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a b s t r a c t

Tidal sand ridges and long bed waves are large-scale bedforms that are observed on continental shelves.
They differ in their wavelength and in their orientation with respect to the principal direction of tidal
currents. Previous studies indicate that tidal sand ridges appear in areas where tidal currents are above
0.5 m s�1, while long bed waves occur in regions where the maximum tidal current velocity is slightly
above the critical velocity for sand erosion and the current is elliptical. An idealized nonlinear numerical
model was developed to improve the understanding of the initial formation of these bedforms. The
model governs the feedbacks between tidally forced depth-averaged currents and the sandy bed on the
outer shelf. The effects of different formulations of bed shear stress and sand transport, tidal ellipticity
and different tidal constituents on the characteristics of these bedforms (growth rate, wavelength, or-
ientation of the preferred bedforms) during their initial formation were examined systematically.

The results show that the formulations for bed shear stress and slope-induced sand transport are not
critical for the initial formation of these bedforms. For tidal sand ridges, under rectilinear tidal currents,
increasing the critical bed shear stress for sand erosion decreases the growth rate and the wavelength of
the preferred bedforms significantly, while the orientation angle slightly decreases. The dependence of
the growth rate, wavelength and the orientation of the preferred bedforms on the tidal ellipticity is non-
monotonic. A decrease in tidal frequency results in preferred bedforms with larger wavelength and
smaller orientation angle, while their growth rate hardly changes. In the case of joint diurnal and
semidiurnal tides, or spring-neap tides, the characteristics of the bedforms are determined by the
dominant tidal constituent. For long bed waves, the number of anticyclonically/cyclonically oriented
bedforms with respect to the principal current direction increases as the ellipticity of the cyclonic/an-
ticyclonic tidal currents increases. Besides, under anticyclonic tidal currents, the growth rate of cyclo-
nically oriented long bed waves increases as the tidal ellipticity increases. The model was also used to
provide a possible explanation for the fact that the Dutch Banks have a larger wavelength than that of the
Flemish Banks in the North Sea.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Tidal sand ridges are observed on the continental shelves of
many shallow seas with sandy beds where the tidal current is
larger than about 0.5 m s�1 (Off, 1963; Liu et al., 1998; Dyer and
Huntley, 1999 and references therein). Examples are the shelves of
the North Sea (Fig. 1) and the East China Sea. These rhythmic
seabed features have a typical wavelength (the distance from crest
to crest) of order 10 km and a height of order 10 m. Their crests are
wart@uu.nl (H.E. de Swart),
oriented slightly cyclonically (5° to 30°) with respect to the prin-
cipal direction of the tidal current, and they evolve on a time scale
of centuries. Until recently, it was stated that other offshore
rhythmic bottom patterns had considerably smaller length scales
than those of tidal sand ridges (sand waves: wavelength of about
500 m; megaripples: wavelength of about 10 m), and that the
crests of these smaller scale bedforms were orthogonal to the di-
rection of the principal current (McCave, 1979). This perspective
changed when Knaapen et al. (2001) identified a new type of
large-scale bedforms on the outer shelf of the southern North Sea
(Fig. 1). These so-called long bed waves have wavelengths in the
range of 1–3 km. Later, van Dijk et al. (2011) reported the presence
of another patch of long bed waves north of Texel and Vlieland on
the Dutch continental shelf. Besides their smaller spacings, long

www.sciencedirect.com/science/journal/02784343
www.elsevier.com/locate/csr
http://dx.doi.org/10.1016/j.csr.2016.08.002
http://dx.doi.org/10.1016/j.csr.2016.08.002
http://dx.doi.org/10.1016/j.csr.2016.08.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csr.2016.08.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csr.2016.08.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csr.2016.08.002&domain=pdf
mailto:b.yuan@uu.nl
mailto:H.E.deSwart@uu.nl
mailto:C.PanadesGuinart@uu.nl
http://dx.doi.org/10.1016/j.csr.2016.08.002


Fig. 1. Bathymetry of the southern North Sea. The black circles indicate the areas where tidal sand ridges are located: (1) the Dutch Banks, (2) the Flemish Banks, and (3) the
Norfolk Banks. Black lines inside the circles qualitatively indicate the principal direction of tidal currents based on Davies and Furnes (1980). The rectangular boxes show the
areas where long bed waves are observed. In the map on the bottom right, the crests of long bed waves are marked by white lines, and the black line indicates the principal
current direction (from TNO, on courtesy of T. van Dijk). The main map is obtained using GeoMapApp (Ryan et al., 2009).
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bed waves differ from tidal sand ridges in their orientation, i.e.,
their crests are around 60° cyclonically or 30° anticyclonically
rotated with respect to the principal current direction, as is shown
in the bottom map of Fig. 1. The formation time scale of long bed
waves, from the perspective of available field data, is unclear. The
large-scale bedforms mentioned above provide not only habitats
for marine organisms, but also potential resources of sand for
beach nourishment. Knowledge of these seabed features and their
dynamics is important for the stability of underwater structures
and strategic planning of marine sand mining (van Lancker et al.,
2010).

