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Manin’s conjecture for
certain biprojective hypersurfaces

By Damaris Schindler at Bonn

Abstract. Using the circle method, we count integer points on complete intersections
in biprojective space in boxes of different side length, provided the number of variables is large
enough depending on the degree of the defining equations and certain loci related to the singular
locus. Having established these asymptotics we deduce asymptotic formulas for rational points
on such varieties with respect to the anticanonical height function. In particular, we establish
a conjecture of Manin for certain smooth hypersurfaces in biprojective space of sufficiently
large dimension.

1. Introduction

The goal of this paper is to study the distribution of rational points on complete intersec-
tions in biprojective space. In particular, we prove a conjecture of Manin for certain smooth
hypersurfaces in biprojective space of sufficiently large dimension depending mostly on the
degree of the defining equation.

To state our main result we introduce some notation. Let n1 and n2 be positive integers
and write x D .x1; : : : ; xn1/ and y D .y1; : : : ; yn2/. Let F1.xI y/; : : : ; FR.xI y/ be R bihomo-
geneous polynomials with integer coefficients, all of bidegree .d1; d2/. They define a varietyX
in biprojective space Pn1�1Q � Pn2�1Q given by

(1.1) Fi .xI y/ D 0; 1 � i � R:

Assuming ni > Rdi for i D 1; 2, we introduce the following height function on rational points
of Pn1�1Q � Pn2�1Q . For a point .xI y/ with integer coordinates such that gcd.x1; : : : ; xn1/ D 1
and gcd.y1; : : : ; yn2/ D 1 we define

H.xI y/ D
�

max
1�i�n1

jxi j
n1�Rd1

��
max

1�j�n2
jyj j

n2�Rd2
�
:

We wish to understand the number of rational points of bounded height on X with respect to
this height function. It may happen that this counting function is dominated by points lying
on a proper closed subvariety of X . Hence, we will construct a Zariski-open subset U � X
and count points lying in the set U only. More precisely, let NU;H .P / be the number of
points .xI y/ 2 U.Q/ with H.xI y/ � P .
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210 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Before we state our main theorem, we need to introduce certain singular loci. To this end,
let V �1 � An1Cn2C be the variety given by

(1.2) rank
�
@Fi .xI y/
@xj

�
1�i�R
1�j�n1

< R:

Analogously, we define V �2 to be the affine variety given by

(1.3) rank
�
@Fi .xI y/
@yj

�
1�i�R
1�j�n2

< R:

Theorem 1.1. Assume that d1; d2 � 2. Let Fi .xI y/ be a system of bihomogeneous poly-
nomials as above with

(1.4) n1 C n2 �max¹dimV �1 ; dimV �2 º > 3 � 2
d1Cd2d1d2R

3:

Then there is a Zariski-open subset U � X such that

NU;H .P / D .4�.n1 �Rd1/�.n2 �Rd2//
�1�P logP C C1P CO.P 1��/

for some real number C1 and some � > 0. The constant � is the leading constant predicted by
the circle method for the number of integer solutions to the system of equations (1.1), where
the real density is to be taken with respect to the box Œ�1; 1�n1Cn2 .

We remark that restricting our counting function to an open subset U is necessary in this
theorem. For example consider the hypersurface given by

F.xI y/ D xd11 y
d2
1 C � � � C x

d1
n y

d2
n D 0

with d1; d2 � 2. In this case V �1 and V �2 are both given by

xiyi D 0; 1 � i � n

such that we have dimV �1 D dimV �2 D n. Hence our Theorem 1.1 implies the existence of an
open subset U with NU;H .P / � cP logP , for some constant c, as soon as n is sufficiently
large depending on d1; d2. Consider the rational points of height bounded by P in this hyper-
surface with x1 D 0 and y2 D � � � D yn D 0. Their contribution is of order P

n�1
n�d1 , which is

larger than the main term in Theorem 1.1.
The open subset U in Theorem 1.1 is explicitly described in Section 4. It is a prod-

uct of two open subsets U1 � U2 with Ui an open subset of affine ni -space for i D 1; 2.
More precisely, some point x 2 An1C is contained in U1 if the variety in affine n2-space given
by Fi .xI y/ D 0 for 1 � i � R with x considered as fixed, is sufficiently non-singular in the
sense of Birch’s work [1].

It is interesting to interpret our main result in the case R D 1 of hypersurfaces. In [6]
Manin conjectured that for Fano manifolds X with Zariski-dense rational points X.Q/ (ex-
cluding some cases) an asymptotic behaviour of the form

(1.5) NU;H .P / � cP.logP /rank.PicX/�1

should hold, where H is an anticanonical height function. Furthermore, Peyre [12] has given
an interpretation and prediction for the leading constant c, which we call from now on cPeyre.
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Schindler, Manin’s conjecture for certain biprojective hypersurfaces 211

So far, there are only very few cases of subvarieties of biprojective space known that
show the predicted asymptotic behaviour. For the case of a single hypersurface of bidegree
.d1; d2/ D .1; 1/ there is work of Robbiani [15] proving the desired asymptotic for the variety
given by x0y0 C � � � C xsys D 0, as soon as s � 3. Using a classical form of the circle method,
Spencer [19] has simplified the proof and extended the result to s � 2. There is an independent
proof given by Browning [5] in the case s D 2, which uses asymptotics for certain correlations
of the divisor function. Furthermore, Le Boudec succeeds in [11] to provide sharp upper and
lower bounds for the counting function NU;H .P / associated to the threefold in biprojective
space given by x0y20 C x1y

2
1 C x2y

2
2 D 0.

We compare Theorem 1.1 with the conjectured formula (1.5) in the case R D 1. Assume
that we are given a smooth hypersurfaceX � Pn1�1Q � Pn2�1Q satisfying the conditions of The-
orem 1.1. In the next section (see Lemma 2.2) we show that the condition (1.4) is automatically
satisfied if X is smooth and both n1 and n2 are sufficiently large. Then [9, Exercise II.8.3 b)]
shows that the canonical bundle on Pn1�1Q �Pn2�1Q is given by O.�n1;�n2/. By the adjunction
formula (see [9, Proposition II.8.20]) we obtain

�!X Š OX .n1 � d1; n2 � d2/:

Our assumptions in Theorem 1.1 certainly imply that n1 � d1 � 1 and that n2 � d2 � 1. Note
that then the set of global sections of OX .n1 � d1; n2 � d2/ is generated by monomials of
bidegree .n1 � d1; n2 � d2/. Such a choice of a set of generators defines an embedding into
projective space, which shows that �!X is very ample. Hence X is indeed a Fano variety, and
our height function H introduced at the beginning of this section is an anticanonical height
function.

In the next section we determine the Picard group of a smooth complete intersection
in biprojective space of dimension at least three, see Theorem 2.4. In particular we obtain
PicX Š Z2, and hence we have rank.PicX/ D 2. This shows that our Theorem 1.1 is compat-
ible with Manin’s conjecture for smooth hypersurfaces in biprojective space. In Section 3 we
show that the leading constant in Theorem 1.1 is compatible with Peyre’s prediction in [12].
This leads to the following theorem.

Theorem 1.2. Assume that d1; d2 � 2. Let X be a smooth hypersurface in biprojective
space Pn1�1Q � Pn2�1Q of bidegree .d1; d2/ such that

min¹n1; n2º > 1C 3 � 2d1Cd2d1d2:

Then Manin’s conjecture holds for some Zariski-open subset U of X and the leading constant
c D cPeyre in the asymptotic formula (1.5) is the one predicted by Peyre [12].

In the calculation of Peyre’s constant cPeyre one has to compute a Tamagawa measure
of the set of adelic points of X cut out by the Brauer group BrX of X . In the appendices
of Colliot-Thélène and Katz in [14] it is shown that the Brauer group of a smooth complete
intersection in projective space of dimension at least 3 is trivial. The proof also applies to the
biprojective setting and implies that the Brauer group of X is trivial as soon as X is a smooth
complete intersection in biprojective space with dimX � 3, see Proposition 2.6.

Our proof of Theorem 1.1 relies on previous work of the author [16]. It again makes
use of the circle method in combination with the hyperbola method with weights, which was
recently developed by Blomer and Brüdern [2].
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212 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

The structure of this paper is as follows. After providing some geometric preliminar-
ies in the next section, we show in Section 3 that our leading constant in Theorem 1.1 is the
one predicted by Peyre in [12] and deduce Theorem 1.2. In the fourth section we state our
supplementary theorems on counting functions associated to the system of equations (1.1),
which we prove in the following sections using the circle method. In particular, in Section 5
we apply Weyl-differencing fibre-wise to the system of polynomials (1.1) and deduce a form
of Weyl-inequality for the corresponding exponential sum. Sections 6 and 7 contain most of
the circle method analysis. In Section 8 we deduce from this the main theorems of Section 4.
The following Section 9 is used to apply the techniques developed by Blomer and Brüdern
to our counting problem and deduce Theorem 1.1 using the previously mentioned circle
method theorems.

For some real-valued functions f .P1; P2/ and g.P1; P2/ we write in the following

f .P1; P2/ D O.g.P1; P2//

if there exist positive constants C and C0 such that

jf .P1; P2/j � Cg.P1; P2/ for all P1 � C0 and P2 � C0:

We write Val.Q/ for the set of valuations of Q, and Q� for the completion of Q at
a place � 2 Val.Q/. Furthermore j � j� is the standard �-adic metric on Q� . We write dx� for
the Haar measure on Q� which is the standard Lebesgue measure for the infinite place and for
a finite place p normalized in a way such that

R
Zp

dxp D 1.

Acknowledgement. The author would like to thank Professor T. D. Wooley for sug-
gesting this area of research, the referee for his or her comments and Professor T. D. Browning
for useful discussions. The author is grateful to Professor P. Salberger for providing the proof
of Theorem 2.4 and for useful comments.

2. Geometric preliminaries

First we state a well-known lemma on the intersection of a closed subvariety with an
ample divisor, which we need in the following several times.

Lemma 2.1. Let W be a smooth variety, Z � W be a closed irreducible subvariety,
and D be an effective divisor on W . Then every irreducible component of D \Z has dimen-
sion at least dimZ � 1. Furthermore, if D is ample, W is complete over some algebraically
closed field, and the dimension of Z is at least one, then the intersection D \Z is non-empty.

Proof. The first statement is for example a consequence of [18, equation (�), p. 238],
where we choose x a closed point in the intersection of D \Z if this is not empty. By the
Nakai–Moǐshezon criterion for ampleness (see [18, p. 262]) one has

.Dr : Z/ > 0

if D is an ample divisor on a complete variety W and Z is an irreducible subvariety of dimen-
sion dimZ D r . This implies in particular thatD\Z ¤ ; if the dimension ofZ is positive.
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Schindler, Manin’s conjecture for certain biprojective hypersurfaces 213

In the following we set
W D Pn1�1C � Pn2�1C :

We note that for a smooth hypersurface X � W the loci V �1 and V �2 as defined in the introduc-
tion cannot be too large.

Lemma 2.2. Assume that d1; d2 � 2 and that X � W is given by a single bihomoge-
neous equation F.xI y/ D 0 of bidegree .d1; d2/. Assume that X is smooth. Then we have

dimV �i � max¹n1; n2; n1 C n2 � ni C 1º

for i D 1; 2.

Proof. Let Vi be the variety in biprojective space given by (1.2) for i D 1 and given
by (1.3) for i D 2. Then we certainly have

dimV �i � max¹n1; n2; dimVi C 2º

for i D 1; 2. Hence it is sufficient to bound dimV1 � n2 � 1 and dimV2 � n1 � 1.
Let Hj be the subvariety in W given by @F =@yj D 0 for 1 � j � n2. Then the singular

locus Xsing of X in biprojective space is given by

Xsing D V1 \

 
n2\
jD1

Hj

!
:

Assume that dimV1 � n2. We note that each Hj is either equal to the whole biprojective
space or an ample divisor since we have assumed d1; d2 � 2. Hence Lemma 2.1 implies that
dimV1 \H1 � n2 � 1. After intersecting with all the other Hj we obtain

dim

 
V1 \

 
n2\
jD1

Hj

!!
� n2 � n2 D 0;

and the intersection is non-empty by Lemma 2.1. This is a contradiction to X being smooth,
and hence dimV1 � n2 � 1. Since the same argument holds for V2, this proves the lemma.

We keep the notationW D Pn1�1C � Pn2�1C and fix effective ample divisorsD1; : : : ;Dk .
For some 1 � i � k write

Xi D

i\
jD1

Dj and X D Xk :

Set X0 D W and assume that X D
Tk
jD1Dj is a smooth complete intersection of codimen-

sion k in W . Then all the intermediate intersections Xi are also complete intersections and of
codimension i . This is for example a consequence of Lemma 2.1. Note that the Xi need not be
smooth, but they are all Cohen–Macaulay, see for example [9, Proposition II.8.23].

