(1)[0]u
′
[0] ⊗A u(1)[1]u(2)(u′[1]) (3.3.25)

hold, where we used the Sweedler notation ∆U

` u =: u(1) ⊗A u(2) and ∆F

` f =: f[1] ⊗A f[2]
for the left coproducts. Then the linear space

F ⊗A U := F ⊗k U/span{t`Faf ⊗ u− f ⊗ s`Uau | a ∈ A} (3.3.26)

carries compatible structures of both an Ae-coring with ring structure F>CAU from Lemma
3.3.2 and an A-coring with coring structure FI<AU from Lemma 3.3.4, so as to form a left
A-bialgebroid, denoted by FICAU .

PROOF: First, note that the tensor products in (3.3.20) and (3.3.23) refer to (2.1.1) for
the left A-bialgebroid F , whereas the tensor product used in (3.3.19), (3.3.22) (3.3.24) and
(3.3.25) is meant to be the one defined in (3.3.11); now (3.3.23)–(3.3.25) are well-defined
precisely due to (3.3.17)–(3.3.20). We will first dedicate our attention to the conditions
(3.3.17)–(3.3.20), which are sufficient for both the construction of the crossed product ring
F>C

AU and the cocrossed product coring FI<
AU on the linear space (3.3.26). Clearly, once

established, (3.3.17) then implies that A needs to be commutative. Asking U to be a right
F -comodule requires compatibility in the sense of (2.3.10) with respect to one of the right
A-actions � or J on U from (2.1.3) or (2.1.5) (provided one does not want to introduce
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extra data, i.e. even more A-actions on U ). If one furthermore wants to impose U to be a
right F -comodule coring, one of the left and one of the right of the four natural A-actions
on U has to be compatible with (3.3.10). By (2.1.7), this implies that one needs to use either
(2.1.3) or (2.1.5). For either choice, one has, by (2.3.10),

U∆(a � 1U) = U∆(1U � a) = U∆(a I 1U) = U∆(1U J a) = 1U ⊗A t`Fa, a ∈ A,

and hence by the comodule properties

s`Ua = a � 1U = RA(id⊗ εF )U∆(a � 1U) = RA(id⊗ εF )U∆(1U
� a) = 1U

� a = t`Ua,

where RA is one of the two natural right A-actions � or J on U from either (2.1.3) or
(2.1.5). Analogous considerations hold for the (A,A)-bimodule IUJ , but since we aim
to produce the same linear space in the tensor products (3.3.5) and (3.3.13), the canonical
rightA-module structure on the right F -comodule U needs to be left multiplication with s`Ua
(= t`Ua), which coincides with the additional left A-action (2.3.8) on the right F -comodule
U . Observe that right multiplication with s`Ua (= t`Ua) does not come into the picture, i.e.
is not induced by the F -coaction on U . In particular, the tensor product (3.3.9) is then the
standard one from (2.1.1) for the left bialgebroid U (things would not have changed if we
assumed that F was a left Aop-bialgebroid).

On the other hand, F is requested to be a left U -module ring with compatible A-action
with respect to the induced (A,A)-bimodule structure (3.3.2). Since we want to match the
tensor products (3.3.5) with (3.3.13), we obtain the condition

t`Uaf = ft`Fa, f ∈ F, a ∈ A,

and from (3.3.4) and (3.3.3) it follows, with s`U = t`U , that

ft`Faf
′ = (ft`Fa)f

′ = (s`Uaf)f ′ = s`Ua(ff
′) = ff ′t`Fa, f, f ′ ∈ F, a ∈ A.

Hence t`Faf = ft`Fa, and A needs to be central in F by means of t`F . Observe that both
the left and right A-actions induced by the U -action on F (cf. (3.3.2)) coincide with the A-
module structure defined by t`F (i.e., the A-action by the source map s`F does not arise from
the fact that F is a left U -module ring).

Now the underlying linear spaces of F>CAU and FI<AU are given by (3.3.26); moreover
F>CAU can be seen as an Ae-ring by defining source and target as in (3.3.14), i.e.,

s`ccr : a 7→ s`Fa⊗A 1U , t`ccr : b 7→ t`F b⊗A 1U . (3.3.27)

Then the canonical left Ae-module structure on F>CAU from (2.1.3) is

a � (f ⊗A u) � b = s`Fat
`
F bf ⊗A u = s`Faf ⊗A s`Ubu,

whereas (2.1.5) reads

(f ⊗A u) J a = fu(1)(s`Fa)⊗A u(2) and b I (f ⊗ u) = f ⊗A us`Ub, (3.3.28)

where in the second equation we used (3.3.7), (3.3.1), (3.3.26), and s`U = t`U . The bimodule
structures on F ⊗A U corresponding to (3.3.14) and (3.3.6) are then a � (f ⊗A u) � b and
(f ⊗A u) J b � a, respectively. So far, part (i) in Definition (2.1.2) of a left bialgebroid has
been shown.
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As for part (ii), we need to show that the coring structure ∆ccr
` on FI<AU from Lemma

3.3.4 is a k-algebra morphism with respect to the algebra structure on F>CAU from Lemma
3.3.2. We will do this in an analogous manner as in [Maj, Thm. 6.2.2]. For this to hold,
the identities (3.3.23)–(3.3.25) will be sufficient. Note that these are well-defined due to
(3.3.19), and that (3.3.20) and inserting (3.3.23)–(3.3.25) into the following calculation is
permitted by (2.1.2) and (2.3.9):

∆ccr
`

(
(fICAu)(f ′ICAu

′)
)

=
(3.3.7)

∆ccr
`

(
fu(1)(f ′)ICAu(2)u

′)
=

(3.3.15)

(
f[1](u(1)(f ′))[1]IC

A(u(2)u
′
(1))[0]

)
⊗A

(
f[2](u(1)(f ′))[2](u(2)u

′
(1))[1]IC

Au(3)u
′
(2)

)
=

(3.3.23)

(
f[1]u(1)[0](f ′[1])IC

A(u(3)u
′
(1))[0]

)
⊗A

(
f[2]u(1)[1]u(2)(f ′[2])(u(3)u

′
(1))[1]IC

Au(4)u
′
(2)

)
=

(3.3.25)

(
f[1]u(1)[0](f ′[1])IC

Au(3)[0]u
′
(1)[0]

)
⊗A

(
f[2]u(1)[1]u(2)(f ′[2])u(3)[1]u(4)(u′(1)[1])ICAu(5)u

′
(2)

)
=

(3.3.24)

(
f[1]u(2)[0](f ′[1])IC

Au(3)[0]u
′
(1)[0]

)
⊗A

(
f[2]u(1)(f ′[2])u(2)[1]u(3)[1]u(4)(u′(1)[1])IC

Au(5)u
′
(2)

)
=

(3.3.12)

(
f[1]u(2)[0](1)(f ′[1])IC

Au(2)[0](2)u
′
(1)[0]

)
⊗A

(
f[2]u(1)(f ′[2])u(2)[1]u(3)(u′(1)[1])IC

Au(4)u
′
(2)

)
=

(3.3.24)

(
f[1]u(1)[0](1)(f ′[1])IC

Au(1)[0](2)u
′
(1)[0]

)
⊗A

(
f[2]u(1)[1]u(2)(f ′[2])u(3)(u′(1)[1])ICAu(4)u

′
(2)

)
=

(3.3.1)

(
f[1]u(1)[0](1)(f ′[1])IC

Au(1)[0](2)u
′
(1)[0]

)
⊗A

(
f[2]u(1)[1]u(2)(f ′[2]u

′
(1)[1])IC

Au(3)u
′
(2)

)
=

(3.3.7)

(
(f[1]IC

Au(1)[0])(f ′[1]IC
Au
′
(1)[0])

)
⊗A

(
(f[2]u(1)[1]IC

Au(2))(f ′[2]u
′
(1)[1]

IC
Au
′
(2))

)
= ∆ccr

` (fICAu)∆ccr
` (f ′ICAu

′).

Finally, as part (iii) in Definition 2.1.2, we need to prove the left counit property (2.1.4) for
εccr with respect to the A-actions (3.3.28) on FICAU . Here (3.3.21), (3.3.18), (2.1.4) for
εF , εU , and the commutativity of A will be needed:

εccr
(
(fICAu)(f ′ICAu

′)
)

= εccr
(
fu(1)(f ′)ICAu(2)u

′)
= εF (fu(1)(f ′)t`F εU(u(2)u

′)
)

= εF (u(1)(f ′))εU(u(2)u
′)εF (f)

= εU(u(1)s
`
F εFf

′)εU(u(2)u
′)εF (f) with (3.3.21)

= εU(s`UεF (f)us`UεF (f ′)u′)

= εF

(
ft`F εU(us`UεF (f ′t`F εUu

′))
)

= εccr
(
fICA(us`UεF (f ′t`F εUu

′))
)

= εccr
(
(fICAu)t`ccrεF (f ′t`F εUu

′)
)
.

Likewise one can show that

εccr
(
(fICAu)s`ccrεF (f ′t`F εUu

′)
)

= εF

(
fu(1)(s`F εF (f ′t`F εUu

′))t`F εUu(2)

)
= εU(s`UεF (f)us`UεF (f ′)u′),

and then continue as above from the third line from below. 2

3.3.6 Definition A pair (F,U) of two left A-bialgebroids related to each other by the prop-
erties (3.3.17)–(3.3.25) is called a matched pair of left bialgebroids. The resulting left A-
bialgebroid FICAU is called the bicrossed product bialgebroid of the matched pair (F,U).
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In Sections 4.5-4.7 we will present a context in which such a construction appears quite
naturally.

3.3.7 Remark Of course, there is an analogous construction for right bialgebroids. We
hence conjecture that, analogously as for Hopf algebras [Maj], the bicrossed product bialge-
broid FICAM can be made into a Hopf algebroid with antipode

S(fICAu) =
(
1F

ICASUu[0]

)(
SF (fu[1])ICA1U) =

(
SUu[0]

)
(1)

(
SF (fu[1])

)
ICA(SUu[0])(2),

where u ∈ U, f ∈ F , provided that F,U are Hopf algebroids with antipodes SF , SU ,
respectively. This will probably require U to be both a right F `-comodule and a right F r-
comodule for the underlying left and right bialgebroid structures of F , and in particular
additional compatibility conditions for these coactions will have to be added. We expect
these conditions to correspond to those occurring in the definition of right Hopf algebroid
comodules, a subtle notion which was completely clarified only recently in [B3, Def. 4.6].





Chapter 4

Examples of Hopf Algebroids

4.1 Immediate Examples
In this section we present a few examples that one expects or rather requires to fulfill the
axioms of a Hopf algebroid; see e.g. [B3] for more straightforward examples.

4.1.1 The Enveloping Algebra Ae

One of the most basic examples (see e.g. [Lu, Schau1, B3]) of a Hopf algebroid is the en-
veloping algebra Ae = A ⊗k Aop of any k-algebra A. Now Ae is a left bialgebroid over A
by η`Ae := idAe , i.e., s`a = a ⊗k 1, t`b = 1 ⊗k b, and left coproduct as well as left counit
given by

∆` : Ae → Ae ⊗A Ae, a⊗k b 7→ (a⊗k 1)⊗A (1⊗k b), ε : Ae → A, a⊗k b 7→ ab.

We recall that Ae⊗AAe := Ae⊗kAe/spank{(a⊗k bc)⊗k (a′⊗k b′)− (a⊗k b)⊗k (ca′⊗k
b′), c ∈ A}; here and in what follows we express the product structure on Aop by the one in
A. Similarly, there is a right bialgebroid structure on Ae over Aop given by ηrAe := id(Aop)e ,
i.e., sra = 1⊗k a, trb = b⊗k 1, and right coproduct as well as right counit

∆r : Ae → Ae⊗A
op
Ae, a⊗k b 7→ (1⊗ka)⊗A (b⊗k1), ∂ : Ae → Aop, a⊗k b 7→ ba,

whereAe⊗Aop
Ae = Ae⊗kAe/spank{(a⊗kcb)⊗k(a′⊗kb′)−(a⊗kb)⊗k(a′c⊗kb′), c ∈ A}.

Finally, the antipode is given by the tensor flip, i.e.,

S : Ae → Ae, a⊗k b 7→ b⊗k a.

As for the left Hopf algebroid (×A-Hopf algebra) structure, the tensor product in question
reads

IAe ⊗Aop Ae
� = Ae ⊗k Ae/spank{(a⊗k cb)⊗k (a′ ⊗k b′)− (a⊗k b)⊗k (a′ ⊗k b′c)},

where cb and b′c is understood to be the product in A. One then easily verifies that

(a⊗k b)+ ⊗Aop (a⊗k b)− := (a⊗k 1)⊗Aop (b⊗k 1)

yields an inverse of the Hopf-Galois map defined as in (2.2.13).

77
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4.1.2 Hopf Algebras Twisted by a Character
In this subsection we indicate how Hopf algebras with a character and Hopf algebroids over
a commutative ground ring k correspond to each other. More precisely, we explain and prove

4.1.1 Proposition There is a bijective correspondence between Hopf algebroids over a com-
mutative ground ring k and Hopf algebras over k equipped with a character.

A Hopf algebra H = (H,mH , η,∆, ε, S) together with a character δ : H → k and
the twisted antipodeS̃ = mH(δ ⊗ S)∆ from [CoMos4] (cf. (1.3.3) in Section 1.3) can be
considered a Hopf algebroid over k as follows: the underlying k-bialgebra (H,mH , η,∆, ε)
is clearly a left k-bialgebroid, source and target map both being given by η : k → ZH ⊂ H ,
mapping into the centre of H . As for the right k-bialgebroid structure, source and target
maps are again given by η, whereas the right coproduct and the right counit read

∆r : H → H ⊗k H, h 7→ h(1) ⊗k η(δSh(2))h(3),
∂ := δ : H → k, h 7→ δh,

where ∆h = h(1) ⊗k h(2) are the Sweedler components of ∆. Observe that δS̃ = ε while
generally δS 6= ε. One easily checks that the comonoid identities (2.5.6) are fulfilled, for
example for each h ∈ H ,

mH(idH ⊗ ∂)∆rh = h(1)ηδ(δ(Sh(2))h(3))
= h(1)ηδ(Sh(2)h(3))
= h(1)ηδεh(2) = h(1)ηεh(2) = h,

since (H,S) is a Hopf algebra. Likewise, one checks that the data (H,mH , η,∆,∆r, ε, δ, S̃)
fulfill all requirements in Definition 2.6.1 of a Hopf algebroid. As an example, we prove
(2.6.4)

mH(S̃ ⊗ idH)∆h = η(δh(1))Sh(2)h(3) = η(δh(1))εh(2) = ηδh,

and also

mH(idH ⊗ ∂)∆rh = h(1)S̃
(
η(δSh(2))h(3)

)
= h(1)η(δSh(2))δh(3)Sh(4)

= h(1)η(δSh(2)h(3))Sh(4) = h(1)η(εh(2))Sh(3) = ηεh.

Observe that if S is invertible, then the inverse of S̃ is given by S̃−1 = mHop(S−1 ⊗ δ)∆.
Now consider the converse situation of a Hopf algebroid (H, k, η,∆`,∆r, ε, ∂, S) over a

commutative ground ring k: since source and target (for both the left and right bialgebroid)
are unital maps k → H for the unital k-algebra H , all of them coincide with the unit η :
k → ZH ⊂ H . The left and right counit are k-algebra characters ε, ∂ : H → k, but the
underlying left and right bialgebroid structures do not necessarily coincide. If S denotes the
antipode of the Hopf algebroid, define

S′ := mH(η∂ ⊗ S)∆`.

One then verifies S′(hh′) = S′h′S′h and

∆rS
′h = η∂h(1)Sh(3) ⊗k Sh(2)

= Sh(2) ⊗k S′h(1)

= Sh(2) ⊗k η∂h
(2)
(1)S

′h
(1)
(1) = S′h(2)0⊗k S′h(1).
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Hence S′ is an antipode for the k-bialgebra (H,∆r, ∂) and ε plays the role of a character for
it: twisting again as in (1.3.3) returns the original Hopf algebroid antipode, i.e., mH(ηε ⊗
S′)∆r = S. Of course, a similar construction can be made for the k-bialgebra (H,∆`, ε):
here the antipode reads S′ = mH(S⊗ηε)∆r and the character is ∂. These two Hopf algebras
are not independent from each other, though: as for the underlying left and right bialgebroid
in the Hopf algebroid H , they can be transferred into each other by means of S.

4.1.2 Remarks Let us conclude this section by pointing on some generalisations of the con-
cepts used above:

(i ) If on a Hopf algebra there is no character given (apart from its counit), the proposition
above does not produce anything new. In such a case one simply has the bijective
correspondence between Hopf algebras and left Hopf algebroids over k, as mentioned
in Example 2.2.2(ii). Hence, as a summary of Proposition 4.1.1 and Example 2.2.2 one
may state that left Hopf algebroids generalise Hopf algebras, whereas Hopf algebroids
generalise Hopf algebras with a character (or twisted antipode).

(ii ) As observed in [B1], for a cocommutative Hopf algebra one can always find nontriv-
ial characters. Twisting the antipode with respect to these characters produces Hopf
algebroids which do not fulfill the axioms of the different definition of Hopf algebroid
in [Lu], cf. §2.6.13(i). This shows that the two definitions (i.e. the one from [Lu] and
the one from [BSz2] used throughout this thesis) are not equivalent.

(iii ) The procedure of twisting a Hopf algebra antipode by a character is only a special case
of the notion of twist of a Hopf algebroid [B1], producing new Hopf algebroids out
of known ones. On top of that, in [BŞ, Ex. 2.18] one can find the generalisation of a
modular pair in involution (see Subsection 1.3.2) to the realm of Hopf algebroids.

4.2 Universal Enveloping Algebras of Lie-Rinehart Alge-
bras

In this section we discuss the fact that a Lie-Rinehart algebra always gives rise to a left
bialgebroid as well as a left Hopf algebroid. Adding some extra structure, one may even
obtain a (double-sided) Hopf algebroid.

4.2.1 The Canonical Left Hopf Algebroid Structure on V L

Let (A,L) be a Lie-Rinehart algebra. Several authors [X3, KhR2, MoeMrč3] have shown
that the enveloping algebra V L is a left A-bialgebroid, but it is in fact also a left Hopf
algebroid over A.

Recall first from e.g. [X3, KhR2, MoeMrč3] its left bialgebroid structure: source and
target are equal and are given by ιA : A → V L. The (A,A)-bimodule structure �V L� is
hence given by multiplication of elements in V L, i.e., a �u � ã = auã, which enables us to
suggestively denote the tensor product (2.1.1) by

V L⊗ll V L := V L� ⊗A �V L, (4.2.1)



80 CHAPTER 4. EXAMPLES OF HOPF ALGEBROIDS

and likewise V L×ll V L := V L×A V L for the Takeuchi product (2.1.2). The prescriptions

∆`X = 1⊗ll X +X ⊗ll 1, ∆`a = a⊗ll 1, (4.2.2)

which map X ∈ L and a ∈ A into V L ×ll V L, can be extended by the universal property
to a coproduct ∆ : V L → V L ×A V L ⊂ V L ⊗ll V L. The counit is similarly given by
extension of the anchor ω to V L, more precisely, by

ε : V L→ A, u 7→ ω(u)(1A).

As in (2.3.3), this defines a left V L-action on A, which we abbreviate as u(a) := ε(ua), and
in particular, one has

εX = 0, εa = a, ∀X ∈ L, a ∈ A.

The defining property of a left Hopf algebroid, i.e. the bijectivity of the Galois map, is
seen in the same way: denote the tensor product (2.2.2) by

V L⊗rl V L := I V L⊗Aop V L� , (4.2.3)

and write V L×rl V L := V L×Aop V L for the Takeuchi product (2.2.12). Then the transla-
tion map β−1 is given on generators as

a+ ⊗rl a− := a⊗rl 1, X+ ⊗rl X− := X ⊗rl 1− 1⊗rl X. (4.2.4)

These maps stay in V L ×rl V L, which is an algebra through the product of V L in the
first and its opposite in the second tensor factor. By universality we obtain a map V L →
V L×rl V L ⊂ V L⊗rl V L, and then β−1 is defined using (2.2.13).

Conversely, certain left bialgebroids give rise to Lie-Rinehart algebras:

4.2.1 Proposition For a left bialgebroid (U,A, s`, t`,∆`, ε) with A commutative and s` ≡
t`, the pair (A,P `H) of the base algebra and the left primitive elements forms a Lie-Rinehart
algebra.

PROOF: The proof is quite straightforward. Firstly, since s` ≡ t` we usually refrain from
mentioning these maps; the remaining two left and right A-module structures on U read
au := s`(a)u and ua := us`(a). Then the coproduct ∆` is a map U → U ⊗ll U , where we
use again the notation U ⊗ll U , with its obvious meaning analogous to (4.2.1). The natural
Lie algebra structure on U is simply [u, u′] := uu′ − u′u, which is closed in P `U . We have
∆`(au) = au⊗ll 1 + 1⊗ll au for u ∈ P `U , which is therefore a (left) A-submodule (since
s` ≡ t`). The anchor is given by the Lie algebra action

P `U → Derk A, u→ {a 7→ ε(ua) =: u(a)}.

The required property (1.4.1) is obvious and for u, u′ ∈ P `U and a, b ∈ A, we conclude that

([u, au′])(b) = ε(u(au′(b))− au′(u(b)))
= u(a)u′(b)− a([u, u′])(b) = (u(a)u′)(b)− (a[u, u′])(b).

Since b ∈ A was arbitrary, this proves (1.4.2). 2
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4.2.2 Remark (i ) Somewhat more generally, for any left bialgebroid (U,A, s`, t`,∆`, ε)
for which s`|ZA ≡ t`|ZA on the center ZA of A, one can analogously show that the
pair (ZA,P `U) forms a Lie-Rinehart algebra.

(ii ) Observe that even if one omits the ‘action axiom’ ε(uu′) = ε(uεu′) of a counit, one
is still able to define a Lie algebra action: first, for u ∈ P `U we have ∆`(ua) =
ua⊗ll 1 + 1⊗ll au. Applying mU(ε⊗ id) on both sides yields

ua = u(a) + au, a ∈ A, u ∈ P `U,

from which can be read off again that εu = 0 for u ∈ P `U . Now we have for any two
primitive u, u′,

([u, u′])(a) = ε(uu′a− u′ua)
= ε(u(u′(a)) + u(au′)− u′(u(a)) + u′(au))
= u(u′(a))− u′(u(a))− ε(u(a)u′ + [au, u′])
= [u, u′](a),

since P `U ⊂ ker ε was both an A-submodule and a Lie subalgebra in U . Hence we
again obtain the desired Lie algebra action.

4.2.3 Proposition Let (U,A, s`,∆`, ε) and (U ′, A′, s`′,∆′`, ε
′) be left bialgebroids over

commutative bases and suppose s` ≡ t` as well as s`′ ≡ t`
′. A left bialgebroid morphism

(ψ, φ) : (U,A)→ (U ′, A′) induces a morphism

(Pφ, Pψ) : (A,P `U)→ (A′, P `U ′)

of the corresponding Lie-Rinehart algebras of primitive elements. In case A = A′, this
leads to a functor P : A-LBiAlgd → A-LieRine from the category A-LBiAlgd of
left A-bialgebroids to the category A-LieRine of Lie-Rinehart algebras over A. Con-
versely, a morphism (A,L) → (A′, L′) of Lie-Rinehart algebras induces a morphism
(V L,A) → (V L′, A′) of left bialgebroids, which in case A = A′ in turn leads to a functor
V : A-LieRine→ A-LBiAlgd.

PROOF: Using ψ(1U ) = 1U ′ , it is easy to check that ψ(P `U) ⊂ P `U ′. Hence the induced
map reads

(Pφ, Pψ) := (φ, ψ|P `U ) : (A,P `U)→ (A′, P `U ′).

Moreover, we see that Pψ(au) = ψ(au) = φ(a)ψ(u) = Pφ(a)Pψ(u), since the primi-
tive elements were respective A-submodules. Secondly, Pψ is automatically a Lie algebra
morphism since the Lie bracket is simply the commutator. Thirdly, φu(a) = φε(ua) =
ε′(ψ(ua)) = ε′(ψ(h)a) = (ψ(u))(φa). These three statements together prove (Pφ, Pψ) to
be a morphism of Lie-Rinehart algebras. By the universal property, the converse statement
is similarly simple to see. 2

See Corollary 5.5.8 and in particular [MoeMrč3] for further statements on the interplay
between Lie-Rinehart algebras and primitive elements of bialgebroids.



82 CHAPTER 4. EXAMPLES OF HOPF ALGEBROIDS

4.2.2 Hopf Algebroid Structures on V L

We saw in the previous subsection that V L is a left bialgebroid and even a left Hopf algebroid
in a canonical way. Adding some further (non-canonical and not necessarily existing) datum,
one could even establish the structure of a Hopf algebroid on it. This subsection will be
dedicated to explain and prove the following result:

4.2.4 Theorem Let (A,L) be a Lie-Rinehart algebra. If a flat right (A,L)-connection ex-
ists on A, the universal enveloping algebra V L can be equipped with an antipode, and in
particular can be made into a Hopf algebroid.

We start discussing the concepts needed in this theorem.

4.2.5 Connections A main ingredient in the following discussion is the notion of (A,L)-
connections for a Lie-Rinehart algebra (A,L) from [Hue1, Hue2], with the slight difference
that we assume A to be unital. Let M ∈ A-Mod. A map

∇` : M → HomA(L,M) (4.2.5)

that fulfills
∇`X(am) = a∇`X(m) +X(a)m, a ∈ A,m ∈M, (4.2.6)

is called a left (A,L)-connection onM . It is said to be flat if it establishes a (left) Lie algebra
action m 7→ (X 7→ [X,m]) of L on M , in which case M is called a left (A,L)-module.
Clearly, A itself carries such a left (A,L)-connection (given by the anchor), and flat (A,L)-
connections uniquely correspond to left V L-modules structures by the universal property of
V L. A right (A,L)-connection on an A-module N is a map ∇r : N → Homk(L,N) that
fulfills

∇rX(an) = a∇rXn−X(a)n, (4.2.7)
∇raXn = a∇rXn−X(a)n, a ∈ A,n ∈ N. (4.2.8)

Again, the connection is called flat if it establishes a (right) Lie algebra module structure
n 7→ (X 7→ [n,X]) on N , in which case N is called a right (A,L)-module (which, in turn,
uniquely correspond to a right V L-module). See §4.2.10 for a comment on the apparent
asymmetry in the definitions of left and right connections.

4.2.6 Lie Algebroid Connections Assume now that L is A-projective of finite constant rank
n, so that ΛnAL is the highest non-zero power of L in the category of A-modules. A result
in [Hue2, Thm. 3] says that right (A,L)-connections on A are equivalent to left (A,L)-
connections on ΛnAL: the latter were (if (A,L) := (C∞(M),ΓE) originates from a Lie
algebroid E → M ) introduced in [X2] under the name Lie algebroid connection or E-
connection. In this particular case, there is always an E-connection that is flat, implying
existence of a flat right connection on A = C∞(M), although there is still no canonical
choice for it; cf. [EvLuWei, Prop. 4.3] and [X2]. A flat E-connection on a vector bundle
F is also called a representation of the Lie algebroid [Mac, EvLuWei]. In general, right
(A,L)-connections on A need not exist: see Example 4.2.13.



4.2. UNIVERSAL ENVELOPING ALGEBRAS OF LIE-RINEHART ALGEBRAS 83

Recall that a Gerstenhaber algebra [G, GSch] is a graded commutative k-algebra V
together with a Lie bracket [., .]G : V ⊗k V → V of degree −1 (a graded Lie bracket in the
usual sense when the degrees of the elements of V are lowered by 1) that satisfies a graded
Leibniz identity (cf. e.g. [Kos] for details). A k-linear operator ∂ of degree −1 is said to
generate a Gerstenhaber algebra V if for every homogeneous v, w ∈ V , one has

[v, w]G = (−1)deg v(∂(vw)− (∂v)w − (−1)deg vv∂w).

The operator ∂ is called exact if ∂2 = 0 and a Gerstenhaber algebra with an exact generator
is called a Batalin-Vilkovisky algebra [Kos, X2]. On the A-exterior algebra ∧•AL, one has
the following Gerstenhaber bracket:

[., .]G : ∧•A L⊗k ∧•AL→ ∧•AL,

[u, v]G = (−1)deg u
∑
i≤j<l

(−1)i+l[Xi, Xl] ∧X1 ∧ · · · X̂i · · · X̂l · · · ∧Xn,
(4.2.9)

for u = X1 ∧ · · · ∧Xl ∈ ∧lAL and v = Xl+1 ∧ · · · ∧Xn ∈ ∧n−lA L, where the bracket [., .]
is the one from the Lie-Rinehart structure on L. Right connections can then be characterised
by the following statement.

4.2.7 Theorem [Hue2, Thm. 1] Right (A,L)-connections on A bijectively correspond to
k-linear operators ∂ of degree −1 generating the Gerstenhaber bracket on ∧•AL. Exact oper-
ators or differentials, that is, k-linear operators ∂ of degree −1 with ∂2 = 0 generating the
Gerstenhaber bracket on ∧•AL, correspond to flat right (A,L)-connections.

See [Hue2, Thm. 1] for a detailed proof. For later use we repeat how the precise correspon-
dence is given. A k-linear operator ∂ generating the Gerstenhaber bracket (4.2.9) defines a
right (A,L)-connection on A via

∇rXa := a ∂X −X(a) = a(∂X) + [a,X]G = ∂(aX).

In particular,
∇rX1A = ∂X, (4.2.10)

see also our Proposition 3.1.14 for a dual construction in the general context of left bialge-
broids. Conversely, if (a,X) 7→∇rXa is such a connection, the operator ∂ on ∧•AL defined
by

∂(X1 ∧ · · · ∧Xn) =
n∑
i=1

(−1)i−1(∇rXi
1A)X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

(−1)j+i[Xi, Xj ] ∧X1 · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

yields an k-linear operator ∂ generating [., .]G.

4.2.8 Hopf Algebroid Structure on V L
By now, we have gathered all necessary ingredients to establish a Hopf algebroid struc-

ture on V L. To start, a right bialgebroid structure on V L is given as follows: sinceA = Aop,
set

sr ≡ tr ≡ s` ≡ t` ≡ iA : A ↪→ V L, (4.2.11)
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and the (A,A)-bimodule structure IV LJ is given again by multiplication in V L, i.e.,
a Iu J ã = auã. We therefore suggestively denote the tensor product (2.5.1) by

V L⊗rr V L := V LJ ⊗A IV L.

4.2.9 Proposition Flat left and right (A,L)-connections on A correspond to left and right
bialgebroid structures on V L over A, respectively. In particular, a Lie-Rinehart algebra
(A,L) with a flat right (A,L)-connection on its base algebra carries both left and right
bialgebroid structures.

PROOF: Recall that, as morphisms of k-Lie algebras, flat left and right connections ∇` :
L → Endk A and ∇r : Lop → Endk A can be extended to k-algebra morphisms ∇` :
V L→ Endk A and∇r : (V L)op → Endk A, with respective properties∇`uu′a = ∇`u∇`u′a
and ∇ruu′a = ∇ru′∇rua for all u, u′ ∈ V L, a ∈ A. Given such flat connections as above,
with associated operators

ε̃u := ∇`u1A, ∂u := ∇ru1A, u ∈ V L,

both seen as maps V L→ A, one has

∂(∂(u)u′) = ∇ru′∂u = ∇ru′∇ru1A = ∇ruu′1A = ∂(uu′), (4.2.12)

and also
ε̃(uε̃(u′)) = ∇`uε̃(u′) = ∇`u∇`u′1A = ∇`uu′1A = ε̃(uu′). (4.2.13)

Define two coproducts by setting on generators

∆`X = 1⊗ll X +X ⊗ll 1− ε̃X ⊗ll 1, ∆`a = a⊗ll 1,
∆rX = 1⊗rr X +X ⊗rr 1− ∂X ⊗rr 1, ∆ra = a⊗rr 1, (4.2.14)

and extend these maps to the whole of V L by requiring them to corestrict to k-algebra
morphisms ∆` : V L → V L×A V L and ∆r : V L → V L×A V L. One then easily checks
that (V L,A, iA,∆`, ε̃) and (V L,A, iA,∆r, ∂) are left and right bialgebroids, respectively.

2

4.2.10 Remarks (i ) Clearly, the anchor already defines such a left (A,L)-connection,
which reproduces the canonical left bialgebroid structure on V L from Subsection
4.2.1.

(ii ) By (2.1.8) one hasX+εX = X , hence ε(aX) = 0, ε(a) = a and also ε(Xa) = X(a)
which reveals that ε (and also ∂) is an algebra morphism if the (left respectively right)
action of L on A is trivial. This is, for example, the case for the symmetric algebra
SAL, which expressed on generators has analogous structure maps as V L, but defines
a trivial action on A (since it is commutative).

(iii ) The apparent asymmetry in the definition of left and right (A,L)-connections in
(4.2.5)–(4.2.8) is essentially due to the fact that A already carries a canonical V L-
module structure from the left (namely by the anchor), but not from the right. Hence
Lie-Rinehart algebras should actually be called left Lie-Rinehart algebras. In case
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there is a right V L-action (a, u) 7→ ∂(au) on A, one may reformulate the right con-
nection identities (4.2.7) and (4.2.8) and thus obtain a more symmetric definition com-
pared to left connections: a flat right (A,L)-connection on a right A-module N is a
map ∇r : N → Hom(−,A)(V LJ , NA) of right A-modules, subject to

∇rX(na) = n∂(aX) + (∇rXn)a− na∂X, a ∈ A,X ∈ L, n ∈ N. (4.2.15)

Hence using [X, a] = X(a), one has∇raXn+X(a)n = ∇rXan = (∇rXn)a, which is
(4.2.7) again, and inserting ∂(aX) = a∂X − X(a) into (4.2.15) reproduces (4.2.8).
The fact that (4.2.15) contains three terms whereas there are only two in (4.2.6), is due
to the fact that elements X ∈ L are primitive with respect to ∆` but not with respect
to ∆r, hence εX = 0, whereas most generally ∂X 6= 0 (see also the next comment).

(iv ) It is then evident that right (A,L)-connections are a special case of right bialgebroid
connections from Section 2.5.1. Compare (2.5.8) to (4.2.15), again the additional
summand derives from the fact that X is not primitive with respect to ∆r.

Linking right and left bialgebroid structures on V L by an antipode leads to the structure
of a Hopf algebroid on V L: let (A,L) be a Lie-Rinehart algebra and ∇r a right (A,L)-
connection on A with associated operator ∂X := ∇rX1A, seen as a map ∂ : L → A (cf.
Theorem 4.2.7). Define a pair of maps SL∂ : L→ V L, SA∂ : A→ V L by

SL∂ (X) = −X + ∂X, SA∂ (a) = a, ∀ X ∈ L, a ∈ A. (4.2.16)

Combining (4.2.7) with (4.2.8), this implies that

SL∂ (aX) = −aX +∇rXa X ∈ L, a ∈ A.

4.2.11 Proposition (Antipodes for Lie-Rinehart algebras) Let (A,L) be a Lie-Rinehart al-
gebra and∇r a right (A,L)-connection on A, as above.

(i ) The pair (SA∂ , S
L
∂ ) extends to a k-algebra anti-homomorphism S : V L → V L if

and only if ∇r is flat. In such a case, S is an involutive antipode with respect to the
canonical left bialgebroid structure (see Subsection 4.2.1) and the right bialgebroid
structure from Proposition 4.2.9.

(ii ) Conversely, given a unital map S : V L → V L that is an isomorphism of twisted
bimodules, i.e., S(aub) = bS(u)a and S(1V L) = 1V L, a, b ∈ A, u ∈ V L, the
assignment

∇ : A → Homk(L,A), a 7→ {X 7→ ε(S(X)a)} (4.2.17)

defines a right (A,L)-connection on A which is flat if and only if S is a k-algebra
anti-homomorphism.

PROOF: Part (i): exploiting the universal property of V L, we show that ((V L)op, SL∂ , S
A
∂ )

is a triple of the kind (1.4.3). First, SA∂ : A→ V L, a 7→ iA(a) = a is clearly a morphism of
k-algebras; considering SL∂ : L→ V L, X 7→ −iL(X) + iA(∂X) = −X + ∂X (refraining
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from mentioning iL, iA all the time), we have

[SL∂X,S
L
∂ Y ] = [X,Y ] + [Y, ∂X]− [X, ∂Y ] + ∂X∂Y − ∂Y ∂X

= [X,Y ] + Y (∂X)−X(∂Y )

= SL∂ ([Y,X])− ∂([Y,X]) + Y (∂X)−X(∂Y ) + ∂X∂Y − ∂Y ∂X
= SL∂ ([Y,X])−∇r[Y,X]1A +∇rX∂Y −∇rY ∂X

= SL∂ ([Y,X])−∇r[Y,X]1A +∇rX∇rY 1A −∇rY∇rX1A

= SL∂ ([Y,X]) +
(
[∇rX ,∇rY ]−∇r[Y,X]

)
(1A).