The formation of tidal sand ridges has been explained as a free
instability of the system that describes the interaction between the
sandy sea bed and the tidal currents (Huthnance, 1982; Hulscher
et al., 1993). For this, linear stability analysis was conducted, with
which the evolution of infinitesimal bottom perturbations on an
otherwise flat bed, subject to tide-induced sand transport, was
quantified. It turns out that linear stability analysis yields a wa-
velength and an orientation of the preferred bedform that are in
fair agreement with those of many ridges observed in the field.

In the above cited studies and in later work on the initial for-
mation of tidal sand ridges (Carbajal and Montaño, 2001; Roos
et al., 2001; Walgreen et al., 2002), several simplifications in the
bed shear stress, tidal forcing and the sand transport were used.
First, a linearized bed shear stress was employed. The sensitivity of
the growth characteristics of tidal sand ridges to the formulation
of bed shear stress has not been systematically investigated yet.
Second, the tidal forcing employed was simple, i.e., only one tidal
constituent was used or only rectilinear tidal currents were con-
sidered. Roos et al. (2001) and Walgreen et al. (2002) imposed
several, yet rectilinear, tidal constituents (residual current, semi-
diurnal lunar tide M2 and quarter-diurnal tide M4) to study the
effect of tidal asymmetry on the characteristics of tidal sand rid-
ges. In reality, tidal currents are elliptical rather than rectilinear.
Moreover, they are composed of several other principal tidal
constituents, such as the diurnal tide K1 and the semidiurnal solar
tide S2, which together with M2 give rise to a mixed semidiurnal
tide and a spring-neap tide, respectively. The effects of mixed tides
and spring-neap tides on the formation of tidal sand ridges have
not been studied yet. Third, the sand transport formulations used
in these studies were highly simplified, i.e., both the threshold of
sand erosion (Miller et al., 1977 and references therein) and ani-
sotropic bottom slope-induced sand transport (Talmon et al., 1995)
were neglected.

With regard to long bed waves, their initial formation has only
been studied in Blondeaux et al. (2009), in which a depth-averaged
hydrodynamic model was employed. Using linear stability analy-
sis, they demonstrated that under the conditions that the tidal
currents are elliptical and the maximum velocity is just above the
threshold for sand erosion, long bed waves form alongside tidal
sand ridges. In contrast, if the tides are rectilinear or the velocity is
stronger, only tidal sand ridges are observed.

The considerations above motivate the two aims in this study.
The first aim is to quantify the dependence of growth rate, wa-
velength and crest orientation of large-scale offshore tidal bottom
patterns on formulations for (1) bed shear stress, (2) sand trans-
port (critical shear stress on/off, an-/isotropic slope-induced
transport), and (3) tidal forcing (ellipticity, diurnal/mixed tides,
spring-neap tides). The second one is to gain more detailed insight
into the formation of long bed waves, specifically, to assess the
importance of nonlinear bed shear stress, critical bed shear stress,
anisotropic sand transport, tidal ellipticity and current velocity on
the formation of long bed waves.

To fulfill these aims, a numerical morphodynamic model was
developed, which governs feedbacks between tidally forced
depth-averaged currents and the sandy bed on an open domain
that represents the outer shelf. There are several advantages to use
a numerical model, as is done in the present study. First, unlike
linear stability models which all employ the rigid-lid approxima-
tion, the time-dependent surface elevation is maintained in the
present model. Second, linear stability models require explicit
linearization of all equations and in particular for sand transport,
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which is often a laborious and delicate task. In the present model,
this is not needed. Third, comparison of output of the numerical
model with that of linear stability models is useful to validate the
numerical model. If successful, the latter can be subsequently
employed to investigate the long-term nonlinear evolution of
these large-scale bedforms. This approach was also adopted to
study the initial formation of other coastal bedforms, such as sand
bars on planar beaches (Deigaard et al., 1999; Klein and Schutte-
laars, 2005) and tidal sand waves (Borsje et al., 2013). Note that in
the latter study, model results were not compared with those of
linear stability models.

