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Hecke algebras for GLn over local fields

Valentijn Karemaker

Abstract. We study the local Hecke algebra HG(K) for G = GLn and
K a non-archimedean local field of characteristic zero. We show that for
G = GL2 and any two such fields K and L, there is a Morita equiva-
lence HG(K) ∼M HG(L), by using the Bernstein decomposition of the
Hecke algebra and determining the intertwining algebras that yield the
Bernstein blocks up to Morita equivalence. By contrast, we prove that
for G = GLn, there is an algebra isomorphism HG(K) ∼= HG(L) which
is an isometry for the induced L1-norm if and only if there is a field
isomorphism K ∼= L.
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1. Introduction. The central object of study in this paper is the Hecke algebra
for GLn, over a non-archimedean local field of characteristic zero.

Definition 1. Let G = GLn, n ≥ 2, denote the n-dimensional general linear
algebraic group, and let K be a non-archimedean local field of characteristic
zero. The (local) Hecke algebra HG(K) = C∞

c (G(K),C) of G over K is the
algebra of locally constant compactly supported complex-valued functions on
G(K), with the convolution product

Φ1 ∗ Φ2 : g �→
∫

G(K)

Φ1(gh−1)Φ2(h)dμG(K)(h) (1)

for Φ1, Φ2 ∈ HG(K).

The main question addressed in this paper is: to what extent does (the
representation theory of) the local Hecke algebra HG(K) determine the field
K?

Dedicated to Ernst-Ulrich Gekeler, my mathematical grandfather.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00013-016-0974-3&domain=pdf
http://orcid.org/0000-0001-9382-0494


342 V. Karemaker Arch. Math.

Hecke algebras are complex algebras with a rich arithmetic structure. In
particular, (admissible) representations of the Hecke algebra—or equivalently,
modules over the Hecke algebra—correspond to (admissible) representations of
GLn. By the Langlands correspondence, which was proven (for GLn over p-adic
fields) by Harris and Taylor [13] and Henniart [14], equivalence classes of admis-
sible representations of GLn in turn are in bijection with equivalence classes of
n-dimensional Frobenius semisimple representations of the Weil-Deligne group
W ′

K of K, see, e.g., [25]. Since W ′
K is a group extension of the Weil group WK ,

from which there exists a continuous homomorphism with dense image in the
absolute Galois group GK of K, this places our problem in an anabelian con-
text. It is known that GK does not determine the field K uniquely [28]; see
Section 5.3 for more details.

Our first main result is the following.

Theorem 2. Let K and L be two non-archimedean local fields of characteristic
zero and let G = GL2. Then there is always a Morita equivalence HG(K) ∼M

HG(L).

The Morita equivalence implies that the respective categories of modules
over the Hecke algebras of K and L are isomorphic. Equivalently, we find
that the representation categories of HG(K) and HG(L), hence of GL2(K)
and GL2(L), are isomorphic. That is, the module structure of the complex
representations of GL2 over a local field as above does not depend on the local
field.

To prove the theorem, we make use of the decomposition of the Hecke
algebra into Bernstein blocks. The structure of the blocks is determined up to
Morita equivalence, using the representation theory of p-adic reductive groups.
The preliminaries are collected in Section 2, after which Theorem 2 is proven
in Section 3.

By contrast, returning to G = GLn and imposing an analytic condition, we
obtain the following theorem, whose proof takes up Section 4.

Theorem 3. Let K and L be two non-archimedean local fields of characteristic
zero and let G = GLn. Then there is an L1-isomorphism of local Hecke algebras
HG(K) ∼= HG(L) if and only if there is a field isomorphism K ∼= L.

Here, an L1-isomorphism of Hecke algebras is an isomorphism which re-
spects the L1-norm that is induced by the Haar measure. The proof first uses
the Stone–Weierstrass theorem and density results to reduce to the case of
an isomorphism between the group algebras L1(G(K)) ∼= L1(G(L)), and then
results due to Wendel [26] and Kawada [19] to reduce to a group isomorphism
G(K) ∼= G(L), which implies that K ∼= L by classical results on general lin-
ear groups. In an earlier paper [12], we discussed the adelic analogue of this
question. In particular, Theorem 3 and its proof can be compared with [12,
Corollary 6.4]. Section 5.2 discusses a global version of Theorem 2.