Lemma 2.3. Let 0 � i � k andD be an ample divisor onXi . Assume that dimXk � 3.
Then

(2.1) H 1.Xi ;O.�D// D H
2.Xi ;O.�D// D 0

for all 0 � i � k.
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214 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Proof. We use descending induction starting with i D k. Note that Xk is smooth by
assumption, and hence Kodaira’s vanishing theorem applies and gives the desired result since
dimXk � 3 (see e.g. [9, Remark III.7.15]).

Next assume that i < k and that we already have established the vanishing (2.1) for ample
divisors on XiC1. We consider on Xi the exact sequence of OXi -modules

(2.2) 0! OXi .�DiC1/! OXi ! OXiC1 ! 0:

After twisting with OXi .�D � .r � 1/DiC1/ for some r � 1 and taking the associated long
cohomology sequence, we obtain the exact sequence

H 1.Xi ;O.�D � rDiC1//! H 1.Xi ;O.�D � .r � 1/DiC1//(2.3)

! H 1.XiC1;O.�D � .r � 1/DiC1//

! H 2.Xi ;O.�D � rDiC1//

! H 2.Xi ;O.�D � .r � 1/DiC1//

! H 2.XiC1;O.�D � .r � 1/DiC1//:

By induction hypothesis and since D C .r � 1/DiC1 is ample for r � 1, we have

H j .XiC1;O.�D � .r � 1/DiC1// D 0; j D 1; 2:

Next we apply Serre duality to the cohomology groups onXi . Recall that all theXi are Cohen–
Macaulay and equidimensional. Write li D dimXi and let !0Xi be the dualizing sheaf of Xi .
Hence [9, Corollary III.7.7] implies that

H 1.Xi ;O.�D � rDiC1// Š H
li�1.Xi ;O.D C rDiC1/˝ !

0
Xi
/0;

where 0 denotes the dual vector space.
Next we apply Serre’s vanishing theorem (see [9, Theorem III.5.2]). This implies that

there is some r0 D r0.Xi / such that for all r � r0 one has

H li�1.Xi ;O.D C rDiC1/˝ !
0
Xi
/ D 0:

Since we have assumed dimXk � 3, the same holds for the cohomology groupsH li�2. Hence,
by Serre duality we have

H 1.Xi ;O.�D � rDiC1// D H
2.Xi ;O.�D � rDiC1// D 0

for r � r0. Now the exact sequence (2.3) implies that

H j .Xi ;O.�D � .r � 1/DiC1// D 0; j D 1; 2;

for r � r0. Now induction on r shows that

H 1.Xi ;O.�D// D H
2.Xi ;O.�D// D 0;

as desired.

With the help of Lemma 2.3 we can now determine the Picard group of X .
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Schindler, Manin’s conjecture for certain biprojective hypersurfaces 215

Theorem 2.4. Let X be as above a smooth complete intersection in W of dimension at
least 3. Then the restriction homomorphism

PicW ! PicX

is an isomorphism, and PicX Š Z � Z.

Proof. First we note that by [3, Example A.9.28, p. 560] one has

Pic.Pn1�1K � Pn2�1K / Š Z2

for any field K.
Next Lemma 2.3 implies that

H 1.Xi ;O.�DiC1// D H
2.Xi ;O.�DiC1// D 0; 0 � i � k:

Since Xi is Cohen–Macaulay and of dimension at least 3, it is of depth � 3 in all its closed
points. Hence we can apply [8, Exposé XII, Corollaire 3.6] to the variety Xi and the divi-
sor DiC1. Therefore, the homomorphism

PicXi ! PicXiC1

is an isomorphism for 0 � i � k � 1. Composing all these isomorphisms

PicW ! PicX1 ! � � � ! PicXk

gives the result of this theorem.

Next we note that Lemma 2.3 also implies that all the intermediate intersections Xi
are connected.

Lemma 2.5. The variety Xi is connected for all 0 � i � k.

Proof. We proof this by induction on i . Note that X0 D W is connected since

H 0.Pn1�1C � Pn2�1C ;OW / D C:

The exact sequence of sheaves (2.2) implies that the sequence

H 0.Xi ;OXi /! H 0.XiC1;OXiC1/! H 1.Xi ;OXi .�DiC1//

is exact. Since the divisor DiC1 is ample, Lemma 2.3 implies that

H 1.Xi ;OXi .�DiC1// D 0:

Therefore the first map in the above sequence is surjective,

H 0.Xi ;OXi / � H 0.XiC1;OXiC1/;

and H 0.XiC1;OXiC1/ D C.

The appendices at the end of [14, see especially Corollary A.2] show that the Brauer–
Manin obstruction for a smooth complete intersection in Pn

k
with dimX � 3 and k a number

field, is vacuous. The proof contained in this work also applies to complete intersections in
biprojective space, and gives the following result.
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216 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Proposition 2.6 (Analogue of [14, Proposition A.1]). Let k be a number field and X be
a smooth complete intersection in biprojective space Pn1�1

k
�Pn2�1

k
of effective ample divisors

satisfying dimX � 3. Then the natural map Br k ! BrX is an isomorphism.

Proof. First let k be an algebraically closed field of characteristic zero, and set

V D Pn1�1
k

� Pn2�1
k

:

Let Y be given by Fi .xI y/ D 0, 1 � i � R, for a system of bihomogeneous polynomials
of bidegree .d .i/1 ; d .i/2 /. Let Hi be given by Fi .xI y/ D 0. Then we claim that V nHi is affine.
For this consider the map

� W Pn1�1
k

� Pn2�1
k

,! PN1
k
� PN2

k
,! PNk ;

where the first map is the product of a Veronese embedding Pn1�1
k

,! PN1
k

of degree d .i/1 and
a Veronese embedding of the second factor of degree d .i/2 , followed by a Segre embedding.
Then �.Hi / is given by one linear equation. Hence �.V / n �.Hi / is affine as desired.

Let l be a prime invertible in k and let H i
Ket denote étale cohomology. Then [14, Corol-

lary B.5] implies that the restriction map

(2.4) H i
Ket.P

n1�1
k

� Pn2�1
k

;Z=lZ/! H i
Ket.Y;Z=lZ/

is an isomorphism for i < n1 C n2 � 2 �R and injective for i D n1 C n2 � 2 �R.
Note that in our situation of a smooth complete intersection in biprojective space, the

group BrY is torsion. To show that BrY is trivial, it is hence enough to prove that the l-torsion
part .BrY /Œl� D 0 for all primes l .

We assume for a moment that ni � 2 for i D 1; 2. Otherwise Proposition 2.6 reduces
to [14, Proposition A.1]. As in [14, Appendix A] one can consider the commutative diagram

0 // Pic.V /=l

��

// H 2
Ket.V;Z=lZ/

��

0 // Pic.Y /=l // H 2
Ket.Y;Z=lZ/

// .BrY /Œl� // 0

whose rows are exact. For dimY � 3, the right vertical map is an isomorphism by equa-
tion (2.4). Furthermore, the top horizontal map is an isomorphism since both groups are of
rank 2 over Z=lZ. This implies .BrY /Œl� D 0 for all primes l as desired.

To adapt the proof of [14, Proposition A.1] to the biprojective setting, we have to check
the following ingredients. Let X be as in Proposition 2.6, denote by k an algebraic closure
of k, letG D Gal.k=k/ andX D X �k k. Then we need to check thatX is geometrically con-
nected, that PicX ! .PicX/G is an isomorphism, that H 1.k;PicX/ D 0 and that BrX D 0.
The last of these follows directly from the above comments.

Lemma 2.3 implies that X is geometrically connected since dimX � 3. By Theorem 2.4
there is an isomorphism PicX Š Z � Z, and hence H 1.k;PicX/ is trivial. Furthermore,
Theorem 2.4 implies that the restriction map

Pic.Pn1�1
k

� Pn2�1
k

/! PicX

is an isomorphism, and hence
PicX ! .PicX/G

is an isomorphism as explained in [14, Appendix A].
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Schindler, Manin’s conjecture for certain biprojective hypersurfaces 217

3. Interpretation of the leading constant

In this section we will consider a single bihomogeneous polynomial F.xI y/ D 0 of
bidegree .d1; d2/which defines a hypersurfaceX � Pn1�1Q �Pn2�1Q . Suppose that the assump-
tions of Theorem 1.1 are satisfied. In particular, we have ni � di � 2 for i D 1; 2 and hence
the anticanonical sheaf

!�1X Š OX .n1 � d1; n2 � d2/

is very ample. We let s1; : : : ; sq be the global sections of the sheaf OX .n1 � d1; n2 � d2/

given by all monomials in .xI y/ of bidegree .d1; d2/. They generate the ring of global sections
�.X;O.n1 � d1; n2 � d2//, and define an adelic metric on OX .n1 � d1; n2 � d2/ and hence
a height function on X.Q/ given by

H.xI y/ D
Y

�2Val.Q/

max
i;j
jx
n1�d1
i y

n2�d2
j j� :

If x and y are both given by reduced integer vectors, then this is the same as saying

H.xI y/ D
�

max
i
jxi j

n1�d1
��

max
j
jyj j

n2�d2
�
;

which is nothing else than the anticanonical height function introduced in the last section.
According to Peyre the leading constant in equation (1.5) should be of the form

(3.1) cPeyre D ˛.X/ˇ.X/ lim
s!1

�
.s � 1/rank.PicX/L.s; �Pic.X//

�
�H .X.AQ/

Br/:

This expression can for example be found in [10, Chapter VI, Section 5]. In the rest of this
section we define each factor separately, and compute them for X as above. We follow mainly
the formulation and analysis of the constant in [10, 12, 13].

Recall that we have an isomorphism

PicX Š Pic.Pn1�1Q � Pn2�1Q / Š Z2:

The hyperplanes H1W x1 D 0 and H2Wy1 D 0 generate Pic.Pn1�1Q � Pn2�1Q / freely, and hence
also PicX . Using additive notation for the divisor class group, we know that

�KX D .n1 � d1/H1 C .n2 � d2/H2;

with KX the class of the canonical divisor. We use the classes H1 and H2 to identify PicX
with the lattice Z2 in R2. The real cone of effective divisors of X is then given by

ƒeff.X/ D ¹t1H1 C t2H2 W t1; t2 � 0º � R2:

Let ƒ_eff.X/ � .R
2/_ be the dual of the effective cone. Then the constant ˛.X/ is defined to

be
˛.X/ D rank.PicX/ vol¹z 2 ƒ_eff W hz;�KX i � 1º

D 2 vol¹t1; t2 2 R W t1; t2 � 0 and .n1 � d1/t1 C .n2 � d2/t2 � 1º

D
1

.n1 � d1/.n2 � d2/
:

Next we come to the constant ˇ.X/. As usual, write X D X � NQ. Then the constant ˇ.X/ is
defined to be the cardinality of the first Galois cohomology group

ˇ.X/ D ]H 1.Gal. NQ=Q/;PicX/:

In our case PicX Š Z2 with trivial Galois action, hence ˇ.X/ D 1.
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218 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

We turn to the third term in the product in equation (3.1). Since the absolute Galois group
acts trivially on Pic.X/, one has L.s; �Pic.X// D �.s/

2, and hence

lim
s!1

.s � 1/rank.PicX/L.s; �Pic.X// D 1:

Proposition 2.6 shows that the Brauer group is trivial in our setting. Hence we have

X.AQ/
Br
D X.AQ/:

Furthermore our variety X is projective, and therefore we have

X.AQ/ D
Y

�2Val.Q/

X.Q�/:

In this situation the Tamagawa measure �H .X.AQ// factors as

�H .X.AQ// D
Y

�2Val.Q/

��.X.Q�//:

In the following we define the local measures �� . For a finite place p this is given as in [10, Def-
inition 5.20] by

�p D det.1 � p�1FrobpjPicX
Ip
/!p;

with !p the Tamagawa measure as defined in [12] and where we write Ip for the inertia group.
In our case this simplifies to

�p D .1 � p
�1/2!p:

For the infinite place one directly sets �1 D !1. Next we give a description of !� for any
place � 2 Val.Q/. Let U1;1 be the standard open subset of Pn1�1 � Pn2�1 given by x1y1 ¤ 0
and write n D n1 C n2 � 3. Let .xI y/ 2 X be a point with .@F =@yn2/.xI y/ ¤ 0. Consider the
morphism

� W XQ� \ U1;1 ! AnQ� ;

.xI y/ 7!
�
x2

x1
; : : : ;

xn1
x1
;
y2

y1
; : : : ;

yn2�1

y1

�
:

By the �-Adic Implicit Function Theorem the map � induces an analytic isomorphism of some
open subset V � X in the �-adic topology with �.V /. Furthermore, � induces a map of coher-
ent sheaves

!.�/ W ��!AnQ� =Q�
! !X\U1;1=Q�

given by
!.�/.du2 ^ � � � ^ dvn2�1/ D du2 ^ � � � ^ dvn2�1:

Here we write u2; : : : ; un1 ; v2; : : : ; vn2�1 for the local coordinates on AnQ� .
Next we observe that we have an isomorphism

!X\U1;1 ! OX .�n1 C d1;�n2 C d2/jU1;1 :

On the Zariski-open subset given by @F =@yn2 ¤ 0 this is locally induced by

d
�
x2

x1

�
^ � � � ^ d

�
yn2�1

y1

�
7!