The numerical model is a modification of that developed by
Caballeria et al. (2002) and Garnier et al. (2006) to study the
generation of rhythmic bottom patterns in the micro-tidal surf
zone where wind waves play a key role. The main differences from
the previous models concern the implementation of an open do-
main with no sloping bottom, periodic boundary conditions in
both horizontal directions, tidal currents instead of wind- and
wave-driven currents, and tidally-averaged sand transport.

The manuscript is organized as follows. In Section 2, the mor-
phodynamic model is introduced, after which the linear stability
analysis is explained briefly, followed by a description of the nu-
merical implementation and the setup of the simulations. Results
are presented in Section 3 and subsequently discussed in Section
4. Finally, Section 5 contains the conclusions.
2. Material and methods

2.1. Model

The morphodynamic model consists of modules for the cur-
rents, sand transport and the bed evolution. Following Hulscher
et al. (1993), the currents are assumed to be governed by the
depth-averaged shallow water equations, which read

∂
∂

+ ∇·( →) = ( )
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Here, D is the local water depth, given by ζ= + −D H h, with ζ the
surface elevation, H the undisturbed water depth and h the bed
level with respect to the reference bottom level (Fig. 2). Vector →u is
the depth-averaged flow velocity, whose components in the x- and
y-directions are u and v, respectively, and →ez is a unit vector in the

vertical direction. Note that in the cross product → × →e uz , vector →u is
interpreted as a three-dimensional vector, with a zero vertical
Fig. 2. Sketch of the model geometry, also showing the spatially uniform tidal
current vector →u0 in the principal direction, and its angle ϑ with respect to the x-
axis.
component, and that only the horizontal components of the cross
product are considered. Furthermore, t is time, ( )∇ = ∂ ∂ ∂ ∂x y/ , / is
the horizontal nabla operator, Ω Φ=f 2 sin is the Coriolis para-
meter, with Ω the angular frequency of the Earth and Φ the lati-
tude. Finally, g is the gravitational acceleration, ρ is the constant
water density, and τ→b is the bed shear stress vector, for which
specific formulations are given in Subsection 2.2.

Since tidal sand ridges and long bed waves are observed on the
outer shelf, this study focuses on the initial formation of bedforms
due to tides in a flat and open area. Eqs. (1) and (2) are considered
in a finite domain ≤ ≤x L0 x, ≤ ≤y L0 y, which represents a small
part of the outer shelf far away from the coast. Typical values of Lx
and Ly are 10–40 km, which are in the order of the wavelength of
large-scale bedforms. On the outer shelf, the wavelength of the
tidal waves Lt is approximately 400 km for a semidiurnal tide in
water with a depth of the order of 10 m, hence it is assumed that
Lx and Ly are much smaller than Lt. The assumption ⪡L L L,x y t im-
plies that, to a first approximation, the tidal wave is spatially
uniform within the domain, which allows for imposing spatially
uniform tidal forcing and periodic boundary conditions.

The water motion is forced by a time-varying horizontal pres-

sure gradient force per unit mass
→
Fp. The force is associated with

the presence of a large-scale tidal wave, and
→
Fp drives a spatially

uniform tidal current →u0 that obeys
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Clearly, since the bed shear stress τ→b0 is determined by
⎯ →⎯⎯⎯
u0,

→
Fp

defines
⎯ →⎯⎯⎯
u0, or vice versa. The assumptions underlying Eq. (3) are

twofold. First, the magnitude of free surface variations ζ0 is much
smaller than the mean water depth H. Second, the large-scale tidal
wave is unaffected by topographic variations that act on scales

⪡L L L,x y t .

Setting ζ ζ ζ= + ˜
0 and ζ= ˜ +D D 0, where ζ̃ stands for the sur-

face elevation induced by the varying topography, and recalling
that ζ| |⪡H0 , the continuity equation and the momentum equation
are rewritten as
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The components u0 and v0 of the spatially uniform tidal current
⎯ →⎯⎯⎯
u0 that results from the pressure gradient force

→
Fp in the absence

of bottom undulations are expressed as harmonic series:

∑ ω ϕ ω ϕ= + ( − ) ϑ − ( − ) ϑ
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Here, U0 and V0 are the horizontal components of the residual flow
(not considered in this study), the subscript i represents different
tidal constituents, ωi and ϕi are the angular frequency and phase
of the tidal constituent, ai and bi are the semi-major and semi-
minor axes of the tidal ellipse, and ϑi is the inclination of the long
axis of the tidal ellipse with respect to the x-direction (Fig. 2).
Consistent with earlier studies, the ellipticity of a tidal constituent
is defined as the ratio between the semi-minor and semi-major
axes of the tidal ellipse, i.e., ε = b a/i i i. In the Northern Hemisphere,



Fig. 3. Flow chart of the numerical model.
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positive εi means that the tidal current is cyclonic, while negative
εi implies an anticyclonic current.