Finally, in Section 5, we discuss some open problems.

2. Preliminaries. In this section, we collect the results from representation
theory and on Bernstein decomposition which we need to prove Theorem 2.
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Representation theory of GLn. We will write G = G(K) from now on, and
study and classify representations π : G → GL(V ), also denoted (π, V ), where
V is a (possibly infinite-dimensional) complex vector space. More details can
be found in, e.g., [4,5].

Definition 2.1. The representation π : G → GL(V ) is called admissible if it
satisfies the following two conditions:

1. the stabiliser StabG(v) of any v ∈ V is an open subgroup of G,
2. for any open subgroup G′ ⊂ G(OK), the space {v ∈ V : π(g′)v =

v for all g′ ∈ G′} is finite-dimensional.

Remark 2.2. A representation π as in Definition 2.1 is called smooth if it
satisfies only the first condition. Clearly, every admissible representations is
smooth. Proposition 2 of [5] (due to M.-F. Vignéras) shows that any smooth
irreducible complex representation is admissible. Hence, “smooth irreducible”
and “admissible irreducible” will be used interchangeably.

Definition 2.3. A representation π′ : HG(K) → EndC(V ) is called admissible
if it satisfies the following two conditions:

1. for every v ∈ V , there is an element f ∈ HG(K) such that π′(f)v = v,
2. for every f ∈ HG(K), we have dim(π′(f)V ) < ∞.

Smooth representations of G correspond to representations π′ for which
V is a non-degenerate HG(K)-module [3]. Analogously, admissible representa-
tions of G correspond to admissible representations of HG(K) and vice-versa,
see, e.g., [25, (2.1.13)].

Definition 2.4. A quasicharacter χ of K× is a continuous homomorphism
χ : K× → C×. It is called unramified if it is trivial on O×

K . Any unramified
quasicharacter is of the form | · |z for some value of z ∈ C.

Lemma 2.5 (cf. [25, (2.1.18)]). Every irreducible admissible representation π
which is finite-dimensional is in fact one-dimensional and there exists a qua-
sicharacter χ such that π(g) = χ(det g) for all g ∈ G.

Now we turn our attention to the infinite-dimensional representations.

Definition/Proposition 2.6. A parabolic subgroup P of G is such that G/P is
complete. Equivalently, P contains a Borel subgroup B. Parabolic subgroups
are the normalisers of their unipotent radicals, and every P is the semidirect
product of this unipotent radical and a K-closed reductive group L. This L is
called the Levi subgroup of P.

Remark 2.7. The proper parabolic subgroups of GLn(K) are the block upper
triangular matrices and their conjugates. For instance, when n = 2, these are
precisely the Borel subgroups, which are T � U with T a maximal torus and
U a maximal unipotent subgroup. That is, all the Levi subgroups in GL2(K)
are the maximal tori, i.e., the diagonal 2 × 2 matrices, up to conjugacy.

Definition 2.8. Let τ be a smooth representation of a Levi subgroup L of
a parabolic subgroup P of G. After inflation, we may assume that τ is a
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representation of P. The parabolic induction indG
P (τ), also denoted ρ(τ), is

the space of locally constant functions φ on G which satisfy

φ(pg) = δP (p)
1
2 τ(p)φ(g)

for all g ∈ G and p ∈ P. The normalising factor δP = Δ−1
P is the in-

verse of the modular character ΔP which satisfies ΔP (diag(a1, . . . , an)) =
|a1|1−n|a2|3−n . . . |an|n−1, cf. [22, Ex. 2.6]. Parabolic induction preserves
smoothness and admissibility but not necessarily irreducibility.

Definition 2.9. An infinite-dimensional irreducible admissible representation
π : G → GL(V ) is called (absolutely) cuspidal or supercuspidal if it is not a
subquotient of a representation that is parabolically induced from a proper
parabolic subgroup of G.