@F

@yn2

�
1;
x2

x1
; : : : ;

yn2
y1

�
x
�n1Cd1
1 y

�n2Cd2
1 :

According to [12, Section 2.2.1] the Tamagawa measure !� is given by

��!� D
du2;� � � � � � dvn2�1;�

max1�i�q jsi .��1.u; v//.!.�/.du2 ^ � � � ^ dvn2�1/j�
:
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We introduce the local heights

h1�.x/ D max
1�i�n1

jx
n1�d1
i j� and h2�.y/ D max

1�j�n2
jy
n2�d2
j j� ;

and set
h�.xI y/ D h1�.x/h

2
�.y/:

We use the vector notation u D .1; u2; : : : ; un1/ and v D .1; v2; : : : ; vn2/. Then we obtain

!� D
du2;� � � � � � dvn2�1;�
h�.uI v/

ˇ̌
@F
@yn2

.u; v/
ˇ̌
�

;

where vn2 is implicitly given by u2; : : : ; vn2�1.
For a finite place p, the local measure !p.X.Qp// is closely related to the usual circle

method density. As usual, we define this local circle method density �p by

�p D lim
l!1

p�l.n1Cn2�1/]¹.xI y/ modpl W F.xI y/ � 0 modplº:

Then we have the following lemma, which we prove at the end of this section.

Lemma 3.1. With the above notation one has

!p.X.Qp// D
.1 � p�.n1�d1//.1 � p�.n2�d2//

.1 � p�1/2
�p:

Let �1 be the singular integral for the system of equations (1.1) and with respect to the
box .�1; 1/n1 � .�1; 1/n2 , as defined for example in [1, Section 6]. Then �1 is related to the
Tamagawa measure of X.R/ in the following way.

Lemma 3.2. One has

�1.X.R// D
.n1 � d1/.n2 � d2/

4
�1:

Before we come to the proof of Lemmas 3.1 and 3.2, we deduce Theorem 1.2 from the
above and Theorem 1.1.

Proof of Theorem 1.2. Assume thatX � Pn1�1Q �Pn2�1Q is a smooth hypersurface given
by a bihomogeneous polynomialF.xI y/ of bidegree .d1; d2/with d1; d2 � 2. Then Lemma 2.2
implies that

n1 C n2 �max¹dimV �1 ; dimV �1 º � min¹n1; n2º � 1:

Recall that we have assumed in Theorem 1.2 that

min¹n1; n2º > 1C 3 � 2d1Cd2d1d2:

Hence Theorem 1.1 applies to X and delivers an asymptotic formula of the form

(3.2) NU;H .P / D .4�.n1 � d1/�.n2 � d2//
�1�P logP CO.P /;

for some Zariski-open subset U of X . As pointed out in the introduction, the shape of this
asymptotic formula is already compatible with Manin’s prediction. It remains to show that the
leading constant is the one predicted by Peyre.
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220 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Using Lemmas 3.1 and 3.2 together with the description of Peyre’s constant in (3.1) and
the remarks following it, we can compute the Peyre constant cPeyre for the hypersurface X as

cPeyre D
1

.n1 � d1/.n2 � d2/

Y
p

.1 � p�.n1�d1//.1 � p�.n2�d2//�p
.n1 � d1/.n2 � d2/

4
�1

D
1

4
�.n1 � d1/

�1�.n2 � d2/
�1�1

Y
p

�p:

This is exactly our leading constant in (3.2) coming from Theorem 1.1.

3.1. Proof of Lemmas 3.1 and 3.2. Let � be the natural map

� W An1Cn2Q n .An1Q � ¹0º [ ¹0º �An2Q /! Pn1�1Q � Pn2�1Q ;

and set W D ��1.X/. Let .xI y/ 2 W be a smooth (closed) point with .@F=@yj /.xI y/ invert-
ible for some j (if one of the derivatives with respect to some xj is non-vanishing, then we just
interchange notation). Then the Leray form !L on W is given by

!L.xI y/ D .�1/.n2�j /
�
@F

@yj

��1
dx1 ^ � � � ^ dxn1 ^ dy1 ^ � � � ^bdyj ^ � � � ^ dyn2.xI y/:

For each place � 2 Val.Q/ the Leray form induces a local measure !L;� .
For a finite place we can relate the Tamagawa measure to a Leray measure via the follow-

ing lemma, which is a slight modification of [12, Lemma 5.4.6] to the biprojective situation.

Lemma 3.3. Let p be a finite place, and write

a.p/ D .1 � p�1/2.1 � p�.n1�d1//�1.1 � p�.n2�d2//�1:

Then we have Z
¹.xIy/2W.Qp/ Wh1p.x/�1; h2p.y/�1º

!L;p.xI y/ D a.p/!p.X.Qp//:

Proof. We fix an open subset V � X.Qp/ in the p-adic topology such that the coordi-
nates .x2=x1; : : : ; xn1=x1; y2=y1; : : : ; yn2�1=y1/ induce a diffeomorphism � with the image

�.V / D U � An1Cn2�3Qp
� Pn1�1Qp

� Pn2�2Qp
:

To prove the lemma it is enough to assume that U is of the form U1 � U2 with

U1 � An1�1Qp
and U2 � An2�2Qp

:

Then .x1; : : : ; xn1 ; y1; : : : ; yn2�1/ define a diffeomorphism of the biaffine cone of V with
the product of the affine cones CU1 � CU2. We assume this diffeomorphism in the following
implicitly.

Define the functions

g.xI y/ D
ˇ̌̌̌
@F

@yn2
.xI y/

ˇ̌̌̌
p

and h.xI y/ D h1p.x/h
2
p.y/:
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Then we can write

a.p/!p.V / D

Z
U1�U2

dx2;p : : : dxn1;pdy2;p : : : dyn2�1;p
g � h.1; x2; : : : ; xn1 ; 1; y2; : : : ; yn2/

;

where yn2 is implicitly given by the other coordinates. For a fixed vector .x2; : : : ; xn1/ 2 U1
we consider

J.x2; : : : ; xn1/ D

Z
U2

dy2;p : : : dyn2�1;p
g.1; x2; : : : ; xn1 ; 1; y2; : : : ; yn2�1/h

2
p.y/

:

Note that we have g.xI�y/ D j�jd2�1p g.xI y/ and h2p.�y/ D j�jn2�d2p h2p.y/ for � 2 Qp. Hence
we can apply [12, Lemma 5.4.5] and obtain

.1 � p�1/.1 � p�.n2�d2//�1J.x2; : : : ; xn1/ D

Z
¹y2CU2 Wh2p.y/�1º

1

g
dy1;p : : : dyn2�1;p:

Hence we obtain

!p.V /a.p/ D .1 � p
�1/.1 � p�.n1�d1//�1

�

Z
U1

Z
¹y2CU2 Wh2p.y/�1º

dx2;p : : : dxn1;pdy1;p : : : dyn2�1;p
gh1p.x/

:

Now we interchange the order of integration and obtain after another application of [12, Lem-
ma 5.4.5]

a.p/!p.V / D

Z
¹x2CU1 Wh1p.x/�1º

Z
¹y2CU2 Wh2p.y/�1º

1

g
dx1;p : : : dxn1;pdy1;p : : : dyn2�1;p:

The last expression is exactly the integral over the Leray measure !L;p.xI y/.

For the proof of Lemma 3.1 we need two more lemmata, which are slight modifications
of [13, Lemmas 3.2 and 3.3].

Lemma 3.4. Let

W �.r/ D ¹.xI y/ 2 .Zp=pr/n1Cn2 W x 6� 0.p/; y 6� 0.p/ and F.xI y/ � 0 modprº;

and set N �.r/ D ]W �.r/. Then there is some r0 such that for all r � r0 one hasZ
¹.xIy/2Z

n1Cn2
p W x6�0.p/; y6�0.p/;F .xIy/D0º

!L;p D
N �.r/

pr.n1Cn2�1/
:

Proof. For .xI y/ 2 Zn1Cn2p we write ŒxI y�r for the residue class modulo pr . Following
the proof of [13, Lemma 3.2] we start in writingZ

¹.xIy/2Z
n1Cn2
p W x6�0.p/; y6�0.p/;F .xIy/D0º

!L;p

D

X
.xIy/ modpr

x6�0.p/; y6�0.p/

Z
¹.uIv/2Z

n1Cn2
p ; ŒuIv�rD.xIy/ WF.xIy/D0º

!L;p.uI v/

D

X
.xIy/2W �.r/

Z
¹.uIv/2Z

n1Cn2
p ; ŒuIv�rD.xIy/ WF.xIy/D0º

!L;p.uI v/:
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222 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Since X is smooth, there is some r sufficiently large such that for any .xI y/ 2 .Zp=pr/n1Cn2
with x 6� 0 modp and y 6� 0 modp and with F.xI y/ � 0 modpr , the infimum

c D inf
i;j

�
�p

�
@F

@xi

�
; �p

�
@F

@yj

��
is finite and constant on the class defined by .xI y/. Assume that r > c and that

c D �p

�
@F

@yn2
.xI y/

�
is the minimum.

Let .uI v/ 2 Zn1Cn2p represent .xI y/ and let .zI z0/ 2 Zn1Cn2p . Then one has

F.uC zI vC z0/ D F.uI v/C
n1X
iD1

@F

@xi
.uI v/zi C

n2X
jD1

@F

@yj
.uI v/z0j CG.u; v; z; z

0/;

whereG.u; v; z; z0/ is a polynomial such that each term contains at least two factors of zi or z0j .
Hence, for .zI z0/ 2 .prZp/n1Cn2 we have

F.uC zI vC z0/ � F.uI v/ modprCc :

Thus, the image of F.uI v/ in Zp=prCc only depends on .uI v/ modulo pr . We write F �.xI y/
for this value.

If F �.xI y/ ¤ 0, then the inner integral above corresponding to that value of .xI y/ is zero
and the set

¹.uI v/ modprCc ; ŒuI v�r D .xI y/ W F.uI v/ � 0 modprCcº

is empty.
If F �.xI y/ D 0, then Hensel’s lemma shows that there is an isomorphism of the set

¹.uI v/ 2 Zn1Cn2p ; ŒuI v�r D .xI y/ W F.uI v/ D 0º

and .u1; : : : ; un1 ; v1; : : : ; vn2�1/C .p
rZp/n1Cn2�1. Hence we haveZ

¹.uIv/2Z
n1Cn2
p ; ŒuIv�rD.xIy/ WF.xIy/D0º

!L;p.uI v/

D

Z
.u1;:::;vn2�1/C.p

rZp/n1Cn2�1
pcdu1;p : : : dvn2�1;p

D pc�r.n1Cn2�1/:

On the other hand we have

p�.rCc/.n1Cn2�1/]¹.uI v/ modprCc ; ŒuI v�r D .xI y/ W F.uI v/ � 0 modprCcº

D p�.rCc/.n1Cn2�1/p.n1Cn2/c

D pc�r.n1Cn2�1/;

since F.uI v/ modulo prCc only depends on .xI y/.
The lemma now follows via summing over all .xI y/ 2 W �.r/.
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Lemma 3.5. One hasZ
¹.xIy/2Z

n1Cn2
p W x6�0.p/; y6�0.p/;F .xIy/D0º

!L;p

D .1 � p�.n1�d1//.1 � p�.n2�d2//

Z
¹.xIy/2Z

n1Cn2
p WF.xIy/D0º

!L;p

and

lim
r!1

N �.r/

pr.n1Cn2�1/
D .1 � p�.n1�d1//.1 � p�.n2�d2//�p:

Proof. The first part of the lemma follows from the observation that

!L;p.pxI y/ D p�n1Cd1!L;p.xI y/ and !L;p.xIpy/ D p�n2Cd2!L;p.xI y/:

For the second part of the lemma we recall that

�p D lim
r!1

]¹.xI y/ modpr W F.xI y/ � 0 modprº
pr.n1Cn2�1/

:

Next we assume that r � id1 C jd2 C 1 and consider the cardinality of the seteN.i; j / D ]¹x 2 .piZp=pr/n1 ; x 6� 0.piC1/;

y 2 .pjZp=p
r/n2 ; y 6� 0.pjC1/ W F.xI y/ � 0 modprº:

Then we haveeN.i; j / D ]¹x modpr�i ; x 6� 0.p/; y modpr�j ; y 6� 0.p/ W F.xI y/ � 0 modpr�id1�jd2º

D pn1.id1Cjd2�i/Cn2.id1Cjd2�j /N �.r � id1 � jd2/:

Define
N.r/ D ]¹x; y modpr W F.xI y/ � 0 modprº:

Let r0 be as in Lemma 3.4, and let I.r/ be the set of all integer tuples .i; j / such that

r � r0 < id1 C jd2 � r � r0 C d1 C d2:

Then we have

N.r/ D
X
i�0

X
j�0

r�id1�jd2�r0

eN.i; j /CO� X
.i;j /2I.r/

]¹.xI y/ modpr W x � 0.pi /; y � 0.pj /º
�
:

Since ni > di , the error term can be bounded by

�r0 r max
.i;j /2I.r/

pn1.r�i/Cn2.r�j /

�r0 rp
.n1Cn2�1/r max

.i;j /2I.r/
pr�id1�jd2�i�j

�p;r0 rp
.n1Cn2�1/rp�r=.d1d2/:

Hence we obtain

N.r/ D
X
i�0

X
j�0

r�id1�jd2�r0

pn1.id1Cjd2�i/Cn2.id1Cjd2�j /N �.r � id1 � jd2/

CO.rp.n1Cn2�1/rp�r=.d1d2//:
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224 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Since the summation is restricted to r0 � r � id1 � jd2, one has by Lemma 3.4

N �.r � id1 � jd2/ D p
�r.n1Cn2�1/N �.r/p.r�id1�jd2/.n1Cn2�1/:

Therefore we obtain

N.r/ D
X

r0Cid1Cjd2�r

p�in1�jn2Cid1Cjd2N �.r/CO.rp.n1Cn2�1/rp�r=.d1d2//:

This implies that

lim
r!1

p�r.n1Cn2�1/N.r/ D .1�p�.n1�d1//�1.1�p�.n2�d2//�1 lim
r!1

p�r.n1Cn2�1/N �.r/;

which proves the lemma.