The last term is the curvature of ∇r, so SL∂ : L → (V L)opL is a homomorphism of k-Lie
algebras if and only if the connection is flat. We now check

SA∂ (a)SL∂ (X) = −Xa+ a∂X = −aX +∇rXa = SL∂ (aX),

and also

SL∂ (X)SA∂ (a)− SA∂ (a)SL∂ (X) = −aX + a∂X +Xa− a∂X = SA∂ (X(a)),

hence the property (1.4.3) for the pair (φL, φA) := (SL∂ , S
A
∂ ). As in Definition 1.4.3, we

infer the existence of a unique morphism S∂ : V L → (V L)op of k-algebras such that
S∂iA = SA∂ , S∂iL = SL∂ . If the connection is flat, the antipode axioms including S2

∂ = id
are straightforward to check by considering e.g. a PBW basis of V L, and making use of the
anti-homomorphism property.

Part (ii): we need to check the properties (4.2.7) and (4.2.8) for a right connection. It is
easy to see that

∇X(ab) = ε(S(X)ab) = ε((−Xa+ a∂X)b) = ε((−aX −X(a) + a∂X)b)
= aε(S(X)b)−X(a)b = a∇Xb−X(a)b,

which is (4.2.7), and similarly one proves the second identity. To show flatness if and only
if S is a k-algebra anti-homomorphism, compare (reintroducing iL here)

[∇Y ,∇X ](a) = ε(S(iL(Y ))ε(S(iL(X))a))− ε(S(iL(X))ε(S(iL(Y ))a))
= ε(S(iL(Y ))S(iL(X))a))− ε(S(iL(X))S(iL(Y ))a).

with ∇[X,Y ]a = ε
(
SL([X,Y ])a

)
. The statement follows by the universal property. 2

4.2.12 Remarks (i ) We want to stress that flatness of the connection is needed in Propo-
sition 4.2.11(i) to show that S∂ is a k-algebra anti-homomorphism.

(ii ) There seems to be no way of introducing an antipode on V L other than by flat right
connections; furthermore, there does not seem to be a canonical choice for such a
connection, or even a ‘trivial’ one. The analogue for the Lie algebra case, i.e., SX =
−X for X ∈ L is not well-defined unless the anchor is trivial, which essentially leads
back to Lie algebras. Related to this is the problem of how to define the ‘opposite’ of
a Lie-Rinehart algebra.
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(iii ) There might be an obstruction for the existence of such a flat right connection onA (as
in the following Example 4.2.13); consequently, in such a case V L cannot be given
the structure of a Hopf algebroid. However, as we have seen, V L is always a left Hopf
algebroid. Hence the answer to the question posed in [B3] whether every left Hopf
algebroid is the constituent left bialgebroid in a Hopf algebroid is no.

4.2.13 A Counterexample The simplest example of a Lie-Rinehart algebra that cannot be
made into a Hopf algebroid might be L = Γ(T 1,0S2). Here T 1,0S2 ⊕ T 0,1S2 = TS2 ⊗ C
is the decomposition of the complexified tangent bundle of S2 into the holomorphic and
antiholomorphic part with respect to the standard complex structure. Together with A =
C∞(S2,C) this defines a Lie-Rinehart algebra, where the action of L on A is the usual
action of a vector field on a smooth function and the action of A on L is given by fibrewise
multiplication. We know from [Hue2, Thm. 3] that the right V L-module structures on A
correspond bijectively to left V L-module structures on L itself (as seen, in general on its
top exterior power over A, but here this is L because T 1,0S2 is a line bundle). Such a left
V L-action corresponds precisely to a flat connection∇ on the complex line bundle T 1,0S2,
with X ∈ L acting on sections of T 1,0S2 by the covariant derivative∇X (see [Hue2] for the
details). But the curvature of any connection represents the first Chern class of the bundle,
which is nonvanishing since T 1,0S2 is not trivial. Therefore, there is no flat connection, i.e.
left V L-action on L and hence no right V L-action on A.

4.3 Jet Spaces of Lie-Rinehart Algebras
Now we describe another Hopf algebroid associated to a Lie-Rinehart algebra (A,L), where,
as an A-module, L is finitely generated projective of constant rank (this means that it is the
same for every prime ideal of A). We will prove the following theorem:

4.3.1 Theorem The space of L-jets JL is a Hopf algebroid with involutive antipode in the
sense of Definition 2.6.1.

Some of its structure maps have been used before in the literature, cf. [NeTs, CalVdB],
but here we give a complete description: the Hopf algebroid of L-jets is in a certain sense
dual to V L. As mentioned in Section 3.1, duality in the category of bialgebroids has been
described in [KSz] under certain projectivity assumptions of the bialgebroid over their base
algebra. These are clearly not satisfied for V L, but each successive quotient V Lp/V Lp−1

in the Poincaré-Birkhoff-Witt filtration of §1.4.5 is projective, provided L is projective over
A. With this, the bialgebroid structure for JL can be seen to be given essentially by that of
the dual of a left bialgebroid, as in Section 3.1. Observe that the left and right dual coincide
(as k-modules) since source and target map are equal for V L; also note that the dual is a
right bialgebroid, but since the jet spaces will be commutative (see below), we may equally
consider it as a left bialgebroid.

Let (A,L) be a Lie-Rinehart algebra and L finitely generated A-projective of constant
rank. The space of p-jets of (A,L) is now defined as JpL := HomA(V L≤p, A), where
V L≤p denotes the elements in V L of degree ≤ p. The infinite jet space is defined as the
projective limit

JL = J∞L := lim
←−

JpL.
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We will now list the Hopf algebroid structure maps of JL over A:

(i ) (Ring structure) The monoid structure is given by a commutative product on JL that
can be described using the left coproduct on V L by

φφ′(u) = φ(u(1))φ′(u(2)), φ, φ′ ∈ JL, u ∈ V L,

which is (3.1.18) adapted to this situation. The unit is given by the left counit on V L,
for better distinction denoted by εVL : V L→ A in this section, since

εVLφ(u) = εVL(u(1))φ(u(2)) = φ(εVL(u(1))u(2)) = φ(u).

(ii ) (Source and target) As in (3.1.3) and (3.1.4), define source and target maps s`JL, t
`
JL :

A→ JL by

s`JLa(u) := εVL(au) = aεVL(u), t`JLa(u) := εVL(ua) = u(a).

It is easy to see that their images commute, and hence that (JL, s`JL, t
`
JL) becomes an

Ae-ring. Observe that this gives an example of a commutative base algebra where
source and target do not coincide.

(iii ) (Coring structure) To define additionally the structure of an A-coring, we need:

4.3.2 Lemma There is a canonical isomorphism

JL� ⊗A �JL ' lim
←−

p

HomA

(
(V L⊗rl V L)≤p, A

)
,

where ⊗rl is defined as in (4.2.3).

PROOF: By definition (cf. (2.1.1)),

JL� ⊗A �JL = JL⊗k JL/spank{t`JLaφ⊗k φ′ − φ⊗ s`JLaφ
′, a ∈ A}.

The first term in the ideal, evaluated on u⊗k u′ ∈ V L⊗k V L, reads

(t`JLaφ⊗k φ′)(u⊗k u′) = t`JLaφ(u)⊗ φ′(u′)
= εVL(u(1)a)φ(u(2))⊗ φ′(u′) = φ(ua)⊗ φ′(u′),

whereas for the second

(φ⊗k s`JLaφ
′)(u⊗k u′) = φ(u)⊗ aεVL(u′(1))φ

′(u′(2)) = φ(u)⊗ φ′(au′).

Observe that these two expressions use exactly the A-bimodule structure on V L used
in the ⊗rl-tensor product. It therefore follows that the map φ ⊗k φ′ 7→ {u ⊗k u′ 7→
φ(uφ′(u′))} induces the desired isomorphism (by projectivity of L this is an isomor-
phism in each degree). 2

Clearly, the product on V L descends to a map V L ⊗rl V L → V L which allows one
to dualise the product to obtain the coproduct ∆JL

` : JL→ JL� ⊗A �JL , i.e.,

φ(uu′) =: ∆JL

` (φ)(u⊗rl u′) = φ(1)

(
uφ(2)(u′)

)
, (4.3.1)
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similarly as in §3.1.6(i). Associativity of the multiplication in V L implies that ∆JL

` is
coassociative. Finally, the left counit is given as in (3.1.9) by

εJL : JL→ A, φ 7→ φ(1V L),

and it is straightforward to see that (JL,∆JL

` , εJL) is an A-coring.

(iv ) (Antipodes for Jet Spaces) It is now easy to verify that (JL,A, s`JL, t
`
JL, εJL,∆JL

` ) is a
left bialgebroid. Since JL is commutative, it is also a right bialgebroid. To obtain a
Hopf algebroid, all we need is an antipode.

As observed in [NeTs], there are two left V L-module structures on JL. First there is
the ‘obvious’ module structure given by

(u ⇁ φ)(u′) = φ(u′u),

as in (3.1.8) or §A.1.1(i), induced by right multiplication of V L on itself. Second,
there is another left V L-action on JL, constructed as follows. Consider theA-module
structure �JL , i.e., (a �φ)(u) := (s`JLaφ)(u) = φ(au). On this A-module, there
is a canonical left connection induced by the anchor (also called the Grothendieck
connection), given by

∇`X(φ)(u) := εVL

(
X(φu)

)
− φ(Xu), X ∈ L, φ ∈ JL, u ∈ V L. (4.3.2)

One easily checks that this connection is flat, and we can write the induced V L-module
structure in terms of the canonical left Hopf algebroid structure on V L from (4.2.4) as

(uφ)(u′) := u+

(
φ(u−u′)

)
= εVL

(
u+φ(u−u′)

)
. (4.3.3)

With respect to the coproduct, these two module structure satisfy

∆JL

` (u ⇁ φ) = (u ⇁ φ(1))⊗A φ(2),

∆JL

` (uφ) = φ(1) ⊗A uφ(2).
(4.3.4)

We now define the antipode on JL to be the following map SJL : JL→ JL:

(SJLφ)(u) := εJL(uφ) = u+(φ(u−)) = εVL(u+φ(u−)).

PROOF: (of Theorem 4.3.1) Since L acts on V L via (4.3.2) by derivations, L→ Derk JL is
a morphism of Lie algebras. It therefore follows from the PBW theorem that (4.3.3) satisfies

u(φφ′) = (u(1)φ)(u(2)φ
′).

Using this property, one finds that S is a homomorphism of commutative algebras:

SJL(φφ′)(u) = (u(φφ′))(1) = ((u(1)φ)(u(2)φ
′))(1) = ((SJLφ)(SJLφ

′))(u).

To prove the theorem, we verify the axioms of Definition 2.6.1: since s`JL = trJL, t`JL = srJL,
the first one is trivially satisfied, whereas the second is equivalent to the coassociativity of
∆JL

` , because ∆JL

` = ∆JL
r . For (2.6.3), we compute with (2.1.4), (2.3.4) and (2.2.4)

SJL(s`JLa)(u) = εVL

(
u+(s`JLa)(u−)

)
= εVL

(
u+εVL(au−)

)
= εVL(u+(1)a)εVL(u+(2)u−) = εVL(ua) = (t`JLa)(u).
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With (2.2.10) one obtains

SJL(t`JLa)(u) = εVL

(
u+(t`JLa)(u−)

)
= εVL

(
u+εVL(u−a)

)
= εVL(u+u−a)

= aεVL(u) = (s`JLa)(u).

To prove that S is an involution, one computes

(S2
JLφ)(u) = εVL

(
u+(SJLφ)(u−)

)
= εVL

(
u+εVL(u−+φ(u−−))

)
= εVL

(
u+u−+φ(u−−)

)
.

(4.3.5)

To find an identity for the term u+u−+ ⊗rl u−− that appears in the last line, apply the
Hopf-Galois map (2.2.1) to it:

β(u+u−+ ⊗rl u−−) = u+(1)u−+(1) ⊗ll u+(2)u−+(2)u−−

= u+(1)u− ⊗ll u+(2)

= 1⊗ll u,

where (2.2.4) was used in the second line and the last line follows from the fact that V L is
cocommutative together with (2.2.4) again. Hence

u+u−+ ⊗rl u−− = β−1(1⊗ll u) = 1+ ⊗rl 1−u = 1⊗rl u,

and inserting this identity into (4.3.5) yields S2
JL = idJL.

We are left with proving the axioms (2.6.4). Observe that since the antipode is involutive,
since JL is commutative, and since both left and right bialgebroid structures are given by
(JL, s`JL, t

`
JL,∆

JL

` , εVL), it suffices to verify one of the two identities in (2.6.4). For example,(
φ(1)SJLφ(2)

)
(u) = φ(1)(u(1))SJLφ(2)(u(2))

= φ(1)(u(1))εVL

(
u(2)+φ(2)(u(2)−)

)
= φ(1)(u+(1))εVL

(
u+(2)φ(2)(u−)

)
= φ(1)

(
u+φ(2)(u−)

)
= φ(u+u−) = φ(1VL)εVL(u) = (s`JLεJLφ)(u),

where (2.2.7) and (2.2.10) were used. This proves the second identity and therefore con-
cludes the proof that JL carries the structure of a Hopf algebroid. 2

4.3.3 Remark Theorem 4.3.1 is remarkable in the sense that whereas the universal envelop-
ing algebra V L of a Lie-Rinehart algebra carries no canonical Hopf algebroid structure,
its dual JL does. Close inspection of the preceding proof shows that the Hopf algebroid
structure—more precisely the antipode—depends solely on the left Hopf algebroid structure
on V L, which is canonical, i.e. does not depend on the choice of a flat right connection (cf.
Subsection 4.2.13).
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4.3.4 Remark In the previous construction of the jet space J`L := JL we regarded V L
as an A-module by left multiplication. Right multiplication leads to a space written JrL
without much structure. Only after introducing a flat right (A,L)-connection on A, we can
introduce a ring structure using the right comultiplication ∆r on V L and source and target
maps using the right counit ∂. This does lead to a Hopf algebroid, but one easily proves that
the map φ 7→ φ ◦ S defines an isomorphism J`L→ JrL of Hopf algebroids, where S is the
antipode on V L constructed from the same flat right connection as in Proposition 4.2.11.

4.4 Convolution Algebras
If G ⇒ G0 is an étale groupoid over a compact Hausdorff manifold G0, the space C∞c (G)
of smooth functions on G = G1 with compact support carries a Hopf algebroid structure:

4.4.1 Proposition The groupoid structure of an étale groupoid G ⇒ G0 over a compact
manifold G0 determines a Hopf algebroid structure on the convolution algebra C∞c (G) over
C∞(G0).

We will dedicate this section to explain the Hopf algebroid structure of C∞c (G), i.e. prove
this proposition.

4.4.2 Overall Assumption Although G = G1 often happens to be non-Hausdorff in ex-
amples, we do assume this in the rest of this section as well as in Sections 5.7 and 6.6, to
simplify the computations a bit. However, we presume that all results in the mentioned sec-
tions can be adapted to the non-Hausdorff case by combining the formalism of [CrMoe1] for
the functor Γc for non-Hausdorff spaces with the results in [Mrč2].

The required structure maps are induced by the target sheaf t : G→ G0 (which is a sheaf
since G is étale) for the underlying left bialgebroid structure plus antipode, and are basically
already mentioned in [Mrč1] (for G Hausdorff) or [Mrč2] (general case). We only need to
add the corresponding right structure given by the source sheaf s : G → G0 to assemble
all data into a Hopf algebroid. Compactness of G0 is needed here to obtain unital algebras
instead of merely algebras with local units.

Note that, corresponding to the identities 1t(g)g = g1s(g), the source and target sheaves
induce two natural C∞(G0)-module structures on C∞c (G), seen as left and right module
structures. Since C∞(G0) with pointwise product is commutative, we can again define
four different tensor products denoted ⊗llC∞(G0)

, ⊗rrC∞(G0)
, ⊗rlC∞(G0)

, ⊗lrC∞(G0)
with obvi-

ous meaning. We will frequently need the following isomorphisms

Ωs,t : C∞c (G)⊗rlC∞(G0)
C∞c (G) '−→ C∞c (Gs×tG0

G) = C∞c (G2),
Ωt,t : C∞c (G)⊗llC∞(G0)

C∞c (G) '−→ C∞c (Gt×tG0
G) = C∞c (G2),

Ωs,s : C∞c (G)⊗rrC∞(G0)
C∞c (G) '−→ C∞c (Gs×sG0

G),
Ωt,s : C∞c (G)⊗lrC∞(G0)

C∞c (G) '−→ C∞c (Gt×sG0
G)

(4.4.1)

all given by the formula

Ω−,−(u⊗−−C∞(G0)
u′)(g, g′) = u(g)u′(g′), (4.4.2)
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for u, u′ ∈ C∞c (G) and (g, g′) in the respective pull-back G−×−G0
G. The fact that these

maps are isomorphisms was shown in [Mrč1] (for G Hausdorff), and for non-Hausdorff
spaces can be derived from a more general result on sheaves in [Mrč2, p. 271]. Moreover,
one can combine the various isomorphisms to produce ‘mixed’ ones, e.g.,

C∞c (G)⊗rlC∞(G0)
C∞c (G)⊗lrC∞(G0)

C∞c (G) ' C∞c (Gs×tG0
Gt×sG0

G). (4.4.3)

We now give a list of the Hopf algebroid structure maps of C∞c (G) over C∞(G0):

(i ) (Ring structure) On the base algebra C∞(G0) one uses the commutative pointwise
product, whereas the total algebra C∞c (G) will be equipped with a convolution product,
defined as the composition

∗ : C∞c (G)⊗rlC∞(G0)
C∞c (G)

Ω2
s,t→ C∞c (G2)

m+→ C∞c (G).

Explicitly,

(u ∗ v)(g) := ∗(u⊗ v) = (m+Ωs,t(u⊗ v))(g) =
∑

g=g1g2

u(g1)v(g2),

which can be used to show associativity of the product ∗.

(ii ) (Source and target maps) In particular, taking f ∈ C∞(G0) and u ∈ C∞c (G) one has

(f ∗ u)(g) = f(t(g))u(g) and (u ∗ f)(g) = u(g)f(s(g)), (4.4.4)

hence the left and right C∞(G0)-action by the (groupoid) source and target sheaf. One
can now show that C∞(G0), identified with those functions in C∞c (G) having support
on 1G0 ⊂ G, is a commutative subalgebra of C∞c (G). Correspondingly, we put for the
(left and right bialgebroid) source and target maps

s` ≡ t` ≡ sr ≡ tr ≡ 1+ : C∞(G0)→ C∞c (G),

i.e. the injection as subalgebra given by the fibre sum of the unit map 1 : G0 → G
(which we usually refrain from mentioning at all). Explicitly,

s` : f 7→ f̃ , where f̃(g) =
{
f(x) if g = 1x for some x ∈ G0,
0 otherwise, (4.4.5)

and the tensor products ⊗llC∞(G0)
, ⊗rrC∞(G0)

, ⊗rlC∞(G0)
, ⊗lrC∞(G0)

introduced before
can now be interpreted with respect to this injection.

(iii ) (Left and right coproduct) With the help of the isomorphisms Ω·,·, the left and right
coproducts read as follows:

∆′` := Ω2
t,t ∆` : C∞c (G)→ C∞c (Gt×tG0

G), (∆′`u)(g, g
′)=

{
u(g) if g = g′,
0 else,

∆′r := Ω2
s,s ∆r : C∞c (G)→ C∞c (Gs×sG0

G), (∆′ru)(g̃, g̃
′)=

{
u(g̃) if g̃ = g̃′,
0 else.

(4.4.6)
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If one introduces the diagonal maps d` : G → Gt×tG0
G, g 7→ (g, g) as well as

dr : G → Gs×sG0
G, g 7→ (g, g), this can be obviously rewritten as ∆′` = d`+ and

∆′r = dr+ or even as ∆` = Ω−1
t,t d

`
+ and ∆r = Ω−1

s,s d
r
+. For later computations, let us

also mention that higher coproducts are given by

(∆′n` u)(g1, . . . , gn) =
{
u(g1) if g1 = . . . = gn,
0 else,

for (g1, . . . , gn) ∈ Gn, where Gn := Gt×tG0
· · · t×tG0

G, and likewise for ∆′nr .

(iv ) (Left and right counit) Both left and right counit are determined by the fibre sum of the
germ bundle projection of the target and source sheaf, respectively. For any x ∈ G0,
set

ε : C∞c (G)→ C∞(G0), εu(x) =
∑
t(g)=x

u(g) = t+u(x),

∂ : C∞c (G)→ C∞(G0), ∂u(x) =
∑
s(g)=x

u(g) = s+u(x).
(4.4.7)

(v ) (Antipode) Finally, the antipode is given by the groupoid inversion,

S : C∞c (G)→ C∞c (G), (Su)(g) = u(g−1) = (inv+u)(g). (4.4.8)

The proof of Proposition 4.4.1 is now a straightforward verification:
PROOF: (of Proposition 4.4.1) We remark once again that compactness of G0 makes both
algebras (C∞c (G), ∗) and (C∞(G0), ·) unital. The fact that (C∞c (G), C∞(G0),∆`, ε) is a
left bialgebroid having an antipode S with certain properties was already shown in [Mrč2,
Prop. 2.5]. This can be carried over, mutatis mutandis, by simply replacing the target sheaf
by the source sheaf to prove that (C∞c (G), C∞(G0),∆r, ∂) gives a right bialgebroid. As an
example, for u, v ∈ C∞c (G) we have (∂u ∗ v)(g) = ∂u(t(g))v(g) =

∑
s(g1)=t(g)

u(g1)v(g),
hence for some x ∈ G0,

∂(u ∗ v)(x) =
∑

s(g)=x,

∑
g=g1g2

u(g1)v(g2) =
∑

s(g2)=x,

∑
s(g1)=t(g2)

u(g1)v(g2) = ∂(∂u ∗ v)(x),

and, using implicitly ∆r = Ω−1
s,s d

r
+,

(∗(id⊗ ∂)∆ru)(g) = (u(1) ∗ ∂u(2))(g)

= u(1)(g)∂u(2)(s(g)) =
∑

s(g′)=s(g)

u(1)(g)u(2)(g′) = u(g)

and so forth. Hence ∂ is indeed a right counit for ∆r. In what follows, we can now restrict
ourselves to verify the Hopf algebroid identities in which left and right bialgebroid structures
are intertwined: for example, twisted coassociativity (2.6.2) is obvious, so we only prove the



94 CHAPTER 4. EXAMPLES OF HOPF ALGEBROIDS

second identity in (2.6.4):

(∗(id⊗ S)∆ru)(g) =
∑

g=g1g2

(Ω−1
s,s d

r
+u)(g1, g

−1
2 )

=
∑

{g1∈G|t(g1)=t(g),g1=g−1g1}

u(g1)

=
{ ∑

t(g1)=x
u(g1) if g = 1x for some x ∈ G0,

0 else

= (s`εu)(g).

We leave the verification of the remaining identities in Definition 2.6.1 to the reader, but as
an illustration, we also state the third relation in (2.6.10), i.e.,

(∂Su)(x) =
∑
s(g)=x

Su(g) =
∑
s(g)=x

u(g−1) =
∑
t(g)=x

u(g) = (εu)(x),

or ∂S = s+S = t+ = ε. 2

A different way to obtain a (topological) Hopf algebroid from an étale groupoid is de-
scribed in [KaTan].

4.5 Function Algebras
The convolution algebra in Section 4.4 is not the only Hopf algebroid which arises from
an étale groupoid. In this section, we use pullbacks of the structure maps rather than push
forwards. Let s, t : G ⇒ P be an étale groupoid and consider the algebra C∞(G) of
smooth functions with its commutative pointwise multiplication. We are going to consider
a subspace of C∞(G), invariant under an action of (lifted) differential operators on the base
manifold P (see Definition 4.5.1 for the precise construction), and prove that it is a Hopf
algebroid (see Proposition 4.5.6).

The Lie-Rinehart algebra (C∞(P ),ΓTP ) of smooth sections of the tangent bundle TP
over C∞(P ) acts in two ways from the left on C∞(G): firstly, the assignment

C∞(P )⊗ C∞(G)→ C∞(G), (a, f) 7→ at(f) := t∗(a)f
ΓTP ⊗ C∞(G)→ C∞(G), (X, f) 7→ Xt(f) := Lt∗Xf (4.5.1)

can be extended by the universal property to a left action

V P ⊗ C∞(G)→ C∞(G), (u, f) 7→ ut(f) (4.5.2)

of the universal enveloping algebra V P := V ΓTP on C∞(G). Secondly, the same consid-
erations with respect to the source map s lead analogously to the left action

V P ⊗ C∞(G)→ C∞(G), (u, f) 7→ us(f). (4.5.3)

Furthermore, the assignment

(a, f, b) 7→ t∗(a)fs∗(b), f ∈ C∞(G), a, b ∈ C∞(P ), (4.5.4)
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equips C∞(G) with a C∞(P )-bimodule or left C∞(P )e-module structure and we denote the
canonical injection by

η : C∞(P )e → C∞(G), a⊗C b 7→ t∗(a)s∗(b).

We can now make the following definition.

4.5.1 Definition The space F = F∞ is the smallest left V P -submodule with respect to the
action (4.5.2) that contains F0 := C∞(P )e and is closed under groupoid inversion.

As the notation suggests, F carries a filtration, which can be seen to originate from the
canonical filtration of V P . To see what it looks like, we need to calculate the V P -action on
elements of the form t∗(a)s∗(b). One obviously has

at(s∗b) = t∗(a)s∗(b) ∈ F0, Xt(t∗a) = t∗(LXa) ∈ F0, a, b ∈ C∞(P ), X ∈ XP.

To calculate elements of type Lt∗Xs∗a one most conveniently makes use of the following
lemma (cf. Lemma A.1.4).

4.5.2 Lemma (Dual Basis Lemma for the tangent bundle) Let P be a smooth manifold.
Then there exist vector fields X1, . . . , Xn ∈ XP and one-forms θ1, . . . , θn ∈ Ω1P such
that each vector field X ∈ XP can be decomposed as X =

∑n
i=1 θ

i(X)Xi.

As we will explain now, there are functions ηiX ∈ C∞(G) such that

t∗X =
n∑
i=1

ηiXs
∗Xi.

Equivalently, at a point g ∈ G, this means

(dt)−1
g (Xt(g)) =

n∑
i=1

ηiX(g)(ds)−1
g (Xi,s(g)).

That is to say,

g−1 ·Xt(g) =
n∑
i=1

ηiX(g)Xi,s(g),

where g−1· : Tt(g)P → Ts(g)P denotes the right G-action ds ◦ dt−1 on TP . On the other
hand, from Lemma 4.5.2 one also obtains

g−1 ·Xt(g) =
n∑
i=1

θi(g−1 ·Xt(g))Xi,s(g), (4.5.5)

hence we choose
ηiX(g) := θi(g−1 ·Xt(g)).

An analogous consideration holds for the functions η̃jX arising from the decomposition
s∗X =

∑n
i=1 η̃

i
Xt
∗Xi, where one clearly obtains

η̃iX(g) := θi(g ·Xs(g)),
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that is
η̃jX = ηjX ◦ inv, (4.5.6)

where inv is the groupoid inversion. Observe that we chose here the notation such that g−1·
is a right and g· is a left action on TP . Applying Lemma 4.5.2 again yields the property

ηiX =
n∑
j=1

t∗(θj(X))ηij and η̃iX =
n∑
j=1

s∗(θj(X))η̃ij , (4.5.7)

with ηji (g) := θj(g−1 · Xi,t(g)) and η̃ji (g) := θj(g · Xi,s(g)). Since g· is a left action, one
furthermore has the following useful properties:

η̃iX(gh) = θi((gh) ·Xs(h)) = θi(g · (h ·Xs(h)))

=
n∑
j=1

θi
(
g ·

(
θj(h ·Xs(h))Xj,t(h)

))
=

n∑
j=1

η̃jX(h)θi(g ·Xj,s(g))

=
n∑
j=1

η̃jX(h)η̃ij(g) =
n∑
j=1

η̃ij(g)η̃
j
X(h),

(4.5.8)

and analogously

ηiX(gh) =
n∑
j=1

ηjX(g)ηij(h). (4.5.9)

Correspondingly, we will decompose now t∗X and s∗X as follows:

t∗X=
∑n
i=1 t

∗(θi(X))t∗Xi =
∑n
i,j=1 t

∗(θi(X))ηji s
∗Xj =

∑n
j=1 η

j
Xs
∗Xj ,

s∗X=
∑n
i=1 s

∗(θi(X))s∗Xi =
∑n
i,j=1 s

∗(θi(X))η̃ji t
∗Xj =

∑n
j=1 η̃

j
Xt
∗Xj .

(4.5.10)

As a consequence, one has

Lt∗Xs
∗a =

n∑
i,j=1

t∗(θi(X))ηji s
∗(LXj

a) =
n∑
j=1

ηjXs
∗(LXj

a), (4.5.11)

and this is the type of element lying in F1. Likewise,

Ls∗Xt
∗a =

n∑
i,j=1

s∗(θi(X))η̃ji t
∗(LXj

a) =
n∑
j=1

η̃jXt
∗(LXj

a). (4.5.12)

4.5.3 Lemma For each vector field X ∈ XP , the functions ηjX , η̃jX and hence in particular
elements of the form Ls∗X(s∗at∗b) lie in the submodule F ⊂ C∞(G).

PROOF: Let σ = σg : (U, s(g)) → (V, t(g)) be the germ associated to g as in §1.5.2.
Assign to any X ∈ XP and θ ∈ Ω1P functions (X, θ) 7→ ηθX ∈ C∞(G), (X, θ) 7→ η̃θX ∈
C∞(G) by defining

ηθX(g) := θs(g)
(
(dσ)−1

t(g)(Xt(g))
)
, η̃θX(g) := θt(g)

(
(dσ)s(g)(Xs(g))

)
.
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Now decompose an arbitrary θ ∈ Ω1P into θ =
∑
i aidbi where ai, bi ∈ C∞(P ). We then

have ∑
i

s∗aiLt∗X(s∗bi)(g) =
∑
i

ai(s(g))(dbi)s(g)(dσ−1
g )t(g)(Xt(g))

= θs(g)
(
(dσ−1

g )t(g)(Xt(g))
)

= ηθX(g),

and the left hand side is by definition in F ; hence the claim follows. In particular, this is true
for ηjX ∈ F ; the same holds then for η̃jX by (4.5.6) and the definition of F . 2

Somewhat simplified, for functions fi, f̃i ∈ F with f̃i = fi ◦ inv one finds the identities

t∗X =
n∑
i=1

fis
∗Xi and s∗X =

n∑
i=1

f̃it
∗Xi. (4.5.13)

Now it is clear how the higher degrees Fk of the filtration of F arise: taking
Lt∗Y Lt∗Xs

∗a for X,Y ∈ XP and a ∈ C∞(P ), one obtains with (4.5.11) two summands
that stay in F1 and a term containing Lt∗Y η

j
i , which characterises the terms in F2. It is also

clear now that, seen this way, the filtration of V P determines the one of F .
Next, we want to give F the structure of a Hopf algebroid. To this end, set up the

following.

4.5.4 Definition A function f ∈ F is called F -codecomposable if

f(gh) =
∑
i

f ′i(g)f
′′
i (h), g, h ∈ G, (4.5.14)

for functions f ′i , f
′′
i ∈ F , where the sum is finite.

4.5.5 Lemma Each element in F is F -codecomposable.

PROOF: If f, f ′ are F -codecomposable, then so is their product ff ′. Also, for a, b ∈
C∞(P ), the function s∗at∗b is F -codecomposable. Hence it suffices to prove that for any
X ∈ XP and a F -codecomposable function f , the expression Lt∗Xf is F -codecomposable.
To this end, assume that f ∈ F is F -codecomposable as in (4.5.14). Since G is étale, its
tangent bundle is a multiplicative distribution, i.e., for any k, g, h ∈ G with k = gh and
Wk ∈ TkG there are paths k(t), g(t), h(t) in G with k(t) = g(t)h(t), k̇(t) ∈ Tk(t)G,
ġ(t) ∈ Tg(t)G and ḣ(t) ∈ Th(t)G such that k(0) = k, g(0) = g and h(0) = h as well
as k̇(0) = Wk. Identifying spaces TkG with Tt(k)P by means of t∗, we may in particular
choose W to correspond to the given vector field X , i.e., k̇(0) = Wk = (dt)−1

k (Xt(k)).
Therefore,

(dt)g(ġ(0)) = (dt)k(k̇(0)) = Xt(k) = Xt(g),

and with (4.5.5)

(ds)h(ḣ(0)) = (ds)k(k̇(0)) = (ds)k(dt)−1
k (Xt(k))

= k−1 ·Xt(k) =
n∑
j=1

ηjX(k)Xj,s(k) =
n∑
j=1

ηjX(k)Xj,s(h).



98 CHAPTER 4. EXAMPLES OF HOPF ALGEBROIDS

With (4.5.9) one now calculates

Lt∗Xf(gh) =
d

dt

∣∣∣∣
t=0

∑
i

f ′i(g(t))f
′′
i (h(t))

=
∑
i

(Lġ(0)f ′i)(g)f
′′
i (h) +

∑
i

f ′i(g)(Lḣ(0)f
′′
i )(h)

=
∑
i

(Lt∗Xf ′i)(g)f
′′
i (h) +

∑
i

n∑
j=1

f ′i(g)η
j
X(k)(Ls∗Xj

f ′′i )(h)

=
∑
i

(Lt∗Xf ′i)(g)f
′′
i (h) +

∑
i

n∑
j,l=1

f ′i(g)η
l
X(g)ηjl (h)(Ls∗Xj

f ′′i )(h)

=
∑
i

(Lt∗Xf ′i)(g)f
′′
i (h) +

∑
i

n∑
l=1

ηlX(g)f ′i(g)(Lt∗Xl
f ′′i )(h).

(4.5.15)

Now elements of type Lt∗Xf ′i and ηiX were already shown above to be functions in F , hence
the claim follows. 2

For later use we mention that one analogously obtains

Ls∗Xf(gh) =
∑
i

n∑
l=1

(Ls∗Xl
f ′i)(g)η̃

l
X(h)f ′′i (h) +

∑
i

f ′i(g)(Ls∗Xf
′′
i )(h). (4.5.16)

With the left C∞(P )e-module structure on F from (4.5.4), define

F ⊗C∞(P ) F := F ⊗C F/spanC{s∗(a)f ⊗C f
′ − f ⊗C t

∗(a)f ′, a ∈ C∞(P )},

and set G2 := G×P G and G3 := G×P G×P G.

4.5.6 Proposition Assume that both maps

 : F⊗C∞(P )2 → C∞(G2), f ⊗C∞(P ) f
′ 7→ {(g, h) 7→ f(g)f ′(h)},

 : F⊗C∞(P )3 → C∞(G3), f ⊗C∞(P ) f
′ ⊗C∞(P ) f

′′ 7→ {(g, h, k) 7→ f(g)f ′(h)f ′′(k)},

are injective and let mG(g, h) = gh for (g, h) ∈ G ×P G be the groupoid multiplication.
For a function f ∈ F with F -codecomposition f(gh) =

∑
i f
′
i(g)f

′′
i (h), f ′i , f

′′
i ∈ F , the

formula ∆F

` f := m∗Gf gives a well-defined map

∆F

` : F → F ⊗C∞(P ) F, f 7→
∑
i

f ′i ⊗C∞(P ) f
′′
i . (4.5.17)

Together with the map
εF : F → C∞(P ), f 7→ 1∗Gf, (4.5.18)

where 1G : P → G is the groupoid embedding, the triple (F,∆F

` , εF ) becomes a C∞(P )-
coring with respect to the bimodule structure (4.5.4). In particular, with its pointwise product
mF and defining source and target maps as maps C∞(P )→ F by

s`F : a 7→ t∗a and t`F : a 7→ s∗a, (4.5.19)
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the C∞(P )-coring F is a left bialgebroid over C∞(P ). On the other hand, defining two maps
C∞(P )→ F by

srF : a 7→ s∗a and trF : a 7→ t∗a

equips the (same) quintuple (F, C∞(P ),mF ,∆F

` , εF ) with the structure of a right bialge-
broid. Finally, the map

SF : F → F, f 7→ inv∗f (4.5.20)

defines an antipode on F and all data can be assembled into a Hopf algebroid.

PROOF: Note firstly that m∗G(F ) ⊆ (F ⊗C∞(P ) F ) and with the injectivity of  the well-
definedness of ∆F

` follows directly. Coassociativity then follows from the injectivity of the
second map. The bialgebroid axioms are not difficult to verify. We have, for example,

(mF (id⊗ t`F εF )∆F

` f)(g) =
∑
i

f ′i(g)f
′′
i (1s(g)) = f(g1s(g)) = f(g),

and similar for all remaining identities; in particular it is easy to see that εF and ∆F

` can
be simultaneously considered to be left and right counit and coproduct of a left and right
bialgebroid, respectively. The fact that these are the constituent bialgebroid structures of a
Hopf algebroid with antipode S is seen by computing

(εFSf)(x) = f
(
(1x)−1

)
= f(1x) = (εFf)(x).

Hence right and left counits coincide. Also, using S−1 = S and Sf(gh) =∑
i f
′
i(h
−1)f ′′i (g−1), we have

(S⊗2∆F

` Sf)(g, h) = (∆F

` Sf)(h−1, g−1) =
∑
i

f ′i(g)f
′′
i (h).

Hence S⊗2∆F

` S = ∆F

` , and the right and left coproducts coincide as well. Finally, we check

(mF (S ⊗ idF )∆F

` f)(g) =
∑
i

Sf ′i(g)f
′′
i (g) =

∑
i

f ′i(g
−1)f ′′i (g)

= f(g−1g) = f(1s(g)) = s∗1∗f(g)
= (srF εFf)(g),

and leave all remaining identities to the reader. 2

For later use, we give some explicit coproduct expressions. One clearly has
m∗Gs

∗a(g, h) = s∗a(gh) = s∗a(h) and m∗Gt
∗b(g, h) = t∗b(g) for a, b ∈ C∞(P ), g, h ∈ G.

