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Abstract

Let β > 1. We define a class of similitudes

S :=


fi (x) =

x

βni
+ ai : ni ∈ N+, ai ∈ R


.

Taking any finite collection of similitudes { fi (x)}m
i=1 from S, it is well known that there is a unique self-

similar set K1 satisfying K1 = ∪
m
i=1 fi (K1). Similarly, another self-similar set K2 can be generated via

the finite contractive maps of S. We call K1 + K2 = {x + y : x ∈ K1, y ∈ K2} the arithmetic sum of two
self-similar sets. In this paper, we prove that K1 + K2 is either a self-similar set or a unique attractor of
some infinite iterated function system. Using this result we can calculate the exact Hausdorff dimension of
K1 + K2 under some conditions, which partially provides the dimensional result of K1 + K2 if the IFS’s
of K1 and K2 fail the irrationality assumption, see Peres and Shmerkin (2009).
c⃝ 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
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1. Introduction

Let {g j }
m
j=1 be an iterated function system (IFS) of similitudes which are defined on R by

g j (x) = r j x + a j ,
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where the similarity ratios satisfy 0 < r j < 1 and the translation parameter a j ∈ R. It is well
known that there exists a unique non-empty compact set K ⊂ R such that

K =

m
j=1

g j (K ). (1)

We call K the self-similar set or attractor for the IFS {g j }
m
j=1, see [8] for further details. The IFS

{g j }
m
j=1 is called homogeneous if all the similarity ratios are equal. We say that {g j }

m
j=1 satisfies

the open set condition (OSC) [8] if there exists a non-empty bounded open set V ⊆ R such that

gi (V ) ∩ g j (V ) = ∅, i ≠ j

and g j (V ) ⊆ V for all 1 ≤ j ≤ m. Under the open set condition, the Hausdorff dimension
of K coincides with the similarity dimension which is the unique solution s of the equationm

j=1 r s
j = 1.

Let F1 and F2 be the self-similar sets with IFS’s {ri x +ai }
n
i=1 and {r ′

j x +b′

j }
m
j=1 respectively.

We call F1 + F2 = {x + y : x ∈ F1, y ∈ F2} the arithmetic sum of self-similar sets. The
arithmetic sum of Cantor sets appears naturally in dynamical systems. Palis [15] posed the
following problem which is currently known as the Palis’ conjecture. Whether it is true (at least
generically) that the arithmetic sum of dynamically defined Cantor sets either has measure zero or
contains an interval. This conjecture was solved in [2]. However, for the general self-similar sets
this conjecture is still open. In [9], Mendes and Oliveira proved that for the homogeneous Cantor
sets, there are five possible structures for the sum. For the fractal structure, i.e. the similarity of
the sum of self-similar sets, there are few results regarding this aspect. This is the first reason
why we study the sum of self-similar sets. Another natural question concerning the sum of self-
similar sets is to consider the Hausdorff dimension or Hausdorff measure of F1 + F2. Many
papers have been devoted to this aspect. Let Ca be the central Cantor set generated by removing
a central interval of length 1 − 2a from [0, 1], and then continuing this process inductively on
each remaining two intervals. Denote γ (a) = dimH (Ca) =

log 2
− log a . Peres and Solomyak [17]

proved that

Theorem 1.1. Given a fixed compact set K ⊂ R, the following two statements hold for almost
every a ∈ (0, 1

2 ):

if γ (a) + dimH (K ) ≤ 1, then dimH (K + Ca) = γ (a) + dimH (K );
if γ (a) + dimH (K ) > 1, then the Lebesgue measure of Ca + K is positive.

Motivated by this result Eroğlu [3] considered the Hausdorff measure of the arithmetic sum of
two Cantor sets, and gave a necessary and sufficient condition such that the Hausdorff measure of
the sum of Cantor sets is positive. Peres and Solomyak’s main idea is using the potential theory.
This is the main reason why their result is the almost-type result. An important progress of the
dimensional problem is due to Peres and Shmerkin. In [16], Peres and Shmerkin showed that

Theorem 1.2. If there exist i, j satisfying log ri
log r ′

j
∉ Q, then

dimH (F1 + F2) = min{1, dimH (F1) + dimH (F2)}.

The hypothesis of this theorem is called the irrationality assumption. It is easy to see that many
pairs of iterated function systems satisfy this assumption. Peres and Shmerkin’s formula gives a
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sufficient condition under which the expected dimension of the sum of self-similar sets can be
obtained. Their main idea is to project the product of two one-dimensional self-similar sets into
the real line and to show that under the irrationality assumption the expected dimension of F1+F2
can be achieved. Later, Nazarov et al. [12] investigated similar problem for the convolutions of
Cantor measures without resonance.

Motivated by Peres and Shmerkin’s result and Palis’ conjecture, we consider the IFS’s of F1
and F2 failing the irrationality assumption. With a little effort, it can be shown that the IFS’s
{ri x + ai }

n
i=1 and {r ′

j x + b′

j }
m
j=1 do not satisfy the irrationality assumption if and only if there

exist β > 1, ni and m j ∈ N such that ri =
1

βni , 1 ≤ i ≤ n and r ′

j =
1

β
m j , 1 ≤ j ≤ m. Unless

stated otherwise, in what follows we always assume that the similitudes of K1 and K2 are from

S :=


fi (x) =

x

βni
+ ai : ni ∈ N+, ai ∈ R


.

We suppose without loss of generality that the IFS’s of K1 and K2 are { fi (x) =
x

βni +ai }
n
i=1 and

{g j (x) =
x

β
m j + b j }

m
j=1, respectively.

We shall prove that K1 + K2 is either a self-similar set or an attractor of some infinite iterated
function system (IIFS) [1,5]. Therefore, calculating the Hausdorff dimension of K1 + K2 is
reduced to considering the dimension of the attractor of some IFS (IIFS). It is well known that
generally it is difficult to calculate the Hausdorff dimension of a self-similar set, especially when
overlaps occur. It is much more difficult to find the dimension of the attractor of some IIFS even
if the IIFS satisfies certain separation condition. Here the attractor of the IIFS is in the sense of
Definition 2.1, we will introduce this definition in the next section. In fact, Peres and Shmerkin’s
dimensional formula implies that we may not find the exact Hausdorff dimension of F1 + F2
generally. In this paper, we shall consider some cases which allow us to calculate the dimension
of K1+K2 explicitly. An important difference between our main result and Peres and Shmerkin’s
formula is that we may not obtain the expected dimension for the sum of self-similar sets, see
the first example in Section 4. Peres and Shmerkin gave a uniform formula while we emphasize
on the individual example. In other words, our method is analyzing single example rather than
giving a uniform formula for the dimension of the sum of self-similar sets. When K1 + K2 is a
self-similar set with overlapping IFS, the techniques of the paper [7] could be useful. However,
this is beyond our discussion, and we do not give further details.