Definition 2.10. Using the notation of [4], a partition (n1, . . . , nr) of n means
a partition of {1, 2, . . . , n} into segments (1, . . . , n1), (n1 + 1, . . . , n1 + n2), . . . ,
(n1 + n2 + · · · + nr−1 + 1, . . . , n) of respective lengths ni. We will write
(n1, . . . , nr) ⊥ n for such a partition.

For any ni appearing in a partition of n, write Δi = {σi, σi|·|, . . . , σi|·|ni−1}
for i = 1, . . . , r and σi an irreducible supercuspidal representation of GLni

(K).
The Δi are also called segments, and we say that Δi precedes Δj if Δi �⊂ Δj

and Δj �⊂ Δi, if Δi ∪ Δj is also a segment, and σi = σj | · |k for some k > 0.

Now compare Definition 2.9 with the following result (cf. [30, Theorem 6.1],
[4, Corollary 3.27], and [22, 189–190 pp.]).

Lemma 2.11. For any partition (n1, . . . , nr) of n and a choice of segments
so that Δi and Δi+1 (i = 1, . . . , r) do not precede each other, there exists
a corresponding induced representation, denoted indG

P (σ1 ⊗ · · · ⊗ σr), whose
unique irreducible quotient is an irreducible admissible representation of G.
Any irreducible admissible representation of G is equivalent to such a quotient
representation.

Hence, supercuspidal representations can be viewed as the building blocks
of admissible representations of G. This concludes the classification of admis-
sible representations of G.

Remark 2.12. Let now n = 2, so that G = GL2 and G = GL2(K). Every
infinite-dimensional irreducible admissible representation π which is not su-
percuspidal is then contained in ρ(μ1, μ2) for some quasicharacters μ1, μ2 of
K. If μ1μ

−1
2 �= | · |±1, then ρ(μ1, μ2) and ρ(μ2, μ1) are equivalent and irre-

ducible. We call a representation of this kind a (non-special) principal series
representation.

If ρ(μ1, μ2) is reducible, it has a unique finite-dimensional constituent, and
a unique infinite-dimensional constituent Bs(μ1, μ2), also called a special rep-
resentation. For special representations, there exists a quasicharacter χ such
that μ1 = χ| · |− 1

2 and μ2 = χ| · | 1
2 . Moreover, all special representations are

twists of the so-called Steinberg representation StG of G by quasicharacters
χ ◦ det.
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Summarising, any irreducible admissible representation π : G → GL(V )
satisfies one of the following:
(1): it is absolutely cuspidal;

(2a): it is a principal series representation π(μ1, μ2) for some quasicharacters
μ1, μ2;

(2b): it is a special representation σ(μ1, μ2) for some quasicharacters μ1, μ2;
(3): it is finite-dimensional and of the form π = χ ◦ det for some quasichar-

acter χ.
More details on GL2 can be found in, e.g., [7,17].

Bernstein decomposition. We will introduce the Bernstein decomposition, us-
ing [3,9] as our main references. Let G = GLn(K) as before.

Definition 2.13. Let L be a Levi subgroup of some parabolic P inside G and
let σ be an irreducible cuspidal representation of L. We define the inertial class
[L, σ]L of (L, σ) in L to be all the cuspidal representations σ′ of L such that
σ ∼= σ′χ for χ an unramified character of L. Let B(G) be the set of all inertial
equivalence classes in G.

We need the following refinement of Lemma 2.11.

Theorem 2.14. For every smooth irreducible representation (π, V ) of G there
exists a parabolic P in G with Levi subgroup L, and an irreducible supercus-
pidal representation σ of L, such that (π, V ) is equivalent to a subquotient
of the parabolic induction IndG

P (σ) [16]. The pair (L, σ) is determined up to
conjugacy; the corresponding intertial class s = [L, σ]G is unique [11].

Definition 2.15. The pair (L, σ) in the previous theorem is called the cuspidal
support of (π, V ); the corresponding intertial class s = [L, σ]G is called the
inertial support of (π, V ).