Hence

∆F

` s
∗a = 1⊗C∞(P ) s

∗a and ∆F

` t
∗b = t∗b⊗C∞(P ) 1, a, b ∈ C∞(P ). (4.5.21)

More interesting is the case of the elements η̃iX and ηiX . With (4.5.8) and (4.5.9) one obtains

∆F

` η̃
i
X =

n∑
j=1

η̃ij ⊗C∞(P ) η̃
j
X , and ∆F

` η
i
X =

n∑
j=1

ηjX ⊗C∞(P ) η
i
j . (4.5.22)
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4.6 Connes-Moscovici Algebras
‘Extending’ F from the previous section by the (lifted) differential operators on P , one
gets a subspace of the differential operators on G which can be given the structure of a left
bialgebroid again (see Proposition 4.6.4), and presumably even of a Hopf algebroid (see
Remark 4.6.5). We see this as a general background picture from which the constructions in
[CoMos5] and [MosR] can be understood.

Consider the convolution algebra (C∞c (G), ∗) with multiplicationmC∞c (G)(f, f ′) = f ∗f ′
of compactly supported functions on G and denote the space of linear maps C∞c (G) →
C∞c (G) by C1(C∞c (G)). For example, one can consider operators mf of pointwise mul-
tiplication with an element f ∈ F , or, by locality, the restriction to compactly supported
functions of the action Lt∗X from (4.5.1) and (4.5.2).

4.6.1 Definition The space of transverse differential operators on an étale groupoid s, t :
G⇒P is the subalgebra H ⊂ V G := V ΓTG generated by elements in F and t∗X for
a, b ∈ C∞(P ), X ∈ XP .

By construction, H ∩C∞(G) = F. In particular, elements of the form s∗X for X ∈ XP
are contained in H as well. Interpreting V G as the space of differential operators on C∞(G)
(with elements in C∞(G) as multiplication operators), elements in V G act on the convolution
algebra (C∞c (G), ∗). One has the inclusions H ⊂ V G ⊂ C1(C∞c (G)).

4.6.2 Definition An operator D ∈ H is called H-codecomposable if one has a finite sum

D(f ∗ f ′) =
∑
i

D′i(f) ∗D′′i (f ′), f, f ′ ∈ C∞c (G),

for elements D′i, D
′′
i ∈ H .

4.6.3 Lemma Each element in H is H-codecomposable.

PROOF: For a, b ∈ C∞(P ), the operators ms∗a, mt∗b are evidently H-codecomposable. If
D,E are H-codecomposable, then so is their product DE. This follows from

ED(f ∗ f ′) = E
( ∑

i

D′i(f) ∗D′′i (f ′)
)

=
∑
i,j

E′jD
′
i(f) ∗ E′′jD′′i (f ′).

Finally, for X,Y ∈ XP , the operators Lt∗X , Ls∗Y are H-codecomposable. This can be
seen by repeating the argumentation in the proof of Lemma 4.5.5:

(
Lt∗X(f ∗ f ′)

)
(g) =

∑
g=hk

(
Lt∗Xf(h)f ′(k) +

n∑
l=1

f(h)ηlX(h)Lt∗Xl
f ′(k)

)
=

(
Lt∗Xf ∗ f ′

)
(g) +

n∑
l=1

(
fηlX ∗ Lt∗Xl

f ′
)
(g),

(4.6.1)

and similar for Ls∗Y using (4.5.16). Hence Lt∗X and Ls∗Y are H-codecomposable. These
statements are sufficient to prove the lemma. 2
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Observe that for an element f ∈ F with F -codecomposition f(gh) =
∑
i f
′
i(g)f

′′
i (h), the

H-codecomposition of the corresponding multiplication operator and f1, f2 ∈ C∞c (G) reads

mf (f1 ∗ f2)(g) =
∑
g=hk

f(hk)f1(h)f2(k)

=
∑
i

∑
g=hk

mf ′i
(h)f1(h)mf ′′i

(k)f2(k) =
∑
i

mf ′i
f1 ∗mf ′′i

f2.

Hence H-codecomposition, restricted to elements in F ⊂ H , coincides with F -
codecomposition.

Now note that the spaceH carries an obvious left C∞(P )e-module structure arising from
(4.5.4), namely

(a,D, b) 7→ mt∗(a)ms∗(b)D, D ∈ H, a, b ∈ C∞(P ), (4.6.2)

with respect to which we define

H ⊗C∞(P ) H = H ⊗k H/span{ms∗(b)D ⊗ E −D ⊗mt∗(a)E, a ∈ C∞(P )}.

Furthermore, we regard the space C∞c (P ) as subalgebra of C∞c (G) by means of

C∞c (P ) ↪→ C∞c (G), f 7→ f̃ , where f̃(g) =
{
f(x) if g = 1x for some x ∈ G0,
0 otherwise.

Observe that theH-action on C∞c (G) leaves this subalgebra C∞c (P ) invariant. The restriction
of H to End C∞c (P ) coincides with V P , and therefore admits a tautological extension to an
action on C∞c (P ). With these preliminary remarks in mind (which will allow us to define a
counit for H), we can prove

4.6.4 Proposition Assume that the maps

J : H ⊗C∞(P ) H → C2(C∞c (G)),
D ⊗C∞(P ) D

′ 7→ {f ⊗C f
′ 7→ D(f) ∗D′(f ′)},

J : H ⊗C∞(P ) H ⊗C∞(P ) H → C3(C∞c (G)),
D ⊗C∞(P ) D

′ ⊗C∞(P ) D
′′ 7→ {f ⊗C f

′ ⊗C f
′′ 7→ D(f) ∗D′(f ′) ∗D′′(f ′′)},

are injective. Then the formula ∆H

` D := m∗C∞c (G)D gives a well-defined map

∆H

` : H → H ⊗C∞(P ) H, D 7→
∑
i

D′i ⊗C∞(P ) D
′′
i ,

where D has H-codecomposition D(f ∗ f ′) =
∑
iD
′
i(f) ∗D′′i (f ′). Together with the map

εH : H → C∞(P ), D 7→ D(1C∞(G)),

the triple (H,∆H

` , εH) becomes a C∞(P )-coring with respect to the C∞(P )-bimodule struc-
ture (4.6.2). In particular, with the composition of operators and source and target maps

s`H : a→ mt∗a and t`H : a→ ms∗a, (4.6.3)

as maps C∞(P )→ H , the C-module H is a left bialgebroid over C∞(P ).
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PROOF: Using m∗C∞c (G)(H) ⊆ J(H ⊗C∞(P ) H) and the injectivity of J , the well-
definedness for ∆H

` follows directly. Also, coassociativity follows from the injectivity of
the second map. The bialgebroid axioms are again easy to check. For example,(

mH(s`H ⊗ id)∆H

` D(f)
)
(g) =

∑
i

(
D′i(1C∞(G))

)
(1t(g))

(
D′′i (f)

)
(g)

=
∑
i

(
D′i(1C∞(G)) ∗D′′i (f)

)
(g)

= D(1C∞(G) ∗ f)(g) = D(f)(g).

Also,

εH(DD′) = DD′(1C∞(G)) = D(εHD
′)

= D
(
ms∗(εHD′)(1C∞(G))

)
= Dms∗(εHD′)(1C∞(G)) = εH

(
Dt`H(εHD

′)
)
.

2

Let us also mention some explicit coproduct expressions for certain elements, e.g. gen-
erators of H . These are calculated as in the proof of Lemma 4.6.3. Let mf denote the
multiplication operator associated to f ∈ F . One sees that for a, b ∈ C∞(P ), one has(

m∗C∞c (G)(ms∗a)(f ⊗ f ′)
)
(g) =

(
ms∗a(f ∗ f ′)

)
(g)

=
∑
g=hk

s∗a(hk)f(h)f ′(k) = (f ∗ms∗af
′)(g),

and analogously
(
m∗C∞c (G)(mt∗b)(f ⊗ f ′)

)
(g) = (mt∗bf ∗ f ′)(g). Hence

∆H

` ms∗a = 1⊗C∞(P ) ms∗a and ∆H

` mt∗b = mt∗b ⊗C∞(P ) 1, a, b ∈ C∞(P ).

It follows from (4.5.22) that

(
m∗C∞c (G)(mηi

X
)(f ⊗ f ′)

)
(g) =

∑
g=hk

n∑
j=1

ηjX(h)f(h)ηij(k)f
′(k).

Hence, as expected,

∆H

` mηi
X

=
n∑
j=1

mηj
X
⊗C∞(P ) mηi

j
and ∆H

` mη̃i
X

=
n∑
j=1

mη̃i
j
⊗C∞(P ) mη̃j

X
. (4.6.4)

In the same fashion, one obtains from (4.5.15) and (4.5.16),

∆H

` t
∗X = t∗X ⊗C∞(P ) 1 +

n∑
i=1

ηiX(g)⊗C∞(P ) t
∗Xi, (4.6.5)

∆H

` s
∗X =

n∑
i=1

s∗Xi ⊗C∞(P ) η̃
i
X + 1⊗C∞(P ) s

∗X. (4.6.6)
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4.6.5 Remark Let SF be the antipode on F given in (4.5.20) and SVP the antipode of the
Lie algebroid V P given in (4.2.16) (depending on a (Lie algebroid) connection as in §4.2.5).
We conjecture that one can extend the assignment

f 7→ SFf, ∀ f ∈ F,
t∗X 7→ s∗(SVPX), ∀ X ∈ XP

to an antipode on H turning H into a Hopf algebroid; see also Remarks 3.3.7 and 4.7.4.

4.7 Bicrossed Product Realisation
In this section we describe how H can be ‘composed’ from the bialgebroids F and V P .
For this, we will need the concepts of Section 3.3 of matched pairs and the bicrossproduct
bialgebroid, i.e., we will discuss a V P -action on F and an F -coaction on V P to obtain the
main result of this section:

4.7.1 Theorem The pair (F, V P ) is a matched pair of left bialgebroids (see Definition
3.3.6), and the map (4.7.3) defines a left C∞(P )-bialgebroid isomorphism

FIC
C∞(P )V P

'−→ H. (4.7.1)

The procedure we give here generalises methods of [MosR] to bialgebroids.
The pullbacks of the groupoid source and target maps give two algebra morphisms

s∗, t∗ : V P → V G, where we recall the notation V P := V ΓTP and V G := V ΓTG.
In particular, we have two vector space isomorphisms

V P ⊗C∞(P ) C∞(G) '−→ V G, (u, f) 7−→ ft∗u, (4.7.2)

C∞(G)⊗C∞(P ) V P
'−→ V G, (f, u) 7−→ fs∗u, (4.7.3)

where the left C∞(P )-action on V P is denoted by (a, u) 7→ au, and where the C∞(P )-
bimodule structure on C∞(G) from (4.5.4) has been used to define the tensor products.

The fact that (4.7.2) (and likewise (4.7.3)) is a vector space isomorphism can be seen as
follows: with the help of the PBW map (1.4.5), (4.7.2) can be seen to be induced degree-
wise by the isomorphism ΓSpTP ⊗C∞(P ) C∞(G) ' ΓSpTG on the respective symmetric
algebras, considered to be vector bundles over P and G, respectively (cf. also §1.4.5 for
notation). Since TG ' t∗TP in the étale case, the isomorphism ΓSpTP ⊗C∞(P ) C∞(G) '
ΓSpTG in turn follows from a general result on pullback vector bundles.

The maps (4.7.2) and (4.7.3) serve to define a right F -comodule structure on V P :

4.7.2 Lemma The assignment

V P 3 u 7→ s∗u ∈ V G (4.7.4)

defines a right F -coaction

VP∆ : V P → V P ⊗C∞(P ) F, u 7→ u[0] ⊗C∞(P ) u[1] (4.7.5)

on the universal enveloping algebra V P .
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PROOF: Firstly we state that the canonical right C∞(P )-action RC∞(P ) on V P from
Definition 2.3.2(i) is given here by RC∞(P )(u, a) = au = s`VPau. Hence the tensor product
in question is

V P ⊗C∞(P ) F = V P ⊗ F/span{au⊗ f − u⊗ t∗(a)f, a ∈ C∞(P ), u ∈ V P, f ∈ F}.

Observe that VP∆ maps into this space, indeed, as follows from the definition of (the filtration
of) F . We use (4.7.2) and (4.5.10) to write on generators

VP∆a = 1⊗C∞(P ) s
∗a ∈ V P ⊗C∞(P ) F0, (4.7.6)

VP∆X =
n∑
j=1

Xj ⊗C∞(P ) η̃
j
X ∈ V P ⊗C∞(P ) F1. (4.7.7)

It is now enough to check the coaction axioms on a PBW basis of V P : let I be a (finite)
sequence i1 ≤ . . . ≤ ip and set XI := Xi1 · · ·Xip for Xij ∈ XTP ⊂ V P as elements in
V P (if I is empty, set XI = 1). Elements of the form aXI with a ∈ C∞(P ) form a basis of
V P ; see [Rin] for details. Since VP∆ and ∆F

` are C∞(P )-linear, we can restrict to the case
a = 1.

Using (4.5.10), the action (−)t from (4.5.2) and abbreviating ηjil := η̃jXil
for l = 1, . . . , p

one can write

s∗XI = s∗Xi1 · · · s∗Xip =
n∑

j1,...,jp

η̃j1i1 t
∗Xj1 · · · η̃

jp
ip
t∗Xjp

=
n∑

j1,...,jp

η̃j1i1Xj1
t
(1)(η̃

j2
i2

)(Xj1 (2)Xj2 (1))
t(η̃j3i3 ) · · · (Xj1 (p−1)Xj2 (p−2) · · ·Xjp−1 (2)

)t(η̃jpip )·

· t∗
(
Xj1 (p)Xj2 (p−1) · · ·Xjp−1 (1)

Xjp

)
,

and hence with (4.7.2)

VP∆XI = XI [0] ⊗C∞(P ) XI [1]

=
n∑

j1,...,jp

Xj1 (p)Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) η̃
j1
i1
Xj1

t
(1)(η̃

j2
i2

)(Xj1 (2)Xj2 (1))
t(η̃j3i3 ) · · · (Xj1 (p−1) · · ·Xjp−1 (2)

)t(η̃jpip ).

(4.7.8)

We now show that the coaction axioms hold by induction over the length p of a PBW basis:
one has for X ∈ XP with (4.5.22)

(VP∆ ⊗ idF )VP∆X =
n∑

i,j=1

Xj ⊗C∞(P ) η̃
j
i ⊗C∞(P ) η̃

i
X = (idVP ⊗∆F

` )VP∆X, (4.7.9)

as the start of the induction, and we proceed to prove that if this coaction axiom is true for
XI′ := Xi2 · · ·Xip , where I ′ is the finite increasing series i2 ≤ . . . ≤ ip, it is also true for
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the sequence I introduced before. From (4.7.8) one checks

VP∆XI = VP∆(Xi1XI′)

=
n∑

j1,...,jp

Xj1 (1)Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) η̃
j1
i1
Xj1

t
(2)

(
η̃j2i2Xj2

t
(1)(η̃

j3
i3

) · · · (Xj2 (p−2) · · ·Xjp−1 (2)
)t(η̃jpip )

)
=

n∑
j1,...,jp

Xj1Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) η̃
j1
i1
η̃j2i2Xj2

t
(1)(η̃

j3
i3

) · · · (Xj2 (p−2) · · ·Xjp−1 (2)
)t(η̃jpip )

+
n∑

j2,...,jp

Xj2 (p−1) · · ·Xjp−1 (1)
Xjp

⊗C∞(P ) X
s
i1

(
η̃j2i2Xj2

t
(1)(η̃

j3
i3

) · · · (Xj2 (p−2) · · ·Xjp−1 (2)
)t(η̃jpip )

)
,

since V P is cocommutative and Xj1 is primitive. Hence with (4.7.9) and the action (−)s

from (4.5.3),

VP∆XI =
n∑
j1

Xj1XI′ [0] ⊗C∞(P ) η̃
j1
i1
XI′ [1] +XI′ [0] ⊗C∞(P ) X

s
i1(XI′ [1]), (4.7.10)

and therefore with the same argument again, as well as using the induction assumption,

(VP∆ ⊗ id)VP∆XI =
n∑

j1,k1

Xk1XI′ [0] ⊗C∞(P ) η̃
k1
j1
XI′ [1] ⊗C∞(P ) η̃

j1
i1
XI′ [2]

+
n∑
j1

XI′ [0] ⊗C∞(P ) X
s
j1(XI′ [1])⊗C∞(P ) η̃

j1
i1
XI′ [2]

+XI′ [0] ⊗C∞(P ) XI′ [1] ⊗C∞(P ) X
s
i1(XI′ [2])

= (id⊗∆F

` )VP∆XI

by (4.5.22) and (4.5.16).
Counitality is proven by the same kind of argument: first calculate

εF (η̃iX)(x) = η̃iX(1x) = θi((1x)−1 ·Xs(1x)) = θi(X)(x) (4.7.11)

at a point x ∈ P . Hence, the first step of the induction is

RC∞(P )(idVP ⊗ εF )F∆X =
n∑
i=1

εF (η̃iX)Xi = X.

Subsequently, with (4.7.10), (2.1.4), (4.5.18) and the fact that F is commutative,

RC∞(P )(idVP ⊗ εF )F∆XI =
n∑
j1

εF (XI′ [1])εF (η̃j1i1 )Xj1XI′ [0] + εF

(
Xs
i1(XI′ [1])

)
XI′ [0]

= Xi1εF (XI′ [1])XI′ [0] −Xω
i1

(
εF (XI′ [1])

)
XI′ [0] + εF

(
Xs
i1(XI′ [1])

)
XI′ [0]

= XI ,
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since the assumption holds forXI′ (whereXω denotes the action originating from the anchor
of V P , i.e. the Lie derivative of ΓTP on C∞(P )). 2

4.7.3 Proposition The bialgebroid F is a left V P -module ring (cf. Definition 3.3.1) with
respect to the action (4.5.3), whereas V P is a right F -comodule coring (cf. Definition 3.3.3)
with respect to the coaction (4.7.5). In particular, the left C∞(P )-bialgebroids F and U form
a matched pair in the sense of Definition 3.3.6.

PROOF: The first part is obvious: the action (4.5.3) clearly restricts to an action (u, f) 7→
us(f) on F by the definition of F and Lemma 4.5.3, and all properties in Definition 3.3.1
of left module rings are trivial to check (e.g., for a PBW basis of V P ). In particular, the
induced left and right C∞(P )-actions from (3.3.2) coincide with F� , i.e., (s`VPa)

s(f) =
as(f) = s∗af = t`Faf .

Let (V P,∆VP

` , εVP ) denote the coring structure of V P as given in Proposition 4.2.9. To
show that it is a right F -comodule coring we check the conditions (3.3.8): by (4.7.8), (2.1.4)
and εX = 0 for all X ∈ XP , the first condition is trivially fulfilled for any PBW basis aXI

for a ∈ C∞(P ) and I the increasing sequence i1 ≤ . . . ≤ ip; in case I is empty, it follows
by (4.7.6) and (4.5.19). The second equation in (3.3.8) is again proven by induction over the
length p of XI and by C∞(P )-linearity it is again enough to consider the case a = 1. Now
equation (3.3.8) is obviously fulfilled for any X ∈ XP using (4.7.7) and the primitivity of
X; this gives the induction start. Hence assume (3.3.8) to be fulfilled for XI′ where I ′ is the
sequence i2 ≤ . . . ≤ ip. It follows from (4.7.10) that

(∆VP

` ⊗ id)VP∆XI = (∆VP

` ⊗ id)VP∆(Xi1XI′)

=
n∑
j1

Xj1XI′ [0](1) ⊗C∞(P ) XI′ [0](2) ⊗C∞(P ) η̃
j1
i1
XI′ [1]

+
n∑
j1

XI′ [0](1) ⊗C∞(P ) Xj1XI′ [0](2) ⊗C∞(P ) η̃
j1
i1
XI′ [1]

+
n∑
j1

XI′ [0](1) ⊗C∞(P ) XI′ [0](2) ⊗C∞(P ) X
s
i1(XI′ [1])

=
n∑
j1

Xj1 (1)XI′ (1)[0] ⊗C∞(P ) Xj1 (2)XI′ (2)[0] ⊗C∞(P ) η̃
j1
i1
XI′ (1)[1]XI′ (2)[1]

+
n∑
j1

XI′ (1)[0] ⊗C∞(P ) XI′ (2)[0] ⊗C∞(P ) X
s
i1(XI′ (1)[1]XI′ (2)[1])

= VP⊗VP∆∆VP

` (Xi1XI′) = VP⊗VP∆∆VP

` XI ,

since F is commutative and a left V P -module ring. This concludes the induction and we
have shown that V P is a right F -comodule coring.

We proceed by considering the conditions in Theorem 3.3.5. The identities (3.3.17)–
(3.3.20) are obviously fulfilled by (4.2.11) and the commutativity of F . For an f ∈ F with
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F -codecomposition f(gh) =
∑
i f
′
i(g)f

′′
i (h), with (4.5.16) at a point x ∈ P we have

εF

(
Xs(f)

)
= (Ls∗Xf(1x))

=
∑
i

n∑
l=1

(Ls∗Xl
f ′i)(1x)η̃

l
X(1x)f ′′i (1x) +

∑
i

f ′i(1x)(Ls∗Xf
′′
i )(1x)

=
∑
i

LX(1∗f ′i 1∗f ′′i )(x) =
∑
i

εVP

(
X(1∗(f ′if

′′
i ))

)
(x) = εVP (XεFf)(x),

which is (3.3.21) for X ∈ XP and analogously on a PBW basis XI of V P using (2.1.4).
Now (3.3.22) is obvious from (4.7.6). For (3.3.23) we argue by induction on the length p of
XI again: the induction start follows from (4.5.16), (4.5.17) and (4.7.6), and the induction
step to pass fromXI′ toXI (see above) works as follows: consideringXs

I′(f) as an element
in F again, the assumption is already true for Xs

i1

(
Xs
I′(f)

)
. Hence with (4.7.10),

∆F

`

(
Xs
I (f)

)
= ∆F

`

(
Xs
i1(X

s
I′(f))

)
= Xi1 (1)[0]

(
(Xs

I′(f))[1]
)
⊗C∞(P ) Xi1 (1)[1]Xi1 (2)

(
(Xs

I′(f))[2]
)

= Xi1
s
(1)[0]

(
XI′

s
(1)[0](f[1])

)
⊗C∞(P ) Xi1 (1)[1]Xi1

s
(2)

(
XI′ (1)[1]XI′

s
(2)(f[2])

)
= Xi1

s
(1)[0]

(
XI′

s
(1)[0](f[1])

)
⊗C∞(P ) Xi1 (1)[1]Xi1

s
(2)(XI′ (1)[1])Xi1

s
(3)

(
XI′

s
(2)(f[2])

)
= (Xi1XI′)s(1)[0](f[1])⊗C∞(P ) (Xi1XI′)(1)[1](Xi1XI′)s(2)(f[2])

= XI
s
(1)[0](f[1])⊗C∞(P ) XI (1)[1]XI

s
(2)(f[2]),

which is (3.3.23) for u = XI , as desired.
Next, (3.3.24) is automatically fulfilled since F is commutative and V P is cocommuta-

tive. Finally, for (3.3.25), let J be another increasing sequence of indices of length q. Then it
is enough to show this identity for u = XI and u′ = aXJ where a ∈ C∞(P ). The statement
is already implicit in (4.7.10): the induction start is (4.7.10), choosing I ′ = J and observing
the relation Xi1aXJ = aXi1XJ + Xi1(a)XJ whereas the induction is concluded by the
same argument replacing XI′ in (4.7.10) by elements of the form XI′aXJ . 2

PROOF: (of Theorem 4.7.1) First observe that, by definition of F and H , (4.7.3) restricts to
a vector space isomorphism

φ : F ⊗C∞(P ) V P → H, f ⊗C∞(P ) u 7→ fs∗u. (4.7.12)

As before we view elements in F as multiplication operators. Hence it is enough to show that
φ is both an isomorphism of C∞(P )e-rings and of C∞(P )-corings: with (4.6.3), (4.5.19),
(3.3.27) and the commutativity of F , it is clear that φ is a C∞(P )e-bimodule map; hence it
remains to show that it is a morphism of algebras and coalgebras. As already seen, F is a
left V P -module ring and therefore we have for any ξ ∈ C∞(G), with the notation (4.5.3),(

φ(f ⊗C∞(P ) u)φ(f ′ ⊗C∞(P ) u
′)

)
(ξ) = fus

(
f ′u′

s(ξ)
)

= fus(1)(f
′)(u(2)u

′)s(ξ)

= φ
(
(f ⊗C∞(P ) u)(f ′ ⊗C∞(P ) u

′)
)
(ξ),

where in the last term the product (3.3.7) on the space F>C
C∞(P )V P is meant. To show that

φ is also a coalgebra morphism, we proceed as in the proof of Proposition 4.7.3 by induction
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on the length p of a PBW basis aXI with respect to a finite increasing sequence I of indices
i1 ≤ . . . ≤ ip and a ∈ C∞(P ). Since φ, ∆H

` and ∆ccr
` are bimodule maps, we can set a = 1;

since these are C-algebra morphisms on the respective tensor products, we may even take
f = 1F . Now the induction start for X ∈ XP and (4.6.6) is easily checked, namely

(φ⊗φ)∆ccr
` (1F⊗C∞(P )X) =

n∑
i=1

s∗Xi⊗C∞(P ) η̃
i
X+1H⊗C∞(P )s

∗X = ∆H

` φ(1F⊗C∞(P )X).

Hence if the claim holds for the sequence I ′ given by i2 ≤ . . . ≤ ip, i.e., ∆H

` s
∗XI′ =

s∗XI′ (1)[0] ⊗C∞(P ) XI′ (1)[1]s
∗XI′ (2), we show that it also holds for I: for ξ, ξ′ ∈ C∞(G),

we have with (3.3.25), F commutative and Proposition 4.7.3,

(φ⊗ φ)∆ccr
` (1F

ICC∞(P )XI)(ξ ⊗ ξ′)
= (φ⊗ φ)

((
1F

ICC∞(P )(Xi1XI′ (1))[0]
)

⊗C∞(P )

(
(Xi1 (1)XI′ (1))[1]ICC∞(P )Xi1 (2)XI′ (2)

))
(ξ ⊗ ξ′)

= (φ⊗ φ)
((

1F
ICC∞(P )Xi1 (1)[0]XI′ (1)[0]

)
⊗C∞(P )

(
Xi1 (1)[1]Xi1

s
(2)(XI′ (1)[1])ICC∞(P )Xi1 (3)XI′ (2)

))
(ξ ⊗ ξ′)

= Xi1
s
(1)[0]XI′

s
(1)[0](ξ)⊗C∞(P ) Xi1 (1)[1]Xi1

s
(2)

(
XI′ (1)[1]XI′

s
(2)(ξ

′)
)

= ∆H

` (s∗Xi1)∆
H

` (s∗XI′)(ξ ⊗ ξ′) = ∆H

` (φ(1F ICC∞(P )XI))(ξ ⊗ ξ′).

2

4.7.4 Remark We conjecture that the isomorphism (4.7.1) is even an isomorphism of Hopf
algebroids: it is not difficult to see (at least on generators) that the candidate for the antipode
for matched pairs of bialgebroids from Remark 3.3.7 is mapped by means of (4.7.1) to the
antipode candidate for H , mentioned in Remark 4.6.5.



Chapter 5

Hopf-Cyclic Cohomology

Hopf-cyclic cohomology (and also its dual homology in Chapter 6) cannot be defined as the
cyclic theory of some algebra or coalgebra itself, but only as a theory deriving from cer-
tain cyclic and cocyclic modules. As suggested by the concept of the space of coinvariants
introduced in the next section, there are some rough similarities to the procedure in group
(co)homology. We shall indeed be able to associate a cyclic complex (more precisely, a co-
cyclic module) to any Hopf algebroid if and only if its antipode is an involution (possibly
twisted by a grouplike element). In particular, we will show that this cocyclic structure ‘de-
scends’ in a natural way from the canonical cocyclic structure of a Hopf algebroid, regarded
as a coring.

The resulting cyclic cohomology could be considered (by Theorem 5.5.7 and (5.6.2)) to
be a natural generalisation of Lie-Rinehart (Lie algebroid) (co)homology within the context
of Hopf algebroids and hence of noncommutative geometry.

5.1 The Space of Coinvariants
In this section we introduce the notion of coinvariants as a first step towards Hopf-cyclic
cohomology. The method introduced here is a generalisation of a similar procedure for Hopf
algebras in [Cr3].

Let H be a Hopf algebroid with structure maps as in Definition 2.6.1 and let M ∈
H-Mod, with action denoted (h,m) 7→ hm. In particular, M carries an induced (A,A)-
bimodule structure, which we use to define a (B,B)-bimodule structure with the help of the
map ν−1 = εsr : Bop '−→ A from (2.6.5), namely

b �m � b̃ := t`(ν−1b)s`(ν−1b̃)m = sr(b)Ssr(b̃)m, b, b̃ ∈ B, m ∈M.

5.1.1 Definition (i ) The space of coinvariants I∂ of M is the k-linear span of elements

∂h �m− hm, ∀m ∈M, h ∈ H.

(ii ) The ∂-localised module M∂ is given as the quotient

M∂ := B∂ ⊗H M, (5.1.1)

where B = B∂ ∈Mod-H by (2.5.4).

109
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In particular, this defines a functor (−)∂ : H-Mod → k-Mod. We also introduce the
coinvariant localisation

π∂ : M →M∂ , m 7→ 1B ⊗H m.

One sees that

M∂ = B ⊗AM/spank{∂h⊗A m− 1B ⊗A hm} = M/I∂ ,

where A acts on B by means of ν. If in particular M := A is the base algebra of the
underlying left bialgebroid itself, one obtains the identification εh ≡ ∂h in A∂ = B ⊗H A,
i.e. up to coinvariants (ν−1 suppressed here).

5.1.2 Lemma (Partial Integration) Let H be a Hopf algebroid as before. For any two
M,N ∈ H-Mod, the identity

hm⊗A n ≡ m⊗A (Sh)n ∀m ∈M, n ∈ N, h ∈ H

holds up to coinvariants.

PROOF: The inducedH-module structure (for the underlying left bialgebroid) onM⊗AN
is given by (2.3.2), i.e., h(m ⊗A n) = h(1)m ⊗A h(2)n. This induces not only an (A,A)-
bimodule structure but also a (B,B)-bimodule structure on M ⊗A N :

b � (m⊗A n) � b̃ := s`(ν−1b̃)m⊗A t`(ν−1b)n, b, b̃ ∈ B, m ∈M,n ∈ N.

Then one has

m⊗A (Sh)n = m⊗A (sr∂h(1)Sh(2))n by Lemma 2.6.6,
= ∂h(1)

� (m⊗A (Sh(2))n)
≡ ∆`h

(1)
(
m⊗A (Sh(2))n

)
modulo coinvariants

= h(1)m⊗A h
(1)
(2)(Sh

(2)
(2)n) by twisted coassociativity (2.6.2),

= h(1)m⊗A (h(1)
(2)Sh

(2)
(2))n by N ∈ H-Mod,

= h(1)m⊗A (s`ε(h(2)))n by (2.6.4),
= h(1)m⊗A εh(2) �n
= (h(1)m) � εh(2) ⊗A n in the tensor product ⊗A,
= (t`ε(h(2))h(1))m⊗A n
= hm⊗A n,

where the last identity is simply one of the comonoid identities of a left bialgebroid. 2

Regarding H as a module over itself with respect to multiplication, we obtain

5.1.3 Corollary For a M ∈ H-Mod, there is an isomorphism of k-modules

φ : (H ⊗AM)∂
'−→M, (5.1.2)

induced by the covariant localisation

π∂ : H ⊗AM → (H ⊗AM)∂ , h⊗A m 7→ 1B ⊗H (h⊗A m).

Hence the isomorphism (5.1.2) takes the form

φ : (H ⊗AM)∂ →M, h⊗A m 7→ (Sh)m, (5.1.3)

with inverse
M → (H ⊗AM)∂ , m 7→ 1H ⊗A m. (5.1.4)
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5.2 Cocyclic Structures on Hopf Algebroids
The basic idea is to define the structure of a cocyclic module on the space of coinvariants
obtained by projecting the structure of the canonical cyclic module of H as an A-coring
by the map π∂ as in §1.2.5. Next, the isomorphism φ from (5.1.3) maps the cocyclic and
cosimplicial operators on the space we are interested in.

Consider the A-coring structure (H`,∆`, ε) of the Hopf algebroid H , originating from
the left underlying bialgebroid. As in §1.2.5 for any coring, this defines a para-cocyclic
module in a natural way: define

CnAH := H⊗An,

and as in §1.2.5 set
HA
\,S2 := {BnAH}n≥0

for the choice ψ := S2, where

BnAH = B ⊗Ae Cn+1
A H = Cn+1

A H⊗A

in degree n, i.e. B ⊗Ae H in degree zero. Here, Ae acts on B by means of ν in an obvious
way and the left Ae-action on CnAH is given by

(a⊗ b) · (h1 ⊗A · · · ⊗A hn) := s`(a)h1 ⊗A · · · ⊗A t̃`(b)hn,

where t̃` := t` ν−1µ with ν−1µ := εsr∂s` ∈ Endk Aop from (2.6.5). This little modifi-
cation of the left target map is necessary to make S2 an (A,A)-bimodule map (hence the
operators (1.2.4) for ψ = S2 well-defined). As stated in §1.2.5, HA

\,S2 is cocyclic if and only
if S2 = id. In such a case ν−1µ ≡ id and t̃` ≡ t`. Of course, one may also define another
para-cocyclic module on H based on the B-coring structure (Hr,∆r, ∂) of H originating
from the underlying right bialgebroid Hr, but we are not going to pursue this here.

The step from coring (para-)cocyclic modules to ‘Hopf-(para-)cocyclic’ modules is now
performed by projection on coinvariants. Hence, define

H\,∂ := {B ⊗H Cn+1
A H}n≥0,

the (degree-wise) coinvariant localisation of HA
\,S2 . In a second move, this space is mapped

(degree-wise) by the isomorphism φ from (5.1.3) onto {CnAH}n≥0, which will again be
denoted by H\,∂ . Stated as a diagram, we have the situation

B•AH

π∂

��

φ̄∂

))RRRRRRRR

B ⊗H C•+1
A H

φ
// C•AH.

In the next proposition, we will show that the cosimplicial and cocyclic operators on B ⊗H
Cn+1
A H are essentially still given by the same formula expressions (1.2.4) as on B ⊗Ae

Cn+1
A H . However, the map φ̄∂ changes the form of these cosimplicial and cocyclic operators

on CnAH to quite some extent. We are going to come back to this point in a moment in more
detail.
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5.2.1 Proposition The cosimplicial and cocyclic operators onHA
\,S2 descend to well-defined

operators on H\,∂ if and only if S2 = idH . In that case, H\,∂ is a cocyclic module.

PROOF: First, note that in this case the covariant localisation π∂ : HA
\,S2 → H\,∂ takes the

form (π∂)n : B ⊗Ae Cn+1
A H → B ⊗H Cn+1

A H in degree n. By the left Ae-action on the
unit element 1H ∈ C1

AH = H , we can consider Ae as a subring of H and the projection π∂
is induced by this inclusion. Correspondingly, consider the space of coinvariants as

B ⊗H Cn+1
A H = (B ⊗Ae Cn+1

A H)/I,

where

I = spank{∂h⊗Ae h0 ⊗A · · · ⊗A hn − 1B ⊗Ae ∆n
` h(h

0 ⊗A · · · ⊗A hn)}.