The bed level evolution is governed by the mass conservation
of sediment,

( − ) ∂
∂

+ ∇·→ = ( )p
h
t

q1 0. 7

Here, →q is the volumetric sand transport per unit width (for-
mulations are given in Section 2.2), and p is the bed porosity
(typically ∼0.4). The evolution of tidally induced bedforms is, to a
good approximation, related to convergence of net sand transport
that results from averaging over a tidal cycle. This is because the
evolution time scales of those bedforms are much larger than the
tidal period. The justification for the approximation follows from
scaling arguments and the averaging theory that is discussed in
Sanders et al. (2007). Hence, the bed level is assumed to be fixed
when computing the hydrodynamics over a tidal cycle, and Eq. (7)
is averaged over the tidal period, which results in

( − ) ∂
∂

+ ∇· → =
( )

p
h
t

q1 0.
8

Here, ∫· = ·−T dt
T1

0
stands for tidal average, where T is the tidal

period. For currents with more than one tidal constituent, the tidal
period is calculated as the least common multiple of the periods of
the tidal constituents. In summary, the final system to be solved

consists of Eqs. (4), (5) and (8), with
→
Fp chosen such that in the

absence of bottom undulations the flow is described by Eq. (6).
2.2. Formulations of bed shear stress and sand transport

To check the sensitivity of the initial formation of tidal sand
ridges and long bed waves to using a linearized/nonlinear bed
shear stress, two formulations for the bed shear stress τ→b are
employed, i.e. a quadratic formulation

τ ρ→ = →|→| ( )C u u , 9b d

and a linear formulation

τ ρ→ = → ( )ru . 10b

In these expressions, ( ∼ )−C 10d
3 is the drag coefficient, and r is the

linear friction coefficient given by π= ( )r C U8/ 3 d max. The latter ex-
pression is derived from Lorentz linearization of the bed shear
stress (Zimmerman, 1982). Here Umax is the maximum velocity of
the basic flow →u0. Linear and nonlinear bed shear stress were also
considered by Roos et al. (2008), but they did not systematically
investigate the differences in the resulting growth characteristics
of the bedforms.

Regarding sand transport, a bed load formulation is used.
Suspended load is not considered, as Besio et al. (2006) found that
for coarse sand and a moderate tidal current, the contribution of
suspended load to the growth of the bedforms is negligible. The
formulation for sand transport used is that of Fredsøe and Dei-
gaard (1992), which is also used in Blondeaux et al. (2009):
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θ θ θ θ θ θ→ = ( − )( − )

→

|→|
− ∇ · ( − )

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟q

Q u

u
h G

30
0.7 .

11
C

d
c c c

Here, ρ ρ= ( − )Q gd/ 1C s
3 is the characteristic sand transport rate,

where ρs is the density of noncohesive sediment (a relative density
ρ ρ =/ 2.6s is used), and d is the uniform grain size. The coefficient
μd (0.32–0.75) is the dynamic friction coefficient of the bed ma-
terial. The Shields parameter θ is given by
θ ρ
ρ ρ

= |→|
( − ) ′ ( )

u
gdC

,
12s

2

2

and θc is the critical Shields parameter. The typical value of θc
ranges between 0.03 and 0.06. For a given θc, the critical depth-
averaged velocity Uc for sand erosion can be obtained from Eq.
(12). Using the Heaviside function guarantees that sand trans-
port only takes place when θ θ> c . Furthermore, ′C is the grain-
related conductance coefficient given by ′ = ( )C H d2.5ln 11 /2.5 . The
dimensionless tensor G (Seminara, 1998) is related to the slope-
induced sand transport. For isotropic sand transport, the tensor

λ=G I, where λ is called the bed slope coefficient and I is the unit
tensor. For anisotropic sand transport, in a reference frame (s,n) in
which s is aligned with the bed shear stress and n is normal to that
direction, the elements of tensor G read

θ
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Here, |→|q0 is the modulus of the sand transport rate →q over a flat
bed ( =h 0 in Eq. (11)), and kG is an empirical coefficient that has
values in the range of 0.5–0.6. By using the expression of θ, →q is
written as
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If the critical velocity Uc¼0 and isotropic sand transport is con-
sidered, Eq. (14) reduces to the formulation as that in Hulscher
et al. (1993):
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2.3. Linear stability analysis

In this study, the initial formation of bedforms is investigated
by applying the concepts of linear stability analysis. First, a basic
state is defined, which is the spatially uniform tidal current →u0



Table 1
Overview of the set up of the experiments.