For the topological structure of K1 + K2, e.g. connected property and so on, generally we may
not easily get further information. The main reasons are that the IFS (IIFS) of K1 + K2 may vary
from each other and that discussing these two cases needs different techniques.

The structure of the paper is as follows. In Section 2, we introduce some basic results of
infinite iterated function systems and define some necessary terminology. Next, we prove the
similarity of K1 + K2. In Section 3, we concentrate on the Hausdorff dimension of K1 + K2.
We consider both cases, i.e. K1 + K2 is a self-similar set or a unique attractor of some IIFS, and
give some dimensional results. In Section 4, we offer some examples for which we can explicitly
calculate the Hausdorff dimension of K1 + K2. Finally, we give some further remarks.

2. Preliminaries and main results

2.1. Infinite iterated function systems

Before stating our main results, we introduce some definitions and results of infinite iterated
function systems (IIFS). Infinite iterated function systems behave differently from IFS’s [1,5].
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There are two definitions of the invariant set of IIFS, see for example, [5,1,6]. We adopt Fernau’s
definition [5].

Definition 2.1. Let A = {φi (x) = ri x + ai : i ∈ N, 0 < ri < 1, ai ∈ R}. If there exists
0 < s < 1 such that for every φi ∈ A, |φi (x) − φi (y)| ≤ s|x − y|, then A is called an infinite
iterated function system, abbreviated as IIFS. A unique non-empty compact set J is called the
attractor of A if

J =


i∈N

φi (J ),

where A denotes the closure of A.

Remark 2.2. The existence and uniqueness of J can be found in [5]. In [1], Mauldin and
Urbański gave another definition of the attractor of IIFS, i.e. J0 =


i∈N φi (J0). However,

for their definition the attractor J0 may not be unique or compact, see example 1.3 from [5].
Evidently, J0 = J .

An infinite iterated function system A = {φi : i ∈ N} satisfies the open set condition if there
exists a non-empty bounded open set O ⊆ R such that

φi (O) ∩ φ j (O) = ∅, i ≠ j,

and φ j (O) ⊆ O for all j ∈ N. Under this separation condition, we can find the Hausdorff
dimension of J0. The following result can be found in [1,10] or [6].

Theorem 2.3. For any IIFS satisfying the open set condition, we have

dimH (J0) = inf


t :


i∈N

r t
i ≤ 1


.

On the other hand, generally the Hausdorff dimension of J is more complicated. One of the
difficulties is to analyze J \ J0, see [6, Corollary 2]. For the most cases, we shall prove that
J = K1 + K2 is an attractor of some IIFS in the sense of Definition 2.1. This makes the
dimension of K1 + K2 complicated. We mentioned above that J0 = J . If J0 and J coincide
except for a countable set, then by the countable stability of the Hausdorff dimension we have
that dimH (J0) = dimH (J ). We will give a sufficient condition under which we can identify J0
with J apart from a countable set. This is the main idea we will implement, provided K1 + K2
is the unique attractor of some IIFS.

2.2. Some definitions

In this section, we introduce some definitions which make our discussion far more succinct.
Given any finite reals s1, s2, s3, . . . , sn . Let


= {s1, s2, . . . , sn}

N be a symbolic space. We say
c1c2 · · · cm ∈ {s1, s2, . . . , sn}

m is a block with length m, and we use capital letters with hats to
denote the finite blocks of Σ . For instance, we denote c1c2 · · · cm by P̂ , i.e. P̂ = c1c2 · · · cm .

Definition 2.4. Let P̂1 = d1d2 · · · dm and P̂2 = c1c2 · · · cm be two blocks of {s1, s2, . . . , sn}
m .

We define the concatenation of P̂1 and P̂2 by P̂1 ∗ P̂2 = d1d2 · · · dmc1c2 · · · cm . The sum of P̂1



688 K. Jiang / Indagationes Mathematicae 27 (2016) 684–701

and P̂2 is defined by P̂1 + P̂2 = (d1 + c1)(d2 + c2) · · · (dm + cm). Concatenating k ∈ N blocks
of P̂1 is denoted by

P̂k
1 = P̂1 ∗ P̂1 ∗ · · · ∗ P̂1  

k times

.

The value of the block P̂1 = d1d2 · · · dm with respect to β > 1 is

(d1d2 · · · dm)β =
d1

β
+

d2

β2 + · · · +
dm

βm .

Similarly, we can define the value of an infinite sequence (dn) ∈


by (dn)β =


∞

n=1
dn
βn .

Remark 2.5. In this definition, when we define the summation of two blocks, we assume that
these two blocks have the same length. However, in some cases we may need to consider the
concatenation of infinite blocks. For instance, let {P̂i }

∞

i=1 and {Q̂i }
∞

i=1 be two block sets, the
concatenations of P̂1 ∗ P̂2 ∗ · · · and Q̂1 ∗ Q̂2 ∗ · · · are two infinite sequences in Σ , we denote
them by (an) and (bn) respectively. The summation of P̂1 ∗ P̂2 ∗ · · · and Q̂1 ∗ Q̂2 ∗ · · · is
(an + bn)∞n=1. We shall emphasize this case in the proofs of some results.

Now we give the definition of the codings of the points in the self-similar sets. It is sightly
different from the usual way. Recall the IFS’s of K1 and K2 are { fi (x) =

x
βni + ai }

n
i=1 and

{g j (x) =
x

β
m j + b j }

m
j=1, where ni , ai , m j , b j are determined by the IFS’s of K1 and K2. It is

well known that for any x ∈ K1, there exists (ik)
∞

k=1 such that

x = lim
k→∞

fi1 ◦ fi2 ◦ · · · ◦ fik (0).

Usually, (ik)
∞

k=1 is called a coding of x . Nevertheless, we may make use of another representa-
tion.