To show that the operators δi, σi, τ in (1.2.4) for ψ := S2 descend to maps (B ⊗Ae

Cn+1
A H)/I → (B ⊗Ae Cn+1

A H)/I , one needs to prove that I is in the respective ker-
nel of these maps if their image is again projected on the quotient with respect to I .
We only prove some of the identities and leave the rest to the reader. With the notation
B ⊗Ae Cn+1

A H =: Cn+1
A H⊗A as in §1.2.3, one obtains, for example

δn+1(∂h⊗Ae h0 ⊗A · · · ⊗A hn − 1B ⊗Ae h(1)h
0 ⊗A · · · ⊗A h(n+1)h

n)

= h0
(2) ⊗A · · · ⊗A t

`ν−1(∂h)hn ⊗A S2h0
(1)⊗A

− h(2)h
0
(2) ⊗A h(3)h

1 · · · ⊗A h(n+2)h
n ⊗A S2(h(1)h

0
(1))⊗A

= h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)⊗A

− h(2)h
0
(2) ⊗A h(3)h

1 · · · ⊗A t`ε(h(n+3))h(n+2)h
n ⊗A S2(h(1)h

0
(1))⊗A

= h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)⊗A

− h(2)h
0
(2) ⊗A h(3)h

1 · · · ⊗A h(n+2)h
n ⊗A h(1)

(n+3)Sh
(2)
(n+3)S

2(h(1)h
0
(1))⊗A

= h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)⊗A

− (∆n+1
` h

(1)
(2))(h

0
(2) ⊗A h

1 · · · ⊗A hn ⊗A Sh(2)S2(h(1)
(1)h

0
(1)))⊗A,

where higher twisted coassociativity (2.6.8) was repeatedly used. Projecting on coinvariants
by the map π∂ : B ⊗Ae Cn+1

A H → B ⊗H Cn+1
A H , this becomes

1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H (∆n+1
` h

(1)
(2))(h

0
(2) ⊗A h

1 · · · ⊗A hn ⊗A Sh(2)S2(h(1)
(1)h

0
(1)))

= 1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H h0
(2) ⊗A h

1 · · · ⊗A hn ⊗A sr∂(h(1)
(2))Sh

(2)S2(h(1)
(1)h

0
(1))

= 1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H h0
(2) ⊗A h

1 · · · ⊗A hn ⊗A Sh(2)S
2h(1)S

2h0
(1)

= 1B ⊗H h0
(2) ⊗A · · · ⊗A s

r∂(h)hn ⊗A S2h0
(1)

− 1B ⊗H h0
(2) ⊗A h

1 · · · ⊗A t`ε(Sh)hn ⊗A S2h0
(1)

= 0.
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Also, the cyclic relation works analogously,

τ(∂h⊗Ae h0 ⊗A · · · ⊗A hn − 1B ⊗Ae h(1)h
0 ⊗A · · · ⊗A h(n+1)h

n)

= h1 ⊗A · · · ⊗A t`ν−1(∂h)hn ⊗A S2h0⊗A
− h(2)h

1 ⊗A h(3)h
2 · · · ⊗A h(n+1)h

n ⊗A S2(h(1)h
0)⊗A

= h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0⊗A
− h(2)h

1 ⊗A h(3)h
2 · · · ⊗A h(n+1)h

n ⊗A s`ε(h(n+2))S2(h(1)h
0)⊗A

= h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0⊗A
− h(1)

(2)h
1 ⊗A h(1)

(3)h
2 · · · ⊗A h(1)

(n+1)h
n ⊗A h(1)

(n+2)Sh
(2)S2(h(1)

(1)h
0)⊗A

= h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0⊗A
− (∆n

` h
(1)
(2))(h

1 ⊗A h2 · · · ⊗A hn ⊗A Sh(2)S2(h(1)
(1)h

0))⊗A .

Again, projecting on coinvariants yields

1B ⊗H h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0

− 1B ⊗H (∆n
` h

(1)
(2))(h

1 ⊗A h2 · · · ⊗A hn ⊗A Sh(2)S2(h(1)
(1)h

0))

= 1B ⊗H h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0

− 1B ⊗H h1 ⊗A h2 · · · ⊗A hn ⊗A sr∂(h(1)
(2))Sh

(2)
(2)S

2(h(1)h
0))

= 1B ⊗H h1 ⊗A · · · ⊗A sr(∂h)hn ⊗A S2h0

− 1B ⊗H h1 ⊗A · · · ⊗A hn ⊗A tr∂(S2h)S2h0)
= 0,

as above; similarly for the remaining relations. Hence all operators descend to well-defined
maps B ⊗H Cn+1

A H → B ⊗H Cn+1
A H . In particular,

τn+1
n (b⊗H h0 ⊗A · · · ⊗A hn) = b⊗H S2h0 ⊗A · · · ⊗A S2hn, b ∈ B,

and τn+1
n = id if and only if S2 = id, analogously to the consideration for A-corings. 2

The next step is to apply the isomorphism (5.1.3). It follows from Corollary 5.1.3 follows
that φ : (H ⊗A CnAH)∂

'−→ CnAH is an isomorphism in all degrees n, and the map φ̄∂ :=
φπ∂ explicitly reads

φ̄∂ : BnAH → CnAH, h0 ⊗A · · · ⊗A hn⊗A 7→ (∆n−1
` Sh0)(h1 ⊗A · · · ⊗A hn). (5.2.1)

Correspondingly, define
H\,∂ := {CnAH}n≥0,

(ab)using the same notation as before. In degree zero, set C0
AH := A. Note that H\,∂ is a

cocyclic module over k only (and not overA); we will refer to it as the Hopf-cocyclic module
associated to a Hopf algebroid H . The cosimplicial and cocyclic operators on H\,∂ can be
described as follows (the fact that they define a cocyclic module will be proven in Theorem
5.2.5 below). The coface maps are

δi(h1 ⊗A · · · ⊗A hn) =

 1⊗A h1 ⊗A · · · ⊗A hn if i = 0,
h1 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn if 1 ≤ i ≤ n,
h1 ⊗A · · · ⊗A hn ⊗A 1 if i = n+ 1.

(5.2.2)
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In degree zero, set

δja =
{
t`a if j = 0,
s`a if j = 1. ∀ a ∈ A.

The codegeneracies read

σi(h1 ⊗A · · · ⊗A hn) = h1 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1. (5.2.3)

For the cocyclic operation, we finally set in each degree n

τn(h1 ⊗A · · · ⊗A hn) = (∆n−1
` Sh1)(h2 ⊗A · · · ⊗A hn ⊗A 1). (5.2.4)

The property of S being an isomorphism of twisted bimodules induces a similar property for
the cocyclic operator: the map τn is a map of (A,A)-bimodules, from I(CnAH)� , that is
‘t` multiplied from the right on the first and from the left on the last factor’ to �(CnAH)J ,
which means ‘s` multiplied from the left on the first and from the right on the last factor’, as
is the case for τ1 = S.

5.2.2 Remark The operators (5.2.2)–(5.2.4) first appeared in [CoMos5] in an explicit exam-
ple, and were shown to make sense in general in [KhR3], defining a Hopf-cocyclic module
for any Hopf algebroid. Our Theorem 5.2.5 below states that they can be obtained natu-
rally from the standard A-coring cocyclic operators (1.2.4) associated to H (by covariant
localisation and the isomorphism (5.1.3)).

Since for the definition of the underlying cosimplicial module only the underlying left bial-
gebroid structure of H is needed, one easily verifies:

5.2.3 Proposition For an arbitrary left bialgebroid U , the space C•AU is a cosimplicial mod-
ule by means of the above structure maps.

5.2.4 Remark An analogous result holds for right bialgebroids.

Adding the cocyclic operator (5.2.4) to Proposition 5.2.3 gives the following theorem, gen-
eralising a similar result in [Cr3] from Hopf algebras to Hopf algebroids:

5.2.5 Theorem For a Hopf algebroid H , the formulae (5.2.2)–(5.2.4) equip H\,∂ with the
structure of a cocyclic module if and only if S2 = id. In particular,

τn+1
n (h1 ⊗A · · · ⊗A hn) = S2h1 ⊗A · · · ⊗A S2hn. (5.2.5)

PROOF: We proceed in much the same way as in the proof of Proposition 5.2.1. Consider
(1.2.4) for C := H and ψ := S2. Since φ̄∂ : HA

\,S2 → H\,∂ is surjective with right inverse

h1 ⊗A · · · ⊗A hn 7→ 1H ⊗A h1 ⊗A · · · ⊗A hn⊗A,

it suffices to show that φ̄∂ commutes with the structure maps, i.e.,

δiφ̄∂ = φ̄∂δi for 0 ≤ i ≤ n+ 1,
σiφ̄∂ = φ̄∂σi for 0 ≤ i ≤ n− 1,
τ φ̄∂ = φ̄∂τ,

(5.2.6)
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where the left hand side refers to the maps (5.2.2)–(5.2.4) above, whereas the right hand side
refers to (1.2.4) for ψ = S2.

We will use the identities

∆n−1
` Sh = Sh(n) ⊗A · · · ⊗A Sh(1),

∆n−1
` S2h = S2h(1) ⊗A · · · ⊗A S2h(n),

(5.2.7)

which easily follow by induction from higher twisted coassociativity (2.6.8), as well as
Proposition 2.6.4. Consider now left and right hand sides of the third equation in (5.2.6)
for ψ = S2. We have

φ̄∂τn+1(h0 ⊗A h1 ⊗A · · · ⊗A hn⊗A) = (∆n−1
` Sh1)(h2 ⊗A · · · ⊗A hn ⊗A S2h0).

On the other hand,

τnφ̄∂(h0 ⊗A h1 ⊗A · · · ⊗A hn⊗A) = τn((∆n−1
` Sh0)(h1 ⊗A · · · ⊗A hn))

= (∆n−1
` S(Sh(n)

0 h1))(Sh
(n−1)
0 h2 ⊗A · · · ⊗A Sh(1)

0 hn ⊗A 1)

by (5.2.7). Since S is an anti-algebra morphism on H , this reads

τnφ̄∂(h0 ⊗A h1 ⊗A · · · ⊗A hn⊗A) =

= (∆n−1
` Sh1∆n−1

` S2h
(n)
0 )(Sh(n−1)

0 h2 ⊗A · · · ⊗A Sh(1)
0 hn ⊗A 1).

Hence, for φ̄∂τ = τ φ̄∂ to hold it suffices to show that

h1 ⊗A · · · ⊗A hn−1 ⊗A S2h0 =

= (∆n−1
` (S2h

(n)
0 ))(Sh(n−1)

0 h1 ⊗A · · · ⊗A Sh(1)
0 hn−1 ⊗A 1),

(5.2.8)

as an element inH� ⊗A �H� ⊗A · · · ⊗A �H . The case n = 2 is shown in the subsequent
lemma, and higher degrees will follow by induction.

5.2.6 Lemma For each h ∈ H , we have

(i ) (Sh(1))(1)h(2) ⊗A (Sh(1))(2) = Sh
(2)
(1)h(2) ⊗A Sh

(1)
(1) = 1H ⊗A Sh,

(ii ) S2h
(2)
(1)Sh

(1) ⊗A S2h
(2)
(2) = 1H ⊗A S2h,

as elements inH� ⊗A �H .

PROOF: With the right comonoid identities (2.5.6) as well as (2.6.10) and (2.6.4) we have

1⊗A Sh = 1⊗A S(h(1)sr(∂h(2)))

= t`εsr∂h(2) ⊗A Sh(1)

= sr∂h(2) ⊗A Sh(1)

= Sh
(2)
(1)h

(2)
(2) ⊗A Sh

(1) = Sh
(2)
(1)h(2) ⊗A Sh

(1)
(1),

which proves the first part; the second part can be shown by simply applying the first equation
to an element of the form h′ = Sh. 2
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By the same calculation one proves h2 ⊗A S2h = S2h
(2)
(1)Sh

(1)h⊗A S2h
(2)
(2), i.e. (5.2.8) for

n = 2. Henceforth, assume (5.2.8) to be already true for n − 1 and show that it holds for n
as well. Again, with the help of (5.2.7), (2.6.11), (2.6.10) and (2.6.4), we obtain

h1 ⊗A · · · ⊗A hn ⊗A S2h0 =

= h1 ⊗A (∆n−1
` S2h

(n)
0 )(Sh(n−1)

0 h2 ⊗A · · · ⊗A Sh(1)
0 hn ⊗A 1)

= h1 ⊗A S2h0
(n)
(1)Sh

(n−1)
0 h2 ⊗A · · · ⊗A S2h0

(n)
(n−1)Sh

(1)
0 hn ⊗A S2h0

(n)
(n)

= h1 ⊗A s`ε(S2h0
(n)
(1) )S

2h0
(n)
(2)Sh

(n−1)
0 h2 ⊗A · · · ⊗A S2h0

(n)
(n)Sh

(1)
0 hn ⊗A S2h0

(n)
(n+1)

= sr∂(Sh0
(n)
(1) )h1 ⊗A S2h0

(n)
(2)Sh

(n−1)
0 h2 ⊗A · · · ⊗A S2h0

(n)
(n)Sh

(1)
0 hn ⊗A S2h0

(n)
(n+1)

= S2h0
(n+1)
(1) Sh

(n)
0 h1 ⊗A S2h0

(n+1)
(2) Sh

(n−1)
0 h2 ⊗A · · ·

· · · ⊗A S2h0
(n+1)
(n) Sh

(1)
0 hn ⊗A S2h0

(n+1)
(n+1)

= (∆n
` S

2h
(n+1)
0 )(Sh(n)

0 h1 ⊗A · · · ⊗A Sh(1)
0 hn ⊗A 1),

i.e. the desired claim, where higher coassociativity was used again.
The remaining identities in (5.2.6) easily follow by deploying twisted coassociativity,

Lemma 2.6.6 and Proposition 2.6.4. The proof of the identity for δn+1 repeats a similar
(and similarly tedious) induction as is done above. The opposite direction is obtained by
considering (5.2.5) for the case n = 1. 2

Consequently, in case S2 = id the map φ̄∂ is a morphism of cocyclic modules and we
are in a position to depict the situation by a commutative diagram (in each degree):

H\ H\,∂ .-
φ̄∂

H\ H\,∂-φ̄∂

?

(β, σ, τ)

?

(β, σ, τ)

(5.2.9)

5.2.7 Definition In case S2 = id, we denote the associated Tsygan’s cyclic bicomplex of
the cocyclic module H\,∂ by CC•,•∂ (H), and define HH•∂(H), HC•∂(H) and HP •∂ (H) to
be its Hochschild and cyclic cohomology groups, respectively. We will refer to these as
Hopf-Hochschild and Hopf-cyclic cohomology.

5.2.8 Hopf-Cyclic Cohomology Twisted by a Grouplike Element If σ ∈ GH = G`H ∩
GrH is a grouplike element for the Hopf algebroid H (cf. §2.6.11), one may twist H\,∂

by a grouplike element, similarly as for Hopf algebras [CoMos4]. The motivation for such
an extension (at least in the Hopf algebra case) came from examples of quantum groups or
compact matrix pseudogroups [Wo], where the antipode is not involutive any more but rather
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fulfills S2h = σhσ−1. In such a case, the cosimplicial and cocyclic operators read

δi(h1 ⊗A · · · ⊗A hn) =

 1⊗A h1 ⊗A · · · ⊗A hn
h1 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn
h1 ⊗A · · · ⊗A hn ⊗A σ

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1.

δja =
{
t`a
s`aσ

if j = 0,
if j = 1,

σi(h1 ⊗A · · · ⊗A hn) = h1 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1,
τn(h1 ⊗A · · · ⊗A hn) = (∆n−1

` S(σh1))(h2 ⊗A · · · ⊗A hn ⊗A 1),
(5.2.10)

where a ∈ A, hi ∈ H, i = 1, . . . , n, which can be shown to determine a cocyclic module
if S2h = σhσ−1 (where σ−1 = Sσ). We denote the corresponding cohomology groups by
HH•∂,σ(H), HC•∂,σ(H) and HP •∂,σ(H). Although we use the same symbol, one should not
confuse the grouplike element with the codegeneracies.

5.2.1 Connes’ Associated Bicomplex
Let us have a brief look at the associated Connes’ bicomplex (BC•,•∂ (H), β,B) for the
cocyclic module H\,∂ . It is defined as follows:

BCp,q∂ (H) =
{
Cp−qA H if q ≥ p,
0 if q < p.

(5.2.11)

The Hochschild coboundary β : CnAH → Cn+1
A H is given, as generally in (1.1.11), by

β =
n+1∑
i=0

(−1)iδi, (5.2.12)

using the operators (5.2.2) (or, if need be, using the twisted ones in (5.2.10)). In case n = 0
one has

βa = t`a− s`a, a ∈ A.

The operator (not to be confused with the algebra B)

B : Cn+1
A H → CnAH, B := Nσ−1(1− λn+1)

may be calculated with the explicit formula for the extra codegeneracy σ−1 : Cn+1
A H →

CnAH , σ−1 := σnτn+1, which here reads

σ−1(h⊗A h1 ⊗A · · · ⊗A hn) = σn((∆n
` Sh)(h

1 ⊗A · · · ⊗A hn ⊗A 1H))

= (Sh)(1)h1 ⊗A · · · ⊗A (Sh)(n)h
n ⊗A ε((Sh)(n+1))

≡ (Sh)(1)h1 ⊗A · · · ⊗A t`ε((Sh)(n+1))(Sh)(n)h
n

= (∆n−1
` Sh)(h1 ⊗A · · · ⊗A hn),

by (2.1.8) and (5.2.7). This is formally the same operation as the coinvariant localisation
which, however, maps from a different space. Also, for n = 0 one finds σ−1h = εSh =
ν−1∂. In particular,

Bh = ν−1∂h+ εh h ∈ H.
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As in the case of Hopf algebras [CoMos4], this expression can be simplified by passing to
the quasi-isomorphic normalised bicomplex (B̄C•∂(H), β, B̄), which is defined in a similar
manner:

B̄Cp,q∂ (H) =
{
C̄p−qA H if q ≥ p,
0 if q < p,

(5.2.13)

where

C̄nAH =
{

(ker ε)⊗An if n ≥ 1,
ker(s` − t`) if n = 0. (5.2.14)

While the form of the Hochschild coboundary β remains unchanged, the new horizontal
operator becomes

B̄ = Nσ−1 for n ≥ 0.

Specifically, for n = 0,
B̄h = ν−1∂h h ∈ H.

5.2.9 Left Haar Measures on Left Bialgebroids An important motivation to introduce the
dual Hopf cyclic homology in Chapter Six is the subsequent Proposition 5.2.11 from [KhR3],
which tells us that in some cases Hopf-cyclic cohomology is not sufficiently interesting.
This hinges on the existence of a Haar system, a notion from [KhR3] which we can apply
without major reformulations since it only relies on the left bialgebroid structure, and this is
essentially the same [KhR3, Lem. 2.1] as used here.

5.2.10 Definition Let U be a left bialgebroid with structure maps as before and let T ∈
Hom(−,A)(U� , AA), that is a map T : U → A with T (t`au) = T (u)a. The map T is
called a left Haar system for the left bialgebroid U if

mU (s`T ⊗ id)∆` = t`T.

It is called normal if T (1U ) = 1A.

This is still sufficient but is slightly weaker than the version in [KhR3], which requires
mU (s`T ⊗ id)∆` = s`T and s`T = t`T .

5.2.11 Proposition [KhR3] LetH be a Hopf algebroid that admits a normal left Haar system
on its underlying left bialgebroid structure. Then we have

HP even
∂ (H) = ker(s` − t`) and HP odd

∂ (H) = 0.

PROOF: Introduce the map s : C•AH → C•−1
A H given by

sn(h1 ⊗A · · · ⊗A hn) = s`(Th1)h2 ⊗A · · · ⊗A hn.

If one introduces the (co-augmented) complex ker(s` − t`) ι−→ C•AH , where ι : ker(s` −
t`)→ A is the canonical embedding and s−1 is defined as restriction, one sees that sβ+βs =
id. Hence one obtains a contracting homotopy for the Hochschild complex of H\,∂ and
consequently HHn(H) = 0 for n > 0 and HH0(H) = ker(s` − t`). Finally, apply an
SBI-sequence kind of argument and the periodicity of HP . 2

See [Cr3] for this result in the context of Hopf algebras.
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5.2.12 Comparison to Earlier Approaches In the definition of para-Hopf algebroids from
[KhR3] as presented in §2.6.13(ii), the condition T 2 = idH was already implemented in
the definition of a para-antipode T , implying the missing left bialgebroid axiom (2.1.4) (see
[KhR3, Lem. 2.1]). From the perspective of obtaining cocyclic structures we are mainly
interested in the case S2 = idH , too, see Theorem 5.2.5. Furthermore, the antipode axioms
in Definition 2.6.1 from [BSz2] imply the ones (with the exception of the condition T 2 = id)
in §2.6.13(ii)(a)–(e), as is seen from Lemma 5.2.6 and Proposition 2.6.4(i). For the opposite
direction cf. [BSz2, Prop. 4.2].

In particular, the approach via left and right bialgebroids used here avoids the somewhat
technical condition (2.6.14), which in our context appears only in the auxiliary Lemma 5.2.6.
Moreover, we gained the possibility to define coinvariants and to see the Hopf-cyclic struc-
ture ‘descending’ from a standard coalgebra (coring) cocyclic module (cf. §1.2.5) by means
of the projection (5.2.1). This is particularly helpful in the example of Lie-Rinehart algebras
when hunting for an antipode (cf. Subsection 4.2.2) and its corresponding cyclic structure
(which cannot be so easily guessed from (2.6.14)).

5.3 Hopf-Hochschild Cohomology as a Derived Functor
In the next theorem we are going to show that Hopf-Hochschild cohomology given by the
complex (C•AH,βσ) for a grouplike element σ from (5.2.10) can be seen as a derived functor
of the cotensor product functor.

5.3.1 Coefficients Observe that the cosimplicial module given by (5.2.2) and (5.2.3) tac-
itly determines cohomology with values in the base algebra A. More generally, let M ∈
Comod-H with coaction M∆m =: m(0)⊗Am(1) and defineC•MH := {M⊗AH⊗An}n≥0.
For a grouplike element σ ∈ GH , the operators

δi(m⊗A h
1 ⊗A · · · ⊗A h

n) =

M∆m⊗A h
1 ⊗A · · · ⊗A h

n

m⊗A h
1 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A h
n

m⊗A h
1 ⊗A · · · ⊗A h

n ⊗A σ

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

δj(m) =
{

M∆m
m⊗A σ

if j = 0,
if j = 1,

σi(m⊗A h
1 ⊗A · · · ⊗A h

n) = m⊗A h
1 ⊗A · · · ⊗A εh

i+1 ⊗A · · · ⊗A h
n 0 ≤ i ≤ n− 1

(5.3.1)
give C•MH the structure of a cosimplicial module (we do not address the question here
how to extend this to a cocyclic module with coefficients). Denote by H•σ(H,M) the cor-
responding (Hopf-)Hochschild cohomology computed by (C•MH,βσ). In particular, with
the notation from Definition 5.2.7, one recovers H•σ(H,A) = HH•∂,σ(H). Observe at this
point that the fact that one can define Hopf-Hochschild homology with ‘trivial’ coefficients
(i.e. with values in A) may be interpreted as a consequence of the existence of both left and
right H-coactions on A as in (2.3.7) (whereas a priori there is only one left U -action on A).
This, in turn, we saw to be strongly connected (under certain projectivity assumptions) to the
appearance of two duals of U , cf. Proposition 3.1.9.

5.3.2 The Cobar Complex The cohomology groups of the complex associated to (5.3.1) are
calculated by finding a suitable resolution provided by a generalisation of the classical cobar
complex [Ad, Do]. It is in some sense the complex arising from the so-called (co)path space
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PN• := {Nn+1}n≥0 associated to any cosimplicial object N•: one has PNn := Nn+1

in degree n and the cosimplicial operators are shifted correspondingly. More precisely, put
M := H in (5.3.1) with right H-coaction simply given by the left coproduct ∆`. Then the
(co)path space

Cob•σ(H) := {H ⊗A H⊗An}n≥0

associated to the cosimplicial space C•HH has cosimplicial pieces given by

δ̃i(h0 ⊗A · · · ⊗A hn) =
{
h0 ⊗A · · · ⊗A ∆`h

i ⊗A · · · ⊗A hn
h0 ⊗A · · · ⊗A hn ⊗A σ

if 0 ≤ i ≤ n,
if i = n+ 1,

σ̃i(h0 ⊗A · · · ⊗A hn) = h0 ⊗A · · · ⊗A εhi+1 ⊗A · · · ⊗A hn 0 ≤ i ≤ n− 1.

A coboundary β′σ : Cobnσ(H) → Cobn+1
σ (H) is defined by β′σ =

∑n+1
i=0 (−1)iδ̃i, and it is

easy to see that that β′σ β
′
σ = 0. We refer to (Cob•σ(H), β′σ) as the cobar complex ofH . One

can then describe Hopf-Hochschild cohomology as follows:

5.3.3 Theorem Let H be a left bialgebroid and M a right H-comodule. Then there is an
isomorphism

H•σ(H,M) ' Cotor•H(M,Aσ).

In particular, one has
HH•∂,σ(H) ' Cotor•H(A,Aσ),

where Aσ is A seen as left H-comodule induced by the grouplike element σ and A is seen
as a right H-comodule with respect to the grouplike element 1H .

PROOF: The proof follows standard homological algebra arguments, slightly adapted to the
case at hand. Recall firstly from (2.3.7) that for any grouplike element σ the maps ∆A

σ a :=
s`(a)σ andA∆σ := t`(a)σ induce left and right H-comodule structures on A, respectively.
The left H-coaction (in each degree) on Cob•σ(H) is simply ∆` ⊗ id⊗•H . Observe that β′σ is
a morphism of left H-comodules. Moreover, the maps

sn−1 : Cobnσ(H)→ Cobn−1
σ (H), h0 ⊗A · · · ⊗A hn 7→ s`(εh0)h1 ⊗A · · · ⊗A hn

fulfill s β′σ + β′σ s = id, hence s together with the maps s−1 := ε and the source map s` is a

contracting homotopy for the complex (Cob•σ(H), β′σ) over Aσ . Correspondingly, Aσ
∆A

σ−→
Cob•σ(H) is a resolution of Aσ by (free hence injective) left H-comodules: exactness in
degree > 0 was shown a moment ago and as for degree 0, observe that the space kerβ′σ =
{h ∈ H | ∆`h = h ⊗A σ} is precisely given by elements of the form s`(a)σ for all a ∈ A
and fixed σ, and hence is isomorphic to A.

Now letM be a rightH-comodule with coaction M∆ : M →M⊗AH and recall that the
groups Cotor•H(M,Aσ) are computed by M H Cob•σ(H). To finish the proof it suffices to
show that the isomorphism

φ : M H Cob•σ(H) '−→ C•MH, m⊗Ah0⊗A · · ·⊗Ahn 7→ m⊗As`(εh0)h1⊗A · · ·⊗Ahn

is a morphism of complexes on the complex (C•MH,βσ) that computes Hochschild coho-
mology, that is

φ(idM ⊗ β′σ) = βσφ. (5.3.2)
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Furthermore, for the left H-comodule H ⊗A N with coaction ∆` ⊗ idN , where N is any
A-bimodule, one has

M HH ⊗A N = {m⊗A h⊗A n ∈M ⊗A H ⊗A N |
| m⊗A h(1) ⊗A h(2) ⊗A n = m(0) ⊗A m(1) ⊗A h⊗A n}.

Applying the operator (idM ⊗mHop ⊗ idN )(idM ⊗ idH ⊗ t`ε⊗ idN ) yields the relation

m⊗A h⊗A n = m(0) ⊗A t`ε(h)m(1) ⊗A n = M∆(mε(h))⊗A n,

for all elements m ⊗A h ⊗A n ∈ M HH ⊗A N . To prove (5.3.2) we now only consider
equality of the respective first summands, the rest being evident. One has

φ((idM ⊗ β′σ)(m⊗A h0 ⊗A h1 ⊗A · · · ⊗A hn) = m⊗A h0 ⊗A h1 ⊗A · · · ⊗A hn + . . .

= M∆(mε(h0))⊗A h1 ⊗A · · · ⊗A hn + . . .

= M∆m⊗A s`(εh0)h1 ⊗A · · · ⊗A hn + . . .

= βσφ(m⊗A h0 ⊗A h1 ⊗A · · · ⊗A hn).
2

5.4 Hopf-Cyclic Cohomology of Commutative Hopf Alge-
broids

In case of a commutative Hopf algebroid one can make more specific statements about the
Hopf-cyclic cohomology groups: they are essentially determined by the Hopf-Hochschild
groups, see Theorem 5.4.4. We thereby generalise an idea for (commutative) Hopf algebras
in [KhR1, Thm. 4.2] to Hopf algebroids.

5.4.1 Commutative Hopf Algebroids A commutative Hopf algebroid H necessarily has a
commutative base algebra A. Furthermore, the left counit of the underlying left bialgebroid
fulfills the required properties of a right counit and likewise the left coproduct can be used
as right coproduct. Hence adopting the alternative perspective in §2.6.8, that is, constructing
the right bialgebroid out of a left bialgebroid and an (invertible) anti-algebra isomorphism
S satisfying certain properties (see §2.6.8), a commutative Hopf algebroid may always be
described (up to automorphism) by a left bialgebroid structure (H,A, s`, t`,∆, ε) and a right
bialgebroid structure (H,A, t`, s`,∆, ε) plus an antipode fulfilling

St` = s`, Ss` = t`, mH(S ⊗ idH)∆` = t`ε, mH(idH ⊗ S)∆` = s`ε. (5.4.1)

One recovers this way the definition of commutative Hopf algebroids in [Ra]. In the rest of
this section, we assume H to be a commutative Hopf algebroids with this description.

For the sake of simplicity, we consider only the case where the grouplike element is
σ = 1. Correspondingly, for the cobar complex denote Cob•(H) := Cob•1(H).

5.4.2 Proposition Let H be a commutative Hopf algebroid over commutative base algebra
A. Then Cob•(H) is a para-cocyclic H-comodule with cocyclic operator

τ̃n : Cobn(H) → Cobn(H),
h0 ⊗A · · · ⊗A hn 7→ h0

(1) ⊗A h
0
(2)Sh

1
(n)h

2 ⊗A · · · ⊗A h0
(n)Sh

1
(2)h

n ⊗A h0
(n+1)Sh

1
(1),
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which is cocyclic if and only if S2 = id. In particular,

τ̃n+1
n (h0 ⊗A h1 ⊗A · · · ⊗A hn) = h0 ⊗A S2h1 ⊗A · · · ⊗A S2hn.

PROOF: We only prove the cocyclic identity τ̃n+1
n = id and leave the remaining identities

for a cocyclic module to the reader. Using the commutativity of H , the identities (5.4.1) as
well as (2.6.11) (for the structure maps of the commutative Hopf algebroid specified above),
one obtains

τ̃2
n(h0 ⊗A · · · ⊗A hn) = h0

(1) ⊗A h
0
(2)Sh

2
(n)h

3Sh0
(2n+1)h

0
(2n+2)S

2h1
(n)Sh

1
(n−1)

⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n)h

0
(2n+3)S

2h1
(n+1)Sh

1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+4)h

0
(3n−1)S

2h1
(2n−3)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+3)h

0
(3n)S

2h1
(2n−2)Sh

1
(1) ⊗A h

0
(n+1)Sh

0
(n+2)Sh

2
(1)S

2h1
(2n−1)

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3Sh0
(2n)h

0
(2n+1)t

`εh1
(n−1)

⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n−1)h

0
(2n+2)S

2h1
(n)Sh

1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+3)h

0
(3n−2)S

2h1
(2n−4)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+2)h

0
(3n−1)S

2h1
(2n−3)Sh

1
(1) ⊗A s

`εh0
(n+1)Sh

2
(1)S

2h1
(2n−2)

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3Sh0
(2n−1)h

0
(2n)

⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n−2)h

0
(2n+1)S

2h1
(n−1)Sh

1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+2)h

0
(3n−3)S

2h1
(2n−5)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+1)h

0
(3n−2)S

2h1
(2n−4)Sh

1
(1) ⊗A Sh

2
(1)S

2h1
(2n−3)

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3 ⊗A h0
(3)Sh

2
(n−1)h

4Sh0
(2n−2)h

0
(2n−1)t

`εh1
(n−2) ⊗A · · ·

· · · ⊗A h0
(n−1)Sh

2
(3)h

nSh0
(n+2)h

0
(3n−5)S

2h1
(2n−6)Sh

1
(2)

⊗A h0
(n)Sh

2
(2)Sh

0
(n+1)h

0
(3n−4)S

2h1
(2n−5)Sh

1
(1) ⊗A Sh

2
(1)S

2h1
(2n−4)

...

= h0
(1) ⊗A h

0
(2)Sh

2
(n)h

3 ⊗A · · · ⊗A h0
(n−1)Sh

2
(3)h

n ⊗A h0
(n)Sh

2
(2) ⊗A S

2h1S2h2
(1),

where the vertical dots mean another n − 3 repetitions of the same three steps as before.
Repeating the same procedure another n− 1 times, one finds

τ̃nn (h0 ⊗A · · · ⊗A hn) = h0
(1) ⊗A h

0
(2)Sh

n
(n) ⊗A S

2h1Sh
n
(n−1) ⊗A · · · ⊗A S

2hn−1Sh
n
(1).

Hence finally

τ̃n+1
n (h0 ⊗A · · · ⊗A hn)

= h0
(1) ⊗A h

0
(2)Sh

0
(2n+1)S

2h1S2hn(n)Sh
n
(n−1)

⊗A h0
(3)Sh

0
(2n)S

2h2S2hn(n+1)Sh
n
(n−2) ⊗A · · ·

· · · ⊗A h0
(n)Sh

0
(n+3)S

2hn(2n−1)Sh
n
(1)S

2hn−1 ⊗A h0
(n+1)Sh

0
(n+2)S

2hn(2n)

...

= h0 ⊗A S2h1 ⊗A · · · ⊗A S2hn,



5.5. EXAMPLE: LIE-RINEHART ALGEBRAS 123

with the same steps as before. 2

5.4.3 Lemma The injection

C•AH ↪→ Cob•(H), h1 ⊗A · · · ⊗A hn 7→ 1H ⊗A h1 ⊗A · · · ⊗A hn

is a morphism of cosimplicial modules, and if H is a commutative Hopf algebroid with
S2 = id it is even a morphism of cocyclic modules.

PROOF: Straightforward computation. 2

As a consequence, we can generalise a result in [KhR1] from commutative Hopf algebras
to commutative Hopf algebroids:

5.4.4 Theorem If H is a commutative Hopf algebroid, its Hopf-cyclic cohomology is given
as

HC•∂(H) =
⊕
i≥0

HH•−2i
∂ (H).

PROOF: We do not give the proof here but rather refer to Theorem 6.3.3, the dual version
of this theorem. Replacing there the bar resolution with the cobar resolution and the tensor
product over H with the cotensor product over H , one can easily dualise the proof given
there. 2

5.5 Example: Lie-Rinehart Algebras

We show in this section that the Hopf-cyclic cohomology of the universal enveloping algebra
of a Lie-Rinehart algebra is given by its Lie-Rinehart homology, a generalised notion of
Lie algebra homology. The corresponding Theorem 5.5.7 is not only a generalisation of the
analogous statement for Lie algebras (Example 1.3.3(ii)), but may also justify why we regard
Hopf-cyclic cohomology as a noncommutative analogue of Lie-Rinehart homology.

Before we dedicate our attention to Hopf-cyclic cohomology of V L, let us recall a few
facts about the homology of Lie-Rinehart algebras [Rin, Hue2].

5.5.1 Lie-Rinehart Homology Let L be projective as an A-module and consider the graded
left V L-module V L ⊗A ∧•AL (both factors carry the obvious right and left A-module
structures, respectively, and here ⊗A refers to them). Consider the k-linear operator
b′A,L : V L⊗A ∧nL→ V L⊗A ∧n−1L

b′A,L(u⊗A X1 ∧ · · · ∧Xn) :=

:=
n∑
i=1

(−1)i−1uXi ⊗A X1 ∧ · · · X̂i · · · ∧Xn

+
∑

1≤i<j≤n

(−1)i+ju⊗A [Xi, Xj ] ∧X1 ∧ · · · X̂i · · · X̂j · · · ∧Xn,

(5.5.1)
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where uXi is the right (A,L)-module structure that corresponds to right multiplication in
V L. Now b′A,L is a V L-linear differential and if s denotes suspension, we will call the
resulting chain complex

KA
• L := (V L⊗A ∧•AsL, b′A,L) (5.5.2)

the Koszul-Rinehart complex. If M is a right (A,L)-module (right V L-module), define
Lie-Rinehart homology with coefficients in M as

HA
• (L,M) := TorV L• (M,A). (5.5.3)

In case L is projective as an A-module, the Koszul-Rinehart complex KA
• L provides a

projective resolution in the category of left V L-modules, and (M ⊗V L KA
• L, bA,L :=

idM ⊗ b′A,L) computes this homology with coefficients in M . The differential (to which
we will refer as Lie-Rinehart boundary) is then explicitly given as

bA,L(m⊗A X1 ∧ · · · ∧Xn) =

=
n∑
i=1

(−1)i−1[m,Xi]⊗A X1 ∧ · · · X̂i · · · ∧Xn

+
∑

1≤i<j≤n

(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · X̂i · · · X̂j · · · ∧Xn,

(5.5.4)

for m ∈ M . If L is finitely generated A-projective of constant rank n, the Koszul-Rinehart
complex even yields a finite projective resolution of length n with V L ⊗A ∧nAL being the
highest non-zero term; see [Rin, Hue2] for further details. In case M = A, Theorem 4.2.7
leads to

5.5.2 Theorem [Hue2, Thm. 2] Let ∂ be an exact operator as in Theorem 4.2.7, making A a
right (A,L)-module, denoted A∂ . The Batalin-Vilkovisky algebra (∧•AL, ∂) coincides with
(A∂ ⊗V L KA

• L, bA,L) as a chain complex. In particular, when L is projective over A the
complex (∧•AL, ∂) computes HA

• (L,A∂) = TorV L• (A∂ , A), i.e. the Lie-Rinehart homology
of L with values in its base algebra A∂ .

5.5.3 Remark Observe that the Lie-Rinehart boundary bA,L and coboundary dA,L (which
will only be introduced in (5.6.2)) correspond precisely to left and right counits of V L: one
has

bA,L(a⊗V L X) = ∂(aX), whereas (dA,La)(X) = ε(Xa), a ∈ A, X ∈ L.

We stress here that in the absence of such a flat right connection on A, Lie-Rinehart homol-
ogy with coefficients inA cannot even be defined. The chains of the formA∂⊗V LKA

• L in a
sense correspond to what we called coinvariant localisation in Section 5.1, and will reappear
in Section 6.3.

We turn to Hopf-cyclic cohomology. Let us state another corollary to Proposition 4.2.11.