Exp. Lin/nonlin Sand transport Tidal currents

Uc (m s�1) Iso/aniso Constituents Umax (m s�1) ϵ

1 Lin 0 Iso M2 1.0 0
2 Nonlin 0 Iso M2 1.0 0
3 Lin 0.18:0.2:0.98 Iso M2 1.0 0
4 Lin 0 Aniso M2 1.0 0
5 Lin 0 Iso M2 1.0 �1:0.2:1
6 Lin 0 Iso ′K 1 1.0 0
7 Lin 0 Iso ′ + ′M K2 1 0
8 Lin 0 Iso ′ +M S2 2 0
9 Nonlin 0.58 Aniso M2 0.6 0.4
10 Lin 0.58 Aniso M2 0.6 0.4
11 Nonlin 0.58 Iso M2 0.6 0.4
12 Nonlin 0.58 Aniso M2 0.61:0.01:0.67 0.4
13 Nonlin 0.58 Aniso M2 0.6 �1:0.2:1

In this table, ‘lin/nonlin’ means linear/nonlinear friction, ‘iso/aniso’ means isotropic/anisotropic slope-induced sand transport, Umax is the maximum velocity of the basic flow
→u0, and ϵ is the tidal ellipticity. The notations with ‘: ’ mean from the first number to the third number with an increment of the middle number. The periods for ′K 1 and ′M 2
are chosen as 24 h and 12.5 h, respectively.

Table 2
Default values of parameters used in the experiments.

Parameter Value Description

Ω × − −7.292 10 rad s5 1 Angular frequency of the Earth

Φ 52°N Latitude
ωM2 × − −1.40 10 rad s4 1 Angular frequency of ( ′ )M M2 2 tide

ωS2 × − −1.45 10 rad s4 1 Angular frequency of S2 tide

ω ′K1 × − −7.27 10 rad s5 1 Angular frequency of ′K 1 tide

g 9.81 m s�2 Gravitational acceleration
p 0.4 Bed porosity
λ 2.37 Bed slope coefficient
μd 0.6 Dynamic friction coefficient
kG 0.55 Empirical coefficient for aniso-

tropic sand transport

Exp. 1–8 H 30 m Undisturbed water depth
αe × − −2.4 10 m s5 1 2 Coefficient for sand transport

Exp. 9–
13

H 40 m Undisturbed water depth

d 0.4 mm Grain size
θc 0.051 Critical Shields parameter
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over a flat bottom. After that, small perturbations of the bottom h0
are introduced, which are periodic in the domain with length and
width Lx and Ly:

= ( ) = + ( )( + )h h x y Ae c c, , 0 . .. 17k x k y
0

i x y

In this expression, A is an amplitude that is much smaller than H,
kx and ky are topographic wavenumbers in the x- and y-directions,
and c c. . denotes a complex conjugate (the same applies else-
where). Each h0 is called a bottom mode. There are two ways to
specify the directions of the basic flow and the topographic wave
vector of the perturbations. One is to fix the principal direction of
the basic flow and vary kx and ky. The other is to give a basic flow
with varying principal directions and fix the orientation of the
crest lines, for instance, by setting the topographic wave vector as
( )k0, y (the crests of the perturbation are along the x-axis). Next,
the interaction between the flow and the bottom topography is
investigated. According to linear stability theory, since A is small,
the solution of the flow and the bed level is written as

( ) = ( ) + [( ) + ] + ( )
( )

( + )u v h u v u v h Ae c c O A, , , , 0 , , . .

. 18

k x k y
0 0 1 1 1

i 2x y
Here, ( )u v, , 00 0 is the basic state, and ( )u v h, ,1 1 1 is the solution at
the first order of A. Higher order terms in the solution are ne-
glected. By plugging the solution above in the original governing
equations, the linearized equations for ( )u v h, ,1 1 1 are derived. For a
given basic flow, it turns out that each bottom mode evolves as

( ) = + ( )Γ ( + )h x y t Ae e c c, , . ., 19t k x k yi x y

with Γ the complex growth rate of the mode, which depends on
the topographic wave vector. The real part of Γ is Γr, its reciprocal
Γ−

r
1 being the e-folding growth time τe of the amplitude of the

mode. The mode with the largest Γr is called the “fastest growing
mode” or the “preferred mode/bedform”. The imaginary part Γi is
the radian frequency of the mode, which is related to the migra-
tion speed Γ Γ( − − )k k/ , /i x i y . As will be shown in Subsection 2.5,
the bedforms considered in this study have no migration speed.