Lemma 2.16 ([3, Prop. 2.10]). Denote by R(G) the category of smooth repre-
sentations (π, V ) of G and by Rs(G) the full subcategory, whose objects are
such that the inertial support of all their respective irreducible G-subquotients
is s. Then there is a direct product decomposition of categories

R(G) =
∏

s∈B(G)

Rs(G).

Corollary 2.17. Let Hs
G(K) be the two-sided ideal of HG(K) corresponding to

all smooth representations (π, V ) of G of inertial support s = [L, σ]G. That
is, Hs

G(K) is the unique and maximal G-subspace of HG(K) lying in Rs(G).
We call Hs

G(K) a Bernstein block.

Definition 2.18. The Hecke algebra HG(K) has a Bernstein decomposition

HG(K) =
⊕

s∈B(G)

Hs
G(K).

Definition 2.19. Let (ρ,W ) be a smooth representation of a compact open
subgroup K of G, whose contragredient representation is denoted (ρ̌, W̌ ).
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The ρ-spherical Hecke algebra H(G, ρ) is the unital associative C-algebra of
finite type, consisting of compactly supported functions f : G → EndC(W̌ )
satisfying f(k1gk2) = ρ̌(k1)f(g)ρ̌(k2) for all g ∈ G, k1, k2 ∈ K. It is also called
the intertwining algebra, since

H(G, ρ) ∼= EndG(indG
K(ρ))

by [9, (2.6)], where ind denotes compact induction.

Proposition 2.20 ([9, Prop. 5.6]). Every Hs
G(K) is a non-commutative, non-

unital, non-finitely generated non-reduced C-algebra, which is Morita equiva-
lent to some intertwining algebra H(G, ρ).

Sketch of proof. For every equivalence class s there exist a compact open sub-
group K of G, a smooth representation (ρ,W ) of K, and an idempotent ele-
ment eρ ∈ HG(K) (cf. [9, (2.9)]) which satisfies

eρ(x) =

{
dim(ρ)
μG(K) trW (ρ(x−1)) if x ∈ K

0 if x ∈ G, x �∈ K
,

such that

Hs
G(K) = HG(K) ∗ eρ ∗ HG(K).

There is a Morita equivalence (cf. [2, Lemma 2])

HG(K) ∗ eρ ∗ HG(K) ∼M eρ ∗ HG(K) ∗ eρ

and the latter is proven in [9, (2.12)] to be isomorphic as a unital C-algebra
to

eρ ∗ HG(K) ∗ eρ
∼= H(G, ρ) ⊗C EndC(W ) (2)

where H(G, ρ) is as in Definition 2.19. In particular, there is a Morita equiv-
alence

Hs
G(K) ∼M H(G, ρ), (3)

i.e., the categories of modules over the left resp. right–hand side of (3) are
equivalent. �
3. Proof of Theorem 2.

Definition 3.1. The (extended) affine Weyl group of GLn is W̃n
∼= Sn � Zn,

where the symmetric group Sn acts by permuting the factors of Zn. We denote
its group algebra by

C[W̃n] = C[Sn � Zn].

In this section, we will prove the following result, which immediately implies
Theorem 2.

Theorem 3.2. Let K be a non-archimedean local field of characteristic zero
and G = GL2. Then up to Morita equivalence, the Bernstein decomposition of
HG(K) is always of the form

HGL2(K) ∼M

⊕
N

(
C[T, T−1] ⊕ C[X,X−1, Y, Y −1] ⊕ C[S, T, T−1]

〈S2 − 1, T 2S − ST 2〉
)

.

(4)
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In particular, if K and L are any two non-archimedean local fields of charac-
teristic zero, then

HG(K) ∼M HG(L).

Proof. By Lemma 2.11, every irreducible representation of G is a subquotient
of a parabolically induced representation indG

P (σ1 ⊗ · · · ⊗ σr), where the σi

are irreducible supercuspidal representations of GLni
and (n1, . . . , nr) is a

partition of n, so that consecutive segments do not precede each other. Note
that ni is the multiplicity of σi in the tensor product, so that ni = 1 or 2
always.

Proposition 2.20 implies that to determine the corresponding Bernstein
blocks Hs

G(K) of the Hecke algebra up to Morita equivalence, it suffices to
determine all intertwining algebras H(G, ρ) that occur. To do this, we need
the following definition.