Proof of Lemma 3.1. First we note that Lemma 3.4 and 3.5 imply thatZ
¹.xIy/2Z

n1Cn2
p WF.xIy/D0º

!L;p D �p:

The lemma now follows from this equality and Lemma 3.3.

Finally we give a proof of Lemma 3.2. This is only a slight modification of [10, Proposi-
tion VI.5.30] to the biprojective setting.

Proof of Lemma 3.2. By [1, Section 6, equation (10)] one has

�1 D

Z
W\¹max1�i�n1 jxi j�1;max1�j�n2 jyj j�1º

!L;1:

Since the question of the lemma is hence local, it suffices to consider a subset V � X.R/,
open in the real topology, such that V is contained in x1y1 ¤ 0 and such that the coordinates
.x2=x1; : : : ; xn1=x1;y2=y1; : : : ;yn2�1=y1/ define a diffeomorphism �with �.V /�An1Cn2�3R .
Then we set

�1.V / D

Z
��1.V /\¹max1�i�n1 jxi j�1;max1�j�n2 jyj j�1º

!L;1:

Using the explicit description of the Leray measure at the beginning of this subsection, we
obtain

�1.V / D

Z
��1.V /\¹max1�i�n1 jxi j�1;max1�j�n2 jyj j�1º

dx1 : : : dxn1dy1 : : : dyn2�1ˇ̌
@F
@yn2

.xI y/
ˇ̌ :

Note that the condition max1�i�n1 jxi j � 1 is equivalent to saying jx1j � .max1�i�n1 j
xi
x1
j/�1.

In the above integral we now apply the substitution xi D x1ui for 2 � i � n1 and yj D y1vj
for 2 � j � n2 � 1. Recall the notation u D .1; u2; : : : ; un1/ and v D .1; v2; : : : ; vn2/. Then
we obtain

�1.V / D

Z
jx1j

n1�1�d1 jy1j
n2�2�.d2�1/

dx1dy1du2 : : : dvn2�1ˇ̌
@F
@yn2

.uI v/
ˇ̌ ;

with ��1.V / \ ¹jx1j
n1�d1 � h11.u/�1; jy1jn2�d2 � h21.v/�1º as domain of integration.
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We can rewrite this as

�1.V / D

Z
V

2

n1 � d1
h11.u/

�1 2

n2 � d2
h21.v/

�1 du2 : : : dvn2�1ˇ̌
@F
@yn2

.uI v/
ˇ̌

D
4

.n1 � d1/.n2 � d2/

Z
V

!1;

which proves our lemma.

4. Statement of circle method ingredients

The strategy for the proof of Theorem 1.1 is as follows. We first count integral points on
the affine cone W given by Fi .xI y/ D 0 for 1 � i � R, with x and y restricted to boxes. For
this let B1 and B2 be two boxes in affine n1- and n2-space, and P1 and P2 be two real param-
eters larger than 2. We aim for proving asymptotic formulas for the number of integer points
onW with x 2 P1B1 and y 2 P2B2, possibly restricting our counting functions to appropriate
open subsets ofW . We will obtain an asymptotic formula, which holds for all P1; P2 � 2, with
an error term that saves a small power of min.P1; P2/.

We use different approaches depending on the relative size of P1 and P2. If P1 and P2
are roughly of the same size or a bounded power of one another, then we import previous work
of the author [16] which uses a circle method analysis of the type used in Birch’s work [1].

If P2 is small compared to P1, which means in our setting a small power of P1, then we
take a fibre-wise counting approach. That is, we fix y, for which the resulting variety is not too
singular, and count the number of integer points x of bounded height on the resulting system
of equations. We then add up all the contributions for y in a box of side lengths P2. In contrast
to the case where P1 and P2 are of roughly the same size, it is here important to exclude bad
choices of y as the example following Theorem 1.1 shows.

Theorem 4.4 below is the result of combining both approaches. Together with asymptotic
formulas for the number of integral points on fibers, this is the main ingredient which is needed
to apply a recently developed technique by Blomer and Brüdern [2]. This is carried out in
Section 9 and will lead to the proof of Theorem 1.1.

For the following let P1; P2 � 2, and define u � 0 by

u D
logP2
logP1

:

We think most of the time of P2 as relatively small compared to P1, i.e. u < 1. For fixed y
let Ny.P1/ be the number of integer vectors x in P1B1 such that the system of equations (1.1)
holds.

Since we might like to exclude some fibres for y later, we assume that we are given
a set A1.Z/ � Zn2 , and define the counting function

(4.1) N1.P1; P2/ D
X

y2P2B2\A1.Z/

Ny.P1/:

For fixed y and some ˛ 2 RR we define the exponential sum

Sy.˛/ D
X

x2P1B1

e

 
RX
iD1

˛iFi .xI y/

!
;
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where we understand here and later the sum to be over all integer vectors in the given range.
Then we have

Ny.P1/ D

Z
Œ0;1�R

Sy.˛/d˛:

For fixed y let V �1;y be the variety in affine n1-space given by

rank
�
@Fi .xI y/
@xj

�
1�i�R
1�j�n1

< R;

and define V �2;x analogously.

Theorem 4.1. For some positive integer � let the set A1.Z/ be given by

A1.Z/ D ¹y 2 Zn2 W dimV �1;y < dimV �1 � n2 C �º:

Let d1 � 2 and ı > 0, and let P1 and P2 be two real numbers larger than one. Assume that
the quantity u D .logP2/=.logP1/ satisfies ud2.2R2 C 3R/C ı < 1, i.e. in particular we
have P2 � P1. Furthermore, define K1 by

(4.2) 2d1�1K1 D n1 C n2 � dimV �1 � �;

and write

g1.u; ı/ D .1 � ud2.2R
2
C 3R/ � ı/�1.2RC 3/R.d1 � 1/.ud2R.2RC 1/C 2ı/:

Assume that we have

(4.3) .K1 �R.RC 1/.d1 � 1// > g1.u; ı/:

Then, for P
1�ı�.2RC3/Rd2u

.2RC3/R.d1�1/1 > C3, one has

N1.P1; P2/ D P
n1�Rd1
1

X
y2P2B2\A1.Z/

SyJy CO.P
n1�Rd1�ı
1 P

n2�Rd2
2 /;

where Sy and Jy are given in Lemmas 7.3 and 7.4. The complement Ac
1.Z/ of the set A1.Z/

can be given as the set of zeros of a system of homogeneous polynomials in y.

This theorem is useful when P2 is relatively small compared to P1. We write out the
same theorem, where the roles of x and y are reversed.

Theorem 4.2. Let d2 � 2 and ı > 0. Assume that we have d1.2R2 C 3R/C ıu < u.
For some positive integer �2 let the set A2.Z/ be given by

A2.Z/ D ¹x 2 Zn1 W dimV �2;x < dimV �2 � n1 C �2º:

Define the counting function N2.P1; P2/ by

N2.P1; P2/ D ]¹x 2 A2.Z/ \ P1B1; y 2 P2B2 \ Zn2 W Fi .xI y/ D 0; 1 � i � Rº:

Furthermore, define K2 by

(4.4) 2d2�1K2 D n1 C n2 � dimV �2 � �2;

and write

g2.u; ı/ D .u � d1.2R
2
C 3R/ � uı/�1.2RC 3/R.d2 � 1/.d1R.2RC 1/C 2uı/:
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Schindler, Manin’s conjecture for certain biprojective hypersurfaces 227

Assume that we have
.K2 �R.RC 1/.d2 � 1// > g2.u; ı/:

Then, for P
u�uı�.2RC3/Rd1
u.2RC3/r.d2�1/2 > C3, we have

N2.P1; P2/ D P
n2�Rd2
2

X
x2P1B1\A2.Z/

SxJx CO.P
n2�Rd2�ı
2 P

n1�Rd1
1 /;

where Sx and Jx are defined analogously as Sy and Jy. As in Theorem 4.1 above, the com-
plement Ac

2.Z/ of the set A2.Z/ is given as the set of zeros of a system of homogeneous
polynomials in x.

The proofs of Theorems 4.1 and 4.2 are carried out in the next four sections. We first
seek asymptotic formulas for the counting functions Ny.P1/ and then essentially add up the
contributions as in equation (4.1).

Next we repeat a result for counting solutions to the system of equations (1.1) in
a situation where P1 and P2 are of similar size. This result was proved in [16], and we repeat
it here, since we use is for the proof of Theorem 4.4 below. For this we introduce the count-
ing function N 0.P1; P2/ to be the number of integer vectors x 2 P1B1 and y 2 P2B2 such
that Fi .xI y/ D 0 for 1 � i � R.

Theorem 4.3. Assume u � 1 and min¹n1; n2º > R, and suppose that we have

n1 C n2 � dimV �i > 2
d1Cd2�2 max

²
R.RC 1/.d1 C d2 � 1/; R

�
d1

u
C d2

�³
for i D 1; 2. Then we have the asymptotic formula

N 0.P1; P2/ D �P
n1�Rd1
1 P

n2�Rd2
2 CO.P

n1�Rd1�Qı
1 P

n2�Rd2
2 /

for some real number � and some Qı > 0. Here � is as usual the product of a singular series S

and singular integral J (taken with respect to the box Œ�1; 1�n1Cn2), which are for example
defined in Schmidt’s work [17, equation (3.10)]. Furthermore, the constant � is positive if

(i) the Fi .xI y/ have a common non-singular p-adic zero for all p,

(ii) theFi .xI y/ have a non-singular real zero in the box B1�B2 and dimV.0/D n1Cn2�R,
where V.0/ is the affine variety given by the system of equations (1.1).

Assume for the following that d1Cd2 > 2, and fix some small ı > 0. For a real number t ,
write dte for the smallest integer larger than or equal to t .

Now let b1 > d2.2R2 C 3R/ be the solution to the quadratic equation

2d1Cd2�2R.b1d1C d2/ D 2
d1�1

�
g1

�
1

b1
; ı

�
CR.RC 1/.d1 � 1/

�
CdR.b1d1C d2/C ıe:

Note that g1.u; ı/ is monotone growing on ud2.2R2 C 3R/C ı < 1. In considering the value
b D 2d2.2R

2 C 3R/, a short calculation shows that

2d1Cd2�2R.b1d1 C d2/ � 3 � 2
d1Cd2R3d1d2

for ı sufficiently small.
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228 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Next we set u1 D 1=b1. Our goal is to find an asymptotic formula for a modified form
of the counting function N 0.P1; P2/, which holds for all values of P1; P2 � 1. For values
of 0 < u � u1 we will use Theorem 4.1 above. In the range u1 < u � 1 we use Theorem 4.3.