2.4. Numerical implementation

The system (Eqs. (4), (5) and (8)), with specific formulations for
bed shear stress and sand transport, is solved by using a finite-
difference numerical scheme on a regular rectangular staggered
grid (Caballeria et al., 2002; Garnier et al., 2006). A central second-
order discretization is used in space, while an explicit fourth-order
Runge-Kutta scheme is applied for time integration. The explicit
scheme needs to satisfy the Courant-Friedrichs-Levy condition, i.e.,
Δ ≤ {Δ Δ }t C x y gDmin , / max , where Δt is the time step and (Δ Δ )x y,
the grid sizes, and Dmax the maximumwater depth. The constant C
is determined empirically (generally ≤C 1.0). The way of coupling
tidal current and sand transport is shown in Fig. 3.

The domain size ( )L L,x y varies in the range of 1–36 km. In-
itially, bed perturbations as those in Eq. (17) with a small ampli-
tude A (0.1% of the undisturbed water depth) are imposed on a flat
bottom. Details of the basic state and domain size are given in
Section 2.5 for different experiments.

Sand transport is calculated after the basic flow has been spun
up to a dynamic equilibrium state (the relative tolerance of velo-
city magnitude at successive tidal cycles is within 0.001%). To
calculate the growth rate, the root-mean-square height of the
perturbation hrms is computed at the beginning of each tidal cycle,
which is defined as

)(( ) = ( ) ( )h t h x y t, , . 20rms
2

1
2



Fig. 4. Sampled parameter space (wavenumbers kx, ky of the bottom perturbation and angle ϑ between the principal current direction and the crests): the first configuration
(a) and the second one (b). Each dot corresponds to a sampled mode.
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Here, the overbar denotes spatial averaging. From Eqs. (17) and
(19), it follows that hrms satisfies

( ) = ( ) ( )Γh t h e0 . 21rms rms
tr

Hence the real part of the growth rate is computed as

Γ =
( )
( ) ( )

⎛
⎝⎜

⎞
⎠⎟nT

h nT
h

1
ln

0
.

22
r

rms

rms

Here, n is an integer that is larger than the number of tidal periods
needed for the spin up. At time nT, the term ( ( ) ( ))h nT hln / 0rms rms is
calculated, and finally the average of Γr over several n is taken. Eq.
(22) is basically the same as the formulation for calculating Γr in
Borsje et al. (2013).

2.5. Design of the experiments

Details about the design of the numerical experiments are gi-
ven in Table 1. Values of the other parameters for the experiments
are shown in Table 2. Note that the imposed tidal forcing only
includes M2, K1, the joint action of +M K2 1 and +M S2 2. Migration
of the bedforms occurs only if the tidal forcing consists of multiple
constituents with angular frequencies that have an integer ratio,
for instance, +M2 residual, +M M2 4 (Roos et al., 2001; Walgreen
et al., 2002). The tidal frequencies of the tidal constituents in this
study have non-integer ratios. Hence the bedforms driven by these
tidal constituents do not migrate, and the focus here is on the real
part of the growth rate Γr.

First, to check if the model is capable of reproducing the initial
Fig. 5. Exp. 1: (a) Dimensionless growth rate of the bed perturbations as a function
of the dimensionless wavenumbers; (b) dimensional growth rate Γr as a function of
dimensional wavenumber k and angle ϑ between the principal current direction
and the crests of the bed perturbations. The plus corresponds to the fastest growing
mode.
formation of tidal sand ridges, the same parameter values and for-
mulations for sand transport and bottom friction as those in Hulscher
et al. (1993) (Exp. 1) are used. Next, the effect of nonlinear bed shear
stress on the characteristics (growth rate, wavelength and orienta-
tion) of the preferred bedforms during their initial formation is stu-
died in Exp. 2. Furthermore, using Eq. (14), a critical depth-averaged
velocity Uc for sand erosion and anisotropic slope-induced sand
transport are considered in Exps. 3 and 4, respectively. Decreasing Uc

means either decreasing grain size or assuming an increase in stirring
of sand by waves. In this study, the latter interpretation applies since
the grain size is assumed to be kept as a constant. In the experiments
hereafter, tidal currents with different characteristics are considered:
elliptical tidal currents in Exp. 5, the diurnal tide in Exp. 6, the mixed
semidiurnal tide in Exp. 7, and the spring-neap tide in Exp. 8. To
reduce the computation time, in Exp. 7 the periods of the M2 tide and
the K1 tide are adjusted slightly (denoted by ′M 2 and ′K 1, respec-
tively). The same applies to Exp. 8, in which the adjusted ′M 2 tide is
used. In the cases of a mixed tide and a spring-neap tide, the tidal
constituents are chosen to have the same phase and inclination. For
the mixed tide, the velocity amplitude of the ′M 2 tide = −

′U 1 m sM
1

2
,

while the velocity amplitude of the ′K 1 tide ′UK1
increases from

0.1 m s�1 to 0.5 m s�1. For the spring-neap tide, the velocity am-
plitudes of the tidal constituents are chosen such that the re-
presentative amplitude = ( + )′U U Ur M S

2 2 1/2

2 1
is kept at 1 m s�1.