Definition 3.3 (cf. [8, (5.4.6)]). Let m ∈ Z>0 and r ∈ C×. The affine Hecke
algebra H(m, r) is the associative unital C-algebra generated by elements Si

(1 ≤ i ≤ m − 1), T , T−1, satisfying the following relations:

1. (Si + 1)(Si − r) = 0 for 1 ≤ i ≤ m − 1,
2. T 2S1 = Sm−1T

2,
3. TSi = Si−1T for 2 ≤ i ≤ m − 1,
4. SiSi+1Si = Si+1SiSi+1 for 1 ≤ i ≤ m − 2,
5. SiSj = SjSi for 1 ≤ i, j ≤ m − 1 such that |i − j| ≥ 2.

Note that when m = 1, we have H(1, r) ∼= C[T, T−1] for any value of r.
Moreover, note that when m ≤ 2, relations (3),(4), and (5) are vacuous.

By the Main Theorem of [10], the intertwining algebra corresponding to
indG

P (σ1 ⊗ · · · ⊗ σr) is isomorphic to the tensor product ⊗r
i=1H(ni, q

ki) of
affine Hecke algebras, where ni ≤ 2 since n = 2. Here, q is the size of the
residue field of K, while ki is the so-called torsion number of σi, cf. [2, p. 22].
In particular, qki �= −1 always. A priori, the Hecke algebra H(2, qki) depends
on qki . However, we now prove the following.

Lemma 3.4. For any r �= −1, there is an algebra isomorphism H(2, r) ∼=
C[W̃2].

Proof. First let r = 1. Let 	 be a uniformiser of K. Since 	 is not a root of
unity, we may alternatively (cf. [8, pp. 177–178]) write W̃2 = 〈Π〉 � W , where

Π =
(

0 1
	 0

)
,

and W is generated by

s1 =
(

0 1
1 0

)
.

We may check that s1 has order 2 and that sending S1 �→ s1, and T �→ Π (and
T−1 �→ Π−1) yields an algebra isomorphism H(2, 1) → C[W̃2].
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Now let r ∈ C× \ {−1} and let (cf. [27, p. 113])

s̄1 =
(

r + 1
2

s1 +
r − 1

2

)
∈ C[W̃2].

Then relation (2)

Π2s̄1 = s̄1Π2

still holds. Hence, the map S1 �→ s̄1, and T �→ Π (and T−1 �→ Π−1) determines
an algebra isomorphism H(2, r) → C[W̃2], for any r other than r = −1. �

It follows from the lemma that the intertwining algebra for the partition
(n1, . . . , nr) of n, corresponding to the representation indG

P (σ1 ⊗ · · · ⊗ σr),
is isomorphic to the C-algebra ⊗r

i=1C[W̃ni
].

Finally, we show that any such algebra ⊗r
i=1C[W̃ni

] occurs countably infin-
itely many times in the Bernstein decomposition. For this, we use the classifi-
cation of Remark 2.12. The reader may compare this to the explicit description
of the intertwining algebras in [24, Example 3.13].

(1) A supercuspidal representation (π, V ) corresponds to an inertial class
s = [G, ρ]G where ρ is itself an irreducible supercuspidal representa-
tion. The corresponding intertwining algebra is H(G, ρ) ∼= H(1, q) ∼=
C[T, T−1], for q some power of p. The uncountably infinitely many
equivalence classes of supercuspidal representations are indexed by
characters of quadratic extensions of K.

(2a) The principal series representations are constituents of representations
of the form indG

B (χ1, χ2) for a choice of Borel subgroup B of G and
characters χ1 and χ2. Therefore, up to inertial equivalence, we find
ρ(χ1| · |z, χ2| · |z′

) = indG
B(χ1| · |z, χ2| · |z′

) for some characters χ1 and
χ2, and some values z, z′.