Note that

fi (x) =
x

βni
+ ai =

x + βni ai

βni
=

x

βni
+

0
β

+
0

β2 + · · · +
0

βni −1 +
βni ai

βni
,

therefore, we can identify fi (x) with a block (000 · · · 0  
ni −1

a′

i ), where a′

i = βni ai . In fact, fi (x) and

(000 · · · 0  
ni −1

a′

i ) can be determined mutually. Given (000 · · · 0  
ni −1

a′

i ) with length ni and a′

i = βni ai ,

we can find a similitude

fi (x) =
x

βni
+

0
β

+
0

β2 + · · · +
0

βni −1 +
βni ai

βni
=

x + βni ai

βni
=

x

βni
+ ai .

For simplicity we denote this block by P̂i = (000 · · · 0  
ni −1

a′

i ) if there is no fear of ambiguity.

We identify fi with f P̂i
. The only difference between fi and f P̂i

is the symbol as both of
them represent the map fi (x) = f P̂i

(x) =
x

βni + ai . Similarly, we may define blocks in

terms of the IFS of K2. Let D1 = {P̂1, P̂2, . . . , P̂n} and D2 = {Q̂1, Q̂2, . . . , Q̂m}, where
P̂i = (000 · · · 0  

ni −1

a′

i ), a′

i = βni ai , Q̂ j = (000 · · · 0  
m j −1

b′

j ) and b′

j = βm j b j . We say D1 and D2
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are the digit sets of K1 and K2 respectively. The elements of Di are called the blocks. We
emphasize that different blocks may stand for the same similitude, for example let R̂1 = (08)

and R̂2 = (22) be two blocks with respect to base 3, since their associated similitudes coincide,
i.e. ϕR̂(x) =

x
32 +

0
3 +

8
32 =

x
32 +

2
3 +

2
32 , we can choose either of them if we want to find the digit

sets of Ki , 1 ≤ i ≤ 2. This replacement does not affect our main result. Usually, we pick the
simpler blocks which facilitate our calculation. Once we choose the blocks, we fix them. With
this new representation, we have the following simple lemma.

Lemma 2.6.

K1 = {x = lim
n→∞

f P̂i1
◦ f P̂i2

◦ · · · ◦ f P̂in
(0) : P̂i j ∈ D1}.

K2 = {y = lim
n→∞

gQ̂i1
◦ gQ̂i2

◦ · · · ◦ gQ̂in
(0) : Q̂i j ∈ D2}.

We call the concatenation P̂i1 ∗ P̂i2 ∗ · · · (Q̂i1 ∗ Q̂i2 ∗ · · · ) a coding of x (y).

Proof. For any x ∈ K1, we know that there exists (in)∞n=1 such that

x = lim
n→∞

fi1 ◦ fi2 ◦ · · · ◦ fin (0).

The lemma is a restatement of this fact. �

Remark 2.7. Although the lemma above is very simple, the significance of this lemma is that
we can translate over the problem, i.e. in order to study the sum of two numbers from K1 and K2
respectively, it is sufficient to consider the sum of the blocks from D1 and D2.

Motivated by this lemma, we define a crucial definition of this paper.

Definition 2.8. Take s blocks

P̂i1 , P̂i2 , P̂i3 , . . . , P̂is

from D1 with lengths p1, p2, p3, . . . , ps, t blocks

Q̂ j1 , Q̂ j2 , Q̂ j3 , . . . , Q̂ jt

from D2 with lengths q1, q2, q3, . . . , qt . If there exist integers k1, k2, k3, . . . , ks, l1, l2, l3, . . . ,
lt such that

s
i=1

ki pi =

t
j=1

li qi ,

then the block (P̂k1
i1

∗ P̂k2
i2

∗ · · · ∗ P̂ks
is

)+ (Q̂l1
j1

∗ Q̂l2
j2

∗ · · · ∗ Q̂lt
jt
) is called a Matching with respect

to β.

Remark 2.9. Let A and B be two concatenations of some blocks from D1 and D2 respectively.
If A and B have the same length, then the summation of A and B is a Matching, i.e. A + B is
a Matching. We call the elements of Di blocks. However, a Matching, in fact, is also a block
which is the sum of concatenated blocks from D1 and D2 respectively. In what follows, we still
call a Matching a block if there is no fear of ambiguity. Clearly, in this definition the blocks
P̂i j and P̂ik ( j ≠ k) could coincide. Given a Matching we may find its associated similitude.
For instance, let (abc) be a Matching with respect to β, then the corresponding similitude is
ϕ(x) =

x
β3 +

a
β

+
b
β2 +

c
β3 .

We show that D1 and D2 generate countably many Matchings.
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Lemma 2.10. The cardinality of Matchings which are generated by D1 and D2 is at most
countable.

Proof. The proof is constructive. Firstly, we find out all the possible Matchings which have
length 1. The cardinality of Matchings with length 1 is finite due to the finite cardinalities of
D1 and D2. If there are no such Matchings (see Example 2.14), we then consider the Matchings
with length 2. Similarly, we can find finite Matchings which are of length 2. If there do not exist
such Matchings, then we may consider the Matchings with length 3. We continue this procedure
and prove the lemma. However, the following adjustment is helpful to reduce some unnecessary
Matchings, i.e. if the new born Matchings can be concatenated by the old Matchings, then we do
not choose these new Matchings. In the remaining paper we always abide by this rule. In some
cases, after some steps, all the new Matchings can be concatenated by the former old Matchings
(see Example 2.13), then we stop the procedure. For this case, the cardinality of Matchings
is finite. If the procedure can be continued for infinitely many times, then the cardinality of
Matchings is infinitely countable. Hence, the cardinality of Matchings is either finite or countably
infinite. �

Remark 2.11. We shall prove that if the cardinality of Matchings is finite, then K1 +K2 is a self-
similar set while K1 + K2 is the unique attractor of some IIFS if the cardinality of Matchings is
infinitely countable.

Example 2.12. Let K1 = K2 be the attractor of the IFS {g1(x) =
x
3 , g2(x) =

x+8
9 }. All the

possible Matchings are

{(0), (22), (44), (242), (2442), (24442), (244442), (2444442), (24444442), . . .},

where D1 = D2 = {(0), (08) = (22)}. Here, for simplicity we assume that R̂ = (08) = (22) as
their corresponding similitudes are the same, i.e. ϕR̂(x) =

x
32 +

0
3 +

8
32 =

x
32 +

2
3 +

2
32 .