5.5.4 Corollary Let (A,L) be a Lie-Rinehart algebra. Any flat right (A,L)-connection on
A defines a cocyclic module V L\,∂ associated to the universal enveloping algebra V L.
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5.5.5 Remark We want to underline again that flatness of the connection is needed in Propo-
sition 4.2.11(i) to show that S∂ is an anti-algebra homomorphism; this, in turn, is crucial for
the cyclic relations to hold in (the proof of) Theorem 5.2.5, in particular for τn+1

n = id.

The following lemma will serve as a tool to simplify the calculation of Hopf-Hochschild
cohomology of V L. Strictly speaking, it is an immediate consequence of the generalised
PBW theorem; we give a proof that fully relies on combinatorial arguments.

Like V L, the symmetric algebra SAL is generated by the elements both in L andA, with
the difference that SAL is commutative and hence acts trivially on A. Now any A-module
L′ can be seen as a Lie-Rinehart algebra with trivial bracket and zero anchor; in such a case,
V L′ = SAL

′, and the A-coring structure is given again as ∆SL′X = X ⊗ll 1 + 1 ⊗ll X
for X ∈ L′ and ∆SL′a = a ⊗ll 1 = 1 ⊗ll a for a ∈ A. Note that in this case the counit
ε : SAL′ → A becomes in this case a morphism of algebras. We then have

5.5.6 Lemma For any Lie-Rinehart algebra (A,L), theA-module isomorphism π : SAL→
V L from (1.4.5) is an isomorphism of A-corings.

PROOF: Let (∆`, ε) be the (left) comonoid structure on V L and (∆SL, ε) the one on SAL.
The assertions are ε π = ε, which is trivial, as well as (π ⊗ π)∆SL = ∆` π. Clearly, by the
PBW theorem it suffices to prove this identity on elements aXp ∈ SAL for a ∈ A, X ∈ L,
and a natural number p ≥ 0. For k ≥ 0, denote the kth iterated action of the anchor on the
algebra A by Xk(a). We have

π(aXp) =
1

p+ 1

p∑
k=0

(
p+ 1
k + 1

)
Xk(a)Xp−k =

1
p+ 1

p∑
k=0

(
p+ 1
k + 1

)
Xp−k(a)Xk.

In particular, for a = 1 one gets π(Xp) = Xp. Furthermore, for the respective coproducts
holds

∆SL(aXp) = ∆`(aXp) =
p∑
j=0

(
p

j

)
aXj ⊗ll Xp−j =

p∑
j=0

(
p

j

)
aXp−j ⊗ll Xj ,

since both sides are A-linear. Hence for a = 1 or a trivial L-action on A the statement is
immediate and reproduces the argument for Lie and Hopf algebras. Otherwise, one has to
consider

∆`π(aXp) =
1

p+ 1

p∑
k=0

(
p+ 1
k + 1

)
Xk(a)∆`X

p−k

=
1

p+ 1

p∑
k=0

p−k∑
j=0

(
p+ 1
k + 1

)(
p− k
j

)
Xk(a)Xj ⊗ll Xp−k

=
1

p+ 1

p∑
k=0

p−k∑
j=0

(p+ 1)!
(k + 1)! j! (p− k − j)!

Xk(a)Xj ⊗ll Xp−k,
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and compare this with

(π ⊗ π) ∆SL(aXp) = (π ⊗ π) (
p∑
j=0

(
p

j

)
aXj ⊗ll Xp−j)

=
p∑
j=0

j∑
k=0

1
j + 1

(
p

j

)(
j + 1
k + 1

)
Xk(a)Xj−k ⊗ll Xp−j

=
p∑
j=0

j∑
k=0

1
p+ 1

(
p+ 1
j + 1

)(
j + 1
k + 1

)
Xk(a)Xj−k ⊗ll Xp−j

=
1

p+ 1

p∑
j=0

j∑
k=0

(p+ 1)!
(k + 1)! (p− j)! (j − k)!

Xk(a)Xj−k ⊗ll Xp−j .

Observe here that the map π ⊗ π is only well defined on operations aX(1) ⊗ll X(2) =
X(1)⊗ll aX(2) in the sum of the coproduct, rather than on single summands. To interchange
the rôles of j and k in this last double sum, one lets k run from 0 to p and j to p − k only.
Correspondingly, one has to raise the numbers j → j+k to obtain the same coefficients; one
immediately sees that this operation produces the same result as above, hence ∆`π(aXp) =
(π ⊗ π) ∆SL(aXp), as claimed. 2

Recall that Proposition 4.2.11 states that it is essentially a right (A,L)-connection ∂ onA
determining a right counit and an antipode on a Lie-Rinehart algebra, hence a cocyclic struc-
ture. The following theorem may also be called a Hochschild-Kostant-Rosenberg-Theorem
for Lie-Rinehart algebras or Lie algebroids. It is a generalisation of a similar result for
universal enveloping algebras of Lie algebras [CoMos2, Cr3].

5.5.7 Theorem Let (A,L) be a Lie-Rinehart algebra, with L projective over A, and k con-
taining Q. Furthermore, let ∂ a flat right (A,L)-connection on its base algebra A (or equiv-
alently, an exact generator ∂ for the Gerstenhaber algebra ∧•AL).

(i ) The Hochschild cohomology of the cocyclic module V L\,∂ is isomorphic to the exte-
rior algebra of L over A, i.e.,

HH•∂(V L)' ∧•A L.

This map is induced by both the antisymmetrisation map

Alt : ∧nAL→ SAL
⊗lln, X1∧· · ·∧Xn 7→

1
n!

∑
σ∈P (n)

signσXσ(1)⊗ll · · ·⊗llXσ(n),

as well as the map

P : SAL⊗
lln → ∧nAL, u1 ⊗ll · · · ⊗ll un 7→ pru1 ∧ · · · ∧ prun,

where pr : SAL→ S1
AL is the projection on the direct summand S1

AL = L = ∧1
AL,

and this isomorphism does not depend on ∂.
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(ii ) The periodic cyclic cohomology of V L\,∂ is isomorphic to the Lie-Rinehart algebra
homology of L (cf. §5.5.1), i.e.,

HP •∂ (V L) '−→ HA
odd(L,A∂)⊕HA

even(L,A∂),

where A∂ is a right V L-module via ∂.

PROOF: Part (i): since the Hochschild cohomology uses only the pertinent A-coring struc-
ture, the PBW map induces an isomorphism HH•∂(SL) '−→ HH•∂(V L) and we can restrict
our investigation to SAL. The proof follows standard homological algebra procedures.

Recall at first some facts about the symmetric algebra on modules, cf. e.g. [Eis, App.
A2]. Assume first L to be free of finite dimension N over A, with basis {ei}1≤i≤N . Then
SAL = ⊕p≥0S

p
AL is the polynomial ring on the ‘variables’ ei and SpAL is the free A-

module of rank
(
N+p−1
N−1

)
, with basis the set of monomials of degree p in ei. The graded dual

of SAL is defined to be SA(L)∗ = ⊕pSpA(L)∗ = ⊕p Hom(A,−)(S
p
AL,A). Observe that the

distinction between left and right duals as in Section 3.1 disappears here since s` = t`. If L
is A-free and A contains Q, one has [Eis, Prop. A2.7] SA(L)∗ ' SA(L∗) as algebras, where
L∗ := HomA(L,A); as a consequence, we will just write SAL∗. The module structures
given in (3.1.14) or (3.1.12) transfer to this context as follows: one obtains an SAL∗-module
structure on SAL by

∇r : SAL⊗ SAL∗ −→ SAL, u⊗ v∗ 7−→ 〈v∗, u(1)〉u(2),

where the Sweedler components refer to the coproduct on SAL. Each φ ∈ L∗ acts as
a derivation on SAL: for two homogeneous elements u,w ∈ SAL one has ∇rφuw =
〈φ, u(1)w(1)〉u(2)w(2) since ∆SL is a homomorphism of k-algebras. Furthermore, since
φ ∈ L∗ = S1

AL
∗, the only nonzero elements in 〈., .〉 are those for which u(1)w(1) ∈ S1

AL,
i.e., one of the u(1), w(1) lies in S1

AL = L and the other one lies in S0
AL = A. Now any ele-

ment in SAL is a sum of products of elements of L, hence for any u ∈ SAL+ :=
∑
j>0 S

j
AL

one obtains ∆SLu = 1 ⊗ll u + u ⊗ll 1 + x with x ∈ SAL+ ⊗ll SAL+ (this is a general
property of connected bialgebras, see e.g. [GrVaFi, Lemma 14.10]). Therefore,

∇rφuw = 〈φ, u(1)〉u(2)w + 〈φ,w(1)〉uw(2) = (∇rφu)w + u∇rφw.

To compute HH•∂(SAL) one may use a Koszul resolution of A that is dual to the con-
struction in [Kas3, XVIII.7]. We will, however, generalise a method in [Cr3] and proceed
mainly as there, considering a coaugmented complex. Versions of this proof can also be
found in [KhR2] and, in the framework of Lie algebroids, in [Cal].

Define the (dual) Koszul complex K̃•AL := SAL⊗A∧•AL, where each K̃n
AL := SAL⊗A

∧nAL carries a left SAL-coaction by ∆SL⊗id∧•AL. This yields a resolution ofA by left SAL-
comodules: consider the coaugmented complex

A
1SL−→ SAL⊗A ∧0

AL
d−→ SAL⊗A ∧1

AL
d−→ . . . , (5.5.5)

with coboundary d defined as

d(u⊗A X1 ∧ · · · ∧Xn) =
N∑
i=1

∇reiu⊗A ei ∧X1 ∧ · · · ∧Xn,
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which is easily seen not to depend on the chosen basis. One has

d d(u⊗A X1 ∧ · · · ∧Xn) =
N∑
i=1

N∑
j=1

〈ei, u(1)〉〈ej , u(2)〉u(3) ⊗A ei ∧ ej ∧X1 ∧ · · · ∧Xn,

and while 〈ei, u(1)〉〈ej , u(2)〉 is only nonzero if i = j, the wedge powers in this case vanish.
Hence d 1SL = d d = 0. The exactness of (5.5.5) is shown by the existence of a contracting
homotopy: define s : K̃n

AL→ K̃n−1
A L by

s(u⊗A X1 ∧ · · · ∧Xn) =
N∑
j=1

(−1)j+1uXj ⊗A X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn.

Then one obtains

ds(u⊗A X1 ∧ · · · ∧Xn) =

=
N∑
i=1

N∑
j=1

(−1)j+1(∇reiu)Xj ⊗A ei ∧X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn

+
N∑
i=1

N∑
j=1

(−1)j+1u⊗A X1 ∧ · · · ∧Xj−1 ∧ 〈ei, Xj〉ei ∧Xj+1 · · · ∧Xn,

whereas

sd(u⊗A X1 ∧ · · · ∧Xn) =
N∑
i=1

N∑
j=1

(−1)j(∇reiu)Xj ⊗A ei ∧X1 ∧ · · · ∧ X̂j ∧ · · · ∧Xn

+
N∑
i=1

N∑
j=1

(∇reiu)ei ⊗A X1 ∧ · · · ∧Xn.

Hence (d s+ s d)(u⊗A ω) = (p+ n)(u⊗A ω), where p, n ∈ N and u ∈ SpAL, ω ∈ ∧nAL.
This shows exactness of (5.5.5) in degree > 0. As for degree zero, note that the kernel of
d : SAL→ SAL⊗A ∧1

AL, u 7→
∑n
i=1∇reiu⊗A ei is isomorphic to A. One concludes that

the complex A
1SL−→ K̃•AL is acyclic and gives a resolution of A by free (hence injective) left

SAL-comodules. Even simpler (cf. [Lo1, Thm. 3.2.2]), since L is A-free, one can write L =
L1⊕ . . .⊕LN , where each Li is free of dimension one. By SA(L1⊕L2) ' SAL1⊗ASAL2

and ∧A(L1 ⊕ L2) ' ∧AL1 ⊗A ∧AL2, one reduces the consideration to the dimension one
situation, and easily sees that tensoring resolutions K̃•AL = ⊗iK̃•ALi leads to the same
conclusion.

Now by Theorem 5.3.3 one has HH•(SAL) = Cotor•SAL(A,A), hence it can be e.g.
computed by A SALK̃

•
AL. Under the isomorphism

f : A SALK̃
•
AL = A SALSAL⊗A ∧•AL

'−→ ∧•AL, u⊗A ω 7−→ ε(u)ω,

one has (idA ⊗A f)du = 0 for each homogeneous u ∈ SpAL for p > 0; in case p = 0 this
follows trivially from A = ker d. Hence

(A SALK̃
•
AL, idA ⊗A d) ' (∧•AL, 0),
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as complexes.
To show that the isomorphism on cohomology is induced by P and Alt, we compare the

Koszul resolution to the standard cobar resolution (Cob•(SAL), β′) from Theorem 5.3.3:
the map

idSAL⊗A P : Cob•(SAL)→ K̃•AL, u⊗ll v1⊗ll · · · ⊗ll vn 7→ u⊗A pr (v1)∧ · · · ∧pr (vn)

will be shown to be a chain map over the identity, that is

(idSAL ⊗A P )β′ = d (idSAL ⊗A P ).

Both sides, applied to an element U = u⊗llW ∈ Cobn(SAL), whereW ∈ Sp1A L⊗ll · · ·⊗ll
Spn

A L, vanish under the projection pr if (p1, . . . , pn) 6= (1, . . . , 1). Set U = u ⊗ll X1 ⊗ll
· · · ⊗ll Xn, where Xi ∈ L. Consequently, one has

d (idSAL ⊗A P )(u⊗ll X1 ⊗ll · · · ⊗ll Xn) =
N∑
i=1

∇reiu⊗A ei ∧X1 ∧ · · · ∧Xn,

whereas with the same argument

(idSAL ⊗A P )β′(u⊗ll X1 ⊗ll · · · ⊗ll Xn) = (idSAL ⊗A pr )(∆SL(u) ∧X1 ∧ · · · ∧Xn),

by ∆SLXi = Xi ⊗ll 1 + 1 ⊗ll Xi and pr (1SAL) = pr (a) = 0. Comparing the two sides,
one requires the identity

(idSAL ⊗A pr )∆SLu =
N∑
i=1

∇reiu⊗A ei

to hold, which indeed follows from (3.1.23), observing again that all basis elements of
degrees higher than one vanish under the projection. Hence (idSAL ⊗A P ) is a chain
map between the two resolutions of A; applying the functor A SAL− produces the map
idA SAL(idSAL ⊗A P ) = P , and by standard homological algebra this yields an isomor-
phism on cohomology. The property P Alt = id∧•AL shows that this isomorphism is induced
by Alt as well. Finally, it is easy to see that P is a morphism of complexes, that is, annihilates
elements of the form

1⊗llv1⊗ll· · ·⊗llvn+
n−1∑
i=1

(−1)iv1⊗ll· · ·⊗ll∆SLvi⊗ll· · ·⊗llvn+(−1)n+1v1⊗ll· · ·⊗llvn⊗ll1.

It is equally easy to see that βAlt = 0.
More generally, if L is flat over A (for example, if L is A-projective; in fact, flatness

suffices for part (i)), we continue as in [Lo1, Thm. 3.2.2]: there exists a filtered ordered set
J as well as an inductive system of free and finite dimensional A-modules Lj such that

L ' lim
−→
j∈J

Lj ,

cf. [Bou]. Since both HH (which is the derived functor Cotor here) as well as S com-
mute with inductive limits over a filtered ordered set, the flat case follows from the finite
dimensional (free) case.
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Part (ii): this part of the proof is a generalisation of a method in [Cr3] for the universal
enveloping of a Lie algebra.

Denote here by (BC•∂(V L), β∂ , B∂) Connes’ bicomplex associated to the cocyclic mod-
ule V L\,∂ , cf. §5.2.1, and by (BC•(V L), β,B) Connes’ bicomplex associated to the stan-
dard A-coring cocyclic module V LA\ , cf. §1.2.5. Recall that Theorem 4.2.7 tells us that
Lie-Rinehart homology is computed by (∧•AL, ∂). Consider, therefore, the mixed complex

K : A
0 // ∧1

AL
bA,L

oo
0 //

bA,L

oo
0 // ∧2

AL
bA,L

oo
0 // . . .

bA,L

oo ,

where bA,L is the Lie-Rinehart boundary operator as in (5.5.4) with values in A∂ , seen as a
right V L-module via ∂. We will show that (K, 0, bA,L) and (BC•∂(V L), β∂ , B∂) are quasi-
isomorphic mixed complexes, which implies the claim. Similarly as in Theorem 5.2.5, it is
easier to deduce the action ofB∂ from the one of the operatorB (employing φ̄∂ from (5.2.1))
since it arises from a fairly simple cyclic operator.

Recall from Subsection 5.2 that V LA\ = {BnAV L}n≥0, that is, BnAV L := V L⊗
lln+1 in

degree n: the cyclic tensor product reduces tautologically to⊗ll since source and target maps
are equal. Generally, we have B = Nσ−1(1− τ), where for V LA\ the operators N, σ−1, τ
are given as the following left A-module maps on BnAV L:

σ−1(u0 ⊗ll u1 ⊗ll · · · ⊗ll un) = ε(u0)u1 ⊗ll · · · ⊗ll un,
τ(u0 ⊗ll u1 ⊗ll · · · ⊗ll un) = (−1)n(u1 ⊗ll · · · ⊗ll un ⊗ll u0),

N = 1 + τ + . . .+ τn.

The map φ̄∂ from (5.2.1) reads here, degree-wise

φ̄∂ : V L⊗
lln+1 → V L⊗

lln, u0 ⊗ll · · · ⊗ll un 7→ (∆n−1
` S∂u0)(u1 ⊗ll · · · ⊗ll un), (5.5.6)

and B∂ φ̄∂ = φ̄∂B holds. On generators a ∈ A, X ∈ L with the antipode (4.2.16), one
calculates

∆n−1
` S∂(aX) = −

n∑
i=1

1⊗
lli−1 ⊗ll aX

i
⊗ll 1⊗

lln−i + ∂(aX)⊗ll 1⊗
lln−1. (5.5.7)

The antisymmetrisation map

Alt : ∧nAL→ V L⊗
lln, X1∧· · ·∧Xn 7→

1
n!

∑
σ∈P (n)

signσXσ(1)⊗ll · · ·⊗llXσ(n) (5.5.8)

can now be seen to be a quasi-isomorphism of mixed complexes (K, 0, bA,L) →
(BC•∂(V L), β∂ , B∂) as follows (note that (5.5.8) is a well-defined map to the chosen ten-
sor product): for the Hochschild boundaries this was precisely shown in part (i) and it only
remains to prove that

B∂ ◦Alt = Alt ◦ bA,L.

Using the right inverse (5.1.4) of φ̄∂ , it is seen that

Alt(aX1 ∧ · · · ∧Xn) = φ̄∂
( 1
n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)

)
.
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Hence

B∂
(
Alt(aX1 ∧ · · · ∧Xn)

)
= B∂(φ̄∂(

1
n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)))

= φ̄∂(B(
1
n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)))

= φ̄∂Nσ−1

( 1
n!

∑
σ∈P (n)

signσ a⊗ll Xσ(1) ⊗ll · · · ⊗ll Xσ(n)

− (−1)nXσ(1) ⊗ll · · · ⊗ll Xσ(n) ⊗ll a
)

= φ̄∂N(
1
n!

∑
σ∈P (n)

signσ aXσ(1) ⊗ll · · · ⊗ll Xσ(n))

= φ̄∂
( 1
(n− 1)!

∑
σ∈P (n)

signσ aXσ(1) ⊗ll · · · ⊗ll Xσ(n)

)
,

since L ⊂ ker ε and ε is a left A-module map. Theorem 5.5.2 now explains how ∂ equips
A with a right V L-module structure induced by the right (A,L)-module structure [a,X] :=
a∂X −X(a) (note that [1A, X] = ∂X 6= 0 in general). Using (5.5.6) and (5.5.7) gives

B∂(Alt(aX1 ∧ · · · ∧Xn)) =

= − 1
(n− 1)!

n∑
i=1

∑
σ∈P (n)

signσ aXσ(2) ⊗ll · · · ⊗ll Xσ(1)Xσ(i) ⊗ll · · · ⊗ll Xσ(n)

+
1

(n− 1)!

∑
σ∈P (n)

signσ
(
a∂Xσ(1) −Xσ(1)(a)

)
Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

= Alt
( n∑
i=1

(−1)i+1[a,Xi]X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑
i<j

(−1)i+ja[Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

)
= Alt ◦ bA,L(a⊗A X1 ∧ · · · ∧Xn).

This finishes the proof of the Theorem. 2

Since s` ≡ t` and S2 = id (hence σ = 1H for the grouplike element in this example), the
first Hopf-Hochschild cohomology group is formed precisely by the primitive elements of
V L; by part (i) of the preceding Theorem, we have

imβ ⊕ ∧•AL = kerβ.

Hence with Proposition 4.2.1 the following statement makes sense.

5.5.8 Corollary The (left) primitive elements of the (left) bialgebroid given by the univer-
sal object V L of a Lie-Rinehart algebra (A,L) are isomorphic to (A,L) as a Lie-Rinehart
algebra, i.e.,

(A,PV L) '−→ (A,L).
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In a certain sense, this is the ‘easy half’ of a Cartier-Milnor-Moore type theorem for
Lie-Rinehart algebras; this essentially states that one has a left bialgebroid isomorphism
V (PU) ' U , where U is a cocommutative left bialgebroid (assumed to be filtered in a
certain way and ‘cocomplete’) and where P, V are the functors from Proposition 4.2.3. See
[MoeMrč3] for the full theorem and details, [MiMo] for the original version for Lie algebras
(cf. also [Q1, App. B.4] for a different approach), and [Lo2] for an extension to a vast choice
of bialgebras of different type.

5.6 Example: Jet Spaces
In this section we calculate the Hopf-cyclic cohomology for the jet spaces JL of a Lie-
Rinehart algebra (A,L): the outcome is in a certain sense dual to the result in the previous
section. We therefore recall some facts about Lie-Rinehart cohomology first.

5.6.1 Lie-Rinehart Cohomology Let (A,L) be a Lie-Rinehart algebra andM ∈ V L-Mod.
Dually to §5.5.1, define the Lie-Rinehart cohomology groups with values in M by

H•(L,M) := Ext•V L(A,M). (5.6.1)

If L is A-projective, H•(L,M) is the homology of the complex HomV L(KA
• L,M) '

Hom(A,−)(∧•AL,M), cf. (5.5.2), and the Lie-Rinehart coboundary is given by

dA,Lφ(X0 ∧ · · · ∧Xn) :=

:=
n∑
i=0

(−1)iεVL

(
Xiφ(X0, . . . , X̂i, . . . , Xn)

)
+

∑
i<j

(−1)i+jφ([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xn),

(5.6.2)

where εVL : V L→ A denotes in this section the left counit of V L, induced by the anchor, as
before.

5.6.2 Theorem Let (A,L) be a Lie-Rinehart algebra for which L is finitely generated pro-
jective over A of constant rank. There are canonical isomorphisms

HH•(JL) ' H•(L,A),

HC•(JL) '
⊕
i≥0

H•+2i(L,A),

where the left hand side refers to the Hopf-cyclic cohomology groups.

PROOF: Denote L∗ := HomA(L,A). By the given conditions we have
∧•
A L
∗ '

HomA(
∧•
AL,A). To compute the Hochschild cohomology, instead of the cobar resolu-

tion one may use the dual of the Koszul-Rinehart resolution (5.5.2), given by the cochain
complex (cf. [NeTs])

0 −→ A
s`
JL−→ JL

∇−→ JL⊗A ∧1
AL
∗ ∇−→ JL⊗A ∧2

AL
∗ ∇−→ . . .
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where∇ is the continuation of the Grothendieck connection (4.3.2):

∇(φ⊗ ω)(X1, . . . , Xn+1) =

=
n+1∑
i=1

(−1)i−1∇`Xi
φ⊗ ω(X1, . . . , X̂i, . . . , Xn+1)

+
∑
i<j

(−1)i+jφ⊗ ω([Xi, Xj ], X1 . . . , X̂i, . . . , X̂j , . . . , Xn+1),

for φ ∈ JL, ω ∈ ∧nAL∗ and X1, . . . , Xn+1 ∈ L. It follows from (4.3.4) that this is indeed
a resolution of A in the category of free (hence injective) left JL-comodules (observe that
s`JL : A → JL is a morphism of JL-comodules). To compute the Cotor-groups, consider
invariants as in (2.4.1): one has the isomorphism

∧•AL∗
'−→ A JL

(
JL⊗A ∧•AL∗

)
,

given byX1∧· · ·∧Xn 7→ 1A⊗1JL⊗X1∧· · ·∧Xn. Since the unit 1JL ∈ JL is given by the
left counit εVL : V L → A, the induced differential is exactly the Lie-Rinehart coboundary
dA,L. This proves the isomorphism of the Hochschild cohomology groups.

The second isomorphism on cyclic cohomology now follows from Theorem 5.4.4. 2

5.6.3 Remark Observe that our computations remain consistent: to be defined at all, both
the Hopf algebroid structure for V L and Lie-Rinehart homology with values in A require
an additional piece of information: the flat right connection ∂. In contrast to that, the Hopf
algebroid structure on JL (see Remark 4.3.3) as well as Lie-Rinehart cohomology already
make sense without such a datum.

5.7 Example: Convolution Algebras

Let G ⇒ G0 be an étale groupoid over a compact base manifold G0 and consider the Hopf
algebroid given by its convolution algebra C∞c (G) over C∞(G0), see Section 4.4.

Recall from our general considerations that the spaces of interest for cohomology were

C∞c (G)\,∂ := {CnC∞(G0)C∞c (G)}n≥0, (5.7.1)

where

CnC∞(G0)C∞c (G) = C∞c (G)⊗llC∞(G0) · · · ⊗llC∞(G0) C∞c (G) ' C∞c (Gn), (5.7.2)

n times in degree n, where Gn = Gt×tG0
· · · t×tG0

G.

5.7.1 Theorem For any étale groupoid G ⇒ G0 over a compact manifold G0, the periodic
cyclic cohomology of C∞c (G)\,∂ is trivial, i.e.,

HP even
∂ (C∞c (G)) = C∞c (G0) and HP odd

∂ (C∞c (G)) = 0.
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PROOF: The (restriction) map T : C∞c (G)→ C∞(G0), u 7→ u(1(·)) fulfills

(∗(s`T ⊗ id)∆`u)(g) =
{
u(g) if g = 1x for some x ∈ G0,
0 else,

hence T is a left Haar system for C∞c (G). The statement follows now directly from Proposi-
tion 5.2.11 and the SBI-sequence. 2

The triviality of this cohomology (and in general the cohomology for Hopf algebroids
whose underlying bialgebroids carry a left Haar system) is one of the motivations to intro-
duce a certain dual theory. This will be the subject of the next chapter.



Chapter 6

Dual Hopf-Cyclic Homology

Hopf-cyclic cohomology gives trivial results in some cases: as already seen in Theorem
5.7.1, in case of the existence of a (left) Haar measure, the Hopf-cyclic complex computing
cohomology is shown to be acyclic [KhR3]. Clearly, taking any Hom-duals also does not
furnish any new kind of information: hence the need of a different, dual cyclic homology in
the sense of cyclic duality [Co2].

6.1 The Cyclic Dual of Hopf-cyclic Homology

Recall from Section 3.1 that for a left bialgebroid U there exist two natural Hom-duals, cor-
responding to the bimodule structure �U� . Both of them are (under suitable conditions)
right bialgebroids [KSz]. Hence it appears natural to start with a right bialgebroid to investi-
gate the cyclic dual. Naively, a simplicial complex with faces dual to (5.2.2) should contain
product and counit rather than coproduct and unit.

Let V be a right bialgebroid over the base algebra B, with structure maps as before. To
make the ring multiplication well-defined, to start with, one chooses a tensor product

V B⊗V := VJ⊗�V = V ⊗kV/spank{vsr(b)⊗v′−v⊗sr(b)v′, v, v′ ∈ V, b ∈ B}; (6.1.1)

(taking e.g. the tensor product V� ⊗ IV with respect to the target maps and the monoid
structure of V op leads to a left bialgebroid again). At the second step, however, one runs into
the problem that a bialgebroid is a monoid and comonoid in different monoidal categories:
the algebra B carries both left and right V -comodule structures, but has a single right V -
module structure only. As follows from Subsection 5.3, these two comodule structures are
those that appear in the coface operators δ0 and δn+1 of (5.2.2), in form of the trivial coaction.
For its dual version, already when defining Hochschild homology (with values in the base
algebra) by means of the simplicial pieces, one therefore realises the necessity of a ‘two-
sided’ bialgebroid equipped with respectively both left and right actions on the base algebra
and its opposite; that is, one needs the full Hopf algebroid structure.

Consequently, let H be a Hopf algebroid with structure maps as before and set

H\
∂ := {CBn H}n≥0, (6.1.2)

135
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where CBn H := HB⊗n in degree n and CB0 H := B in degree zero. To giveH\
∂ the structure

of a simplicial space, define face and degeneracy operators by

di(h1
B⊗ · · · B⊗ hn) =

 sr(∂h1)h2
B⊗ · · · B⊗ hn

h1
B⊗ · · · B⊗ hihi+1

B⊗ · · · B⊗ hn
h1

B⊗ · · · B⊗ hn−1t`(εhn)

if i = 0,
if 1 ≤ i ≤ n− 1,
if i = n,

si(h1
B⊗ · · · B⊗ hn) =

 1B⊗ h1
B⊗ · · · B⊗ hn

h1
B⊗ · · · B⊗ hiB⊗ 1B⊗ hi+1

B⊗ · · · B⊗ hn
h1

B⊗ · · · B⊗ hnB⊗ 1

if i = 0,
if 1 ≤ i ≤ n− 1,
if i = n.

(6.1.3)
Elements of degree zero (i.e. ofB) are mapped to zero, d0(b) = 0 for all b ∈ B. We write the
degeneracies in this detail to stress that the ‘extra’ degeneracy s−1 := tn+1sn used for cyclic
homology (cf. (1.1.7)) is quite different from the classical one for k-algebras. To extend the
simplicial structure to the structure of a cyclic module on H\

∂ , we use the assumption that
the antipode is invertible and set

tn(h1
B⊗ · · · B⊗ hn) = S−1(h1

(2) · · ·h
n−1
(2) h

n)B⊗ h1
(1)B⊗ h2

(1)B⊗ · · · B⊗ hn−1
(1) (6.1.4)

as a cyclic operator on CBn H for each degree n ≥ 2, and t1(h) = S−1h in degree one. One
easily verifies that this operator is well-defined. Similarly as for Hopf-cyclic cohomology,
the fact that S−1 is a morphism �HJ → IH� of twisted bimodules transfers to the cyclic
operator: tn is a map �(CBn H)J → I(CBn H)� of (twisted) (B,B)-bimodules as well.

As in §5.2.8, one could also introduce grouplike elements in the dual theory, but we will
avoid this here.

The main result of this section is:

6.1.1 Theorem LetH be a Hopf algebroid with invertible antipode. The para-cyclic module
H\
∂ is the cyclic dual of the para-cocyclic moduleH\,∂ from Theorem 5.2.5 (and vice versa).

PROOF: We will prove that the prescriptions in §1.1.17 turn the set of operators (δ•, σ•, τ•)
from (5.2.2), (5.2.3) and (5.2.4) into the set (d•, s•, t•) from (6.1.3) and (6.1.4). The subtlety
in this proof lies in the fact that this cannot simply done by replacing cofaces with degen-
eracies, codegeneracies with faces and so on, since H\,∂ = {CnAH}n≥0 from cohomology
and H\

∂ := {CBn H}n≥0 from homology do not have the same underlying bimodule struc-
tures: the respective tensor products are different. Hence one first needs to find a k-module
isomorphism CnAH → CBn H , which amounts to a generalisation to higher degrees of the
Hopf-Galois map from [Schau2, Thm. 3.5] (see also (2.2.1)) and its inverse from [BSz2] for
Hopf algebroids, cf. (2.2.3) and (2.6.15).

6.1.2 Lemma For each n ≥ 2, the k-modulesCnAH andCBn H are isomorphic as k-modules
by means of the (higher) Hopf-Galois map

ϕn : HB⊗ · · · B⊗H
'→ H ⊗A · · · ⊗A H (6.1.5)

h1
B⊗ · · · B⊗ hn 7→ h1

(1) ⊗A h
1
(2)h

2
(1) ⊗A · · · ⊗A h

1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n

= (∆n−1
` h1)(∆n−2

` h2) · · · (∆`h
n−1)(1⊗A · · · ⊗A 1⊗A hn),
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with inverse given by

ψn : H ⊗A · · · ⊗A H
'→ HB⊗ · · · B⊗H (6.1.6)

h1 ⊗A · · · ⊗A hn 7→ h
(1)
1 B⊗ S(h(2)

1 )h(1)
2 B⊗ S(h(2)

2 )h(1)
3 B⊗ · · · B⊗ S(h(2)

n−1)hn,

= h+
1 B⊗h−1 h

+
2 B⊗ · · · B⊗h−n−2h

+
n−1B⊗h−n−1hn,

using the notation h+
B⊗h− := h(1)

B⊗ Sh(2), see (2.2.3) and (2.2.13). Note that the first
map employs the left coproduct only, whereas the inverse uses the right one plus the antipode.
In case n = 1, set ϕ1 = ψ1 = idH ; in case n = 0, one combines the isomorphism
∂s` : Aop → B with the canonical isomorphism of k-modules A→ Aop.

PROOF: This is proven by induction on n ≥ 2. For n = 2, it can be directly checked. Hence
assume that the statement is already true for n, i.e., ϕn ψn = idCn

AH
and ψn ϕn = idCB

n H
.

As for n+ 1, note that one can decompose

ϕn+1 = (id⊗ ϕn) (ϕ2 ⊗ id⊗n−1) and ψn+1 = (ψ2 ⊗ id⊗n−1) (id⊗ ψn)

and then one verifies directly that ϕn+1 and ψn+1 are mutually inverse. 2

The cyclic dual of a cocyclic operator is given by its inverse, see §1.1.17. To continue the
proof, we hence need the inverse of the cocyclic operator (5.2.4) from cohomology:

6.1.3 Lemma Let σ ∈ GH be a grouplike element. If the inverse of the antipode S exists,
the cocyclic operator given by the map (5.2.4) is an automorphism of the k-modules CnAH
for n ≥ 1, with inverse

τ−1
n (h1 ⊗A · · · ⊗A hn) = (∆n−1

` S−1(hnσ−1))(1⊗A h1 ⊗A · · · ⊗A hn−1) (6.1.7)

for all n ≥ 1 as an (A,A)-bimodule morphism �(CnAH)J → I(CnAH)� . Likewise, the
operator (6.1.4) is an automorphism of the k-modules CBn H for all n ≥ 1 with inverse

t−1
n (h1B⊗ · · · B⊗hn) = h

(1)
2 B⊗ · · · B⊗h(1)

n B⊗S(h1h
(2)
2 · · ·h(2)

n ) (6.1.8)

for all n ≥ 1 as (B,B)-bimodule morphism I(CBn H)� → �(CBn H)J .

PROOF: Clearly, this can be verified directly; however, we pursue a strategy with more
structural insight, that is, we express the operator tn+1 in terms of tn and prove the lemma
by complete induction. For n = 1, (6.1.7) reads τ−1

1 = S−1, hence the induction start. Now
assume that the assertion already holds for degree n and introduce the following bijective
k-module morphism and its inverse,

φσ : H ⊗A H → H ⊗A H, hA⊗ h̃ 7→ ∆`h(σ−1h̃⊗ 1) = h(1)σ
−1h̃⊗A h(2),

φ−1
σ : H ⊗A H → HA⊗H, h⊗A h̃ 7→ h̃(2)

A⊗σS−1(h̃(1))h.

Observe that the tensor product A⊗ is the left bialgebroid version of (6.1.1), i.e., HA⊗H =
HJ ⊗A �H . Then φσ , φ−1

σ are morphisms with respect to the canonical left A-module
structures �(HA⊗H) → �(H ⊗A H) . One finds now that

τn+1 = (id⊗n−1 ⊗ φσ) (τn ⊗ id),
τ−1
n+1 = (τ−1

n ⊗ id) (id⊗n−1 ⊗ φ−1
σ ).
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Note that τn⊗id is only well-defined as a mapH⊗A· · ·⊗AH⊗AH → H⊗A· · ·⊗AHA⊗H ,
which is why the map φ is required. It can be directly seen that τn+1 and τ−1

n+1 are mutually
inverse; hence the induction is completed. As for the second part, introduce the maps

φ̃ : HB⊗H → H ⊗B H, hB⊗ h′ 7→ ∆coop
` h(h′ ⊗ 1) = h(2)h

′ ⊗B h(1),

φ̃−1 : H ⊗B H → HB⊗H, h⊗B h
′ 7→ h′

(1)
B⊗σS(h′(2))h,

which again can be directly checked to be mutually inverse. Here ⊗B is the tensor product
given as

H ⊗B H := H ⊗k H/spank{trbh⊗k h′ − h⊗k sr(µν−1b)h′, b ∈ B},

where µ, ν are given in (2.6.5) and µν−1 = id in case S2 = id. Then one has

tn+1 = (tn ⊗ id) (id⊗n−1 ⊗ φ̃),
t−1
n+1 = (id⊗n−1 ⊗ φ̃−1) (t−1

n ⊗ id),

continuing to argue in the same fashion as in the first part of the proof. 2

One can now immediately write down

τ−1
n ϕn(h1

B⊗ · · · B⊗ hn) =

= τ−1
n (h1

(1) ⊗A h
1
(2)h

2
(1) ⊗A h

1
(3)h

2
(2)h

3
(1) ⊗A · · · ⊗A h

1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n)

= S−1(h1(n)
(n) · · ·hn−1(n)

(2)h
n(n))⊗A S−1(h1(n−1)

(n) · · ·hn−1(n−1)
(2) hn(n−1))h1

(1) ⊗A · · ·

· · · ⊗A S−1(h1(1)
(n) · · ·hn−1(1)

(2)h
n(1))h1

(n−1)h
2
(n−2) · · ·h

n−1
(1) ,

and by higher twisted coassociativity one obtains

ϕntn(h1
B⊗ · · · B⊗ hn) = ϕn(S−1(h1

(2) · · ·h
n−1
(2) h

n)B⊗ h1
(1)B⊗ h2

(1)B⊗ · · · B⊗ hn−1
(1) )

= S−1(h1(n)
(n) · · ·hn−1(n)

(2)h
n(n))⊗A S−1(h1(n−1)

(n) · · ·hn−1(n−1)
(2) hn(n−1))h1

(1) ⊗A · · ·

· · · ⊗A S−1(h1(1)
(n) · · ·hn−1(1)

(2)h
n(1))h1

(n−1)h
2
(n−2) · · ·h

n−1
(1) .