Non-special representations then correspond to a choice of χ1, χ2

such that χ1χ
−1
2 �= | · |±1 (i.e., χ1 and χ2 are not inertially equivalent)

or a choice of χ, z, z′ such that |z − z′| �= 1. The corresponding inertial
class is s = [T, ρ]G, where T is a maximal torus in B. For such ρ, we
have H(G, ρ) ∼= H(1, q) ⊗ H(1, q′) ∼= C[X,X−1, Y, Y −1], for q and q′

some powers of p.
We also see that these representations are indexed by the char-

acters of (O×
K)2 modulo the action of S2, which is a countably infinite

group.
(2b/3) A special representation is the infinite-dimensional irreducible subquo-

tient StGχ|·|z+ 1
2 of the reducible representation ρ = ρ(χ|·|z+1, χ|·|z) for

some χ and z, and corresponds to s = [T, ρ]G. The finite-dimensional
representations appear as the finite-dimensional irreducible subquo-
tients of the same ρ.

Hence, the corresponding inertial equivalence classes s are indexed
by the character group of O×

K , which is countably infinite. The corre-
sponding intertwining algebras for both special and finite-dimensional
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representations are

H(2, q) ∼= C[W̃2] ∼= C[S, T, T−1]/〈S2 − 1, T 2S − ST 2〉.
This finishes the proof of Theorem 3.2 and hence of Theorem 2. �

4. L1-isomorphisms of local Hecke algebras. Theorem 3.2 shows that local
Hecke algebras for GL2 are always Morita equivalent. By contrast, Theorem
4.3 below implies that the L1-isomorphism type of a local Hecke algebra for
any GLn (n ≥ 2) determines the local field up to isomorphism.

Definition 4.1. Let G = GLn and let K again be a non-archimedean local
field of characteristic zero. Since K is locally compact, G(K) is then a locally
compact topological group, whose topology is induced by the topology of K. Its
group structure is induced by that of G. Moreover, it is equipped with a (left)
invariant Haar measure μG(K) which satisfies μG(K)(G(OK)) = 1. The group
algebra L1(G(K)) of G over K is the algebra of complex-valued L1-functions
with respect to μG(K), under the convolution product as in Eq. (1).

Definition 4.2. Let K and L both be non-archimedean local fields. An isomor-
phism Ψ: HG(K) ∼→ HG(L) of Hecke algebras, which is an isometry for the
L1-norms arising from the Haar measures (i.e., which satisfies ||Ψ(f)||1 = ||f ||1
for all f ∈ HG(K)) is called an L1-isomorphism.

Theorem 4.3. Let K and L be two non-archimedean local fields of chracteris-
tic zero. Then there is an L1-isomorphism of local Hecke algebras HG(K) ∼=
HG(L) if and only if there is a field isomorphism K ∼= L.

Remark 4.4. In the statement of Theorem 4.3, the field isomorphism K ∼= L is
automatically a topological field isomorphism: an abstract field isomorphism
K ∼= L will restrict to the multiplicative groups: K× ∼= L×. However, K×

will have an infinite divisible p-subgroup if and only if K is an extension of
Qp, by [23, Corollary 53.4]. Thus, an abstract isomorphism determines the
residue characteristic of K and L uniquely, so they are finite extensions of the
same Qp. The valuation of Qp extends uniquely to both K and L, so that in
particular the valuations on K and L will be equivalent and hence generate
the same topology.

Proof. Firstly, we claim that an L1-isomorphism HG(K) ∼= HG(L) implies an
L1-isomorphism of algebras L1(G(K)) ∼= L1(G(L)).

Because G(K) is a Hausdorff space, HG(K) is point separating. Moreover,
the Hecke algebra vanishes nowhere, since it contains the characteristic func-
tion of any compact K ⊆ G(K). By [15, 7.37.b], we can therefore apply the
Stone-Weierstrass theorem for locally compact spaces, to conclude that HG(K)
is dense inside the algebra C0(G,K) of functions f : G(K) → C which vanish
at infinity (meaning that |f(x)| < ε outside a compact subset of G(K)), under
the sup-norm.