Example 2.13. Let { f1(x) =
x
3 , f2(x) =

x+2
3 } be the IFS of K1, K2 is generated by {g1(x) =

x
3 , g2(x) =

x+8
9 }. Then the Matchings generated by D1 and D2 are {(0), (2), (24), (42), (44)},

where D1 = {(0), (2)} and D2 = {(0), (22)}.

Example 2.14. Let { f1(x) =
x
9 , f2(x) =

x
33 +

2
3 +

2
32 +

2
33 } be the IFS of K1 = K2, where

D1 = D2 = {(00), (222)}. For this example, there is no Matching with length 1.

After we find all the possible Matchings, we denote this set by

D = {R̂1, R̂2, . . . , R̂n−1, R̂n, . . .},

the lengths of these Matchings are increasing. By Remark 2.9, D uniquely determines a set of
similitudes Φ∞ , {φ1, φ2, φ3, φ4, . . .}. We define E ,


{φn}∈Φ∞


∞

n=1 φ1 ◦φ2 · · · ◦φn([0, 1])

and have E =


i∈N φi (E), see Section 2 from [1].
Now we state the first main result.

Theorem 2.15. K1 + K2 is either a self-similar set or an attractor of some infinite iterated
function system. More precisely, if the cardinality of Matchings is finite, then K1 + K2 is a self-
similar set. When the cardinality is infinitely countable, we have

K1 + K2 =


φi ∈Φ∞

φi (K1 + K2).
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Remark 2.16. A minor modification enables us to prove the following stronger result: for any
n ∈ N+ and any {Ki }

n
i=1, K1 + K2 + · · · + Kn = {

n
i=1 xi : xi ∈ Ki } is either a self-similar

set or a unique attractor of some IIFS, where {Ki }
n
i=1 are generated by the similitudes of S.

In [9], Mendes and Oliveira proved that for the homogeneous Cantor sets, there are five possible
structures for the sum. However, in our setting we may find only two structures, i.e. K1 + K2 is
either a self-similar set or an attractor of some IIFS.

We have an interesting corollary of Theorem 2.15.

Corollary 2.17. Let F1 and F2 be the self-similar sets with IFS’s {ri x+ai }
n
i=1 and {r ′

j x+b′

j }
m
j=1,

if 0 < ri , r ′

j < 1 for any 1 ≤ i ≤ n and 1 ≤ j ≤ m, then

dimP (F1 + F2) = dimB(F1 + F2).

2.3. Proofs of Theorem 2.15 and Corollary 2.17

To begin with we assume that the cardinality of all Matchings is infinitely countable. Before
we prove the main results, we need some preliminaries. In Lemma 2.6 we give the definition of
the codings of Ki , 1 ≤ i ≤ 2. Here we define the coding of x + y ∈ K1 + K2 in a natural way,
i.e. we denote the coding of x + y by (xn + yn)∞n=1, where (xn) and (yn) are the codings of x and
y respectively.

We know that (xn) ((yn)) can be decomposed into infinite blocks from D1 (D2), see the
following figure

There are two floors in this figure. By Remark 2.5, the concatenation of X1∗X2∗· · · (Y1∗Y2∗· · · )

is (xn) ((yn)), and we can define the summation of the concatenated infinite blocks.
We call the top floor (bottom floor) the x-floor (y-floor). In other words, in the x-floor the

concatenation of each block X i is the coding of x . We shall use this diagram representing the
blocks in the proofs of some lemmas. Let (an)∞n=1 be a coding of some point x + y ∈ K1 + K2,
i.e., (an) = (xn + yn), where (xn)∞n=1 and (yn)∞n=1 are the codings of x ∈ K1 and y ∈ K2
respectively. Given k > 0, we say (ci1ci2 · · · cik ) is a segment of (ai )

∞

i=1 with length k if there
exists j > 0 such that ci1ci2 · · · cik = a j+1 · · · a j+k . We define

C =


(an) = (xn + yn) : there exists N ∈ N+ such that any segment of

(aN+i )
∞

i=1 is not a Matching

.

Lemma 2.18. Let (an) ∈ C, for any ϵ > 0 we can find a coding (bn)∞n=1 which is the
concatenation of infinite Matchings such that

|(an)β − (bn)β | < ϵ.

Proof. Let (an) ∈ C and ϵ > 0, then there exists n0 ∈ N satisfying β−n0 < ϵ. Now, we choose
(bn)∞n=1 such that its value in base β is a point of E . Let b1b2b3 · · · bn0 = a1a2a3 · · · an0 . If
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a1a2a3 · · · an0 is a Matching or a concatenation of some Matchings, then we can choose arbitrary
tail (bn0+i )

∞

i=1 which is the concatenation of infinite Matchings. Subsequently we have that

|(an)β − (bn)β | = |(an0+1an0+2an0+3 · · · )β − (bn0+1bn0+2bn0+3 · · · )β |

≤ M
∞

i=n0+1

β−i < M(β − 1)−1ϵ,

where M is a positive constant which depends on β and the translations of the IFS’s of K1 and
K2. Hence we prove that there exists a point b ∈ E , i.e. b = (bn)β , such that

|(an)β − (bn)β | < ϵ.

If a1a2a3 · · · an0 is not a concatenation of some Matchings, by virtue of the definition of (an),
(an) = (xn + yn), where (xn), (yn) are the codings of some points in K1 and K2, respectively.
However, (xn) ((yn)) can be decomposed into the concatenation of X1 ∗ X2 ∗ · · · (Y1 ∗ Y2 ∗ · · · ).
We use the following diagram to represent this.