The above theorems essentially cover the case of P2 � P1. To obtain asymptotic formu-
las for P2 > P1, we interchange the roles of x and y. Thus, we define analogously to b1 the
real number b2 to be the solution of the quadratic equation

2d1Cd2�2R.b2d2 C d1/ D 2
d2�1.g2.b2; ı/CR.RC 1/.d2 � 1//C dR.b2d2 C d1/C ıe:

Next set �1 D dR.b1d1 C d2/C ıe and �2 D dR.b2d2 C d1/C ıe. Consider the open
subsets U1 D A2 and U2 D A1, and their product U D U1 � U2 � An1Cn2C . We define the
counting function NU .P1; P2/ to be the number of integer vectors x 2 P1B1 and y 2 P2B2

with .xI y/ 2 U such that the system of equations (1.1) holds. We set

�.d1; d2; R/ D 2
d1Cd2�2Rmax¹.b1d1 C d2/; .b2d2 C d1/º:

Theorem 4.4. Assume that d1; d2 � 2 and n1; n2 > R, and that

(4.5) n1 C n2 �max¹dimV �1 ; dimV �2 º > �.d1; d2; R/:

Then we have

NU .P1; P2/ D �P
n1�Rd1
1 P

n2�Rd2
2 CO.P

n1�Rd1
1 P

n2�Rd2
2 min¹P1; P2º�

Qı/

for some Qı > 0 and positive real numbers P1 � 2 and P2 � 2. Here � is the same constant as
in Theorem 4.3. Moreover, we have

�.d1; d2; R/ � 3 � 2
d1Cd2d1d2R

3:

This is the precursor of Theorem 1.1. There are mainly two steps left from here to
prove Theorem 1.1. On the one hand, we have to replace the height function maxi jxi j � P1
and maxj jyj j � P2 by the anticanonical height function given in the introductory section. This
is done using techniques developed by Blomer and Brüdern [2]. On the other hand, we still
count all integer points on the affine cone of an open subset of X . We will perform a Möbius
inversion to obtain results on the counting function in biprojective space.

5. Exponential sums

Our first goal is to establish a form of Weyl-lemma for the exponential sum Sy.˛/.
Write Qx D .x.1/; : : : ; x.d1//, and let �y.QxI˛/ be the multilinear form, which is associated to

d2Š

RX
iD1

˛iFi .xI y/

for fixed y. Write ej for the j th unit vector. By [1, Lemma 2.1] we have the estimate

jSy.˛/j
2d1�1

� P
.2d1�1�d1/n1
1

X 
n1Y
jD1

min.P1; k�y.ej ; x.2/; : : : ; x.d1/I˛/k�1/

!
;
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where
P

is over all integer vectors x.2/; : : : ; x.d1/ 2 P1E , where E is the n1-dimensional unit
cube. Let Ly.P; P

��;˛/ be the number of such integer vectors in PE such that

k�y.ej ; x.2/; : : : ; x.d1/I˛/k < P��

for all 1 � j � n1. Then, again by [1, Lemma 2.4], we have the following result.

Lemma 5.1. Let P and � be some real parameters. If jSy.˛/j > P
n1C"
1 P�� , then one

has
Ly.P

�
1 ; P

�d1C.d1�1/�
1 ;˛/� P

.d1�1/n1�
1 P�2

d1�1�

for fixed 0 < � � 1 and any " > 0.

Next define the multilinear forms �.i/y .Qx/ for 1 � i � R in such a way that

�y.QxI˛/ D
RX
iD1

˛i�
.i/
y .Qx/

for all real vectors ˛. Write yx D .x.2/; : : : ; x.d1//. Suppose that we are given some vector
yx 2 .�P �1 ; P

�
1 /
n1.d1�1/ such that the matrix .�.i/y .ej ; yx//i;j has full rank. For convenience

we assume that the leading R �R minor has full rank. For all 1 � l � n1, we can write

�y.el ; yxI˛/ D Qal C Qıl

for some integers Qal and real Qıl with j Qıl j < P
�d1C.d1�1/�
1 . Furthermore, let

q D jdet.�.i/y .ej ; yx//1�i;j�Rj:

Now we consider the system of linear equations
RX
iD1

˛i�
.i/
y .ej ; yx/ D Qaj C Qıj ; 1 � j � R:

We want to solve this in ˛i . For this let Ay.yx/ be the inverse matrix of .�.i/y .ej ; yx//1�i;j�R.
We note that qAy.yx/ has integer entries which are essentially given by certain submatrices
of .�.i/y .ej ; yx//. Now we have

˛i D

RX
jD1

Ay.yx/i;j . Qaj C Qıj /

for all 1 � i � R, where we write

Ay.yx/ D .Ay.yx/i;j /1�i;j�R:

We set

ai D q

RX
jD1

Ay.yx/i;j Qaj

and obtain then the approximation

jq˛i � ai j � q

ˇ̌̌̌
ˇ
RX
jD1

Ay.yx/i;j Qıj

ˇ̌̌̌
ˇ

for all 1 � i � R. This proves the following lemma.
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230 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Lemma 5.2. Let P and � be some real parameters and 0 < � � 1 be fixed. Then one
of the following alternatives holds.

(i) One has the bound jSy.˛/j < P
n1C"
1 P�� .

(ii) There exist integers 1 � q � PR�.d1�1/1 jyjRd2 and ai for 1 � i � R with the property
that gcd.q; a1; : : : ; aR/ D 1 such that

2jq˛i � ai j � P
�d1CR�.d1�1/
1 jyj.R�1/d2

for all 1 � i � R. Here were write jyj for the maximum norm jyj D maxi jyi j.

(iii) The number of integer vectors yx 2 .�P �1 ; P
�
1 /
n1.d1�1/ such that

(5.1) rank.�.i/y .el ; yx// < R

is bounded below by
� C1P

�1n1.d1�1/
1 P�2

d1�1�

for some positive constant C1.

Our next goal is to show that we can omit alternative (iii) in the above lemma for certain
choices of y and a suitable dependence of � and � . Recall that we have defined

A1 D ¹z 2 An2C W dimV �1;z < dimV �1 � n2 C �º

for some integer parameter � to be chosen later.
Assume now that we are given some y 2 A1.Z/ such that alternative (iii) of Lemma 5.2

holds with P D P1 and � D K1� , where K1 is defined as in Theorem 4.1, i.e.

(5.2) 2d1�1K1 D n1 C n2 � dimV �1 � �:

Furthermore, let My � An1.d1�1/C be the affine variety given by (5.1), and define My.P
�
1 / to

be the number of integer points yx on My with yx 2 .�P �1 ; P
�
1 /
n1.d1�1/. We note that the degree

of My is bounded independently of y. Thus, the proof of [4, Theorem 3.1] delivers

My.P
�
1 /� P

� dim My
1

for some implied constant which is independent of y.
Next consider in An1.d1�1/C the diagonal D given by x.2/ D � � � D x.d1/. Then My \D

is isomorphic to V �1;y and we have

dim My \D � dim My C dim D � n1.d1 � 1/;

and hence
dim My � n1.d1 � 2/C dimV �1;y:

We conclude that there exists a constant C2 > 0, independent of y, such that for all y 2 A1.Z/
we have

My.P
�
1 / < C2P

�.n1.d1�2/CdimV �1 �n2C��1/
1 :

If alternative (iii) of Lemma 5.2 holds, then we have

C1P
�.n1.d1�1/�2

d1�1K1/
1 < C2P

�.n1.d1�2/CdimV �1 �n2C��1/
1 ;

which is equivalent to
C1P

�
1 < C2;

by definition of K1. We have now established the following lemma.
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Lemma 5.3. There is a positive constantC3 such that the following holds. Let 0 < � � 1
and P1 � 1 with P �1 > C3, and assume that y 2 A1.Z/. Then we have either the bound

jSy.˛/j < P
n1�K1�C"
1 ;

or alternative (ii) of Lemma 5.2 holds.

Next we give an estimate for the number of integer vectors of bounded height which are
not in A1.

Lemma 5.4. Denote by Ac
1 the complement of A1. Then we have

]¹z 2 .�P2; P2/n2 \Ac
1.Z/º � P

n2��
2 :

Furthermore, the set of all vectors z with

dimV �1;z � dimV �1 � n2 C �

is a Zariski-closed subset of An2C .

Proof. First we show that

Ac
1 D ¹z 2 An2C W dimV �1;z � dimV �1 � n2 C �º

is a closed subset in An2C . For this let �1; : : : ; �r be all the R �R-subdeterminants of
the matrix ..@Fi=@xj /.xI y//1�i�R;1�j�n1 . They define a closed subset Y of Pn1�1C �An2C .
We note that the morphism

� W Y ,! Pn1�1C �An2C ! An2C

is projective and hence closed. Thus, we can apply [7, Corollaire 13.1.5] and see that

¹z 2 An2C W dimYz � dimV �1 � n2 C � � 1º

is closed, and hence Ac
1 is closed, since dimYz C 1 D dimV �1;z.

Next we note that the intersection Y \ .Pn1�1C �Ac
1/ is given by the disjoint product

of the fibres
S

z2Ac1
��1.z/. If dimV �1 � n2 C � � 1 � 0, then all the fibers ��1.z/ are non-

empty for z 2 Ac
1. Hence, we have

dim Ac
1 C dimV �1 � n2 C � � 1 � dimY D dimV �1 � 1;

which implies
dim Ac

1 � n2 � �:

If dimV �1 � n2 C � � 0, then the first part of the lemma is trivial since n2 � dimV �1 .
This delivers the required bound on integer points on Ac

1.

6. Circle method

Throughout this section we assume that d1 � 2.
For some 0 < � � 1 and y 2 Zn2 , we define the major arc M

y
a;q.�/ to be the set of

vectors ˛ 2 Œ0; 1�R such that

2jq˛i � ai j � P
�d1CR�.d1�1/
1 jyj.R�1/d2 ;
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232 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

and set
My.�/ D

[
q�P

R�.d1�1/

1 jyjRd2

[
a

M
y
a;q.�/;

where the second union is over all integers 0 � a1; : : : ; aR < q with gcd.q; a1; : : : ; aR/ D 1.
Let the minor arcs my.�/ be the complement of My.�/ in Œ0; 1�R. We also define the slightly
larger major arcs M

0 y
a;q.�/ by

2jq˛i � ai j � qP
�d1CR�.d1�1/
1 jyj.R�1/d2 ;

and let M0 y.�/ be defined in an analogous way as My.�/. In the next lemma we show that the
major arcs M

0 y
a;q.�/ are disjoint for sufficiently small � , depending on jyj.

Lemma 6.1. Assume that

(6.1) P
�d1C3R�.d1�1/
1 jyj.3R�1/d2 < 1:

Then the major arcs M
0 y
a;q.�/ are disjoint.

Proof. Assume that we are given some ˛ 2M
0 y
a;q.�/ \M

0 y
Qa; Qq.�/ with both

q; Qq � P
R�.d1�1/
1 jyjRd2 :

Then we have some 1 � i � R with

1

q Qq
�

ˇ̌̌̌
ai

q
�
Qai

Qq

ˇ̌̌̌
� P

�d1CR�.d1�1/
1 jyj.R�1/d2 :

This implies
1 � P

�d1C3R�.d1�1/
1 jyj.3R�1/d2 ;

which is a contradiction to our assumption (6.1).

The next lemma reduces our counting issue to a major arc situation.

Lemma 6.2. Let y 2 A1.Z/, and P �1 > C3. Assume that (6.1) holds, and that we have

(6.2) K1 > .d1 � 1/R.RC 1/:

Let �.y/ D PR�.d1�1/1 jyjRd2 , and define

�.�;K1/ D �.K1 � .d1 � 1/R.RC 1//:

Then we have the asymptotic formula

Ny.P1/ D
X
q��.y/

X
a

Z
M
0 y
a;q.�/

Sy.˛/d˛CO.P
n1�Rd1��.�;K1/C"
1 jyjR

2d2/;

where the summation over a is over all 0 � ai < q with gcd.q; a1; : : : ; aR/ D 1.

Proof. By Lemma 6.1 the major arcs M0 y.�/ are disjoint for � as in the assumptions.
Hence we can write

Ny.P1/ D
X

1�q��.y/

X
a

Z
M
0 y
a;q.�/

Sy.˛/d˛C E.y/
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with a minor arc contribution of the form

E.y/ D
Z

my.�/

jSy.˛/jd˛:

First we shortly estimate the size of the major arcs My.�/ by

meas.My.�//�
X
q��.y/

X
a
q�RP

�Rd1CR
2�.d1�1/

1 jyjR.R�1/d2

� P
�Rd1C�.d1�1/R.RC1/
1 jyjR

2d2 :

Next we choose a sequences of real numbers 1 D #T > #T�1 > � � � > #1 > #0 D � > 0 with

(6.3) " > .#iC1 � #i /.d1 � 1/R.RC 1/

for some small " > 0. Note that we certainly can achieve this with T � P ".
Since y 2 A1.Z/, we can now estimate by Lemma 5.3 the contribution on the comple-

ment of My.#T / byZ
˛…My.#T /

jSy.˛/jd˛� P
n1�K1#TC"
1 � P

n1�Rd1��.�;K1/C"
1 ;

since
�.K1 � .d1 � 1/R.RC 1// � K1 �Rd1

for d1 � 2.
On the set My.#iC1/ nMy.#i / for i D 0; : : : ; T � 1 we obtainZ

˛2My.#iC1/nMy.#i /

jSy.˛/jd˛� meas.My.#iC1//P
n1�K1#iC"
1

� P
n1�Rd1�K#iC"C#iC1.d1�1/R.RC1/

1 jyjR
2d2

� P
n1�Rd1��.�;K1/C2"
1 jyjR

2d2 ;

since

�K1#i C #iC1.d1 � 1/R.RC 1/ D .#iC1 � #i /.d1 � 1/R.RC 1/ ��.#i ; K1/:

This shows that
E.y/� P

n1�Rd1C�.�;K1/C3"
1 jyjR

2d2 ;

as required.