To verify whether the present model yields long bed waves if
both the elliptical tide and critical velocity are included, Exp. 9 is
conducted. The same parameter values (Tables 1,2) and formula-
tions as in Blondeaux et al. (2009) are used. The drag coefficient is
Fig. 6. Growth rate Γr of the bed perturbations as a function of wavenumber k and
angle ϑ between the principal current direction and the crests of the bed pertur-
bations, using nonlinear bed shear stress (Exp. 2). The plus and circle correspond to
the fastest growing modes using nonlinear shear stress (Exp. 2) and linearized
stress (Exp. 1), respectively.



Fig. 8. Growth rate Γr of the bed perturbations as a function of wavenumber k and
angle ϑ between the principal current direction and the crests of the bed pertur-
bations, with the critical depth-averaged velocity Uc for sand erosion equal to
0.98 m s�1 (Exp. 3). The plus corresponds to the fastest growing mode.
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calculated by ( )( )= ~ −
C D z2. 5ln 11 /d r

2
, where zr is the roughness of

the sea bottom and a value of 2.5 cm is taken. In addition, the
sensitivity of the formation of long bed waves to the linearized/
nonlinear bed shear stress (Exp. 10), isotropic/anisotropic slope-
induced sand transport (Exp. 11), maximum current velocity (Exp.
12), and the ellipticity of tidal current (Exp. 13) is examined. In the
experiments with anisotropic sand transport, the bed slope coef-
ficients are calculated from Eq. (13).

In Exp. 1, two ways of specifying the directions of the basic flow
and bottom perturbations are used. In the first configuration, the
principal direction of the basic tidal current is parallel to the x-di-
rection, and the wavenumbers of the perturbation are chosen as

π=k L2 /x x and π=k L2 /y y, where Lx and Ly are the length of the
domain in the x- and y-directions, respectively. The sampled wa-
venumbers are shown in Fig. 4a. This is done in order to allow for
straightforward comparison of model results with those of Hulscher
et al. (1993). In the second one, it is configured such that the wa-
velength and orientation of the fastest growing mode can be accu-
rately identified: the direction of the basic flow is varied between
�90° and 90°, and the bottom modes have wavenumbers

π( ) ( = = )k k k L0, 2 /y y y . First a relatively low resolution in the (ϑ )k,
space is used, possible later refinement is done after analysis of
these results. Since the crests of the perturbation are aligned along
the x-axis (kx¼0), ϑ also indicates the angle between the principal
current direction and the crests. Positive/negative ϑ means that the
crests are rotated anticyclonically/cyclonically with respect to the
principal current direction in the Northern Hemisphere. Hereafter,
whenever the orientation of the mode/crests is mentioned, it is al-
ways with respect to the principal current direction, and its absolute
value is used when the orientation of the mode is compared be-
tween experiments. The second configuration is used in all other
experiments. The sampled parameter space of Exp. 1 using the
second configuration is shown in Fig. 4b. Generally, near the fastest
growing mode, the resolution in ϑ is within 1° (up to 0.2°), and in
Fig. 7. (a) The e-folding time τe , (b) wavelength π k2 / and (c) orientation angle ϑ of the fa
erosion (Exp. 3).
the wavelength it is around 200 m for Exp. 1–8 (the grid sizes are
Δ = Δ =x y 200 m, with a time step Δ =t 10 s) and 100 m for the rest
experiments (the grid sizes are Δ = Δ =x y 100 m, with a time step
Δ =t 5 s). Tests have shown that if the modes have a wavenumber
( )k0, y , the domain length in the x-direction Lx does not affect the
growth rate of the modes. Hence Lx is chosen equal to Δx3 , which is
the minimum possible value.
3. Results

3.1. Verification with Hulscher et al. (1993)

First the present model is run using the same configuration and
parameter values as those used in Hulscher et al. (1993) (Exp. 1 in
Table 1). Fig. 5a shows a contour plot of the dimensionless growth

rate Γ̂r of the bed perturbations versus dimensionless
stest growing mode as a function of the critical depth-averaged velocity Uc for sand



Fig. 9. Growth rate Γr of the bed perturbations as a function of wavenumber k and
angle ϑ between the principal current direction and the crests of the bed pertur-
bations, using anisotropic slope-induced sand transport (Exp. 4). The plus and circle
correspond to the fastest growing modes using anisotropic (Exp. 4) and isotropic
sand transport (Exp. 1), respectively.