Hence ϕn tn = τ−1
n ϕn or tn = ψn τ

−1
n ϕn. In the same fashion,

σn−1τnϕn(h1
B⊗ · · · B⊗ hn)

= σn−1(S(h1(n)
(1) )h

1
(2)h

2
(1) ⊗A · · · ⊗A S(h1(2)

(1))h
1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n ⊗A S(h1(1)
(1)))

= S(h1(n−1)
(1) )h1

(2)h
2
(1) ⊗A · · · ⊗A S(h1(1)

(1))h
1
(n)h

2
(n−1) · · ·h

n−1
(2) h

n

= sr∂(h1(n−1)
(1) )h2

(1) ⊗A S(h1(n−2)
)h1(n−1)

(2) h2
(2)h

3
(1) ⊗A · · ·

· · · ⊗A S(h1(1)
)h1(n−1)

(n−1)h
2
(n−1) · · ·h

n−1
(2) h

n

= h2
(1) ⊗A S(h1(n−2)

sr∂(h1(n−1)
(1) ))h1(n−1)

(2) h2
(2)h

3
(1) ⊗A · · ·

· · · ⊗A S(h1(1)
)h1(n−1)

(n−1)h
2
(n−1) · · ·h

n−1
(2) h

n

= h2
(1) ⊗A S(h1(n−2)

(1) )h1
(2)h

2
(2)h

3
(1) ⊗A · · · ⊗A S(h1(1)

(1))h
1
(n−1)h

2
(n−1) · · ·h

n−1
(2) h

n

...

= h2
(1) ⊗A h

2
(2)h

3
(1) ⊗A · · · ⊗A s

r∂(h1)h2
(n−1) · · ·h

n−1
(2) h

n,
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where the dots denote another n − 2 repetitions of the same procedure of the lines before:
one observes that the third compared to the sixth line from bottom has analogous left and
right coproduct Sweedler components of h1 with respectively one degree less and moved
one factor to the right. On the other hand,

ϕn−1d0(h1
B⊗ · · · B⊗ hn) = h2

(1) ⊗A h
2
(2)h

3
(1) ⊗A · · · ⊗A s

r∂(h1)h2
(n−1) · · ·h

n−1
(2) h

n,

hence d0 = ψn−1 σn−1τnϕn as claimed. The proof of the remaining identities is left to the
reader. 2

6.1.4 Corollary H\
∂ is a cyclic module if H\,∂ is cocyclic, i.e. if and only if S2 = id.

6.1.5 Definition In case S2 = id, denote the associated Tsygan’s cyclic bicomplex
of the cyclic module H\

∂ by CC∂•,•(H), and the associated Connes’ bicomplex by
(BC∂•,•(H), b, B), analogously as in §5.2.1. Define HH∂

• (H), HC∂• (H) and HP ∂• (H)
to be the associated Hochschild and cyclic homology groups. We will refer to these as dual
Hopf-Hochschild and dual Hopf-cyclic homology, respectively.

6.1.1 The Space of Invariants
In this subsection we make a few comments on a notion dual to coinvariants from Subsection
5.1, and its significance for dual Hopf-cyclic homology.

6.1.6 Invariants Let H be a Hopf algebroid with structure maps as before, and denote the
underlying right bialgebroid over B by Hr.

Furthermore, let M ∈ Comod-Hr be a right Hr-comodule (hence in particular a
(B,B)-bimodule) with coaction M∆ : M → M ⊗B

IHr , m 7→ m(0) ⊗B m(1). We
do not treat the details of right bialgebroid comodules here: these can be formulated mutatis
mutandis as in Sections 2.3 and 2.4 for left bialgebroid comodules (see e.g. [B3]). Analo-
gously to (2.4.1), for M ∈ Comod-Hr define the right bialgebroid (right) invariants of M
by

Mε := M HrB = {m ∈M | M∆m = m⊗B 1} ⊂M.

Considering Hr as a right Hr-comodule over itself by the right coproduct ∆r, we can
analogously to (2.3.11) equip the tensor product MB⊗ �Hr with the following right Hr-
comodule structure

M⊗H∆ : MB⊗ �Hr →M ⊗B
�Hr

J ⊗B
IHr , mB⊗h 7→ m(0)

B⊗h(1) ⊗B m(1)h(2).

One then finds, dually to Corollary 5.1.3:

6.1.7 Lemma For any M ∈ Comod-Hr, there is a canonical isomorphism

M
'−→ (MB⊗ �Hr )ε

of k-modules, given by
m 7−→ m(0)

B⊗Sm(1).



140 CHAPTER 6. DUAL HOPF-CYCLIC HOMOLOGY

PROOF: We have

M⊗H∆(m(0)
B⊗Sm(1)) = m(0)

B⊗Sm(2)
(2) ⊗

B m(1)Sm
(2)
(1)

= m(0)
B⊗Sm(1)

(2) ⊗
B s`εm

(1)
(1)

= m(0)
B⊗Sm(1) ⊗B 1H ,

where (2.1.8) and (2.6.10) have been used. Hence m(0)
B⊗Sm(1) ∈ (MB⊗ �Hr )ε, indeed.

It is easy to see that this is a bijective map, with inverse

(MB⊗ �Hr )ε →M, mB⊗h 7→ mν(εh).

2

6.1.8 Relation to Dual Hopf-Cyclic Homology Let n ≥ 0 and compare the chain spaces
CBn H of the Hopf-cyclic module (6.1.2) with the chain spaces BBnH = CBn+1H ⊗Be B
associated to the canonical cyclic module of H as B-ring (see §1.2.4). Since CBn+1H ∈
Comod-Hr, the preceding lemma yields the isomorphism CBn H ' (CBn+1H)ε =
CBn+1H HrB via the embedding

CBn H → CBn+1H, h1B⊗ · · · B⊗hn 7→ h
(1)
1 B⊗ · · · B⊗h(1)

n ⊗B S
(
h

(2)
1 · · ·h(2)

n ).

Combining this embedding with the canonical projection

CBn+1H = CBn HB⊗H → CBn H ⊗Be
H ' BBnH

yields a map
Ψε : CBn H → BBnH.

Related to this map, one would expect a commutative diagram that is in some sense dual to
the diagram (5.2.9) in cohomology, where the vertical arrows should rather be injections than
surjections. Such a statement at least holds for Hopf algebras [KhR1, KhR2]. Unfortunately,
for Hopf algebroids this does not appear to be that simple, and only works in special cases
(see Section 6.5 and Subsection 6.6.1). First of all, the precise nature of the map Ψε is in
general not clear to us. A related problem appears to be that H usually cannot be given the
structure of a coring over Be ' B ⊗k A, which is possibly required for the existence of a
well-defined injection CB• H ' CB•+1H HrB ↪→ BB• H ' CB•+1H ⊗Be B that would do
the job.

Apparently, Hopf-cyclic cohomology and dual Hopf-cyclic homology are ‘not dual
enough’ for such a symmetric picture. Possible ways to investigate include Hopf alge-
broid comodules ([B3, Def. 4.6], cf. Remark 3.3.7) or, as was suggested to us by G. Böhm,
(co)tensor products over so-called bicoalgebroids [BrzMi].

6.2 Dual Hopf-Hochschild Homology as a Derived Functor
In the next theorem we are going to show that the dual Hopf-Hochschild homology given by
the complex

(
CB• H, b =

∑n
j=0(−1)jdj

)
from (6.1.3) can be seen as a derived functor of

the tensor product functor.
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6.2.1 Coefficients As in the cohomological case, one may consider coefficients in the Hopf-
Hochschild complex. Let M be a right H-module with action (m,h) 7→ mh and define
CM• H := {M ⊗A HB⊗n}n≥0. Face and degeneracy operators are now given by

di(mB⊗h1
B⊗ · · · B⊗ hn) =

mh
1

B⊗h2
B⊗ · · · B⊗ hn

mB⊗h1
B⊗ · · · B⊗ hihi+1

B⊗ · · · B⊗ hn
mB⊗h1

B⊗ · · · B⊗ hn−1t`(εhn)

if i=0
if 1≤ i≤n− 1
if i=n,

si(mB⊗h1
B⊗ · · · B⊗ hn) =

mB⊗ 1HB⊗ h1
B⊗ · · · B⊗ hn

mB⊗ · · · B⊗ hiB⊗ 1B⊗ hi+1
B⊗ · · · B⊗ hn

mB⊗ h1
B⊗ · · · B⊗ hnB⊗ 1

if i=0
if 1≤ i≤n− 1
if i=n.

(6.2.1)
Elements of degree zero (i.e. ofM ) are mapped to zero, d0(m) = 0 for allm ∈M . The cor-
responding (dual Hopf-)Hochschild homology computed by

(
CM• H, b =

∑n
j=0(−1)jdj

)
will be denoted H•(H,M); in particular, if M = B∂ , one has, with the notation of Defini-
tion 6.1.5, H•(H,B∂) = HH∂

• (H).

6.2.2 The Bar Complex As in the cohomology case, we will calculate the homology groups
of the complex associated to (6.2.1) by finding an appropriate resolution, dual to the cobar
complex in Section 5.3. Such a resolution is provided by an analogue of the classical bar
complex. This is again in some sense the complex originating from the so-called path space
PM• := {Mn+1}n≥0 associated to any simplicial object M•; hence PMn = Mn+1 in
degree n, and face and degeneracy operators of the underlying simplicial object are shifted
correspondingly. For the simplicial space CH• H using M := H in (6.2.1), the simplicial
pieces of its path space

Bar•H := {HB⊗HB⊗n}n≥0

therefore read

d̃i(h0
B⊗ · · · B⊗ hn) =

{
h0

B⊗ · · · B⊗ hihi+1
B⊗ · · · B⊗ hn

h0
B⊗ · · · B⊗ hn−1t`(εhn)

if 0 ≤ i ≤ n− 1
if i = n,

s̃i(h0
B⊗ · · · B⊗ hn) =

{
h0

B⊗ · · · B⊗ hiB⊗ 1B⊗ hi+1
B⊗ · · · B⊗ hn

h0
B⊗ · · · B⊗ hnB⊗ 1

if 0 ≤ i ≤ n− 1
if i = n.

Defining b′ =
∑n
i=0(−1)id̃i, it is easily checked that b′ b′ = 0, and (Bar•H, b′) is called

the bar complex of H . A simple characterisation of the dual Hopf-Hochschild homology is
then the following.

6.2.3 Theorem Let H be a Hopf algebroid with structure maps as before, and let M be a
right H-module. If H is projective as a left B-module �H , there is an isomorphism

H•(H,M) '−→ TorH• (M,Aε).

In particular,

HH∂
• (H) '−→ TorH• (B∂ , Aε).

Here B∂ and Aε carry the canonical right and left H-module structures, originating from the
right and left counit, respectively.
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PROOF: The proof works in a conceptually analogous manner to the classical statement for
Hochschild homology of algebras. Recall (cf. e.g. [M, p. 146]) that for a projective left B-
module P the space HJ ⊗B P is projective as a left H-module, where the multiplication is
simply h′(hB⊗p) := h′hB⊗p. Evidently, BarnH isH-projective ifH isB-projective (with
respect to the module structure b �h := srb h for b ∈ B, h ∈ H). Now ε : H → A defines
an augmentation of the bar complex and we need to show thatAε

ε←− Bar•H is a projective
resolution of Aε in the category of (left) H-modules. The map b′ : BarnH → Barn−1H in
degree n > 0 is a morphisms of left H-modules if the H-module structure mentioned above
is used; as for degree zero, this property of the map ε : Bar0H → Aε follows from (2.1.4).
Then introduce the ‘extra degeneracy’

sn+1 : BarnH → Barn+1 H, h0
B⊗ · · · B⊗hn 7→ 1HB⊗h0

B⊗ · · · B⊗hn

for n ≥ 0. It is not particularly problematic to realise that sn−1 b
′ + b′ sn = id for n > 0;

furthermore, set s−1 := t` = sr∂ν to have ε s−1 = idA and sn−1 b
′ + b′ sn = id for

n ≥ 0. Hence, s is a contracting homotopy and (BarnH, b′) is acyclic. In particular, the
latter yields a resolution of Aε by projective left H-modules and can therefore be used to
compute the groups TorH• (M,Aε) for a right H-module M . Note that in case M = B the
functor (−)∂ := B∂ ⊗H − of coinvariants reappears here. For each n ≥ 0 one then obtains
an isomorphism

ψ : M ⊗H BarnH
'−→ CMn H, m⊗H h0

B⊗ · · · B⊗hn 7−→ mB⊗sr∂(h0)h1
B⊗ · · · B⊗hn,

and we are left to show that
ψ (idB ⊗ b′) = b ψ,

i.e. that (idB ⊗ b′) becomes the Hochschild differential b formed by the simplicial pieces
from (6.2.1) under the isomorphism ψ. We write this down only for the first summand, the
rest being clear. One has

ψ(idM ⊗ b′)(m⊗H h0
B⊗ · · · B⊗hn) = m∂(h0h1)B⊗h2

B⊗ · · · B⊗hn + . . .

= b f ′(m⊗H h0
B⊗ · · · B⊗hn),

using the properties of a right counit. 2

6.2.4 Remark Hence the dual Hopf-Hochschild homology groups are the left derived func-
tors of the functor (5.1.1) of coinvariants. In the context of Hopf algebras in [KhR1] these
are baptised Hopf algebra homology groups.

6.3 Dual Hopf-Cyclic Homology of Cocommutative Hopf
Algebroids

The aim of the following consideration is to generally calculate the dual Hopf-cyclic homol-
ogy of a cocommutative Hopf algebroid, as a generalisation to [KhR1, Thm. 4.1], where this
is done for Hopf algebras.

Clearly, cocommutativity only makes sense for a special kind ofA-corings: namely those
for which both left and right A-module structures coincide, and as a consequence A needs
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to be commutative. Observe that in case of a Hopf algebroid over commutative A with, say,
cocommutative right coproduct, the left coproduct is automatically cocommutative as well,
as follows from (2.6.10). In particular, A = B and both s` = t` as well as sr = tr.

6.3.1 Proposition Let H be a cocommutative Hopf algebroid over commutative base al-
gebra A with invertible antipode S. Then Bar•H is a para-cyclic H-module with cyclic
operator

t̃n : BarnH → BarnH,
h0B⊗ · · · B⊗ hn 7→

h0h1
(2) · · ·hn(2)

B⊗ S−1(h1
(1)
(2) · · ·hn−1

(1)
(2)hn

(1))B⊗ h1
(1)
(1)B⊗ · · · B⊗ hn−1

(1)
(1),

and is cyclic if and only if S−2 = id. In particular,

t̃n+1
n (h0B⊗ · · · B⊗ hn) = h0B⊗ S−2h1B⊗ · · · B⊗ S−2hn.

PROOF: We only prove the cyclicity condition t̃n+1
n = id and leave the remaining identities

defining a cyclic module to the reader. Since otherwise the Sweedler notation in this proof
may be ambiguous, we indicate the order in which the respective coproducts are taken by
inserting, at times, little gaps. By higher twisted coassociativity and the various antipode
properties in (2.6.4) and (2.6.11), one finds

t̃2n(h0B⊗ · · · B⊗ hn) =

= t̃n
(
h0h1

(2) · · ·hn(2)
B⊗ S−1(h1

(1)
(2) · · ·hn−1

(1)
(2)hn

(1))B⊗ h1
(1)
(1)B⊗ · · · B⊗ hn−1

(1)
(1)

)
= h0h1

(4) · · ·hn−1
(4)hn

(3)S−1(h1
(2)
(2) · · ·hn−1

(2)
(2)hn

(1)
(1))h1

(2)
(1) · · ·hn−1

(2)
(1)

B⊗ S−1
(
S−1(hn

(1)
(2))S

−1(h1
(2)
(3) · · ·hn−1

(2)
(3))h1

(1)
(2) · · ·hn−2

(1)
(2)hn−1

(1)
)

B⊗ S−1(h1
(3) · · ·hn−1

(3)hn
(2))B⊗ h1

(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1)

= h0h1
(3) · · ·hn−1

(3)hn
(3)S−1(hn

(1)
(1))

B⊗ S−1
(
S−1(hn

(1)
(2))S

−1(h1
(1)
(3) · · ·hn−2

(1)
(3)hn−1

(1)
(2))h1

(1)
(2) · · ·hn−2

(1)
(2)hn−1

(1)
(1)

)
B⊗ S−1(h1

(2) · · ·hn−1
(2)hn

(2))B⊗ h1
(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1)

= h0h1
(3) · · ·hn−1

(3)t`εhn
(1)
(2)B⊗ sr∂(h1

(1)
(2) · · ·hn−2

(1)
(2)hn−1

(1))S−2(hn
(1)
(1))

B⊗ S−1(h1
(2) · · ·hn−1

(2)hn
(2))B⊗ h1

(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1)

= h0h1
(2) · · ·hn−1

(2)
B⊗ S−2(hn(1))

B⊗ S−1(h1
(1)
(2) · · ·hn−2

(1)
(2)hn−1

(2)hn
(2))B⊗ h1

(1)
(1)B⊗ · · · B⊗ hn−2

(1)
(1),

where to obtain e.g. the second line the identity

(∆` ⊗ id⊗5)(∆r ⊗ id⊗4)(id⊗2 ⊗∆r ⊗ id)(id⊗∆` ⊗ id)(∆` ⊗ id)∆r =

= (∆` ⊗ id⊗5)(id⊗∆2
` ⊗ id⊗2)∆3

r

was used. By repeating the above computation another n− 2 times, one obtains

t̃nn(h0B⊗ · · · B⊗ hn) =

= h0h1
(2)

B⊗ S−2(h2
(1))B⊗ · · · B⊗ S−2(hn(1))B⊗ S−1(h1

(1)h2
(2) · · ·hn(2)).
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To end the proof we can now calculate

t̃n+1
n (h0B⊗ · · · B⊗ hn) =

= h0h1
(2)S−2(h2

(2)
(2) · · ·hn

(2)
(2))S

−1(h2
(3)
(2) · · ·hn

(3)
(2))S

−1(h1
(1)
(1))

B⊗ S−1
(
S−2(h2

(1)
(2) · · ·hn

(1)
(2))S

−1(h2(3) · · ·hn(3))S
−1(h1

(1)
(2))

)
B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0h1
(2)S−1(h1

(1)
(1)t

`εS−2(h2
(2)
(2) · · ·hn

(2)
(2)))

B⊗ S−2(h1
(1)
(2)h2(3) · · ·hn(3))S

−3(h2
(1)
(2) · · ·hn

(1)
(2))B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ t`ε(h1(2)S
−2(h2

(2)
(2) · · ·hn

(2)
(2)))S

−2(h1(1)h2(3) · · ·hn(3))S
−3(h2

(1)
(2) · · ·hn

(1)
(2))

B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ S−2(h1h2
(2)
(2) · · ·hn

(2)
(2))S

−3(h2
(1)
(2) · · ·hn

(1)
(2))

B⊗ S−2(h2(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ S−2(h1)B⊗ t`εS−2(h2(2) · · ·hn(2))S
−2(h2(1))

B⊗ S−2(h3(1))B⊗ · · · B⊗ S−2(hn(1))

= h0B⊗ S−2(h1)B⊗ · · · B⊗ S−2(hn).

2

6.3.2 Lemma The projection

π∂ : Bar•H → CB• H, h0B⊗ · · · B⊗ hn 7→ sr∂h0h1B⊗ · · · B⊗ hn

is a morphism of simplicial modules. If H is a cocommutative Hopf algebroid with A = B
and S−2 = id, the map π∂ is even a morphism of cyclic modules.

PROOF: Straightforward computation. 2

The following theorem generalises [KhR1, Thm. 4.1] from cocommutative Hopf algebras
(which in turn for H = kG generalised Karoubi’s theorem [Karou]) to cocommutative Hopf
algebroids.

6.3.3 Theorem If H is a cocommutative Hopf algebroid over commutative base A, one has

HC∂• (H) =
⊕
i≥0

HH∂
2•−i(H).

PROOF: We follow the pattern in [KhR1, Thm. 4.1]. As already mentioned in the proof
of Theorem 6.2.3, the complex Bar•H becomes a left H-module by multiplication on the
first tensor factor. One then has the relation (since A = B) CA• H = A∂ ⊗H Bar•H which
transfers to the level of (cyclic) bicomplexes CC∂• (CA• H) = A∂ ⊗H CC•(Bar•H). With
the fact that the augmented complex ε : Bar•H → Aε is a resolution for A, the bicomplex
CC•(Bar•H) is in turn a resolution of the complex A• : A ← 0 ← A ← 0 ← . . .. One
then computes

HC∂• (H) = H•
(
TotCC∂• (CA• H)

)
= H•

(
A∂ ⊗H TotCC•(Bar•H)

)
= Tor(A∂ , A•),
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where the last term denotes the hyper-derived Tor groups [W, 5.7.8]. As [W, Lem. 5.7.2]
reveals, we may find a Cartan-Eilenberg resolution for A• with only zeros in every second
column. One therefore concludes HC∂• (H) = Tor(A∂ , A•) =

⊕
i≥0HH

∂
•−2i(H). 2

6.4 Example: Lie-Rinehart Algebras
As we have seen, already at the Hochschild level the dual theory requires the full Hopf
algebroid structure; as we learned from Proposition 4.2.9, we can equip V L with such a
structure by choosing a flat right (A,L)-connection ∂ on the base algebraA. Recall also that
in contrast to the cohomology theory, we will need to consider the tensor product V L⊗rlV L
from (4.2.3).

6.4.1 Theorem Let (A,L) be a Lie-Rinehart algebra and n ≥ 1. Under the same assump-
tions as in Theorem 5.5.7, the following holds.

(i ) The composition of the antisymmetrisation map Altn : ∧nAL → V L⊗
lln with the

inverse Hopf-Galois map ψn : V L⊗
lln → V L⊗

rln from (6.1.6), more precisely, the
map Altn := ψnn! Altn : ∧nAL→ V L⊗

rln given by

X1 ∧ · · · ∧Xn 7→
∑

σ∈P (n)

signσX+
σ(1) ⊗

rl X−σ(1)X
+
σ(2) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n),

induces an isomorphism

HH∂
• (V L) '←− HA

• (L,A∂). (6.4.1)

Hence the dual (Hopf-)Hochschild homology of the Hopf algebroid V L is isomorphic
to the Lie-Rinehart homology of L with values in its base algebra A.

(ii ) Furthermore, for the dual Hopf-cyclic homology we have an isomorphism

HC∂• (V L) '←−
⊕
i≥0

HA
•−2i(L,A∂).

PROOF: Part (i): to prove at first that the homology groups in (6.4.1) are isomorphic, it suf-
fices to apply Theorem 6.2.3 to the case H = V L and compare this to (5.5.3). Secondly, we
show that the isomorphism is induced by Alt by comparing the Koszul-Rinehart resolution
KA
• L = (V L⊗A ∧•AL, b′A,L) from (5.5.2) to the bar resolution Bar• V L = (V L⊗

rln+1, b′)
from §6.2.2. The map idV L ⊗ nAltn : KA

n L→ Barn V L given by

u⊗A X1 ∧ · · · ∧Xn 7→∑
σ∈P (n)

signσ u⊗rl X+
σ(1) ⊗

rl X−σ(1)X
+
σ(2) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)
(6.4.2)

is obviously a map of left V L-modules (where the left V L-module structure on both sides is
just multiplication on the first tensor factor u) and does not depend on ∂ any more:

X+ ⊗rl X− = X ⊗rl 1− 1⊗rl X,



146 CHAPTER 6. DUAL HOPF-CYCLIC HOMOLOGY

see (4.2.4). Note that the ‘conventional’ antisymmetrisation Alt cannot be seen directly as
a map from ∧•AL into V L⊗

rl• since it would not be well-defined; whereas Alt is. As an
illustration, in degree n = 2, this reads

Alt(X ∧ Y ) = X ⊗rl Y − Y ⊗rl X − 1⊗rl [X,Y ], X, Y ∈ L,

where [X,Y ] = XY − Y X (as elements in V L). We now show that (6.4.2) is a chain map,
i.e.,

b′ (idV L ⊗Altn) = (idV L ⊗Altn−1) b′A,L,

or, equivalently, and slightly simpler to see,

n(idV L ⊗ ϕn−1) b′ (idV L ⊗ ψn Altn) = (idV L ⊗Altn−1) b′A,L,

where ϕ = ψ−1 from (6.1.5). To start with, observe first that the right hand side (idV L ⊗
Altn−1) b′A,L : KA

n L→ V L⊗
lln can be written as

(idV L ⊗Altn−1) b′A,L(u⊗A X1 ∧ · · · ∧Xn) =

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

−
n−1∑
i=1

(−1)iu⊗rl Xσ(1) ⊗ll · · · ⊗ll Xσ(i)Xσ(i+1) ⊗ll · · · ⊗ll Xσ(n)

)
,

as a little thought reveals (or as proven easily by induction). As for the left hand side, with
(4.2.16), (4.2.14) and S(X(1))X(2) = 0 for any X ∈ L, we calculate at first

nb′ (idV L ⊗ ψn Altn)(u⊗A X1 ∧ · · · ∧Xn) =

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl X+

σ(2) ⊗
rl X−σ(2)X

+
σ(3) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)

− u⊗rl Xσ(1)X
+
σ(2) ⊗

rl X−σ(2)X
+
σ(3) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)

)
=

1
(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl ψn−1(Xσ(2) ⊗ll Xσ(3) ⊗ll · · · ⊗ll Xσ(n))

− u⊗rl Xσ(1)X
+
σ(2) ⊗

rl X−σ(2)X
+
σ(3) ⊗

rl · · · ⊗rl X−σ(n−1)Xσ(n)

)
.

Using ∆n
` (uv) = ∆n

` u∆n
` v for u, v ∈ V L and n ≥ 0, one obtains for an element X ∈ L,

as a primitive element,

∆n
`X =

n+1∑
i=1

1⊗ll · · · ⊗ll 1⊗ll X
i
⊗ll 1⊗ll · · · ⊗ll 1,
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which we need to apply the explicit form of ϕ from (6.1.6) to calculate

n(idV L ⊗ ϕn−1) b′ (idV L ⊗ ψn Altn)(u⊗A X1 ∧ · · · ∧Xn) =

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

− u⊗rl (∆n−1
` Xσ(1))(∆n−1

` X+
σ(2)) · · · (∆`X

−
σ(n−2)X

+
σ(n−1))·

· (1⊗ll · · · ⊗ll 1⊗ll X−σ(n−1)Xσ(n))
)
.

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

−
n∑
i=1

u⊗rl (1⊗ll · · · ⊗ll 1⊗ll Xσ(1)
i

⊗ll 1⊗ll · · · ⊗ll 1)·

· ϕn−1ψn−1(Xσ(2) ⊗ll · · · ⊗ll Xσ(n))
)

=
1

(n− 1)!

∑
σ∈P (n)

signσ
(
uXσ(1) ⊗rl Xσ(2) ⊗ll · · · ⊗ll Xσ(n)

−
n−1∑
i

(−1)iu⊗rl Xσ(1) ⊗ll · · · ⊗ll Xσ(i)Xσ(i+1) ⊗ll · · · ⊗ll Xσ(n)

)
,

hence the right hand side again. By routine homological algebra, the induced map Alt∗ =
(ψAlt)∗ obtained by applying the functor A∂ ⊗V L − induces the isomorphism (6.4.1) in
homology.

Part (ii): clearly, V L is cocommutative over commutativeA with equal source and target
maps; with Theorem 6.3.3 and with part (i) the claim follows. 2

Observe that part (i) of the preceding theorem is a generalisation of the classical Chevalley-
Eilenberg theorem, cf. e.g. [CarE, Thm. 7.1] or [Lo1, Thm. 3.3.2].

6.5 Example: Jet Spaces
In this section we calculate the dual Hopf-cyclic homology for the jet spaces JL of a
Lie-Rinehart algebra (A,L), where L is finitely generated A-projective of constant rank.
Again, the outcome is in a certain sense dual to the result in the previous subsection.
Write L∗ := Hom(A,−)(L,A) and, as in Section 5.6, we write (∧AL∗, dA,L) for the Lie-
Rinehart cochain complex (with values in A). Furthermore, recall from (6.1.2) that the
dual Hopf-cyclic module is given as JL\∂ = {CAn JL}n≥0, where the tensor product in
CAn JL = JLA⊗n reads (cf. (6.1.1))

JLA⊗JL = IJL ⊗Aop JL� = JL⊗k JL/spank{φt`JLa⊗k φ′ − φ⊗ t`JLaφ
′, a ∈ A}.

This makes sense since A is commutative.

6.5.1 Theorem Let (A,L) be a Lie-Rinehart algebra where, as an A-module, L is finitely
generated projective of constant rank. There is a natural morphism of mixed complexes

F :
(
CA• JL, b,B

)
→

(
∧•A L∗, 0, dA,L

)
,
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defined in degree n by

F : (φ1
A⊗ · · · A⊗φn)(X1 ∧ · · · ∧Xn) := (−1)n(SJLφ

1 ∧ · · · ∧ SJLφ
n)(X1, . . . , Xn).

This induces isomorphisms

HH•(JL) ' ∧•AL∗,

HP•(JL) '
∏
i≥0

H•+2i(L,A),

where the left hand side refers to the dual Hopf-cyclic homology groups.

PROOF: This statement is very much the dual of Theorem 5.5.7. First of all, the dual of the
PBW isomorphism yields JL ' ŜAL

∗ as commutative algebras. Similar to Lemma 4.3.2,
there is a canonical isomorphism

CAn JL ' lim
←−

p

HomA

(
(V L⊗

lln)≤p, A
)
,

induced by the map

(φ1 ⊗k · · · ⊗k φn)(u1 ⊗k · · · ⊗k un) = (SJLφ
1)(u1) · · · (SJLφ

n)(un).

The antipode SJL here comes into play to go from V L⊗
rrn to V L⊗

lln, so as to give a sense
to the map F . Since JL is a commutative algebra, it maps the Hochschild differential b to
zero. Clearly, F is a morphism of A-modules, where A acts on CA• JL by multiplication by
t`JLa, a ∈ A, on the first component. Therefore we can localise with respect to a maximal
ideal m ⊂ A to prove that F is a quasi-isomorphism. Since L is A-projective, Lm is free
of rank r over Am and we choose a basis ei ∈ Lm, e

i ∈ L∗m, i = 1, . . . , r. The Koszul
resolution

0←− Am
ε←− JLm

∂′←− JLm ⊗Am L∗m
∂′←− JLm ⊗Am ∧2

Am
L∗m

∂′←− . . .

is a resolution of Am in the category of left JL-modules with differential

∂′(φ⊗ ω) =
r∑
i=1

eiφ⊗ ιei
ω.

The natural map JLm ⊗Am ∧•Am
L∗m → Bar•(JLm) given by

φ⊗Am α1 ∧ · · · ∧ αn := φ⊗Am (α1 ◦ pr ) ∧ · · · ∧ (αn ◦ pr ),

is a morphism of complexes, as one easily checks. Since SJL(α◦pr ) = −α◦pr for α ∈ L∗,
the map id ⊗ Fm : Bar•(JLm) → JLm ⊗Am ∧•Am

L∗m is a right inverse and induces the
morphism F when taking the tensor product Am⊗JLm − on both sides. This proves the first
claim.

As for the second, recall the standard A-ring cyclic structure JL\A := {BAn JL}n≥0 for
JL as in §1.2.4. Notice that since JL is commutative, one simply has BAn JL ' CAn+1JL
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and the map to invariants Ψε : CAn (JL)→ CAn+1(JL) (see Subsection 6.1.1) is a morphism
of cyclic modules. Explicitly, when restricted to L∗ this map is given by

Ψε(φ1
A⊗ · · · A⊗φn)(X1 ⊗ · · · ⊗Xn+1) =

= (SJLφ
1
(1))(X1) · · · (SJLφ

n
(1))(Xn)∇`Xn+1

(φ1
(2) · · ·φ

n
(2))(1)

=
n∑
i=1

(
(SJLφ

1)(X1) · · · ̂(SJLφi)(Xi) · · · (SJLφ
n)(Xn)

)
·

· (SJLφ
i
(1))(Xi)

(
εVL(Xn+1φ

i
(2)(1))− φi(2)(Xn+1)

)
.

Since the cyclic structure on CA•+1(JL) depends only on the structure of JL as a commuta-
tive algebra, it is well-known that the morphism

φ1
A⊗ · · · A⊗φn+1 7→ φn+1dA,Lφ

1 ∧ · · · ∧ dA,Lφ
n

induces a morphism of mixed complexes
(
CA• (JL)[1], b, B

)
→

(
∧•AL∗, 0, dA,L

)
(cf. Exam-

ple 1.1.10(ii) for a similar consideration). Composing this morphism with Ψε as above, one
finds exactly the map stated in the theorem. This proves that F intertwines the B-operator
with the Lie-Rinehart coboundary dA,L. Since we already know that this map is a quasi-
isomorphism on the level of Hochschild homology, the SBI-sequence implies that it is a
quasi-isomorphism on the level of cyclic homology. This proves the theorem. 2

6.6 Example: Convolution Algebras
In this section we compute the dual Hopf-cyclic homology for the example of the convolution
algebra C∞c (G) for an étale groupoid s, t : G ⇒ G0 (see Section 4.4); we will see that it
coincides with groupoid homology, see Theorem 6.6.4. To this end, let us first recall some
material we need for the latter.

6.6.1 Nerve of a Groupoid For a groupoid G ⇒ G0, denote by

Gn = {(g1, . . . , gn) ∈ G×n | s(gi) = t(gi+1), 1 ≤ i ≤ n− 1}

for n ≥ 1 the space of strings ~g of n composable arrows,

~g = (· g1←− · g2←− · . . . · gn←− ·).

This is consistent with the notation for G2 and G1 already introduced. The nerve of a
groupoid is the simplicial space

G• : . . .
// ////// G2

////// G1
//// G0 ,

formed by the family G• := {Gn}n≥0, where G0 is the base manifold as before, and the
face operators di : Gn → Gn−1 are given by

di(g1, . . . , gn) =

 (g2, . . . , gn) if i = 0,
(g1, . . . , gigi+1, . . . , gn) if 1 ≤ i ≤ n− 1,
(g1, . . . , gn−1) if i = n,

(6.6.1)
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whereas d0, d1 : G1 → G0 are given by source and target map, respectively. Moreover, the
degeneracy operators si : Gn → Gn+1 are

si(g1, . . . , gn) =
{

(1t(g1), g1, . . . , gn) if i = 0,
(g1, . . . , gi, 1s(gi), gi+1, . . . , gn) if 1 ≤ i ≤ n. (6.6.2)

Finally, for all n ≥ 2 define an operator tn : Gn → Gn,

tn(g1, . . . , gn) = ((g1g2 · · · gn)−1, g1, . . . , gn−1), (6.6.3)

and set t1(g) = g−1 and t0 = idG0 . Then it is easy to see that the set of operators (d•, s•, t•)
defines a cyclic structure on G•.

6.6.2 Bar Complex for Groupoids Let G ⇒ G0 be an étale groupoid and assume that
F ∈ Sh(G0) is a c-soft G-sheaf (cf. [Br]). Consider the map τn : Gn → G0, ~g 7→ t(g1)
for n ≥ 1, where ~g = (· g1← · g2← · . . . · gn← ·) and set τ0 := idG0 . Observe that for
all n ≥ 0 the pull-back sheaves Fn := τ−1

n F on Gn are again c-soft since τn is étale.
The family {Γc(Gn,Fn)}n≥0 of groups of compactly supported sections form a simplicial
abelian group

B•(G,F) : . . .
// ////// Γc(G2,F2)

////// Γc(G1,F1) //// Γc(G0,F0) ,

with simplicial operators defined as follows: for the face maps di : Gn → Gn−1 from (6.6.1)
of the nerve, one obtains the isomorphism Fn → d−1

i Fn−1, the stalk of which at ~g is given
by Fn~g = Ft(g1) → Ft(g1) = d−1

i F
n−1
~g for i 6= 0, hence by the identity; for i = 0, however,

the stalk at ~g is Fn~g = Ft(g1) → Fs(g1) = d−1
0 F

n−1
~g , which is the (right) action R by g1.