7. Major arcs

Lemma 7.1. Let y 2 Zn2 . Assume that there is some 1 � q � PR�.d1�1/1 jyjRd2 and
that there are integers a1; : : : ; aR with

2jq˛i � ai j � qP
�d1CR�.d1�1/
1 jyj.R�1/d2

for all 1 � i � R. Write ˇi D ˛i � ai=q for all i . Then one has

Sy.˛/ D P
n1
1 q�n1Sa;q.y/Iy.P

d1
1 ˇ/CO.P

n1�1C2R�.d1�1/
1 jyj2Rd2/;
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with the exponential sum

Sa;q.y/ D
X

z modq

e

 
RX
iD1

ai

q
Fi .zI y/

!
and the integral

Iy.ˇ/ D

Z
v2B1

e

�X
i

ˇiFi .vI y/
�

dv:

Proof. First we write

Sy.˛/ D
X

z modq

e

�X
i

ai

q
Fi .zI y/

�
S3.z/

with the sum

S3.z/ D
X

t

e

�X
i

ˇiFi .qtC zI y/
�
;

where the summation is over all integer vectors t with qtC z 2 P1B1. Consider two such
vectors t and t0 with jt � t0j � 1 in the maximums norm. Then we have

jFi .qtC zI y/ � Fi .qt0 C zI y/j � qP
d1�1
1 jyjd2 ;

and therefore

S3.z/ D
Z
qQv2P1B1

e

�X
i

ˇiFi .q QvI y/
�

dQvCO
�X

i

jˇi jqP
d1�1
1 jyjd2

�
P1

q

�n1
C

�
P1

q

�n1�1�
:

After a coordinate transformation we obtain

S3 D P
n1
1 q�n1

Z
v2B1

e

�X
i

P
d1
1 ˇiFi .vI y/

�
dvCO.q�n1C1P n1�1CR�.d1�1/1 jyjRd2/

D P
n1
1 q�n1Iy.P

d1
1 ˇ/CO.q�n1C1P

n1�1CR�.d1�1/
1 jyjRd2/;

which proves the lemma.

Now we combine Lemma 7.1 with Lemma 6.2 and obtain the following approximation
for the counting function Ny.P1/. Let

Q�.y/ D
1

2
P
R�.d1�1/
1 jyj.R�1/d2 :

Lemma 7.2. Set
�.�/ D 1 � .3C 2R/R�.d1 � 1/:

Under the same assumptions as in Lemma 6.2 we have

Ny.P1/ D P
n1�Rd1
1 Sy.�.y//Jy. Q�.y//

CO.P
n1�Rd1��.�;K1/C"
1 jyjR

2d2 C P
n1�Rd1��.�/
1 jyj2R.RC1/d2/

with some truncated singular series

Sy.�.y// D
X
q��.y/

q�n1
X

a
Sa;q.y/;
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Schindler, Manin’s conjecture for certain biprojective hypersurfaces 235

where the summation is over all 0 � a1; : : : ; aR < q with gcd.a1; : : : ; aR; q/ D 1. Further-
more the truncated singular integral is given by

Jy. Q�.y// D
Z

ˇ� Q�.y/
Iy.ˇ/dˇ:

Proof. WriteO.E1/ forO.P n1�Rd1��.�;K1/C"1 jyjR2d2/. An application of Lemma 6.2
leads to

Ny.P1/ D
X
q��.y/

X
a

Z
M
0 y
a;q.�/

Sy.˛/d˛CO.E1/:

We insert the approximation of Lemma 7.1 for Sy.˛/, and obtain

Ny.P1/ D P
n1
1

X
q��.y/

q�n1
X

a
Sa;q.y/

Z
jˇj� Q�.y/P�d11

Iy.P
d1
1 ˇ/dˇ CO.E1/CO.E2/

with
E2 D meas.M0 y.�//P n1�1C2R�.d1�1/1 jyj2Rd2 :

A variable substitution in the integral over ˇ shows that we have already obtained the required
main term.

We note that

meas.M0 y.�//�
X
q��.y/

X
a
P
�Rd1
1

Q�.y/R � P
�Rd1
1

Q�.y/R�.y/RC1:

Hence, the second error term E2 is bounded by

E2 � P
n1�Rd1��.�/
1 jyj2Rd2CR.R�1/d2C.RC1/Rd2 � P

n1�Rd1��.�/
1 jyj2R.RC1/d2

with

�.�/ D 1 � 2R�.d1 � 1/ � .RC 1/R�.d1 � 1/ �R
2�.d1 � 1/

D 1 � .3C 2R/R�.d1 � 1/:

Lemma 7.3. Let y 2 A1.Z/, and assume that we haveK1 > R2.d1 � 1/C ı. Then the
integral

Jy D

Z
ˇ2RR

Iy.ˇ/dˇ

is absolutely convergent and we have

jJy. Q�.y// � Jyj � P
�.R2.d1�1/�K/
1 jyjR.R�1/d2 :

Moreover, we have
jJyj � jyjR.R�1/d2C":

Proof. Set B D maxi jˇi j for some real vector ˇ 2 RR. Assume that we have

2B > C
R.d1�1/
3 jyj.R�1/d2 :

Then we choose the parameters 0 < � 0 � 1 and P in Lemma 5.3 in such a way that we have

2B D PR�
0.d1�1/jyj.R�1/d2 and P�K�

0

D P�1C2R�
0.d1�1/jyj2Rd2 :
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236 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

In particular, this implies
P�2C4R�

0.d1�1/jyj4Rd2 < 1;

and hence equation (6.1) holds, since we have assumed d1 � 2. Thus, the vector P�d1ˇ lies
on the boundary of the major arcs described in Lemma 5.3 and we therefore have the estimate

jSy.P
�d1ˇ/j < P n1�K1�

0C":

On the other hand Lemma 7.1 delivers

P n1 jIy.ˇ/j � jSy.P
�d1ˇ/j CO.P n1�1C2R�

0.d1�1/jyj2Rd2/:

Thus, we obtain the bound

jIy.ˇ/j � B�K1R
�1.d1�1/

�1C"
jyjK1.R�1/d2R

�1.d1�1/
�1

:

Assume that P �1 > C3 with P1 as in the assumptions of the lemma. This implies

2 Q�.y/ � CR.d1�1/3 jyj.R�1/d2 :

Thus we can estimate

jJy. Q�.y// � Jyj �

Z
B> Q�.y/

BR�1B�K1R
�1.d1�1/

�1C"
jyjK.R�1/d2R

�1.d1�1/
�1

dB

� Q�.y/R�K1R
�1.d1�1/

�1C"
jyjK1.R�1/d2R

�1.d1�1/
�1

� P
�.R2.d1�1/�K1/
1 jyjR.R�1/d2 ;

which proves the first part of the lemma for P1, which are greater than a fixed constant depend-
ing on � . For the second part and small P1 we note that the same computation delivers

jJy.C
R.d1�1/
3 jyj.R�1/d2/ � Jyj � jyjR.R�1/d2C";

and thus we obtain
jJyj � jyjR.R�1/d2C";

using the trivial estimate for Jy.C
R.d1�1/
3 jyj.R�1/d2/.

Next we prove similar results for the singular series Sy for y 2 A1.Z/.

Lemma 7.4. Let y 2 A1.Z/, and assume that we have K1 > R.RC 1/.d1 � 1/. Then
the singular series

Sy.�.y// D
X
q��.y/

q�n1
X

a
Sa;q.y/

is absolutely convergent and one has

jSy.�.y// �Syj � P
�.R.RC1/.d1�1/�KC"/
1 jyjd2R.RC1/

for some " > 0. Furthermore, one has the bound

jSyj � jyjd2R.RC1/C":
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Proof. Note that we have Sa;q.y/ D Sy.˛/ for P1 D q and B1 D Œ0; 1/
n1 and ˛ D a=q.

Assume that we are given some q and 0 < � 0 � 1 with q�
0

> C3. Then, by Lemma 5.3 one has
either the upper bound

jSa;q.y/j < qn1�K1�
0C"

or there exist integers q0; a01; : : : ; a
0
R with 1 � q0 � qR�

0.d1�1/jyjRd2 and

2jq0ai � a
0
iqj � q

1�d1CR�
0.d1�1/jyj.R�1/d2

for all 1 � i � R. This is certainly impossible if d1 � 2 and qR�
0.d1�1/jyjRd2 < q.

Thus, for q > CR.d1�1/3 jyjRd2 we can choose 0 < � 0 � 1 by

qR.�
0C"/.d1�1/jyjRd2 D q

and obtain
jSa;q.y/j < qn1�K1R

�1.d1�1/
�1C"
jyjK1Rd2R

�1.d1�1/
�1

:

Next we note that for P �1 > C3 we have �.y/ > CR.d1�1/3 jyjRd2 , and hence we obtain the
estimate

jSy.�.y// �Syj �
X
q>�.y/

q�n1
X

a
jSa;q.y/j

�

X
q>�.y/

qR�K1R
�1.d1�1/

�1C"
jyjK1Rd2R

�1.d1�1/
�1

� jyjK1Rd2R
�1.d1�1/

�1

P
R�.d1�1/.RC1�K1R

�1.d1�1/
�1C"/

1

� jyjRd2.RC1�K1R
�1.d1�1/

�1C"/

� P
�.R.RC1/.d1�1/�K1C"/
1 jyjd2R.RC1/:

For the second part of the lemma we use the same calculation and obtain

jSy.C
R.d1�1/
3 jyjRd2/ �Syj � jyjRd2.RC1�K1R

�1.d1�1/
�1C"/

jyjK1Rd2R
�1.d1�1/

�1

� jyjd2R.RC1/C":

We combine this with the trivial estimate jSy.C
R.d1�1/
3 jyjRd2/j � jyjd2R.RC1/C" to establish

the desired result.

We put the results of this section together to prove an asymptotic formula for Ny.P1/.

Lemma 7.5. Let y 2 A1.Z/. Assume that we are given some 0 < � � 1 and P1 � 1
with P �1 > C3 and such that equation (6.1) holds. Moreover, assume that we have

K1 > .d1 � 1/R.RC 1/:

Let �.�;K1/ and �.�/ be defined as in Lemmas 6.2 and 7.2. Then we have the asymptotic
formula

Ny.P1/ D SyJyP
n1�Rd1
1 CO.E2.y//CO.E3.y//

with
E2.y/ D P

n1�Rd1��.�/
1 jyj2R.RC1/d2

and
E3.y/ D P

n1�Rd1��.�;K1/C"
1 jyj2R

2d2 :
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238 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Proof. By Lemma 7.2 we have

Ny.P1/ D Sy.�.y//Jy. Q�.y//P n1�Rd11 CO.E1/CO.E2/

with an error term
E1 D P

n1�Rd1��.�;K1/C"
1 jyjR

2d2 :

Hence we have E1 � E3. By Lemma 7.3 and 7.4 we estimate

jSy.�.y//Jy. Q�.y// �SyJyj � jSy.�.y// �SyjjJy. Q�.y//j C jSyjjJy. Q�.y// � Jyj

� P
�.R.RC1/.d1�1/�K1C"/
1 jyjR.RC1/d2 jyjR.R�1/d2

C P
�.R2.d1�1/�K1C"/
1 jyjR.RC1/d2 jyjR.R�1/d2

� P
�.R.RC1/.d1�1/�K1C"/
1 jyj2R

2d2 ;

which proves the lemma.

If we fix some small positive � with R.d1 � 1/� < 1
3C2R

, then we obtain the following
corollary.

Corollary 7.6. Let y 2 A1.Z/, and assume that K1 > R.RC 1/.d1 � 1/. Then there
is a ı > 0 such that

Ny.P1/ D SyJyP
n1�Rd1
1 CO.P

n1�Rd1�ı
1 jyj2R.RC1/d2/

holds uniformly for all jyj < P
d1�1

.3R�1/d2
1 .

Remark 7.7. The results of this section still hold if we take any system of homogeneous
polynomials Fi;b.x/, with coefficients given by some integer vector b, and replace jyjd2 by jbj
in the above lemmata.

8. Proof of Theorems 4.1 and 4.4

First we deduce Theorem 4.1 from the lemmata that we have collected in the preceding
sections.