From this figure, we know that the summation of X1 ∗ X2 ∗ · · · and Y1 ∗ Y2 ∗ · · · is precisely the
coding (an). Suppose that there exist p, q such that a1a2a3 · · · an0 is a prefix of (X1 ∗ X2 ∗ · · · ∗

X p) + (Y1 ∗ Y2 ∗ · · · ∗ Yq), here we should emphasize that the lengths of X1 ∗ X2 ∗ · · · ∗ X p and
Y1 ∗ Y2 ∗ · · · ∗ Yq may not coincide. However, we can still define the summation of their prefixes.
Since X1 ∗ X2 ∗ · · · ∗ X p and Y1 ∗ Y2 ∗ · · · ∗ Yq do not have the same length, we assume thatp

i=1 |X i | <
q

i=1 |Yi |, where |X i | denotes the length of the block X i , then the first n0 digits of
the “summation” (X1 ∗ X2 ∗· · ·∗ X p)+(Y1 ∗Y2 ∗· · ·∗Yq) are a1a2a3 · · · an0 . Let k1 =

p
i=1 |X i |

and k2 =
q

i=1 |Yi |. Then (X1 ∗ X2 ∗ · · · ∗ X p)
k2 + (Y1 ∗ Y2 ∗ · · · ∗ Yq)k1 is a Matching or a

concatenation of some Matchings as (X1 ∗ X2 ∗ · · · ∗ X p)
k2 and (Y1 ∗ Y2 ∗ · · · ∗ Yq)k1 have the

same length. Moreover, the initial n0 digits of (X1 ∗ X2 ∗ · · · ∗ X p)
k2 + (Y1 ∗ Y2 ∗ · · · ∗ Yq)k1 are

a1a2a3 · · · an0 . Now the remaining proof is the same as the first case. �

Remark 2.19. The main idea of this lemma is that any (an) ∈ C can be approximated by a
sequence (cn) which is the concatenation of infinite Matchings.

Lemma 2.20. E = K1 + K2.

Proof. For every ϵ > 0 and x + y ∈ K1 + K2, we can find a coding (an) satisfying x + y =
∞

n=1 anβ−n . If there exists a subsequence of integers nk → ∞ such that (a1, a2, a3, . . . , ank )

is a concatenation of some Matchings, then by the definition of E ,


{φn}∈Φ∞


∞

n=1 φ1 ◦

φ2 · · · φn([0, 1]) we have x + y ∈ E . If (an) ∈ C , by Lemma 2.18 there exists b ∈ E such that
|b − x − y| < ϵ. �

Lemma 2.21.


i∈N φi (K1 + K2) = K1 + K2.

Proof. On the one hand, E =


i∈N φi (E), this equality implies that

E =


i∈N

φi (E) =


i∈N

φi (E) ⊇


i∈N

φi (E) =


i∈N

φi (K1 + K2),
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i.e. we have
i∈N

φi (K1 + K2) ⊆ K1 + K2.

On the other hand, E =


i∈N φi (E) ⊆


i∈N φi (K1 + K2), therefore we prove the converse
inclusion in terms of Lemma 2.20. �

Proof of Theorem 2.15. Using Lemma 2.10, we know that there are at most countably many
Matchings generated by D1 and D2. If the cardinality of Matchings is infinitely countable, then
by Lemma 2.21, K1 + K2 is an attractor of Φ∞. If the cardinality is finite, then K1 + K2 is a
self-similar set. The proof is similar with Lemmas 2.18 and 2.20. The only difference is that it
is not necessary to approximate the coding of x + y ∈ K1 + K2. In fact, we can directly find a
coding which is the concatenation of infinite Matchings such that the value of this infinite coding
is x + y. In other words, we have E = K1 + K2. �

Now, we can prove Corollary 2.17. When the IFS’s of F1 and F2 satisfy the irrationality
assumption, it is easy to prove Corollary 2.17 due to Peres and Shmerkin [16]. In fact, we can
prove a stronger result. Let us recall their main result.

Theorem 2.22. Let F1 and F2 be the attractors of {ri x + ai }
n
i=1, {r

′

j x + b j }
m
j=1 respectively. If

there exist i, j such that log ri
log r ′

j
∉ Q, then dimH (F1 + F2) = min{dimH F1 + dimH F2, 1}.

Proof of Corollary 2.17. Firstly, we prove under the irrationality assumption that

dimH (F1 + F2) = dimP (F1 + F2) = dimB(F1 + F2) = min{dimH F1 + dimH F2, 1}.

Using the theorem above, if dimH (F1 + F2) = 1, then

1 = dimH (F1 + F2) ≤ dimP (F1 + F2) ≤ dimB(F1 + F2) ≤ 1.

Suppose dimH (F1 + F2) = dimH (F1) + dimH (F2). We note that for any A, B ⊆ R, we have
B − A = Pπ

4
(A × B), where Pπ

4
(A × B) denotes the projection of A × B on the y axis along

lines having 45◦ angle with the x axis. Therefore,

dimH (F1 + F2) ≤ dimB(F1 + F2)

≤ dimB((−F2) × F1)

≤ dimB(F1) + dimB(F2)

= dimH (F1) + dimH (F2).

The second inequality holds as the projection is a Lipschitz map, the third inequality is due
to the property of product of fractal sets, see the product formula 7.5, page 102, [4]. For the
last equality, we use the fact that for any self-similar set, its Hausdorff dimension and the Box
dimension coincide.

If K1 and K2 are generated by the similitudes of S and the cardinality of Matchings is infinitely
countable, then we have dimP (K1 + K2) = dimB(K1 + K2) = dimP (E) = dimB(E) due to
Lemma 2.20 and Theorem 3.1 from [1]. By Theorem 2.15, we know that K1+K2 is a self-similar
set if the cardinality of Matchings is finite. Hence, whether the irrationality assumption holds or
not we always have dimP (K1 + K2) = dimB(K1 + K2). �
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3. Dimension of K1 + K2

3.1. IFS case

Let ♯D be the cardinality of all Matchings generated by D1 and D2. In this section we give
a necessary and sufficient condition for the finiteness of ♯D. We know that K1 + K2 is a self-
similar set if ♯D is finite. Hence, in this case we may make use of various techniques finding the
Hausdorff dimension of K1 + K2.

We say that Di , 1 ≤ i ≤ 2, is homogeneous if the length of all the blocks is equal. For
simplicity we may identify the blocks with the lengths of the blocks. There is one point we
should keep in mind, namely different blocks of Di may have the same length. Hence we should
count the multiplicity when some blocks have the same length, see the following example.

Example 3.1. Let { f1(x) =
x
3 , f2(x) =

x+2
3 } be the IFS of K1, K2 is generated by {g1(x) =

x
3 , g2(x) =

x+8
9 }. The digit sets are D1 = {(0), (2)} and D2 = {(0), (22)}. We can denote D1

by D′

1 = {1, 1}. For simplicity we still use D1. Similarly, D2 = {1, 2}. It is clear that D1 is
homogeneous and that two 1’s in the set refer to different similitudes.