Analogously, one has the isomorphismsFn → s−1
i Fn+1, given for all i by the identity map.

The face and degeneracy operators on B•(G,F) now read

di(u | g1, . . . , gn) =

(ug1 | g2, . . . , gn)
(u | g1, . . . , gigi+1, . . . , gn)
(u | g1, . . . , gn−1)

if i = 0,
if 1 ≤ i ≤ n− 1,
if i = n,

si(u | g1, . . . , gn) =
{

(u | 1t(g1), g1, . . . , gn)
(u | g1, . . . , gi, 1s(gi), gi+1, . . . , gn)

if i = 0,
if 1 ≤ i ≤ n.

(6.6.4)

A similar argument using (6.6.3) shows that there is an isomorphism Fn → t−1
n Fn with

stalk at ~g given by Fn~g = Ft(g1) → Fs(gn) = t−1
n Fn~g , i.e. the right action R by g1 · · · gn.

One correspondingly defines

tn(u | g1, . . . , gn) = (ug1 · · · gn | (g1 · · · gn)−1, g1, . . . , gn−1) (6.6.5)

as a cyclic operator on B•(G,F). For later computations, we remind that our notation (cf.
§1.5.3) explicitly reads here

tn : Γc(Gn,Fn)→ Γc(Gn,Fn), ((tn, R)∗u)(~g) =
∑

~g=tn(~g′)

u(~g′)g′1 · · · g′n

for ~g′ = (g′1, . . . , g
′
n) ∈ Gn.
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6.6.3 Lemma [Cr1, Lem. 3.2.9] If F is a c-soft G-sheaf, the cyclic space B•(G,F ) with
the operators (6.6.4) and (6.6.5) computes the homology groups HH•(G,F), HC•(G,F)
and HP•(G,F).

Here we only presented a simplified version sufficient for our needs; see however [Cr1] and
[CrMoe2] for full details and generality introducing cyclic groupoids and cyclic sheaves.

Let us now turn to dual Hopf-cyclic homology. We will frequently need the following
n-fold generalisations of the isomorphisms introduced in (4.4.1),

Ωns,t :

n times︷ ︸︸ ︷
C∞c (G)⊗rlC∞(G0)

· · · ⊗rlC∞(G0)
C∞c (G) '−→ C∞c (

n times︷ ︸︸ ︷
Gs×tG0

· · · s×tG0
G) = C∞c (Gn),

Ωnt,t : C∞c (G)⊗llC∞(G0)
· · · ⊗llC∞(G0)

C∞c (G) '−→ C∞c (Gt×tG0
· · · t×tG0

G) = C∞c (Gn),
Ωns,s : C∞c (G)⊗rrC∞(G0)

· · · ⊗rrC∞(G0)
C∞c (G) '−→ C∞c (Gs×sG0

· · · s×sG0
G),

Ωnt,s : C∞c (G)⊗lrC∞(G0)
· · · ⊗lrC∞(G0)

C∞c (G) '−→ C∞c (Gt×sG0
· · · t×sG0

G)

all given by the formula

Ωn·,·(u1 ⊗··C∞(G0)
· · · ⊗··C∞(G0)

un)(g1, . . . , gn) = u1(g1)u2(g2) · · ·un(gn), (6.6.6)

for u1, . . . , un ∈ C∞c (G) and (g1, . . . , gn) in the respective pull-backG·×·G0
· · · ·×·G0

G. One
can also decompose

Ωn·,· = Ω2
·,·(id⊗ Ωn−1

·,· ),

where in this case Ω2
·,· has the obvious meaning as an isomorphism

Ω2
·,· : C∞c (G)⊗··C∞(G0)

C∞c (

n−1 times︷ ︸︸ ︷
G·×·G0

· · · ·×·G0
G) '−→ C∞c (

n times︷ ︸︸ ︷
G·×·G0

· · · ·×·G0
G).

We hope that the notation by the same symbol does not create too much confusion; the indi-
vidual meaning will be clear from the context. We also remind the reader of the possibility
of ‘mixing’ these maps, as in (4.4.3). The space of interest for dual cyclic homology is then

C∞c (G)\∂ := {CC∞(G0)
n C∞c (G)}n≥0

where
CnC∞(G0)C∞c (G) = C∞c (G)⊗rlC∞(G0) · · · ⊗rlC∞(G0) C∞c (G), (6.6.7)

again n times in degree n.

6.6.4 Theorem For any étale groupoid G ⇒ G0 over a compact manifold G0, the set of
simplicial and cyclic operators (d•, s•, t•) on the nerve G• makes (C∞c (G•), d•+, s•+, t•+)
a cyclic vector space, which is isomorphic to the Hopf-cyclic module C∞c (G)\∂ . Hence

HH∂
• (C∞c (G)) ' HH•(G, C∞G ),

HC∂• (C∞c (G)) ' HC•(G, C∞G ),
HP ∂• (C∞c (G)) ' HP•(G, C∞G ).
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PROOF: Since G is étale, note first that the bar complex B•(G, C∞G ) is formed here by
the pull-back sheaves τ−1

n C∞G ' C∞Gn
. In degree n one has Bn(G, C∞G ) ' Γc(Gn, C∞Gn

) =
C∞c (Gn). Hence the fact that (C∞c (G), d•+, s•+, t•+) is a cyclic vector space follows from
the general considerations in §6.6.2, see §1.5.3 for the notation. To show that it is isomorphic
to the Hopf-cyclic module C∞c (G)\∂ , it only remains to prove that

di+ Ωs,t = Ωs,t d̃i,
si+ Ωs,t = Ωs,t s̃i,
tn+ Ωs,t = Ωs,t t̃n,

for all 0 ≤ i ≤ n and in all degrees n, where (d̃•, s̃•, t̃•) denote in this proof the Hopf-
cyclic operators from (6.1.3)–(6.1.4) for C∞c (G)\∂ . For u1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n ∈
CC
∞(G0)
n C∞c (G) and (g1, . . . , gn−1) ∈ Gn−1, we compute

(d0+ Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn−1)

=
∑

{g0∈G|s(g0)=t(g1)}

Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n)(g0, g1, . . . , gn−1)

=
∑

{g0∈G|s(g0)=t(g1)}

u1(g0)u2(g1) · · ·un(gn−1)

= ∂u1(1t(g1))u
2(g1) · · ·un(gn−1)

= (∂u1 ∗ u2)(g1) · · ·un(gn−1)

= (Ωn−1
s,t d̃0(u1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn−1),

and likewise for all remaining face and degeneracy operators. As far as the cyclic operator
is concerned, one has

(tn+ Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn)

=
∑

. . .
∑

tn(g′1,...,g
′
n)=(g1,...,gn)

u1(g′1)u
2(g′2) · · ·un(g′n)

= u1(g2) · · ·un−1(gn)un((g1 · · · gn)−1),

since in the sum one has (g′1 · · · g′n)−1 = g1, and moreover g′1 = g2, . . . , g
′
n−1 = gn; hence

g′n = (g′1 · · · g′n−1)
−1g−1

1 = (g1 · · · gn−1)−1. On the other hand,

(Ωns,t t̃n(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g1, . . . , gn)

= Ωns,t(S
−1(u1

(2) ∗ · · · ∗ u
n−1
(2) ∗ u

n)⊗rlC∞(G0) u
1
(1) ⊗

rl
C∞(G0) · · · ⊗rlC∞(G0) u

n−1
(1) )(g1, . . . , gn)

= (u1
(2) ∗ · · · ∗ u

n−1
(2) ∗ u

n)(g−1
1 )u1

(1)(g2) · · ·u
n−1
(1) (gn)

=
∑

g−1
1 =g′1···g′n

u1
(2)(g

′
1) · · ·un−1

(2) (g′n−1)u
n(g′n)u

1
(1)(g2) · · ·u

n−1
(1) (gn)

= u1(g2) · · ·un−1(gn)un((g1 · · · gn)−1),

by the left coproduct (4.4.6), which dictates g′j−1 = gj for all 2 ≤ j ≤ n, whereas for the
last element one has g′n = (g1g′1 · · · g′n−1)

−1. 2
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Taking into account that C∞c (G) is a cocommutative Hopf algebroid over C∞(G0) (see
Section 4.4), Theorem 6.3.3 immediately yields:

6.6.5 Corollary For each étale groupoid G over compact base, one has

HCn(G, C∞G ) '
⊕

i≥0HH2n−i(G, C∞G ).

We end this subsection by showing that the Hopf-Galois maps (6.1.5) and (6.1.6) are dual
to certain maps defined on the groupoid level. Recall that for the coordinate ring U = k[G]
of an algebraic semigroup, the Hopf-Galois map β from (2.2.1) is dual to the map

G×G→ G×G, (g, h) 7→ (g, gh),

which is bijective if and only if G is a group. For groupoids, one obtains similar maps:
making use of the maps Ωs,t, Ωt,t and denoting (as before)Gn = Gs×tG0

· · · s×tG0
G (n times)

and Gn = Gt×tG0
· · · t×tG0

G (n times), one finds

6.6.6 Proposition The vector space isomorphisms (6.1.5) and (6.1.6) between
CC
∞(G0)
n C∞c (G) from (6.6.7) and CnC∞(G0)C∞c (G) from (5.7.2) are dual to the follow-

ing diffeomorphisms on groupoids:

ϕ̃n : Gn → Gn, (g1, . . . , gn) 7→ (g1, g1g2, . . . , g1g2 · · · gn),

with inverse

ψ̃n : Gn → Gn, (g̃1, . . . , g̃n) 7→ (g̃1, g̃−1
1 g̃2, . . . , g̃

−1
n−1g̃n).

More precisely, in each degree n one has the commutative diagram

CC
∞(G0)
n C∞c (G)

ϕn

��

Ωn
s,t // C∞c (Gn)

ϕ̃n+

��
CnC∞(G0)C∞c (G)

ψn

OO

Ωn
t,t

// C∞c (Gn).

ψ̃n+

OO

PROOF: For u1, . . . , un ∈ C∞c (G), (g̃1, . . . , g̃n) ∈ Gn, we clearly have

(ϕ̃n+ Ωns,t(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g̃1, . . . , g̃n) =

=
∑

. . .
∑

ϕ̃n(g1,...,gn)=(g̃1,...,g̃n)

u1(g1) · · ·un(gn)

=
∑

. . .
∑

(g1,...,gn)=ψ̃n(g̃1,...,g̃n)

u1(g1) · · ·un(gn)

= u1(g̃1)u2(g̃−1
1 g̃2) · · ·un(g̃−1

n−1g̃n),
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but also

(Ωnt,t ϕn(u
1 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n))(g̃1, . . . , g̃n) =

= u1
(1)(g̃1)(u

1
(2) ∗ u

2
(1))(g̃2) · · · (u

1
(n) ∗ u

2
(n−1) ∗ · · · ∗ u

n−1
(2) u

n)(g̃n)

= u1
(1)(g̃1)

∑
g̃2=g̃21 g̃22

u1
(2)(g̃21)u

2
(1)(g̃22) · · ·

· · ·
∑

g̃n=g̃n1 ···g̃nn

u1
(n)(g̃n1)u

2
(n−1)(g̃n2) · · ·un−1

(2) (g̃nn−1)u
n(g̃nn

)

= u1(g̃1)u2(g̃−1
1 g̃2) · · ·un(g̃−1

n−1g̃n).

This is seen as follows: as a first step, by the higher coproducts only elements with
g̃1 = g̃21 = . . . = g̃n1 do not disappear; as a second step, one finds g̃22 = g̃−1

1 g̃2, and
only elements with g̃−1

1 g̃2 = g̃32 = . . . = g̃n2 do not vanish. Hence g̃33 = (g̃31 g̃32)
−1g̃3 =

(g̃1g̃−1
1 g̃2)−1g̃3 = g̃−1

2 g̃3. By induction on n steps one concludes that the non-vanishing
elements have g̃jj = g̃−1

j−1g̃j for all j = 2, . . . , n which are the arguments in the first com-
ponents of the respective left coproducts. The same diagram can, of course, analogously be
verified in the opposite direction using ψn and ψ̃n. 2

6.6.1 Invariants for the Convolution Algebra

In this subsection we are going to explicitly show how the dual Hopf-cyclic module C∞c (G)\∂
can be obtained by restricting the standard cyclic C∞(G0)-ring structure of C∞c (G)\C∞(G0)

(given by (1.2.3)) to invariants, cf. (2.4.1). As in §1.2.4, set

C∞c (G)\C∞(G0) = {BC∞(G0)
n C∞c (G)}n≥0,

where in degree n ≥ 0

BC
∞(G0)
n C∞c (G) = CC

∞(G0)
n C∞c (G)⊗C∞(G0)⊗C∞(G0) C∞(G0) = CC

∞(G0)
n C∞c (G)⊗C∞(G0) .

In Theorem 6.6.4 we saw that dual Hopf-cyclic operators correspond to the respective cyclic
operators on the nerve of G as given in (6.6.1)–(6.6.3). The cyclic operators (1.2.3) on
C∞c (G)\C∞(G0), on the other hand, correspond to a different set of cyclic operators given on a
certain subspace of the nerve. Let us introduce this subspace first:

6.6.7 Burghelea Spaces [Bu] For an (étale) groupoid G ⇒ G0, for n ≥ 0 define

Bn := {(g0, g1, . . . , gn) ∈ G×(n+1) | t(gi) = s(gi−1) for 1 ≤ i ≤ n, and t(g0) = s(gn)},
(6.6.8)

the space of closed strings of n + 1 composable arrows; note that Bn ⊂ Gn+1. The space
B0 = {g ∈ G|s(g) = t(g)} is called the space of loops in G. The family B• := {Bn}n≥0,
which we will call the Burghelea space, can be turned into a simplicial space by defining
face and degeneracy operators d′i : Bn → Bn−1, s′i : Bn → Bn+1, respectively, by

d′i(g0, g1, . . . , gn) =
{

(g0, . . . , gigi+1, . . . , gn)
(gng0, g1, . . . , gn−1)

if 0 ≤ i ≤ n− 1,
if i = n,

s′i(g0, g1, . . . , gn) =
{

(g0, . . . , gi, 1t(gi+1), gi+1, . . . , gn)
(g0, . . . , gn, 1s(gn))

if 0 ≤ i ≤ n− 1,
if i = n.

(6.6.9)
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Together with the cyclic operator t′n : Bn → Bn given by

t′n(g0, . . . , gn) = (gn, g0, . . . , gn−1), (6.6.10)

it is easy to see that the set of operators (d′•, s
′
•, t
′
•) defines a cyclic structure on B•. In

particular, one has a natural inclusion of the nerve Gn:

i : Gn ↪→ Bn, (g1, . . . , gn) 7→ ((g1g2 · · · gn)−1, g1, . . . , gn), (6.6.11)

which is compatible with the sets of operators (d•, s•, t•) from (6.6.1)–(6.6.3) and (d′•, s
′
•, t
′
•)

(i.e. with the simplicial and cyclic structures, respectively).

6.6.8 Proposition The set of simplicial and cyclic operators (d′•, s
′
•, t
′
•) on the Burghelea

space B• makes (C∞c (B•), d′•+, s
′
•+, t

′
•+) a cyclic vector space. In each degree n ≥ 0, one

has
BC
∞(G0)
n C∞c (G) ' C∞c (Bn).

In particular, (C∞c (B•), d′•+, s
′
•+, t

′
•+) is isomorphic to the standard C∞(G0)-ring cyclic

module C∞c (G)\C∞(G0) from §1.2.4, with operators given in (1.2.3).

PROOF: The fact that (C∞c (B•), d′•+, s
′
•+, t

′
•+) is a cyclic module follows from our consid-

erations below. It can be also shown by either a direct verification of the simplicial relations
plus the additional ones (1.1.3), (1.1.4), (1.1.5) for a cyclic module, or by deducing it from
the cyclicity of B• and accounting for the fact that the operation of fibre summing (1.5.1) is
associative in a sense. Explicitly, for any n ≥ 0 and u ∈ C∞c (Bn), (g0, . . . , gn−1) ∈ Bn−1,

(d′0+ (t′n+u))(g0, . . . , gn−1) =
∑

. . .
∑

d′0(g
′
0,...,g

′
n)=(g0,...,gn−1)

(t′n+u)(g
′
0, . . . , g

′
n)

=
∑

g0=g′0g
′
1

u(g′1, g1, . . . , gn−1, g
′
0)

=
∑

. . .
∑

(g′ng
′
0,g
′
1,...,g

′
n−1)=(g0,...,gn−1)

u(g′0, . . . , g
′
n)

=
∑

. . .
∑

d′0 t
′
n(g′0,...,g

′
n)=(g0,...,gn−1)

u(g′0, . . . , g
′
n)

= ((d′0+ t
′
n+)u)(g0, . . . , gn−1),

and similarly for all other relations. Hence the cyclicity of C∞c (B•) follows, as could have
been expected, from the cyclicity of B•. As for the second part of the Proposition, write

BC
∞(G0)
n C∞c (G) =

n+1 times︷ ︸︸ ︷
C∞c (G)⊗rlC∞(G0) · · · ⊗rlC∞(G0) C∞c (G)⊗C∞(G0)⊗C∞(G0)C∞(G0)

' C∞c (Gs×tG0
· · · s×tG0

G︸ ︷︷ ︸
n times

)⊗rl,lrC∞(G0) C∞c (G),

where on the first n factors the isomorphism Ωn−1
s,t was used, and the last tensor product

has the obvious meaning of simultaneously balancing with respect to ⊗rlC∞(G0) and ⊗lrC∞(G0).
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The notation ⊗rl,lrC∞(G0) suggests that a map Ω2
s,t ; t,s acting simultaneously as Ω2

s,t as well as
Ω2
t,s by still the same formula (6.6.6) gives an isomorphism, so that

BC
∞(G0)

n+1 C∞c (G) ' C∞c ((Gs×tG0
· · · s×tG0

G)s;t×t;sG0
G) ' C∞c (Bn).

Conceptually a repetition of what was implicit at the beginning of this proof, it remains to
show that

d′i+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id) = Ω2

s,t ; t,s(Ω
n−1
s,t ⊗ id) d̃′i,

s′i+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id) = Ω2

s,t ; t,s(Ω
n+1
s,t ⊗ id) s̃′i,

t′n+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id) = Ω2

s,t; t,s(Ω
n
s,t ⊗ id) t̃′n,

for all 0 ≤ i ≤ n and all degrees n; in this proof, (d̃′•, s̃
′
•, d̃
′
•) are the standard C∞(G0)-ring

cyclic operators from (1.2.3). For example, for u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u
n−1 ⊗rl,lrC∞(G0) u

n ∈
B
C∞(G0)
n C∞c (G) and (g0, . . . , gn−1) ∈ Bn−1, one has

(d′n+ Ω2
s,t ; t,s(Ω

n
s,t ⊗ id)(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n−1 ⊗rl,lrC∞(G0) u
n))(g0, . . . , gn−1)

=
∑

. . .
∑

d′n(g′0,...,g
′
n)=(g0,...,gn−1)

u0(g′0) · · ·un(g′n)

=
∑

g0=g′ng
′
0

u0(g′0)u
1(g1) · · ·un−1(gn−1)un(g′n)

= Ω2
s,t;t,s(Ω

n
s,t ⊗ id)((un∗u0)⊗rlC∞(G0) · · · ⊗rlC∞(G0) u

n−2 ⊗rl,lrC∞(G0) u
n−1))(g0, . . . , gn−1)

= Ω2
s,t ; t,s(Ω

n
s,t ⊗ id)(d̃′n(u

0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) u
n−1 ⊗rl,lrC∞(G0) u

n))(g0, . . . , gn−1),

and much the same way for all remaining faces, degeneracies and the cyclic operator t. 2

6.6.9 Comodule Structures and Invariants For the consideration of invariants (cf. Sub-
section 6.1.1) one wants to consider comodule structures over the enveloping algebra of
the base algebra. Due to the form of the left and right coproducts in the present exam-
ple, this is particularly simple; we now show how C∞c (G) can be seen as a coalgebra over
C∞(G0)e = C∞(G0)⊗ C∞(G0). As a coproduct, one needs a map

∆ : C∞c (G)→ C∞c (G)⊗ll,rrC∞(G0) C∞c (G),

since s` = t` = sr = tr, and as in Proposition 6.6.8 one infers the existence of an iso-
morphisms Ωt,t ; s,s : C∞c (G) ⊗ll,rrC∞(G0) C∞c (G) → C∞c (Gt;s×t;sG0

G) (that is, to the space of
compactly supported smooth functions over the space of pairs (g, g′) that have not only iden-
tical sources but also equal targets). Evidently, the non-vanishing elements of both left and
right coproduct in (4.4.6) are already of this form and one only needs to modify the im-
age space. Hence we can take the same formula, and set for the coproduct of C∞c (G) over
C∞(G0)e

∆′ := Ω2
t,t ; s,s ∆ : C∞c (G)→ C∞c (Gt;s×t;sG0

G), (∆′u)(g, g′) =
{
u(g) if g = g′,
0 otherwise.
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Again, introducing the map d : G→ Gt;s×t;sG0
G, g 7→ (g, g) one may write ∆′ = d+ or ∆ =

Ω−1
t,t ; s,sd+. The associated counit ε′ to this coalgebra structure is given as the ‘intersection’

of the left and right counits: using the Sweedler components ∆`u = u(1) ⊗llC∞(G0) u(2) of
the left coproduct, define

ε′ : C∞c (G)→ C∞(G0)⊗̂C∞(G0), u 7→ ∂u(1)⊗̂ εu(2).

However, it will be also clear in a moment that there is an equivalent expression which uses
the right coproduct. If the tensor product ⊗̂ is a topological (e.g. projective) one, which
allows the identification of C∞(G0)⊗̂C∞(G0) with C∞(G0 ×G0) in some sense, we write
for u ∈ C∞c (G), x, y ∈ G0,

ε′(u)(x, y) = ∂u(1)(x)εu(2)(y) =
∑
s(g)=x

∑
t(g′)=y

u(1)(g)u(2)(g′)

=
∑
y

g←x

u(g) =
∑

s(g)=x, t(g)=y

u(g).

In words, the last term involves the sum over all arrows from x to y. To prove that
(C∞c (G),∆′, ε′) indeed fulfills the identities of a comonoid over C∞(G0)e, observe firstly
that there is a twisted coassociativity between ∆′ and both ∆` and ∆r, respectively, analo-
gous to (2.6.2). Then one has, denoting ∆′u = u(1)′ ⊗ll,rrC∞(G0) u

(2)′ ,

((id⊗ ε′)∆′u)(g) = (ε(u(2)′

(2) )u(1)′∂(u(2)′

(1) ))(g)

=
∑

t(g′)=t(g)

∑
s(g′′)=s(g)

u(2)(g′)u
(1)′

(1) (g)u(2)′

(1) (g′′) = u(g),

hence (id ⊗ ε′)∆′ = id as desired, and similarly for all remaining comonoid identities.
We write C∞c (G)′ instead of C∞c (G) whenever we refer to this coalgebra structure over
C∞(G0)e.

Now consider the space M := CC
∞(G0)

n+1 C∞c (G). For u0, . . . , un ∈ C∞c (G) define M∆ :
M →M ⊗ll,rrC∞(G0) C∞c (G) by

M∆(u0⊗rlC∞(G0)· · ·⊗rlC∞(G0)un) := u
(1)′

0 ⊗rlC∞(G0)· · ·⊗rlC∞(G0)u
(1)′

n ⊗
ll,rr
C∞(G0)u

(2)′

0 u
(2)′

1 · · ·u(2)′

n .

It is a straightforward calculation to see that M∆ is a right C∞c (G)-comodule structure over
C∞(G0)e. In particular, one can easily check

Ω2
t,t ; s,s(Ω

n
s,t ⊗ id)M∆(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) un)(g0, . . . , gn, g)

= u
(1)′

0 (g0) · · ·u(1)′

n (gn)(u
(2)′

0 ∗ · · · ∗ u(2)′

n )(g)

=
{
u0(g0) · · ·un(gn) if g = g0 · · · gn,
0 otherwise.

Hence for u ∈ C∞c (Gn+1) we write

M∆′ := Ω2
t,t ; s,s(Ω

n
s,t ⊗ id) M∆ : C∞c (Gn+1)→ C∞c (Gn+1

t;s×t;sG0
G),

M∆′u(g0, . . . , gn, g) =
{
u(g0, . . . , gn) if g = g0g1 · · · gn,
0 otherwise.
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We finally mention that a left C∞c (G)-comodule structure on C∞(G0) over C∞(G0)e is
simply given by the injection (4.4.5), i.e.,

∆C∞(G0) : C∞(G0)→ C∞c (G), f 7→ f̃ , f̃(g) =
{
f(x) if g = 1x for some x ∈ G0,
0 otherwise.

We now have all ingredients to define the space of invariants of the complex in question. In
each degree n ≥ 0, set

BC
∞(G0)
n C∞c (G) ⊃ InvBC

∞(G0)
n C∞c (G) := CC

∞(G0)

n+1 C∞c (G) C∞c (G)′C∞(G0).

Explicitly, this means

0 = Ω2
t,t ; s,s(Ω

n
s,t ⊗ id)(M∆ ⊗ id− id⊗∆C∞(G0))

(u0 ⊗rlC∞(G0) · · · ⊗rlC∞(G0) un ⊗C∞(G0)e f)(g0, . . . , gn, g)

=
{
f(t(g))u0(g0) · · ·un(gn)− u0(g0) · · ·un(gn)f(x) if g = g0 · · · gn = 1x for x ∈ G0,
−u0(g0) · · ·un(gn)f(s(gn)) otherwise.

Here f ∈ C∞(G0), and in the last factor we took the tensor product over C∞(G0)e. While
the lower expression in the last line never vanishes in non-trivial cases, the upper one does
if 1x = g = g0 · · · gn, that is, if g is a closed string that is a unit, i.e. an n + 1-tuple
(g0, . . . , gn) ∈ Bn for which g0 · · · gn = 1x. We reformulate this with the aid of Proposition
6.6.8: an invariant element in degree n is a function u ∈ C∞c (Bn) with

(M∆′u)(g0, . . . , gn, g) =
{
u(g0, . . . , gn) if g = 1x for some x ∈ G0,
0 otherwise,

if M∆ is restricted from C∞c (Gn+1) to C∞c (Bn). Note that M∆ remains well-defined, since

(f ∗ u0)(g0)u1(g1) · · ·un(gn) = f(t(g0))u0(g0) · · ·un(gn)
= u0(g0) · · ·un(gn)f(s(gn)) = u0(g0) · · · (un ∗ f)(gn)

for closed strings, and that M∆ on C∞c (Bn) takes an analogous form as in (6.6.9), but now
seen as map C∞c (Bn)→ C∞c (Bns×sG0

G).

The following Theorem is basically a summary of what has been proven before. It explicitly
connects dual Hopf-cyclic homology for convolution algebras over étale groupoids to the
standard C∞(G0)-ring homology (cf. §1.2.4) by restriction (or injection) of the respective
spaces. More precisely,

6.6.10 Theorem The subset of invariants of C∞c (Bn) in each degree n is isomorphic to
C∞c (Gn), and the injection i : Gn ↪→ Bn from (6.6.11) induces an injection i+ :
C∞c (Gn) ↪→ C∞c (Bn), which is compatible with the respective cyclic structures. Hence
one has a commutative diagram

CC
∞(G0)
n C∞c (G)

(d•,s•,t•)

��

// BC
∞(G0)
n C∞c (G)

(d•,s•,t•)

��
CC
∞(G0)

n±{0,1}C
∞
c (G) // BC

∞(G0)

n±{0,1}C
∞
c (G),

where on the left-hand side one has the Hopf-cyclic operators from (6.1.3), (6.1.4) and on
the right-hand side one has the standard operators from (1.2.3) for the C∞(G0)-ring C∞c (G).
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PROOF: The first statement follows from the simple observation that if u ∈
InvBC

∞(G0)
n C∞c (G), then u ∈ C∞c (Bn) with

suppu⊂{(g0, . . . , gn)∈Bn | g0 · · · gn=1x}={(g0, . . . , gn)∈Bn | g0 =(g1 · · · gn)−1}
= i(Gn),

hence u may be identified with a function in C∞c (Gn). To continue, one only needs to apply
Proposition 6.6.8 and Theorem 6.6.4, which allows to equivalently prove the commutativity
of the diagram

C∞c (Gn)

(d•+,s•+,t•+)

��

// C∞c (Bn)

(d′•+,s
′
•+,t

′
•+)

��
C∞c (Gn±{0,1}) // C∞c (Bn±{0,1})

in each degree n ≥ 0; this time, the sets of operators are the fibre sums of the operators
(6.6.1)–(6.6.2) on G• and (6.6.9)–(6.6.10) on B•, respectively. Now, since i respects the
cyclic structures of G• and B•, so does the fibre sum i+. As an example, for u ∈ C∞c (Gn)
we verify

i+tn+u(g0, . . . , gn) =
{ ∑

. . .
∑
tn(g′1,...,g

′
n)=(g1,...,gn)u(g

′
1, . . . , g

′
n)

0
if g−1

0 =g1g2 · · · gn,
otherwise

=
{
u(g2, . . . , gn, (g1g2 · · · gn)−1)
0

if g−1
0 =g1g2 · · · gn,

otherwise,

and

t′n+i+u(g0, . . . , gn) =
∑

. . .
∑

(g′n,g
′
0,...,g

′
n−1)=(g0,g1,...,gn)

i+u(g′0, . . . , g
′
n)

=
{
u(g2, . . . , gn, g0) if g−1

1 = g2 · · · gng0,
0 otherwise

which is seen to coincide with the expression above. 2





Chapter 7

Duality and Products in Algebraic
(Co)Homology Theories

7.1 Introduction
Most classical (co)homology theories of algebraic objects such as groups, or Lie, Lie-
Rinehart or associative algebras can be realised as

H•(X,M) := Ext•U (A,M), H•(X,N) := TorU• (N,A) (7.1.1)

for an augmented ring X = (U,A) (i.e. a ring with a distinguished left module) that is
functorially attached to a given object. The cohomology coefficients are left U -modules M
and those in homology are right U -modules N .

Our aim here is to clarify the origin and interplay of multiplicative structures and du-
alities between such (co)homology groups, and to provide a unified treatment of results by
Van den Bergh on Hochschild (co)homology [VdB] and by Huebschmann on Lie-Rinehart
(co)homology [Hue3]. The key concept involved is that of a left Hopf algebroid (×A-Hopf
algebra) introduced by Schauenburg [Schau2], cf. Section 2.2.

The main results can be summarised as follows:

7.1.1 Theorem For any A-biprojective left Hopf algebroid U there is a functor

⊗ : U -Mod× Uop-Mod→ Uop-Mod

that for M ∈ U -Mod, N ∈ Uop-Mod and m,n ≥ 0 induces natural products

a : ExtmU (A,M)× TorUn (N,A)→ TorUn−m(M ⊗N,A).

IfA ∈ U -Mod admits a finitely generated projective resolution of finite length and there
exists d ≥ 0 with ExtmU (A,U) = 0 for m 6= d, then there is a canonical element

[ω] ∈ TorUd (A∗, A), A∗ := ExtdU (A,U)

such that for m ≥ 0 and M ∈ U -Mod with TorAq (M,A∗) = 0 for q > 0

· a [ω] : ExtmU (A,M)→ TorUd−m(M ⊗A∗, A)

is an isomorphism.

161
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This theorem will be proven in Section 7.3.
As we saw in Chapter 2 above, left A-bialgebroids and left Hopf algebroids over A gen-

eralise bialgebras and Hopf algebras to possibly noncommutative base algebras A. Besides
Hopf algebras, both the universal enveloping algebra V L of a Lie-Rinehart algebra (A,L)
and the enveloping algebra Ae = A ⊗k Aop of an associative algebra A are left Hopf alge-
broids over A, see Subsections 4.2.1 and 4.1.1.

For any left A-bialgebroid U , the base algebra A carries a left U -action and the category
U -Mod of leftU -modules is monoidal with unit objectA, cf. Subsection 2.3.1. But it is only
for left Hopf algebroids over A that one has a canonical operation ⊗ as in Theorem 7.1.1,
which turns Uop-Mod into a module category over (U -Mod,⊗, A) (Lemma 7.2.8).

Any left Hopf algebroid carries two left and two right actions of the base algebra that
all commute with each other. The biprojectivity assumed in Theorem 7.1.1 refers to the
projectivity of two particular of these, see Section 7.1.1. Under this condition, we can use
the elegant formalism of suspended monoidal categories from [Sua] to define products for
M,N ∈ U -Mod and P ∈ Uop-Mod by means of

` : Hm(X,M)×Hn(X,N)→ Hm+n(X,M ⊗N),

a : Hn(X,N)×Hp(X,P )→ Hp−n(X,N ⊗ P ),

where once again we use the abbreviations from (7.1.1) (cf. Sections 7.2.2 and 7.2.5).
In the last part of Theorem 7.1.1, A∗ = Hd(X,U) = ExtdU (A,U) is a right U -module

via right multiplication in U , and if we define the functor

ˆ : U -Mod→ Uop-Mod, M 7→ M̂ := M ⊗A∗,

then the statement can be rewritten as an isomorphism

Hm(X,M) ' Hdim(X)−m(X, M̂), dim(X) := proj.dimU (A)

given as in topology by the cap product with the fundamental class [ω] ∈ Hdim(X)(Â) which
corresponds under the duality to idA ∈ H0(A) = HomU (A,A). For M = A this simply
means that the H•(A)-module H•(A∗) is free with generator [ω].

Theorem 7.1.1 is well known in group and Lie algebra (co)homology [Ha, Bie]. For
U = A ⊗k Aop it reduces to Van den Bergh’s result [VdB], which has stimulated a lot of
recent research, see e.g. [BroZ, Dol, Gi, LauRi]. Note that we do not need Van den Bergh’s
invertibility assumption about A∗, which says that ˆ is an equivalence. However, it is
satisfied for many well-behaved algebras [ibid.] and implies the condition TorAq (M,A∗) = 0
for arbitrary A-bimodules M (since invertible bimodules are finitely generated projective as
one-sided modules from either side). For Lie-Rinehart algebras, Theorem 7.1.1 is due to
Huebschmann [Hue3], and we find the general setting helpful, for example, to understand the
different roles of left and right modules that were observed by Huebschmann (cf. 4.2.5). As
was shown in [loc. cit.], the conditions of Theorem 7.1.1 are satisfied whenever L is finitely
generated projective (of constant rank) over A, and A∗ coincides as an A-module with ΛdAL
and is in particular projective, so also here we have TorAq (M,A∗) = 0 for arbitrary (A,L)-
modules M .

So both these examples and the applications in homological algebra clearly demonstrate
the relevance of the intermediate concept of a left Hopf algebroid.
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One could generalise Theorem 7.1.1 to differentially graded left Hopf algebroids,
sheaves thereof, or suitable abstract monoidal categories. One also could drop the condi-
tion ExtnU (A,U) = 0 for n 6= d the assumption that TorAq (M,A∗) = 0. Then one obtains
an isomorphism RHomU (A,M) ' (M ⊗L

A RHomU (A,U)) ⊗L
U A for a bounded below

chain complex M over U -Mod.

7.1.1 Some Conventions
Let U be a left bialgebroid over A with structure maps as in Definition 2.1.2, and consider
the categories U -Mod and Uop-Mod. Using the forgetful functor U -Mod → Ae-Mod,
we regard, as in Subsection 2.3.1, any U -moduleM also as an (A,A)-bimodule with actions

a �m � b := η(a⊗k b)m, a, b ∈ A,m ∈M. (7.1.2)

Similarly, every right U -module N is also an A-bimodule via

a Im J b := nη(b⊗k a), a, b ∈ A,n ∈ N, (7.1.3)

although the category Uop-Mod for a left bialgebroid is usually not monoidal, in contrast
to U -Mod. A useful abbreviation in this section will be the following:

7.1.2 Definition If U is a left A-bialgebroid and M,N ∈ U -Mod are left U -modules, we
denote the left U -module M ⊗A N with U -action (2.3.2) by M ⊗N .

As before, the notations from (7.1.2) and (7.1.3) apply in particular to U itself; let us
repeat that as the default case we consider U as an Ae-module using a �u � b, and otherwise
we write e.g. IU� to denote which actions are considered.

Since this will be repeatedly a necessary technical condition, we define:

7.1.3 Definition For an Ae-algebra U we call M ∈ U -Mod A-biprojective if both �M ∈
A-Mod and M� ∈ Aop-Mod are projective modules.

7.2 Multiplicative Structures

7.2.1 D−(U) as a Suspended Monoidal Category
For any ring U , we denote the derived category of bounded above cochain complexes of left
U -modules by D−(U). As usual, we identify any M ∈ U -Mod with a complex in D−(U)
concentrated in degree 0, and identify any bounded below chain complex P• with a bounded
above cochain complex by putting Pn := P−n.