Proof of Theorem 4.1. First we note that by definition we have

N1.P1; P2/ D
X

y2P2B2\A1.Z/

Ny.P1/:

Hence, for some � satisfying the assumptions of Lemma 7.5, we obtain

N1.P1; P2/ D P
n1�Rd1
1

X
y2P2B2\A1.Z/

SyJy CO.E2/CO.E3/

with
E2 D

X
y2P2B2

E2.y/; E3 D
X

y2P2B2

E3.y/:
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Recall the notation P2 D P u1 . Then we have

E2 � P
n1�Rd1
1 P

n2�Rd2
2 P

Rd2u��.�/C2R.RC1/d2u
1

and
E3 � P

n1�Rd1
1 P

n2�Rd2
2 P

Rd2u��.�;K1/C2R
2d2uC"

1 :

Now we choose � by
Rd2u � �.�/C 2R.RC 1/d2u D �ı;

which is equivalent to saying that

1 � ı D .2RC 3/Rd2uC .2RC 3/R�.d1 � 1/:

Note that this choice of � is possible by the assumptions of Theorem 4.1, and it implies that
equation (6.1) holds. Moreover, this choice of � ensures that the error term E2 is sufficiently
small.

Now, equation (4.3) implies that we have

�.K1 �R.RC 1/.d1 � 1// > 2ı CRd2uC 2R
2d2u;

which leads to
E3 � P

n1�Rd1�ı
1 P

n2�Rd2
2 :

This proves Theorem 4.1 for P
1�ı�.2RC3/Rd2u

.2RC3/R.d1�1/1 > C3.

Recall that we have defined the counting functionN 0.P1; P2/ to be the number of integer
solutions x 2 P1B1 and y 2 P2B2 to the system of equations

Fi .xI y/ D 0; 1 � i � R:

We note that we have

N 0.P1; P2/ D N1.P1; P2/CO

� X
y2P2B2\Ac1.Z/

P
n1
1

�
:

By Lemma 5.4 these counting functions differ by at most

(8.1) N 0.P1; P2/ D N1.P1; P2/CO.P
n2��
2 P

n1
1 /:

As in Section 4, we now choose � D �1 D dR.b1d1 C d2/C ıe. Next we consider the
case P1 D P

b1
2 , and note that then we have

(8.2) N 0.P1; P2/ D N1.P1; P2/CO.P
n2�Rd2�ı
2 P

n1�Rd1
1 /:

Assume additionally that we have

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2R.b1d1 C d2/:

Then the conditions on n1 C n2 in Theorem 4.1 for u D u1 and �1 as above are equivalent to

n1 C n2 � dimV �1 > 2
d1�1.g1.u1; ı/CR.RC 1/.d1 � 1//C dR.b1d1 C d2/C ıe:
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240 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Thus, by definition of b1, Theorem 4.1 applies to our situation with u D u1 and delivers
the asymptotic

(8.3) N1.P1; P2/ D P
n1�Rd1
1

X
y2P2B2\A1.Z/

SyJy CO.P
n1�Rd1�ı
1 P

n2�Rd2
2 /:

Next we note that under the above assumptions Theorem 4.3 delivers the asymptotic

(8.4) N 0.P1; P2/ D �P
n1�Rd1
1 P

n2�Rd2
2 CO.P

n1�Rd1�Qı
1 P

n2�Rd2
2 /

for some Qı > 0. A comparison of equations (8.2), (8.3) and (8.4) shows that we have

(8.5)
X

y2P2B2\A1.Z/

SyJy D �P
n2�Rd2
2 CO.P

n2�Rd2�Qı
2 /:

Note that this relation is independent of P1, and thus holds for all choices of P2, as soon
as n1 C n2 �max¹dimV �1 ; dimV �2 º > 2

d1Cd2�2R.b1d1 C d2/. It is now easy to deduce the
following theorem.

Theorem 8.1. Take d1; d2 � 2, and let n1; n2 > R. Assume that

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2R.b1d1 C d2/:

Furthermore, let �1 D dR.b1d1 C d2/C ıe, and define the set A1.Z/ by

A1.Z/ D ¹z 2 Zn2 W dimV �1;z < dimV �1 � n2 C �1º:

Assume 1 � P2 � P1. Then there is some " > 0, which is independent of P1 and P2 and the
ratio of their logarithms, such that

N1.P1; P2/ D �P
n1�Rd1
1 P

n2�Rd2
2 CO.P

n1�Rd1
1 P

n2�Rd2�"
2 /;

where � is given as in Theorem 4.3.

Proof. Recall that we write P2 D P u1 . First we consider the case u � u1. The assump-
tion

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2R.b1d1 C d2/

implies that

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1�1g1.u1; ı/C dR.b1d1 C d2/C ıe

C 2d1�1R.RC 1/.d1 � 1/:

By monotonicity of g1.u; ı/ in the range of 0 � u < u1 we thus obtain

.K1 �R.RC 1/.d1 � 1// > g1.u1; ı/ � g1.u; ı/:

Hence Theorem 4.1 is applicable and delivers

N1.P1; P2/ D P
n1�Rd1
1

X
y2P2B2\A1.Z/

SyJy CO.P
n1�Rd1�ı
1 P

n2�Rd2
2 /:

Together with equation (8.5) this proves the theorem for u � u1.

Brought to you by | Utrecht University Library
Authenticated

Download Date | 11/22/16 10:31 AM



Schindler, Manin’s conjecture for certain biprojective hypersurfaces 241

Next consider the case u1 � u � 1, i.e. 1 � b � b1 if we write b D 1=u. Note that by
assumption we have

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2R.b1d1 C d2/ � 2

d1Cd2�2R.bd1 C d2/:

Furthermore we have b1 > d2.2R2 C 3R/ and hence

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2R.RC 1/.d1 C d2 � 1/:

Thus, we see that Theorem 4.3 applies and delivers the asymptotic formula

N 0.P1; P2/ D �P
n1�Rd1
1 P

n2�Rd2
2 CO.P

n1�Rd1�"
1 P

n2�Rd2
2 /:

By equation (8.1) we have

N 0.P1; P2/ D N1.P1; P2/CO.P
n2�Rb1d1�Rd2�ı
2 P

n1
1 /;

which shows that the error in replacing N 0 by N1 is of acceptable size for b � b1.

We can now prove Theorem 4.4.

Proof of Theorem 4.4. Recall that we assume

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2Rmax¹.b1d1 C d2/; .b2d2 C d1/º:

Thus, the symmetric version of Theorem 8.1 with the roles of x and y reversed implies that

N2.P1; P2/ D �P
n1�Rd1
1 P

n2�Rd2
2 CO.P

n1�Rd1�Qı
1 P

n2�Rd2
2 /

for P1 � P2 and some Qı > 0. To prove Theorem 4.4 it thus suffices to show that the error in
replacing N1 resp. N2 by NU is small enough. For this we apply Lemma 5.4, and obtain

jN1.P1; P2/ �NU .P1; P2/j �
X

x2Ac2.Z/\P1B1

P
n2
2 � P

n1��2
1 P

n2
2 :

Recall that �2 D dR.b2d2 C d1/C ıe and b2 � 1. Hence the error is bounded by

� P
n1�Rd1�ı
1 P

n2�Rd2
2

for P2 � P1. By symmetry the same applies to the difference N2.P1; P2/ �NU .P1; P2/, in
the case of P2 � P1.

9. Transition to another height function and Möbius inversion

The first goal of this section is to apply the machine developed by Blomer and Brüdern [2]
to the counting function NU .P1; P2/. To make this precise we need to introduce some nota-
tion. Write jxj D maxi jxi j for the maximum norm. Let h W N2 ! Œ0;1/ be an arithmetical
function. Fix some real parameter C and positive real parameters ı, ˇ1 and ˇ2. We say that h
satisfies condition (I) with respect to .C; ı; ˇ1; ˇ2/ ifX

l�L
m�M

h.l;m/ D CLˇ1M ˇ2 CO.Lˇ1M ˇ2 min¹L;M º�ı/

for all L;M � 1. Fix further constants � and D, where � is positive and D non-negative.
We introduce a second condition for our arithmetical function h.
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242 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

(II) There exist arithmetical functions c1; c2 W N ! Œ0;1/ such thatX
l�L

h.l;m/ D c1.m/L
ˇ1 CO.mDLˇ1�ı/

holds uniformly for all L � 1 and m � L� , andX
m�M

h.l;m/ D c2.l/M
ˇ2 CO.lDM ˇ2�ı/

holds uniformly for all M � 1 and l �M � .
We say that a function h is a .C; ı; ˇ1; ˇ2; �;D/-function if it satisfies conditions (I)

and (II) with respect to these parameters.
We define the function

‡h.P / D
X

lˇ1mˇ2�P

h.l;m/:

A slight modification of [2, Theorem 2.1] yields the following result.

Theorem 9.1. Assume that h is a .C; ı; ˇ1; ˇ2; �;D/-function. Then there is a positive
number � and a real number B such that one has the asymptotic formula

‡h.P / D CP logP C BP CO.P 1��/:

We note that Theorem 9.1 is not covered by [2, Theorem 2.1] since for our application we
will in general need ˇ1 ¤ ˇ2. However, the proof of [2, Theorem 2.1] can easily be generalized
to our setting and is indeed much simpler since we only work with arithmetical functions h
depending on two variables rather than k-dimensional functions h as in [2]. We first define the
counting function

H.L;M/ D
X
l�L

X
m�M

h.l;m/:

Lemma 9.2. Let h satisfy conditions (I) and (II). Then we haveX
l�L

c2.l/ D CL
ˇ1.1CO.L�ı//

and X
m�M

c1.m/ D CM
ˇ2.1CO.M�ı//:

Proof. By condition (I) we have

H.L;M/ D CLˇ1M ˇ2 CO.Lˇ1M ˇ2 min¹L;M º�ı/:

For M � 1 and L �M � condition (II) implies

H.L;M/ D
X
l�L

� X
m�M

h.l;m/

�
D

X
l�L

�
c2.l/M

ˇ2 CO.lDM ˇ2�ı/
�

DM ˇ2
X
l�L

c2.l/CO.L
DC1M ˇ2�ı/:
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Now chooseM D LJ for J sufficiently large such thatL�M � andLDC1M�ı DO.Lˇ1�ı/.
A comparison of both expressions for H.L;M/ yieldsX

l�L

c2.l/ D CL
ˇ1 CO.Lˇ1�ı/;

which proves the lemma.

Lemma 9.3. Let h satisfy conditions (I) and (II). Fix some � with 0 < ˇ1� < 1=2
satisfying

(9.1) �

�
1C

�ˇ1

ˇ2

�
�
�

ˇ2

and

(9.2) �

�
D � ˇ1 C 1C

ıˇ1

ˇ2

�
<

ı

2ˇ2
:

Define the sum
T1 D

X
l�P�

X
P 1=2<mˇ2�Pl�ˇ1

h.l;m/:

Then there is a real number B 0 2 R and some # > 0 such that we have

T1 D ˇ1C�P logP C B 0P CO.P 1�#/:

Proof. First note that we have

T1 D
X
l�P�

X
lˇ1mˇ2�P

h.l;m/ �H.P�; P 1=.2ˇ2//:

By our assumption (9.1) on �, we have

l � .P 1=ˇ2l�ˇ1=ˇ2/�

for all l � P�. Hence, by condition (II), we obtain

T1 D
X
l�P�

�
c2.l/

�
P 1=ˇ2

lˇ1=ˇ2

�ˇ2
CO

�
lD
�
P 1=ˇ2

lˇ1=ˇ2

�ˇ2�ı��
�H.P�; P 1=.2ˇ2//:

We have X
l�P�

lD�ˇ1Cıˇ1=ˇ2 D O.P�.D�ˇ1C1Cıˇ1=ˇ2/ C 1/;

which is bounded by P ı=.2ˇ2/ by assumption (9.1) on �. Hence, we can express the sum under
consideration as

T1 D

� X
l�P�

c2.l/

lˇ1

�
P �H.P�; P 1=.2ˇ2//CO.P 1�#/

for some # > 0.
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244 Schindler, Manin’s conjecture for certain biprojective hypersurfaces

Next we evaluate
P
l
c2.l/

lˇ1
via summing by parts. By Lemma 9.2 we can write

(9.3)
X
l�L

c2.l/ D CL
ˇ1 CE.L/

with an error term of size at most jE.L/j � Lˇ1�ı . Summing by parts leads us toX
l�P�

c2.l/

lˇ1
D P��ˇ1

X
l�P�

c2.l/C ˇ1

Z P�

1

t�ˇ1�1
�X
l�t

c2.l/

�
dt:

After inserting the asymptotic (9.3) we getX
l�P�

c2.l/

lˇ1
D P��ˇ1.CP�ˇ1 CO.P�ˇ1�ı�//C ˇ1

Z P�

1

t�ˇ1�1.C tˇ1 CE.t//dt

D C CO.P�#/C ˇ1C logP� C ˇ1

Z 1
1

E.t/

tˇ1C1
dt CO

�Z 1
P�

t�1�ıdt
�
:

Note that the integrals in the last line are both absolutely convergent by the bound on E.L/.
Hence, we obtain X

l�P�

c2.l/

lˇ1
D ˇ1C� logP C B 0 CO.P�#/

for some real B 0 and # > 0.
Note that by condition (I) on the function h, we have

H.P�; P 1=.2ˇ2// D O.P ˇ1�C1=2/ D O.P 1�#/

for some positive real # . Putting these estimates into the expression for T1, we finally obtain

T1 D ˇ1C�P logP C B 0P CO.P 1�#/;

which proves the lemma.