It is easy to find that the digits in Di stand for the length of the blocks and the similarity ratios,
see the following example.

Example 3.2. Let { f1(x) =
x
β6 + a1, f2(x) =

x
β10 + a2} be the IFS of K1. We know that

D1 = {6, 10}. 6 represents the length of the block (00000 (a1β
6)) and stands for the similarity

ratios 1
β6 .

For this example, by the definition of K1 we have K1 = f1(K1) ∪ f2(K1). Iterating this
equation, then we have that

K1 = f1 ◦ f1(K1) ∪ f1 ◦ f2(K1) ∪ f2 ◦ f1(K1) ∪ f2 ◦ f2(K1).

Hence we obtain 4 similitudes { f1 ◦ f1, f1 ◦ f2, f1 ◦ f2, f2 ◦ f2}. Their associated digit set which
consists of some blocks can also be denoted by a simpler set D′′

= {12, 16, 16, 20}. Similarly,
we can iterate the original IFS for any finite times. For the sake of convenience, we still use the
set of the lengths of the blocks as it not only stands for the new iterated blocks but also refers to
the similarity ratios under new IFS.

Definition 3.3. Let D1 = {k, k, . . . , k} be a homogeneous set with l digits. We say D2 is a
multiplier set of D1 if we iterate the IFS of K2 for finite times, all the numbers of the new digit
set D′ are the multipliers of k,i.e., D′

= {l1k, l2k, . . . , lt k}, where li ∈ N+. Similarly, if D2 is
homogeneous, we can also define D1 as the multiplier set of D2 if D1 satisfies similar property.

Theorem 3.4. ♯D is finite if and only if D1 (D2) is homogeneous and D2 is a multiplier set of
D1 (D1 is a multiplier set of D2).

We partition the proof of this theorem into several lemmas.

Lemma 3.5. If D1 is homogeneous and D2 is a multiplier set of D1, then ♯D is finite.

Proof. Let D1 = {k, k, . . . , k} be a homogeneous set and D2 be a multiplier set of D1. By
the definition of multiplier set, after finite iterations of the IFS of K2, say t times, D′

2 =

{l1k, l2k, . . . , lmk}, where li ∈ N+. Now we prove that ♯D is finite. Let D2 = {s1, s2, . . . , sp},
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where sp ∈ N+. If we take any t digits from D2, each time we can pick any numbers, which
means we can pick si for any 1 ≤ k ≤ t times, then by the definition of multiplier set,
si1 + si2 + · · · + sit is a multiplier of k. Since D1 = {k, k, . . . , k} is homogeneous and the
cardinality of D′

2 = {l1k, l2k, . . . , lmk} is finite, it follows that ♯D is finite. �

Lemma 3.6. If ♯D is finite, then either D1 or D2 is homogeneous.

Proof. We have proved that if ♯D is finite, then K1 + K2 is a self-similar set. This fact implies
that for any coding of x + y ∈ K1 + K2, say (an) = (xn + yn), its associated value in base β is
x + y, where (xn) and (yn) are the codings of x and y respectively. Moreover, (an) is the infinite
concatenation of some Matchings. In other words, there exists a sequence Nk → ∞ such that
(a1a2 · · · aNk ) is a concatenation of some Matchings.

If neither D1 nor D2 is homogeneous, we may find a coding of some point in K1 + K2 which
does not contain any Matchings in its arbitrary long prefix. This contradicts with the assumption
that ♯D is finite.

Now we find a coding which satisfies the property we mentioned above. Without loss of
generality, we assume that D1 = {a1, a2, . . . , ap} and D2 = {b1, b2, . . . , bq}, where a1 ≠ a2
and b1 ≠ b2.

We demonstrate how we can construct the coding we need. Recall the definition of x-floor
and y-floor, we know that summation of the concatenation of the blocks of x-floor and y-floor is
the coding of some point of K1 + K2. Since a1 ≠ a2 and b1 ≠ b2, we may suppose a1 ≠ b1 and
put them in the x-floor and y-floor respectively, see the following figure

Here we identify the block with its length. Since a1 ≠ b1, it follows that no Matching appears.
Next, for the x-floor, we pick a2 which satisfies that a1 + a2 ≠ b1. If a1 + a2 = b1, then we pick
a1 again. The Matching cannot appear as a1 ≠ a2 and a1 + a2 = b1 imply that a1 + a1 ≠ b1.
Now the x-floor and y-floor become the following:

For the y-floor, we repeat the same procedure. Finally we have

For each step, the Matching does not appear as the length of the concatenations of blocks from x
and y-floor is not matched. The summation of the infinite concatenated blocks from x and y-floor
is the coding we need. �

Now we may set D1 = {k, k, . . . , k}, if D2 is not a multiplier set of D1, we implement similar
idea constructing a coding such that its arbitrary long prefix is not a concatenation of some
Matchings.

Hence, in order to prove Theorem 3.4, it remains to prove the following lemma.

Lemma 3.7. Let D1 = {k, k, . . . , k}, if D2 is not a multiplier set of D1, then ♯D is not finite.
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Proof. If ♯D is finite, then any coding of x + y ∈ K1 + K2, say (an) = (xn + yn), is the
infinite concatenation of some Matchings. Namely there exists a sequence Nk → ∞ such that
(a1a2 · · · aNk ) is a concatenation of some Matchings. If we can find a coding (an) such that for
any n (a1a2 · · · an) is not a concatenation of some Matchings, then we prove this lemma. Since
D2 is not a multiplier set of D1, it follows that for any finite iterations of the IFS of K2, there
always exists one block which is the concatenation of some blocks from D2 such that its length
is not a multiplier of k. We let this block be (b1b2 · · · bt ), see the following figure:

We may assume that (b1b2 · · · bt ) = Y1 ∗ Y2 ∗ · · · ∗ YN for some N , where each Yi is some
block from D2. By the assumption we know that its length is not a multiplier of k. Hence we can
find such coding (an) (sum of the x and y-floor) satisfying that for any n, (a1a2 · · · an) is not a
concatenation of some Matchings. �

Remark 3.8. When K1 + K2 is a self-similar set, we do not know whether ♯D is finite or not.

If ♯D is finite, then K1 + K2 is a self-similar set. In this case, we can explicitly find all the
similitudes of the IFS. Therefore we can implement many ideas calculating dimH (K1 + K2). We
do not discuss this problem in detail.