A fortiori, HG(K) is dense, again under the sup-norm, inside the algebra
Cc(G,K) of compactly supported functions G(K) → C, and hence it is also
dense under the L1-norm. Now Cc(G,K) is dense in L1(G(K)), proving the
claim.
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Secondly, by results due to Wendel [26] and Kawada [19], an L1-isometry of
group algebras of locally compact topological groups is always induced by an
isomorphism of the topological groups. Therefore, an L1-isometry L1(G(K)) ∼=
L1(G(L)) implies a group isomorphism G(K) ∼= G(L).

Finally, the fact that G(K) ∼= G(L) implies that K ∼= L is a classical result,
cf. [21, Theorem 5.6.10]. �

Remark 4.5. This theorem can be viewed as a local and complex version of [12,
Theorem 6.3 (“Theorem E”)], which deals with the adelic and real analogue
(but also holds over C). The proof above is analogous to that of Theorem 6.3.
In the last step, instead of citing the literature, we could use [12, Theorem G],
since the local version of this also implies a field isomorphism K ∼= L.

5. Discussion. The results in this paper naturally inspire some further ques-
tions.

5.1. Generalisations of Theorem 3.2.

1. We have seen that for GL2, up to Morita equivalence, HG(K) does not
depend on K. Does the same hold up to algebra isomorphism?

2. An extension of the proof of Theorem 3.2 to GLn, n > 2 is obstructed
by the braid relations ((4) of Definition 3.3) among the generators of the
affine Heceke algebras. This is pointed out by Xi in [27, (11.7)], where he
proves that H(3, q) �≡ C[W̃3] for q �= 1. In fact, Yan proves in [29] that
any two affine Hecke algebras H(n, q) and H(n, q′) of type Ã2 are not
Morita equivalent when q �= q′.

3. One may still ask whether Theorem 3.2 also holds for other reductive
groups G over K. It is known that the Hecke algebras of such groups also
admit a Bernstein decomposition. However, it is in general much harder
to determine the complex algebras that occur as intertwining algebras
and to show that these are independent of K. We would also want to
have a similar classification of the representation theory of such G.

5.2. A global version of Theorem 3.2. In the proof of Theorem 3.2, we have
seen that the residual characteristic p of K does not play a special role. Hence,
if K is a number field and G = GLn, n ≥ 2, we may consider the (adelic)
Hecke algebra HG(K) as a restricted tensor product of local Hecke algebras
HG(Kv), with respect to the maximal open compact subgroups G(Ov):

HG(K) = ⊗vHG(Kv),

cf. [17, Chapter 9] for G = GL2 and [6, p. 320] for G = GLn. We know that the
module category of any HGL2(Kv) is independent of Kv (so in particular inde-
pendent of the residual characteristic of Kv). Hence, a natural question would
be to ask whether the module category of HGL2(K) is also independent of K.
We expect however that the restricted tensor product construction, through
the rings of integers Ov, does depend on K.
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5.3. Local anabelian questions. Our main goal was to investigate to what ex-
tent HG(K) for G = GLn determines the field K. By the philosophy of the
Langlands program, our question roughly translates to asking which represen-
tations of the absolute Galois group GK determine K. It therefore fits in a
local anabelian context.

Neukirch and Uchida proved that the absolute Galois group of a number
field determines the number field. As Yamagata points out in [28], the analo-
gous statement for non-archimedean local fields of characteristic zero is false.
However, Jarden and Ritter [18] prove that in this case, the absolute Ga-
lois group GK determines the absolute field degree [K : Qp] and the maximal
abelian subextension of K over Qp. In addition, Mochizuki [20] and Abrashkin
[1] prove that the absolute Galois group together with its ramification filtration
does determine a local field of characteristic 0 resp. p > 0. We may therefore
ask exactly which field invariants of K are determined by HG(K).

5.4. The L1-isomorphism condition in Theorem 4.3. The condition that the
isomorphism HG(K) ∼= HG(L) is an isometry for the L1-norm is one which we
would like to understand from a categorial viewpoint. Does the L1-isomorphism
type of (modules over) a Hecke algebra impose analytic conditions on (certain
classes of) the automorphic representations? Or, more in the spirit of Section
5.3, can we relate the L1-isomorphism type of a Hecke algebra HG(K) to the
ramification filtration of the absolute Galois group GK?
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