We state the final lemma that we need for the proof of Theorem 9.1.

Lemma 9.4. Let h be a function satisfying condition (I), and assume that

0 < � < min
²
1

2ˇ1
;
1

2ˇ2

³
:

Define the sum
T2 D

X
P�<l�P 1=.2ˇ1/

X
P 1=2<mˇ2�Pl�ˇ1

h.l;m/:

Then one has

T2 D C

�
1

2
� ˇ1�

�
P.logP /C CP CO.P 1=2Cˇ1�/CO.P 1�.1=2/�ı logP /:

Proof. Choose some large J , and define � > 0 via

.1C �/J D P 1=.2ˇ1/��:

Consider numbers P� � L < L0 � P 1=.2ˇ1/ with L0 D L.1C �/. Define the slice

V.L/ D
X

L<l�L0

X
P 1=2<mˇ2�Pl�ˇ1

h.l;m/
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and the sums

V�.L/ D
X

L<l�L0

X
P 1=2<mˇ2�P.L0/�ˇ1

h.l;m/;

VC.L/ D
X

L<l�L0

X
P 1=2<mˇ2�PL�ˇ1

h.l;m/:

By the non-negativity of the function h, we obtain

(9.4) V�.L/ � V.L/ � VC.L/:

Next we evaluate the sum VC.L/. Note that by inclusion-exclusion we have

VC.L/ D H.L
0; P 1=ˇ2L�ˇ1=ˇ2/ �H.L0; P 1=.2ˇ2//

�H.L;P 1=ˇ2L�ˇ1=ˇ2/CH.L;P 1=.2ˇ2//:

Next consider the difference

H.L0; P 1=ˇ2L�ˇ1=ˇ2/ �H.L;P 1=ˇ2L�ˇ1=ˇ2/

D C..L0/ˇ1 � Lˇ1/PL�ˇ1 CO..L0/ˇ1PL�ˇ1 min¹L0; P 1=ˇ2L�ˇ1=ˇ2º�ı/:

Since we have assumed � < 1=.2ˇ2/, it follows that

H.L0; P 1=ˇ2L�ˇ1=ˇ2/ �H.L;P 1=ˇ2L�ˇ1=ˇ2/ D C..1C�/ˇ1�1/P CO..1C�/ˇ1P 1��ı/:

Using .1C �/ˇ1 D 1C ˇ1� CO.�2/, we get

H.L0; P 1=ˇ2L�ˇ1=ˇ2/ �H.L;P 1=ˇ2L�ˇ1=ˇ2/ D Cˇ1�P CO.P
1��ı/CO.�2P /:

Similarly, we obtain

H.L0; P 1=.2ˇ2// �H.L;P 1=.2ˇ2// D Cˇ1�L
ˇ1P 1=2 CO.P 1��ı/CO.�2P /:

This gives the asymptotic

VC.L/ D Cˇ1�P C Cˇ1�L
ˇ1P 1=2 CO.�2P /CO.P 1��ı/:

We assume from now on that � is sufficiently small and we will see in our choice of J later
that this is indeed the case. Using .1C �/�ˇ1 D 1CO.�/ for small � , a similar computation
shows that we have exactly the same asymptotic for V�.L/, and hence for V.L/.

We now use a ‘dyadic’ decomposition in choosing

Lj D P
�.1C �/j ; 0 � j < J:

The sum T2, which we aim to evaluate, becomes

T2 D
X

0�j<J

V.Lj /

D Cˇ1.J�/P C Cˇ1�P
1=2

X
0�j<J

L
ˇ1
j CO.J�

2P /CO.JP 1��ı/:
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We compute

�
X

0�j<J

L
ˇ1
j D �P

ˇ1�
.1C �/Jˇ1 � 1

.1C �/ˇ1 � 1

D P ˇ1�
P 1=2�ˇ1� � 1

ˇ1 CO.�/

D
1

ˇ1
P 1=2 CO.P ˇ1�/CO.P 1=2�/:

Therefore, we obtain

T2 D Cˇ1.J�/P C CP CO.P
1=2Cˇ1�/CO.�P /CO.J�2P /CO.JP 1��ı/:

Next we choose J as the largest integer smaller thanP .1=2/�ı logP . Note that by the definition
of � we have

J log.1C �/ D
�
1

2ˇ1
� �

�
logP;

and hence

� D J�1
�
1

2ˇ1
� �

�
logP CO.J�2.logP /2/:

This gives the asymptotic

J� D

�
1

2ˇ1
� �

�
logP CO.P��ı=2.logP //

and the bound � D O.P�.1=2/�ı/. Plugging this into the last expression for T2, we obtain

T2 D C

�
1

2
� ˇ1�

�
P.logP /C CP CO.P 1=2Cˇ1�/CO.P 1�.1=2/�ı logP /:

We can now give a proof of Theorem 9.1.

Proof of Theorem 9.1. We start in writing

‡h.P / D
X

lˇ1mˇ2�P

h.l;m/

D

X
lˇ1mˇ2�P

mˇ2>P 1=2

h.l;m/C
X

lˇ1mˇ2�P

lˇ1>P 1=2

h.l;m/CH.P 1=.2ˇ1/; P 1=.2ˇ2//:

Note that X
lˇ1mˇ2�P

mˇ2>P 1=2

h.l;m/ D T1 C T2

with T1 and T2 given in Lemmas 9.3 and 9.4. For � sufficiently small these two lemmata
together imply X

lˇ1mˇ2�P

mˇ2>P 1=2

h.l;m/ D
1

2
CP logP C B 00P CO.P 1��/
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for some B 00 2 R and some positive real �. By symmetry, the same asymptotic holds for the
sum of h.l;m/ over all possible values lˇ1mˇ2 � P with lˇ1 > P 1=2. Together with condi-
tion (I) applied to H.P 1=.2ˇ1/; P 1=.2ˇ2//, this leads us to

‡h.P / D CP logP C BP CO.P 1��/

for some real number B , as desired.

Our next goal is to apply Theorem 9.1 to the following arithmetical function. For some
positive integers l and m let h.l;m/ be the number of integer vectors x 2 Zn1 and y 2 Zn2

with .xI y/ 2 U and jxj D l and jyj D m such that Fi .xI y/ D 0 for all 1 � i � R.
Assume that equation (4.5) holds, i.e.

n1 C n2 �max¹dimV �1 ; dimV �2 º > 2
d1Cd2�2Rmax¹.b1d1 C d2/; .b2d2 C d1/º:

Then condition (I) for this function h is directly provided by Theorem 4.4 for B1 D Œ�1; 1�
n1

and B2 D Œ�1; 1�
n2 with respect to the parameters C D � , ˇ1 D n1 �Rd1, ˇ2 D n2 �Rd2

and ı as given in Theorem 4.4.
It remains to verify condition (II). Recall that the open subset U is by construction the

product of two open subsetsU1�An1 andU2�An2 , i.e.U DU1�U2. The sum
P
l�L h.l;m/

counts all integer vectors .xI y/ 2 U such that jxj � L, jyj D m and Fi .xI y/ D 0, 1 � i � R.
For fixed y let Ny;U .L/ be the number of integer solutions jxj � L, x 2 U1 to the system of
equations (1.1). Then we have

(9.5)
X
l�L

h.l;m/ D
X

jyjDm; y2U2

Ny;U .L/:

Fix some y 2 U2 D A1.Z/. Then equation (4.5) implies that

K1 > R.RC 1/.d1 � 1/

in the language of Corollary 7.6 with � D �1. Hence this corollary delivers an asymptotic
formula

Ny.L/ D SyJyL
n1�Rd1 CO.Ln1�Rd1�ı jyj2R.RC1/d2/

uniformly for jyjd2 < L
d1�1

3R�1 . We consider the difference of the counting functions Ny.L/

and Ny;U .L/. This is trivially bounded by the number of integer vectors x 2 Ac
2.Z/, jxj � L.

An application of Lemma 5.4 to A D A2 and � D �2 delivers the bound

]¹x 2 Ac
2.Z/ W jxj � Lº � Ln1��2 :

Recall that we have defined �2 D dR.b2d2 C d1/C ıe. Hence we obtain

jNy.L/ �Ny;U .L/j � Ln1�Rd1�ı ;

which implies that we have the same asymptotic formula for Ny;U .L/ as for Ny.L/. We put
these asymptotic formulas into equation (9.5) and set

c1.m/ D
X

jyjDm; y2U2

SyJy:
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We obtain X
l�L

h.l;m/ D c1.m/L
n1�Rd1 CO

� X
jyjDm

jyj2R.RC1/d2Ln1�Rd1�ı
�

D c1.m/L
n1�Rd1 CO.mn2�1C2R.RC1/d2Ln1�Rd1�ı/

uniformly for all m � L
d1�1

.3R�1/d2 . This verifies the first part of condition (II) for the function h
with respect to the parameters

D D n2 � 1C 2R.RC 1/d2; � D
d1 � 1

.3R � 1/d2
:

By symmetry, the same arguments prove the second part of condition (II). Hence, the following
corollary now follows directly from Theorem 9.1

Corollary 9.5. Assume that d1; d2 � 2 and that equation (4.5) holds. Let h be given as
above. Then we have the asymptotic formula

‡h.P / D �P logP C BP CO.P 1��/

for some positive number � > 0 and some B 2 R.

We note that ‡h.P / counts all integer vectors .xI y/ 2 U with jxjˇ1 jyjˇ2 � P and (1.1).
Thus, ‡h.P / and NU;H .P / essentially only differ in whether or not they count non-primitive
vectors x and y, i.e. solutions with gcd.x1; : : : ; xn1/ > 1 or gcd.y1; : : : ; yn2/ > 1. The last
goal of this section is to apply a form of Möbius inversion to the counting function ‡h.P / to
obtain an asymptotic formula for NU;H .P /, and hence to prove Theorem 1.1.

We start with the observation that

NU;H .P / D
1

4

X
e
ˇ1
1 e

ˇ2
2 �P

�.e1/�.e2/‡h

�
P

e
ˇ1
1 e

ˇ2
2

�
:

In the following we assume that we have ˇi � 2 for i D 1; 2. This is certainly true in the situ-
ation of Theorem 1.1 since ˇi D ni �Rdi and ni is assumed to be sufficiently large by (4.5).
Note that for eˇ11 e

ˇ2
2 � P we can apply Corollary 9.5 to the inner term and obtain for � < 1=2

the asymptotic formula

NU;H .P / D
1

4
�S1P logP �

1

4
�S2P C

1

4
BS1P CO

�
P 1��

X
e1;e2

�
1

e
ˇ1
1 e

ˇ2
2

�1���
D
1

4
�S1P logP �

1

4
�S2P C

1

4
BS1P CO.P

1��/

with

S1 D
X

e
ˇ1
1 e

ˇ2
2 �P

�.e1/�.e2/

e
ˇ1
1 e

ˇ2
2

and

S2 D
X

e
ˇ1
1 e

ˇ2
2 �P

�.e1/�.e2/

e
ˇ1
1 e

ˇ2
2

log.eˇ11 e
ˇ2
2 /:
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We note that the appearing sums S1 and S2 are absolutely convergent. To be more precise,
we have

S1 D
1

�
.ˇ1/

1

�
.ˇ2/CO

� X
e
ˇ1
1 e

ˇ2
2 �P

1

e
ˇ1
1 e

ˇ2
2

�
:

The error term is bounded by

� P�1=3
1X

e1;e2D1

1

.e
ˇ1
1 e

ˇ2
2 /

2=3
� P�1=3;

since ˇ1; ˇ2 � 2. Similarly, we have

S2 D
1

�
.ˇ1/

1X
e2D1

�.e2/

e
ˇ2
2

log.eˇ22 /C
1

�
.ˇ2/

1X
e1D1

�.e1/

e
ˇ1
1

log.eˇ11 /CO.P
��/

D
1

�.ˇ1/

ˇ2�
0.ˇ2/

�.ˇ2/2
C

1

�.ˇ2/

ˇ1�
0.ˇ1/

�.ˇ1/2
CO.P��/

for some � > 0, which finally proves Theorem 1.1 for d1 � 2 and d2 � 2.
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