3.2. IIFS case

Comparing with IFS case, it is much more complicated when K1 + K2 is a unique attractor
of some IIFS. We have mentioned the main reasons in the second section.

By Lemma 2.20, we know that when ♯D is infinitely countable, E = K1 + K2. If E \ E is
uncountable, we may not calculate the dimension of K1 + K2 in terms of the dimensional theory
of IIFS. Hence, we need to find some class that can guarantee dimH (E) = dimH (K1 + K2).
In fact, even for calculating dimH (E), it is not easy to find dimH (E) when the IIFS has some
overlaps [13,6].

Let (an)∞n=1 be the coding of some point x + y ∈ K1 + K2, i.e., (an) = (xn + yn), where (xn)

and (yn) are the codings of x and y respectively. Recall the definition of C ,

C = {(an) : there exists N ∈ N+ such that any segment of (aN+i )
∞

i=1 is not a Matching}.

We have

Lemma 3.9. If C is countable, then we have that E = K1 + K2 apart from a countable set.

Proof. By Lemma 2.20, E = K1 + K2. It remains to prove that there are only countably
many limit points of E which are not in E . For any x + y ∈ K1 + K2 = E , there is a
coding (an) such that the value of this coding is x + y. If there exists nk → ∞ satisfying
that (a1a2 · · · ank ) is a Matching or a concatenation of some Matchings, by the definition of
E ,


{φn}∈Φ∞


∞

n=1 φ1 ◦φ2 ◦ · · · ◦φn([0, 1]), we know that x + y ∈ E . If (an) ∈ C , then E \ E
is countable as C and the cardinality of all the Matchings is countable. �

The following lemma gives a sufficient condition which implies that C is countable.

Lemma 3.10. C is countable if there exists k such that D1 = {k, k, . . . , k, 2k} and D2 =

{k, k, . . . , k, 2k}, i.e. both D1 and D2 have only blocks with length k apart from the last block
with length 2k.
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Proof. If D1 = {k, k, . . . , k, 2k} and D2 = {k, k, . . . , k, 2k}, we need to find all possible
sequences of C . Without loss of generality, we assume that the prefix of the summation of the x
and y-floor does not contain any Matchings. Firstly, we choose two blocks from D1 and D2 and
stack on the x-floor and y-floor respectively. We can pick only k from D1 and 2k from D2 (or 2k
from D1 and k from D2). Otherwise, a Matching will appear, see the following figure

Then at the second step for the x-floor we cannot take any block of D1 with length k as k+k = 2k
and a new Matching appears. Hence for the x-floor we can pick only the block with length 2k.
Similarly, for the y-floor we cannot take a block of D2 with length k as k + 2k = 2k + k, which
can generate a new Matching. Therefore, we must take a block with length 2k for the y-floor if
we do not want a new Matching to appear. The figure now is

It is easy to see that if we want to avoid the new Matchings in the summed blocks of two floors
we cannot choose blocks freely from the second step on. The figure below illustrates this idea.

From the analysis above, we see that the sequences in C are eventually periodic. Thus, we prove
that C is countable. �

Remark 3.11. The condition of the lemma is not necessary, for instance, let D1 = {k, 2k} and
D2 = {k, 3k}. We can similarly prove that in this case C is countable. Generally it is not easy to
find all the Matchings. However, for the case in this lemma we can find all possible Matchings
without much calculation.

This lemma enables us to define the following IFS.
For any k ∈ N+, let the IFS’s of K1 and K2 be

fi (x) =
x

βk + ai , 1 ≤ i ≤ n − 1, fn(x) =
x

β2k
+ an


(2)

and 
g j (x) =

x

βk + b j , 1 ≤ j ≤ n − 1, gn(x) =
x

β2k
+ bn


, (3)

where ai , b j ∈ R+
∪ {0}. We denote their attractors by K1 and K2 respectively. Without loss

of generality, we let the convex hull of Ki be [0, Bi ], 0 ≤ i ≤ 2. This assumption yields that
fi ([0, B1]) ⊂ [0, B1], 1 ≤ i ≤ n and g j ([0, B2]) ⊂ [0, B2], 1 ≤ j ≤ n.

Let D = {R̂1, R̂2, . . . , R̂n−1, R̂n · · · } be all the Matchings generated by D1 =

{k, k, . . . , 2k} and D2 = {k, k, . . . , 2k} and its associated IIFS be Φ∞ , {φ1, φ2, φ3, φ4, . . .}.
Define E ,


{φn}∈Φ∞


∞

n=1 φ1 ◦ φ2 ◦ · · · ◦ φn([0, B1 + B2]). We know that a Matching R̂i is a

block. Suppose R̂i = (c1c2, . . . , cp) for some p ∈ N. We call each ci the digit of R̂i . Since D1
and D2 have a finite number of blocks, it follows that the range of every possible digit c j in each
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Matching R̂i is finite, i.e. c j can take only finite numbers. Let c be the positive constant defined
as follows:

c = min{|ci − c j | : ci and c j are any digits which are from two Matchings}.

Similarly, we let A and B be the largest digits of the blocks of D1 and D2 respectively.

Theorem 3.12. Let K1 and K2 be two self-similar sets with IFS’s (2) and (3), respectively. Then
E = K1 + K2 up to a countable set. If

A + B + B1 + B2 < c(β − 1),

then Φ∞ satisfies the open set condition and dimH (K1 + K2) is computable.

Proof of Theorem 3.12. By Lemmas 3.9 and 3.10, we prove the first statement. For the second
statement, given any two Matchings (s1s2 · · · sp), (t1t2 · · · tq) with p < q, their associated
similitudes are φs1s2···sp (x) = β−px +

p
i=1 siβ

−i and φt1t2···tq (x) = β−q x +
q

i=1 tiβ−i

respectively. Let V = (0, B1 + B2), simple calculation implies that

φs1s2···sp (V ) =


p

i=1

siβ
−i ,

p
i=1

siβ
−i

+ (B1 + B2)β
−p



φt1t2···tq (V ) =


q

i=1

tiβ
−i ,

q
i=1

tiβ
−i

+ (B1 + B2)β
−q


.