If U is an A-biprojective left A-bialgebroid, then any projective P ∈ U -Mod is A-
biprojective. Hence the monoidal structure of U -Mod extends to a monoidal structure on
D−(U) with unit object still given byA and product being the total tensor product⊗L = ⊗L

A

(the A-biprojectivity of U -projectives is needed for example to have [W, Lemma 10.6.2]).
Together with the shift functor T : D−(U) → D−(U), (TC)n = Cn+1, D−(U) be-

comes what in [Sua] is called a suspended monoidal category. This just means that for all
C,D ∈ D−(U), the canonical isomorphisms

TC ⊗L D ' T (C ⊗L D) ' C ⊗L TD
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given by the obvious renumbering make the diagrams

A⊗L TC

��

// TC

yytttttttttt

T (A⊗L C)

TC ⊗L A

��

// TC

yytttttttttt

T (C ⊗L A)

commutative, whilst making the diagram

TC ⊗L TD

��

// T (C ⊗L TD)

��
T (TC ⊗L D) // T 2(C ⊗L D)

anti-commutative (commutative up to a sign −1).

7.2.2 The Products ` and ◦
As a special case of the constructions from [Sua], for any A-biprojective left A-bialgebroid
U and L,M,N ∈ U -Mod we define the cup product

` : ExtmU (A,M)× ExtnU (A,N)→ Extm+n
U (A,M ⊗N)

and the classical Yoneda product

◦ : ExtmU (N,M)× ExtnU (L,N)→ Extm+n
U (L,M).

The latter is just the composition of morphisms in D−(U) if one identifies

ExtnU (L,N) ' HomD−(U)(L, TnN),

and
ExtmU (N,M) ' HomD−(U)(N,TmM) ' HomD−(U)(TnN,Tm+nM).

The former is obtained as follows: given

ϕ ∈ ExtmU (A,M) ' HomD−(U)(A, TmM),

ψ ∈ ExtnU (A,N) ' HomD−(U)(A, TnN),

one defines ϕ ` ψ as the composition

A ' A⊗A
ϕ⊗ψ // TmM ⊗L TnN ' Tm(M ⊗L TnN) ' Tm+n(M ⊗L N)

// Tm+n(M ⊗N),

where the last map is the augmentation M ⊗L N → H0(M ⊗L N) ' TorA0 (M,N) '
M ⊗N , or rather Tm+n applied to this morphism in D−(U).

A straightforward extension of Theorem 1.7 from [Sua] now gives:
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7.2.1 Theorem If U is an A-biprojective left A-bialgebroid, then we have

ψ ◦ ϕ = ϕ ` ψ = (−1)mnψ ` ϕ, ϕ ∈ ExtmU (A,A), ψ ∈ ExtnU (A,M)

as elements of Extm+n
U (A,M) ' Extm+n

U (A,A⊗M) ' Extm+n
U (A,M ⊗A).

In particular, through either of the products ExtU (A,A) becomes a graded commutative
algebra over the commutative subring HomU (A,A).

PROOF: This is proven exactly as in [Sua]. For the reader’s convenience we include one of
the diagrams involved. The unlabeled arrows are canonical maps coming from the suspended
monoidal structure.

A

ϕ

��

// A⊗A

id⊗ϕ

��

ψ⊗id

((PPPPPPPPPPPPPPPPPPP

TmA

&&NNNNNNNNNNNNNNNNN
//

id

��

A⊗ TmA

��

ψ⊗id

((PPPPPPPPPPPPPPPPPPP TnM ⊗L A

id⊗ϕ

��
Tm(A⊗A)

xxqqqqqqqqqqqqqqqqq

Tm(ψ⊗id)

��

TnM ⊗L TmA

��wwnnnnnnnnnnnnnnnnnn

TmA

Tm(ψ)

��

Tm(TnM ⊗L A)

xxqqqqqqqqqqqqqqqqq

��

Tn(M ⊗L TmA)

wwnnnnnnnnnnnnnnnnnn

Tm+nM Tm+n(M ⊗L A)oo

The morphism ψ ◦ ϕ ∈ HomD−(U)(A, Tm+nM) is the path going straight down from A to
Tm+nM , and ψ ` ϕ is the one which goes clockwise round the whole diagram. All faces
of the diagram commute except the lower right square, which introduces a sign (−1)mn, so
we get ψ ◦ ϕ = (−1)mnψ ` ϕ. The other identity is shown with a similar diagram. 2

7.2.3 Tensoring Projectives
This paragraph is a small excursus about the projectivity of the tensor product of two pro-
jective objects of a monoidal category. For example, U ⊗ U ∈ U -Mod is not necessarily
projective even for a bialgebra U over a field A = k (so the A-projectivity of U or the ex-
actness of ⊗ does not help). Here is a simple example (for a detailed study of examples of
categories of Mackey functors see [Lew]):

7.2.2 Example Consider the bialgebra U = C[a, b, c] over A = k = C, with

∆(a) = a⊗ a, ∆(b) = a⊗ b+ b⊗ c, ∆(c) = c⊗ c,
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ε(a) = 1, ε(b) = 0, ε(c) = 1.

Geometrically, this is the coordinate ring of the complex algebraic semigroup G of upper
triangular 2 × 2-matrices, and ∆ and ε are dual to the semigroup law G × G → G and the
embedding of the identity matrix into G.

We prove that U ⊗ U ∈ U -Mod is not projective by considering the fibres of the
semigroup law G × G → G. The fibre over a generic and hence invertible element is 3-
dimensional, but over 0 it is 4-dimensional, and this will imply our claim. We can use for
example [Mat, Theorem 19 on p. 79]:

7.2.3 Theorem Let U ⊂ V be a flat extension of commutative Noetherian rings, p ⊂ V a
prime ideal, and q := U ∩ p. Then

dim(Vp) = dim(Uq) + dim(Vp ⊗U U(q)),

where dim denotes the Krull dimension of a ring, Vp is the localisation of V at p andU(q) :=
Uq/qUq is the residue field of the localisation Uq.

Apply this to our example U ' ∆(U) ⊂ V := U ⊗ U : let p be the ideal of V generated
by a ⊗C 1, 1 ⊗C a, b ⊗C 1, 1 ⊗C b, c ⊗C 1, 1 ⊗C c. Geometrically, V is the coordinate
ring of C6 and Vp is the local ring in 0, so dim(Vp) = 6. Since 1 /∈ p, q = U ∩ p is
proper, and it contains the ideal generated by ∆(a) = a ⊗C a, ∆(b) = a ⊗C b + b ⊗C c,
∆(c) = c ⊗C c, which is maximal in U , so q ⊂ U is the ideal generated by a, b, c, and Uq

is the local ring of C3 at 0 with dim(Uq) = 3. The field U(q) is obviously C, and we can
write Vp ⊗U U(q) also as Vp/∆(q)Vp. Since ∆(q)Vp is contained in the ideal r generated
in Vp by the elements a ⊗C 1, 1 ⊗C c, we have dim(Vp/∆(q)Vp) ≥ dim(Vp/r). Now Vp/r
is the local ring of C4 ⊂ C6 at 0 and hence dim(Vp/r) = 4. In total, we obtain the strict
inequality 3 + dim(Vp/∆(q)Vp) ≥ 3 + 4 = 7 > 6, and hence V is not flat over U and in
particular not projective.

For left Hopf algebroids the situation is, however, much simpler: notice that for any left
A-bialgebroid U and M ∈ U -Mod

IU ⊗Aop M � := U ⊗kM/span{a Iu⊗k m− u⊗k m � a |u ∈ U, a ∈ A,m ∈M}

is a left U -module by left multiplication on the first factor. Just as for M = U , there is a
Galois map

βM : IU ⊗Aop M� → U ⊗M, u⊗Aop m 7→ u(1) ⊗A u(2)m,

and we have:

7.2.4 Lemma For any left A-bialgebroid U , the generalised Galois map βM is a morphism
of U -modules. If U is a left Hopf algebroid over A, then βM is bijective.

PROOF: TheU -linearity of βM immediately follows from the fact that ∆ : U → U×AU ⊂
U ⊗A U is a homomorphism of algebras over Ae. Furthermore, if β is a bijection, then so
is βM since we can identify βM with β ⊗U idM , and then the inverse is simply given by
β−1
M (u⊗A m) = u+ ⊗Aop u−m. 2

Using this one now obtains:
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7.2.5 Theorem If U is a left Hopf algebroid over A and U� ∈ Aop-Mod is projective,
then P ⊗Q ∈ U -Mod is projective for all projectives P,Q ∈ U -Mod.

PROOF: By assumption, any projective module over U is also projective over Aop, and
if ϕ : R → S is any ring map, then S ⊗R · : R-Mod → S-Mod maps projectives to
projectives. This shows that IU ⊗Aop U� and hence (Lemma 7.2.4) U ⊗ U is projective.
Since ⊗ = ⊗A commutes with arbitrary direct sums, P ⊗Q is projective for all projectives
P,Q. 2

7.2.6 Corollary If U is as in Theorem 7.2.5 and P ∈ D−(U) is a projective resolution of
A ∈ U -Mod, then so is P ⊗ P := Tot(P• ⊗ P•) = P ⊗L P .

This leads to the traditional construction of `, given for A = k in [CarE, Chapter XI]:
one fixes a projective resolution P of A, and by the above, ExtU (A,M ⊗ N) is the total
(co)homology of the double (cochain) complex

C2
mn := HomU (Pm ⊗ Pn,M ⊗N).

Then ` is given as the composition of the canonical map⊕
m+n=p

ExtmU (A,M)⊗k ExtnU (A,N)

'
⊕

m+n=p
Hm(HomA(P•,M))⊗k Hn(HomA(P•, N))

→ Hp(
⊕

m+n=•
HomA(Pm,M)⊗k HomA(Pn, N)) = Hp(Tot(C1

••)),

where C1
mn := HomU (Pm,M)⊗k HomU (Pn, N), with the map

H(Tot(C1
••))→ H(Tot(C2

••)) ' ExtU (A,M ⊗N)

that is induced by the morphism of double complexes

C1
mn 3 ϕ⊗k ψ 7→ {x⊗ y 7→ ϕ(x)⊗ ψ(y)} ∈ C2

mn.

For the sake of completeness, let us finally remark that—as for A = k—one can in
particular use the bar complex to obtain a canonical resolution (cf. Theorem 6.2.3, where
this is formulated for the case of a Hopf algebroid):

7.2.7 Lemma (the bar complex revisited) For any left A-bialgebroid U , the complex of left
U -modules

Barn U := ( IU� )⊗Aopn+1, v(u0 ⊗Aop · · · ⊗Aop un) := vu0 ⊗Aop · · · ⊗Aop un,

whose boundary map is given by

b′ : u0 ⊗Aop · · · ⊗Aop un 7→
n−1∑
i=0

(−1)iu0 ⊗Aop · · · ⊗Aop uiui+1 ⊗Aop · · · ⊗Aop un

+(−1)nu0 ⊗Aop · · · ⊗Aop ε(un) Iun−1,
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is a contractible resolution of A ∈ U -Mod, with augmentation

ε : Bar0 U = U → A =: Bar−1 U.

If U� ∈ Aop-Mod is projective, then Barn U ∈ U -Mod is projective.

PROOF: All claims are straightforward: there is a contracting homotopy

s : Barn U → Barn+1 U, u0⊗Aop · · ·⊗Aop un 7→ 1⊗Aop u0⊗Aop · · ·⊗Aop un, n ≥ 0,

s : A = Bar−1 U → U = Bar0 U, a 7→ η(a⊗ 1),

and the projectivity of Barn U follows as in the proof of Theorem 7.2.5. 2

7.2.4 The Functor ⊗ : U -Mod× Uop-Mod→ Uop-Mod

Now we introduce the functor ⊗ mentioned in Theorem 7.1.1.

7.2.8 Lemma Let U be a left Hopf algebroid overA and letM ∈ U -Mod, P ∈ Uop-Mod
be left and right U -modules, respectively. Then the formula

(m⊗A p)u := u−m⊗A pu+ u ∈ U, m ∈M,p ∈ P, (7.2.1)

defines a right U -module structure on the tensor product

M ⊗A P := M ⊗k P/span{m � a⊗k p−m⊗k a I p | a ∈ A}. (7.2.2)

If N is any other (left) U -module, then the canonical isomorphism

(M ⊗N)⊗A P 'M ⊗A (N ⊗A P ) (7.2.3)

of A-bimodules is also an isomorphism in Uop-Mod. Finally, the tensor flip

(M ⊗A P )⊗U N → P ⊗U (N ⊗AM), m⊗A p⊗U n 7→ p⊗U n⊗A m

is an isomorphism of k-modules.

PROOF: To show firstly that (7.2.1) is well-defined over A, we compute(
m⊗A (a I p)

)
u = u−m⊗A pη(1⊗ a)u+ = u−m⊗A p(u+ � a)

= (a Iu−)m⊗A pu+ = u−
(
η(1⊗ a)m

)
⊗A pu+

=
(
(m � a)⊗A p

)
u,

where (2.2.6) and the action properties were used. Together with (7.2.2) this also proves
well-definedness of (7.2.1) with respect to the presentation of u+⊗Aop u−. With the help of
(2.2.9), one immediately sees that for u, v ∈ U we have(

m⊗A p
)
(uv) = (uv)−m⊗A p(uv)+ = v−u−m⊗A pu+v+ =

(
(m⊗A p)u

)
v,

since P and M were right and left U -modules, respectively. As a conclusion, M ⊗A P ∈
Uop-Mod. Equation (7.2.3) is a direct consequence of the associativity of the tensor product
of A-bimodules and of (2.2.8).
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For the last part one has to check that the flip is well-defined: we have

η(1⊗ a)m⊗A p⊗U n 7→ p⊗U n⊗A η(1⊗ a)m = p⊗U η(1⊗ a)(n⊗A m)
= pη(1⊗ a)⊗U (n⊗A m),

which is what m⊗A pη(1⊗ a)⊗U n is mapped to. Secondly, we have

m⊗A p⊗U un 7→ p⊗U un⊗A m = p⊗U u+(1)n⊗A u+(2)u−m

= p⊗U u+(n⊗A u−m) = pu+ ⊗U n⊗A u−m,

which is what u−m⊗A pu+ ⊗U n = (m⊗A p)u⊗U n is mapped to. 2

7.2.9 Definition We denote the Uop-module constructed above by M ⊗ P .

Thus an unadorned ⊗ refers from now on either to the monoidal product on U -Mod or
to the action of U -Mod on Uop-Mod just defined. For example, (7.2.3) would now simply
be written as (M ⊗N)⊗ P 'M ⊗ (N ⊗ P ).

7.2.10 Example Let (A,L) be a Lie-Rinehart algebra, M a left and N a right V L-module,
respectively (or, in the terminology of [Hue1, Hue3], left and right (A,L)-modules, see
4.2.5). Using (4.2.4), one obtains the right V L-module structure on M ⊗A N from formula
(2.4) in [Hue3, p. 112]:

(m⊗A n)X = m⊗A nX −Xm⊗A n, m ∈M, n ∈ N, X ∈ L.

If we again assume that U is A-biprojective, then the above results extend directly to the
derived category D−(Uop): we obtain a functor

⊗L = ⊗L
A : D−(U)×D−(Uop)→ D−(Uop),

and for all M,N ∈ D−(U), P ∈ D−(Uop) we have canonical isomorphisms

(M ⊗L N)⊗L P 'M ⊗L (N ⊗L P ), (M ⊗L P )⊗L
U N ' P ⊗L

U (N ⊗L M). (7.2.4)

7.2.5 The Products a and •
These products are dual to ` and ◦. There is a Yoneda one

• : ExtmU (L,M)× TorUn (N,L)→ TorUn−m(N,M)

which exists for any ring U and L,M ∈ U -Mod, N ∈ Uop-Mod: an element

ϕ ∈ ExtmU (L,M) ' HomD−(U)(L, TmM)

defines a morphism in D−(Z),

N ⊗L
U L→ N ⊗L

U T
mM, x⊗U y 7→ x⊗U ϕ(y),

and ϕ • · is the induced map in (co)homology

TorUn (N,L) ' H−n(N ⊗L
U L)

H−n(id⊗ϕ)−−−−−−−→ H−n(N ⊗L
U T

mM) ' Hm−n(N ⊗L
U M) ' TorUn−m(N,M).
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For M ∈ U -Mod, N ∈ Uop-Mod as before, the cap product

a : ExtmU (A,M)× TorUn (N,A)→ TorUn−m(M ⊗N,A)

involves the functor ⊗ from the previous paragraph, so for this we want U to be an A-
biprojective left Hopf algebroid over A again. Similarly as for •,

ϕ ∈ ExtmU (A,M) ' HomD−(U)(A, TmM)

defines a morphism in D−(k),

N ⊗L
U A ' N ⊗L

U (A⊗A)
id⊗id⊗ϕ−−−−−→ N ⊗L

U (A⊗L TmM) ' N ⊗L
U (TmA⊗L M) ' (M ⊗L N)⊗L

U T
mA

−−−−−→ (M ⊗N)⊗L
U T

mA,

where the last ' in the second line is induced by the tensor flip as in the derived version
(7.2.4) of Lemma 7.2.8, and the morphism from the second to the third line is similarly as
in the definition of ` induced by the morphism M ⊗L N → M ⊗ N in D−(Uop) that
takes zeroth cohomology. Passing now to cohomology, we obtain ϕ a · : TorUn (N,A) →
Torn−m(M ⊗N,A).

More explicitly, if P ∈ D−(U) is a projective resolution of A, then a is induced by the
morphism

B1
ij 3 n⊗U (x⊗A y) 7→ {ϕ 7→ (ϕ(y)⊗A n)⊗U x} ∈ B2

ij

from the double complex
B1
ij := N ⊗U (Pi ⊗A Pj),

whose total homology is TorU (N,A), to the double complex

B2
ij := Homk(HomU (Pj ,M), (M ⊗N)⊗U Pi),

whose homology has a natural map to Homk(ExtU (A,M),TorU (M ⊗N,A)).
In direct analogy with Theorem 7.2.1 we obtain:

7.2.11 Theorem If U is an A-biprojective left Hopf algebroid over A, then we have

ϕ • (x⊗U y) = ϕ a (x⊗U y), ϕ ∈ ExtmU (A,A), x⊗U y ∈ N ⊗L
U A

as elements of N ⊗L
U A ' (A⊗N)⊗L

U A.

7.3 Duality and the Proof of Theorem 7.1.1

7.3.1 The Underived Case
In the special case that A is finitely generated projective itself, Theorem 7.1.1 reduces to
standard linear algebra. We go through this case first since it is both instructive and will be
used in the proof of the general case. For the reader’s convenience we include full proofs.
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7.3.1 Lemma Let U be a ring, A ∈ U -Mod be finitely generated projective, and let A∗ be
HomU (A,U) with its canonical Uop-module structure.

1. A∗ is finitely generated projective, and if e1, . . . , en are generators of A, then there
exist generators e1, . . . , en ∈ A∗ with∑

i

ei(a)ei = a,
∑
i

eiα(ei) = α

for all a ∈ A and α ∈ A∗. The element

ω :=
∑
i

ei ⊗ ei ∈ A∗ ⊗U A

is independent of the choice of the generators ei, ej .

2. For all Uop-modules M , the assignment

δ(m⊗ a)(α) := mα(a), m ∈M,a ∈ A,α ∈ A∗

uniquely extends to an isomorphism of abelian groups

δ : M ⊗U A→ HomUop(A∗,M).

3. One has (A∗)∗ ' A and A∗ ⊗U M ' HomU (A,M) for M ∈ U -Mod.

4. The mapˆ : HomU (A,A) → HomUop(A∗, A∗), ϕ̂(α) := α ◦ ϕ is a ring anti-
isomorphism (with respect to the composition ◦).

PROOF: Since A is projective, there is a splitting ι : A→ Un of

π : Un → A, (u1, . . . , un) 7→
∑
i

uiei.

Hence Un ' A⊕A⊥ for some A⊥ ∈ U -Mod. Dually, this gives A∗ ⊕ (A⊥)∗ = (Un)∗ '
Un, whence A∗ is finitely generated projective. The ei can be defined as the composition of
ι with the projection of Un on the i-th summand. This proves the first parts of 1. For 2. just
note that

HomUop(A∗,M) 3 ϕ 7→
∑
i

ϕ(ei)⊗ ei ∈M ⊗U A

inverts δ. Since ω = δ−1(idA∗), it does indeed not depend on the choice of generators.
3. now follows from 1. and 2. For 4., we note that

ϕ̂(α) = α ◦ ϕ =
∑
i

eiα(ϕ(ei)) = δ(
∑
i

ei ⊗ ϕ(ei))(α),

that is, we have ϕ̂ = δ(
∑
i e
i ⊗ ϕ(ei)). Thusˆ is the composition of the isomorphism

HomU (A,A)→ A∗ ⊗U A from 3. with the isomorphism δ. Finally, we have (ϕ̂ ◦ ψ)(α) =
α ◦ ϕ ◦ ψ = ψ̂(α ◦ ϕ) = ψ̂(ϕ̂(α)) = (ψ̂ ◦ ϕ̂)(α). 2

As in the introduction, let us abbreviate in the situation of this theorem

H0(M) := HomU (A,M), H0(N) := N ⊗U A
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for M ∈ U -Mod, N ∈ Uop-Mod, and call ω ∈ H0(A∗) the fundamental class of (U,A).
Then, for M = A, claim 3. says that we have an isomorphism

· • ω : H0(A)→ H0(A∗), ϕ 7→
∑
i

ei ⊗ ϕ(ei). (7.3.1)

Using Lemma 7.2.8 we can upgrade this to the underived case of Theorem 7.1.1:

7.3.2 Lemma Let U be a left Hopf algebroid over A and assume A is finitely generated
projective as a U -module. Then the cap product with the fundamental class ω ∈ H0(A∗) =
A∗ ⊗U A defines for all M ∈ U -Mod an isomorphism

· a ω : H0(M)→ H0(M ⊗A∗).

PROOF: We have ϕ a ω =
∑
i(ϕ(1)⊗A ei)⊗U ei, and Lemma 7.2.8 identifies

H0(M ⊗A∗) = (M ⊗A∗)⊗U A ' A∗ ⊗U (A⊗M) ' A∗ ⊗U M.

In this chain of identifications, ϕ a ω is mapped to

ϕ a ω 7→
∑
i

ei ⊗U (ei ⊗A ϕ(1)) 7→
∑
i

ei ⊗U (eiϕ(1)) =
∑
i

ei ⊗U ϕ(ei)

which is identified with ϕ under the isomorphism HomU (A,M) ' A∗ ⊗U M given by
ϕ 7→

∑
i e
i ⊗U ϕ(ei), as in (7.3.1). The claim follows. 2

7.3.2 The Derived Case

It remains to throw in some homological algebra to obtain Theorem 7.1.1 in general. To
shorten the presentation, we define:

7.3.3 Definition A module A over a ring U is perfect if it admits a finite resolution by
finitely generated projectives. We call such a module a duality module if there exists d ≥ 0
such that ExtnU (A,U) = 0 for all n 6= d. In this case we abbreviate A∗ := ExtdU (A,U) and
call d the dimension of A.

The main remaining step is to prove a derived version of Lemma 7.3.1. One could use
a result of Neeman by which A ∈ U -Mod is perfect if and only if HomU (A, ·) commutes
with direct sums [Ke, N], or the Ischebeck spectral sequence, which degenerates atE2 ifA is
a duality module [Isch, Kr, Sk]. However, we include a more elementary and self-contained
proof.

7.3.4 Theorem Let A ∈ U -Mod be a duality module of dimension d.

1. The projective dimension of A ∈ U -Mod is d.

2. A∗ is a duality module of the same dimension d.
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3. If P• → A is a finitely generated projective resolution of length d, then P ∗d−• =
HomU (Pd−•, U) is a finitely generated projective resolution of A∗ and for all Uop-
modules M the canonical isomorphism

δ : M ⊗U Pi → HomU (P ∗i ,M), m⊗U p 7→ {α 7→ mα(p)}

induces a canonical isomorphism

TorUi (M,A)→ Extd−iUop(A∗,M).

4. There is a canonical isomorphism (A∗)∗ ' A.

PROOF: Let P• → A be a finitely generated projective resolution of finite length m ≥ 0
(which exists since A is perfect). Then the (co)homology of

0→ P ∗0 → . . .→ P ∗m → 0, P ∗n = HomU (Pn, U)

is Ext•U (A,U), so by assumption we have m ≥ d, and the above complex is exact except at
P ∗d where the homology isA∗ = ExtdU (A,U). Furthermore, all the P ∗n are finitely generated
projective since the Pn are (Lemma 7.3.1).

Let πi be the map P ∗i → P ∗i+1 and put K := kerπd+1. By construction,

0→ K → P ∗d+1 → . . .→ P ∗m → 0 (7.3.2)

is exact. If one compares this exact sequence with the sequence

. . .→ 0→ 0→ P ∗m → P ∗m → 0

using Schanuel’s lemma (see [McCRob, 7.1.2]), one obtains that K is projective.
The exactness of P ∗• at P ∗d+1 gives K = imπd, and by the projectivity of K, the map

πd : P ∗d → K ⊂ P ∗d+1 splits so that P ∗d ' K ⊕K⊥, K⊥ := kerπd. In particular, both K
and K⊥ are finitely generated.

It follows from all this that the complex

0→ P ∗0 → . . .→ P ∗d−1 → K⊥ → 0 (7.3.3)

is a finitely generated projective resolution of A∗: since imπd−1 ⊂ P ∗d is contained in
kerπd = K⊥, it is still exact at P ∗d−1, and the homology at K⊥ is the homology of P ∗• at
P ∗d , that is, A∗.

Since (7.3.2) is a finitely generated projective resolution of 0 and as a complex P ∗d−•
is a direct sum of (7.3.3) and (a shift of) (7.3.2), we also know that Ext•Uop(A∗,M) is
the (co)homology of HomU (P ∗d−•,M) for any M ∈ Uop-Mod. By Lemma 7.3.1, this is
isomorphic to M ⊗U Pd−• as a chain complex via the isomorphism given in 3., and the
homology of this complex is TorUd−•(M,A). This proves 3. The special case M = U
implies the remaining claims. 2

Finally, assume that in the situation of the above theorem, U is an A-biprojective left
Hopf algebroid over A. Since P is a projective resolution, we have M ⊗U P ' M ⊗L

U P
and HomU (P ∗,M) ' RHomU (P ∗,M), and δ gives an isomorphism between the two. The
fundamental class is defined to be

ω := δ−1(idA∗) ∈ A∗ ⊗L
U A ' P ∗ ⊗U A ' A∗ ⊗U P,

and Theorem 7.3.4 immediately gives:
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7.3.5 Corollary If e1, . . . , en and ẽ1, . . . ẽn are generators ofA and ofA∗, respectively, then
there are e1, . . . , en ∈ P ∗0 and ẽ1, . . . , ẽn ∈ Pd such that

ω =
∑
i

ei ⊗U ei =
∑
i

ẽi ⊗U ẽi,

and δ is given by the Yoneda product · • ω.

Theorem 7.1.1 follows now as in the underived case (Lemma 7.3.2), working with
RHomU (A,M) and (M ⊗L A∗) ⊗L

U A instead of H0(M) = HomU (A,M) and H0(M ⊗
A∗) = (M ⊗A∗)⊗U A: using Theorem 7.2.11 and (7.2.4) one gets

(M ⊗L A∗)⊗L
U A ' A∗ ⊗L

U (A⊗L M) ' A∗ ⊗L
U M

' P ∗ ⊗L
U M ' RHomU (P,M)

' RHomU (A,M),

where we hide the reindexing of the complexes for the sake of better readability (so P ∗

stands for P ∗d−•, and both RHomU (P,M) and RHomU (A,M) are reindexed in the same
way). This leads to a convergent spectral sequence

TorUp (TorAq (M,A∗), A)⇒ Extd−p−qU (A,M),

and under the last assumption of Theorem 7.1.1 (i.e., TorAq (M,A∗) = 0 for q > 0) this
spectral sequence degenerates to the claimed isomorphism.



Appendix

This appendix contains a collection of well-known facts repeatedly used throughout the text.

A.1.1 Reminder on the Behaviour of the Functors Hom and ⊗ on Bimodules The ma-
terial in this paragraph is standard (confer e.g. [CarE, M]) but still may be of some help to
maintain a certain overview in the abundance of module structures in the preceding chapters.
Compare the conventions at the end of the Introduction (page 12) for notation.

Let R,S, T be any three rings.

(i ) If two left R-modules RM,RN also happen to additionally carry S-actions and T -
actions from left or right, respectively, the space Hom(R,−)(M,N) carries the follow-
ing explicit (bi)module structures. For any f ∈ Hom(R,−)(M,N), m ∈ M, s ∈
S, t ∈ T one has:

(RMS ,RNT ) =⇒ S[Hom(R,−)(M,N)]T , (sft)(m) := [f(ms)]t
(R−SM,R−TN ) =⇒ T[Hom(R,−)(M,N)]S , (tfs)(m) := t[f(sm)].

(ii ) For the situation MR, NR of two right R-modules that are also equipped
with additional left or right S-actions and T -actions, respectively, the space
Hom(−,R)(M,N) carries the following explicit (bi)module structures. For each
g ∈ Hom(−,R)(M,N), m ∈M, s ∈ S, t ∈ T one has:

(SMR, TNR) =⇒ T[Hom(−,R)(M,N)]S , (tgs)(m) := t[g(sm)]
(MR−S , NR−T ) =⇒ S[Hom(−,R)(M,N)]T , (sgt)(m) := [f(ms)]t.

On tensor products of bimodules, one has the following bimodule structures:

(SMR,RNT ) =⇒ S[M ⊗R N ]T , s(m⊗ n)t := sm⊗ nt, (A.1.4)

which may be generalised to n modules M1, . . . ,Mn by

(SM
1
R , . . . ,RM

n
T ) =⇒ S[M1⊗R . . .⊗RMn]T , s(m1⊗ . . .⊗mn)t := sm1⊗ . . .⊗mnt.

A.1.2 The Dual Basis Lemma Unlike a free module, a projective module may not have a
basis, but it always has a ‘projective coordinate system’ with similar properties. (see e.g.
[AnFu]).

A.1.3 Definition Let R be any ring, P an R-module, and I an index set. A pair of indexed
sets {ei}i∈I ∈ P and {ei}i∈I ∈ HomR(P,R) is called a dual basis for P in case for all
x ∈ P

175
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(i ) ei(x) = 0 for almost all i ∈ I ,

(ii ) x =
∑
I e

i(x)ei.

A.1.4 Lemma (i ) P is projective over R iff it has a dual basis.

(ii ) P is finitely generated projective iff there exist e1, . . . , en ∈ P (a generating set) and
e1, . . . , en ∈ HomR(P,R) such that for each x ∈ P

x =
n∑
i=1

ei(x)ei.
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1956), Facultè des Sciences de Paris, 1957.

[ChPr] Vyjayanthi Chari and Andrew Pressley, A guide to quantum groups, Cambridge University
Press, Cambridge, 1995, Corrected reprint of the 1994 original.

[CheE] Claude Chevalley and Samuel Eilenberg, Cohomology theory of Lie groups and Lie algebras,
Trans. Amer. Math. Soc. 63 (1948), 85–124.
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[MoeMrč2] , Lie groupoids, sheaves and cohomology, Poisson geometry, deformation quan-
tisation and group representations, London Math. Soc. Lecture Note Ser., vol. 323, Cambridge
Univ. Press, Cambridge, 2005, pp. 145–272.
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Samenvatting in het Nederlands

Groepoı̈den zijn een meetkundige generalisatie van zowel ruimtes als groepen. Als zodanig
vormen zij een veralgemeniseerd symmetrie concept dat al vele toepassingen heeft gevonden
in de theorie van groepswerkingen en foliaties etc. In het bijzonder zijn de karakteristieke
klassen van zulke meetkundige strukturen op natuurlijke wijze elementen van de cohomolo-
gie van de klassificerende ruimten van de bijbehorende (Lie) groepoı̈den. Symmetrieën in
niet commutatieve meetkunde, de niet commutatieve versie van groepsacties, zijn gegeven
door een actie (of co-actie) van een Hopf algebra op een algebra of co-algebra die de rol
speelt van een ‘niet commutatieve ruimte’.

De cyclische cohomologie van Hopf algebras, ofwel Hopf-cyclische cohomologie, is de
niet commutatieve versie van Lie algebra homologie, waartoe ze reduceert voor universeel
omhullende algebras. Deze cohomologie theorie werd ontdekt door Connes en Moscovici in
de context van de transversale index stelling voor foliaties, en in het algemeen door het werk
van Crainic. Een universeel raamwerk voor alle voorbeelden van cyclische (co)homologie
van Hopf algebras werd gegeven door het werk van Kaygun, gebaseerd op een constructie
van cyclische objecten in symmetrische monoidale categorieën in termen van (co)monoiden.

Het voornaamste doel van dit proefschrift is om het concept van gegeneraliseerde sym-
metrie in de niet commutatieve meetkunde te verduidelijken, als wel als hun (co)homologie
theorieën.

Zulke symmetrieën worden gedefiniëerd door zogenaamde Hopf algebroı̈den, een gen-
eralisatie van Hopf algebras (met mogelijk een ‘getwiste antipode’) naar niet commutatieve
basis algebras. Van een dergelijk object zijn echter meer dan één definitie mogelijk. Hoewel
oorspronkelijk ingevoerd als cogroupoı̈de object in de categorie van commutatieve algebras,
is het grootste probleem in de algemene definitie van een Hopf algeboı̈de dat de betrokken
tensor categorie van bimodulen niet symmetrisch is: een directe veralgemenisering van de
axioma’s van een Hopf algebra werkt niet.

Als we een Hopf algebra beschouwen als een bialgebra met een antipode, vormt de eerste
stap in de generalisatie tot zogeheten bialgebroı̈den (of ×A-bialgebras) geen probleem: dit
is een bialgebra object in de tensor categorie van bimodulen over een (niet commutatieve)
basis algebra.

Definities beginnen te verschillen met de introductie van de antipode. De eerste algemene
definitie werd gegeven door Lu, maar die vereiste weer een nieuwe structuur, namelijk een
snede van een zekere projectie afbeelding.

In dit proefschrift gebruiken we de alternatieve definitie van Böhm-Szlachányi, die, grof
gezegd, twee (zogeheten links en rechts) bialgebroı̈de structuren vereist, alsmede een an-
tipode die de linker struktuur afbeeld op de rechter. Deze definitie omzeilt de enigszins ad
hoc keuze van een snede en maakt de definitie meer symmetrisch.



De voorbeelden van Hopf algebroı̈den die we in detail beschouwen zijn onder andere
universeel omhullende algebras van Lie-Rinehart algebras, ruimtes van jets, en convolutie
en functie ruimtes op étale groepoı̈den. Gegeneraliseerde Connes-Moscovici algebras, dat
is, ruimtes van transversale differentiaal operatoren op willekeurige étale groepoı̈den wor-
den ook behandeld: We geven een algemeen raamwerk voor de constructies van Connes-
Moscovici en Moscovici-Rangipour, door de introductie van het begrip matched pairs van
bialgebroı̈den en het dubbel-gekruist product van bialgebroı̈den. Het voorbeeld van Connes-
Moscovici volgt dit patroon.

Verdere algemene constructies die we geven zijn bijvoorbeeld een categorische equiv-
alentie tussen links bialgebroı̈de comodulen en modulen over de duale in de zin van Kadison-
Szlachányi.

Een centraal thema in dit proefschrift is de generalisatie van Hopf-cyclische
(co)homologie naar Hopf algebroı̈den, wat tot nu toe minder onderzocht was en waartoe
de universele aanpak van Kaygun niet toereikend is.

Door een aanpak van Crainic voor Hopf algebras te generaliseren, laten we zien dat Hopf-
cyclische cohomologie op natuurlijke wijze gedefinieerd kan worden voor Hopf algebroı̈den
zoals gedefinieerd door Böhm-Szlachányi: de monoidale categorie van modulen speelt een
centrale rol en de cyclische cohomologie is een quotient van de cyclische cohomologie van
coringen.

We ontwikkelen ook een duale cyclische homologie theorie voor Hopf algebroı̈den,
door middel van cyclische dualiteit zoals gedefinieerd door Connes, en een gegeneraliseerde
Hopf-Galois afbeelding. Deze laatste afbeelding is nodig om van de categorie van modulen
naar die van comodulen over te gaan.

Verdere vertakkingen van de theorie die we bespreken betreffen de identificatie van de
Hochschild theorie als een afgeleide functor. Ook geven we algemene structuur stellingen
voor de cyclische theorie van commutatieve en cocommutatieve Hopf algebroı̈den in termen
van hun Hochschild groepen. Dit generaliseert soortgelijke resultaten voor Hopf algebras in
het werk van Khalkhali-Rangipour.

Daarna berekenen we deze Hopf-cyclische cohomologie en de duale homologie in con-
crete voorbeelden zoals universeel omhullende algebras van Lie-Rinehart algebras, ruimtes
van jets, en convolutie algebras over étale groepoı̈den. Deze berekeningen laten zien dat
de ontwikkelde cyclische theorie een natuurlijke generalisatie is van zowel Lie-Rinehart
(co)homologie en groepoı̈de homologie.

We ontwikkelen zelfs een speciale methode om de duale cyclische homologie voor con-
volutie algebras te berekenen, door te laten zien hoe in deze gevallen de duale theorie samen-
hangt met de monoidale categorie van comodulen.

Ten slotte bewijzen we een stelling die laat zien dat ×A-Hopf algebras (in de zin
van Schauenburg) een sleutelconcept zijn voor het bestaan van multiplicatieve structuren
(zoals het cup, cap, en Yoneda product) en zekere dualiteits isomorfismen in algebraı̈sche
(co)homologie theorieën. In het bijzonder, resultaten over Hochschild (co)homologie van
Van den Bergh en Lie-Rinehart (co)homologie van Huebschmann worden op deze manier
bewezen.
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