We assume that (s1s2 · · · sp) < (t1t2 · · · tq), i.e, there exists 1 ≤ i0 ≤ p such that sk = tk for any
1 ≤ k ≤ i0 − 1 and si0 < ti0 . By the definition of c, we can check that the two intervals above do
not overlap, namely φs1s2···sp (V ) ∩ φt1t2···tq (V ) = ∅. It remains to prove that φ(V ) ⊂ V for any

φ ∈ Φ∞. Let φ be generated by the Matching R̂1 ∗ R̂2 + T̂1 ∗ T̂2, the associated similitudes of
R̂i and T̂i are Hi (x) and Ii (x) respectively. Let the length of R̂1 ∗ R̂2 + T̂1 ∗ T̂2 be k0. It is easy
to find that

φ(x) = H1 ◦ H2(x) + I1 ◦ I2(0).

Hence,

φ(V ) =


H1 ◦ H2(0) + I1 ◦ I2(0), H1 ◦ H2(0) + I1 ◦ I2(0) +

B1 + B2

βk0


.

Recall the assumption of K1 and K2, the convex hull of Ki is [0, Bi ], 1 ≤ i ≤ 2,
i.e., Hs([0, B1]) ⊂ [0, B1], 1 ≤ s ≤ 2 and It ([0, B2]) ⊂ [0, B2], 1 ≤ t ≤ 2. Therefore
0 < φ(x) < B1 + B2. Similarly, we can prove that φ(V ) ⊂ V for any φ ∈ Φ∞. As such
Φ∞ satisfies the open set condition. The calculation of dimH (K1 + K2) now is a straightforward
application of Theorem 2.3. �

Generally we do not know how to calculate dimP (K1 + K2) or when do we have following
equality

dimH (K1 + K2) = dimP (K1 + K2) = dimB(K1 + K2).

We finish this section by making some remarks on these two problems. Let Fn be the attractor of
the first n similitudes of Φ∞, i.e., Fn is the attractor of the IFS {φi }

n
i=1. Clearly

F1 ⊂ F2 ⊂ · · · ⊂ Fn ⊂ · · · .



K. Jiang / Indagationes Mathematicae 27 (2016) 684–701 699

Recall the definition of Hausdorff metric [4]. Given two compact sets J1, J2 ⊂ R, then the
Hausdorff metric of J1 and J2 is defined by

H(J1, J2) = inf{s : J1 ⊂ (J2)s, J2 ⊂ (J1)s},

where (A)s = {x : there exists y ∈ A such that |x − y| ≤ s}.
We have

Lemma 3.13. ∪
∞

n=1 Fn = K1 + K2.

Proof. 0 ≤ H(∪∞

n=1 Fn, K1+K2) ≤ H(Fn, K1+K2) → 0 as n → ∞. Here H(Fn, K1+K2) →

0 can be found in [5]. �

Proposition 3.14. If (∪∞

n=1 Fn) \ (∪∞

n=1 Fn) is a countable set, then

dimH (K1 + K2) = dimP (K1 + K2) = dimB(K1 + K2).

Proof. Since (∪∞

n=1 Fn) \ (∪∞

n=1 Fn) is countable, it follows by Lemma 3.13 that

dimP (K1 + K2) = dimP (∪∞

n=1 Fn) = lim
n→∞

dimP (Fn)

= dimH (∪∞

n=1 Fn) = dimH (∪∞

n=1 Fn) = dimH (K1 + K2).

We finish the proof by Corollary 2.17. �

4. Examples

In this section, we give some examples for which Theorem 2.22 cannot calculate dimH (K1 +

K2).

Example 4.1. Let K1 = K2 be the self-similar sets with IFS {g1(x) =
x
3 , g2(x) =

x+8
32 }, then

dimH (K1 + K2) =
ln t0

− ln 3 , where t0 is the smallest positive root of t3
− t2

− 2t + 1 = 0.

We know that D1 = D2 = {(0), (22)}, all the Matchings which are generated by D1 and D2 are

D = {(0), (22), (44), (242), (2442), (24442), (244442) · · · }.

The corresponding IIFS of D is

Φ∞
= {ϕ1 = f0, ϕ2 = f2 ◦ f2, ϕ3 = f4 ◦ f4, ϕ4 = f2 ◦ f4 ◦ f2, . . .},

where f0(x) =
x
3 , f2(x) =

x+2
3 , f4(x) =

x+4
3 .

By Theorem 3.12, dimH (K1 + K2) = dimH (E). Obviously this IIFS satisfies the OSC, i.e.

ϕi ((0, 2)) ∩ ϕ j ((0, 2)) = ∅

for any i ≠ j and ϕi ((0, 2)) ⊆ (0, 2) for any i ∈ N. Now we can use Theorem 2.3 to calculate
the dimension. It is easy to check that

dimH (K1 + K2) < min{1, dimH (K1) + dimH (K2)}.

This example illustrates that without the irrationality assumption, the expected dimension of
K1 + K2 may not be achieved. This differs from Peres and Shmerkin’s result [16].
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Example 4.2. Let { f1(x) =
x
β
, f2(x) =

x+2
β

} and {g1(x) =
x
β
, g2(x) =

x
β2 +

2
β

+
2
β2 } be

the IFS’s of K1 and K2 respectively. Then K1 + K2 is a self-similar set, the IFS is {ϕ1(x) =
x
β
, ϕ2(x) =

x+2
β

, ϕ3(x) =
x
β2 +

2
β

+
4
β2 , ϕ4(x) =

x
β

+
4
β

+
2
β2 , ϕ5(x) =

x
β2 +

4
β

+
4
β2 }. This

IFS does not satisfy the OSC generally, in fact it is of finite type if β is a Pisot number, see
[14, Theorem 2.5]. Hence, we can calculate the Hausdorff dimension of K1 + K2 in terms of the
main result of [14]. We omit the details.

5. Final remarks

The main result of this paper is that K1 + K2 is either a self-similar set or a unique attractor
of some IIFS. However, to calculate the dimension of K1 + K2 is difficult, especially the IIFS
case. As in this case, we should consider the limit points of E as well as the separation condition.
Ignoring either of them may hinder the calculation of the dimension of K1 + K2. In fact, even
finding all the Matchings is not a trivial task. On the other hand, we may implement the Vitali
process if the IIFS has overlaps, see [11, Theorem 3.1], this process is complicated. Ngai and
Tong [13] gave a dimensional formula of J0 under the so-called weak separation condition, but
it is still not easy to check this condition generally. Some techniques of [7] are useful to analyze
the Hausdorff dimension of self-similar sets.
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