Fig. 11. Growth rate Γr of the bed perturbations as a function of wavenumber k and
angle ϑ between the principal current direction and the crests of the bed pertur-
bations, using the ′K 1 tide (Exp. 6). The plus and circle correspond to the fastest
growing modes using ′K 1 (Exp. 6) and M2 (Exp. 1), respectively.

B. Yuan et al. / Continental Shelf Research 127 (2016) 28–42 35
wavenumbers k̂x ( ω^ =k k U /x x max ) and k̂y ( ω^ =k k U /y y max ) . In this
configuration, the principal direction of the basic flow is along the
x-axis, as in Hulscher et al. (1993). Here, Γ Γ^ = Tr m r , where

( )α ω= ( − )T p H U1 /m e max
2 is the morphological time scale. For

H¼30 m, = −U 1 m smax
1, ω = × − −1.4 10 rad s4 1, p¼0.4 and

α = × − −2.4 10 m se
5 1 2, ≈T 170m years. In Fig. 5b, the results are

shown in a different way, i.e., dimensional growth rate Γr as a
function of dimensional wavenumber k and angle ϑ between the
principal current direction and the crests (parallel to the x-direc-
tion) of the bed perturbation. Growing modes (modes with posi-
tive growth rate Γr) with different orientations are observed, i.e.,
their crests are either cyclonically or anticyclonically rotated with
respect to the principal direction of the tidal current. From Fig. 5, it
is seen that the fastest growing mode has a dimensionless wave-
number of 5.0 and a dimensional wavenumber of ∼ −0.7 rad km 1,
which is equivalent to a dimensional wavelength of 9.0 km.
Fig. 10. (a) The e-folding time τe, (b) wavelength π k2 / and (c) orientation angl
Furthermore, the direction of the crests is approximately 35.8°
cyclonically oriented with respect to the principal current direc-
tion. The obtained wavelength and the angle between the princi-
pal current direction and the crests of the fastest growing mode
are larger than those in Hulscher et al. (1993) (wavelength ap-
proximately 8 km and |ϑ| approximately 30°). The e-folding time
scale τe ( τ Γ= −

e r
1) is 270 years, while it is around 400 years in

Hulscher et al. (1993). Possible reasons for these differences will be
discussed in Section 4.
3.2. Nonlinear bed shear stress

For the case using a nonlinear bed shear stress (Exp. 2), the
growth rate of the bed perturbations as a function of dimensional
wavenumber k and angle ϑ between the principal current direc-
tion and the crests of the bed perturbation is shown in Fig. 6. The
fastest growing mode has a smaller e-folding time (τ ≈ 250e years)
e ϑ of the fastest growing mode as a function of tidal ellipticity ϵ (Exp. 5).



Fig. 12. (a) The e-folding time τe and (b) wavelength π k2 / of the fastest growing mode as a function of ′ ′U U/K M1 2 (Exp. 7).

Fig. 14. Growth rate Γr of the bed perturbations as a function of wavenumber k and
angle ϑ between the principal current direction and the crests of the bed pertur-
bations, with both critical bed shear stress and elliptical tides (Exp. 9). Local
maxima are marked by the crosses in the white circles, and are named as LM1 to
LM6. The triangles indicate the local maxima found by Blondeaux et al. (2009).
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and a slightly smaller wavelength (∼8.4 km) than that obtained if a
linearized bed shear stress is used, while the absolute value of the
angle (∼41.8°) between the principal current direction and the
crests becomes larger.

3.3. Critical bed shear stress for sand erosion

Fig. 7 shows the e-folding time, wavelength and orientation of
the fastest growing mode versus the critical depth-averaged ve-
locity for sand erosion Uc (Exp. 3). In general, the e-folding time of
the fastest growing mode increases as the critical velocity in-
creases. Moreover, the wavelength and the absolute value of the
angle between the principal current direction and the crests de-
crease with increasing Uc. For Uc¼0.58 m s�1, the e-folding time of
the fastest growing mode (τ ≈ 390e years) increases more than 31%
of that if the threshold is not considered (Fig. 7a), and the wave-
length decreases by around 1.4 km (Fig. 7b). The change in the
orientation angle is less significant until Uc reaches 0.78 m s�1

(Fig. 7c).
Note that once the critical velocity is close to the maximum

current velocity (Fig. 8), the growth rate decreases significantly
and the maxima are found not only near the wavelength of 5.4 km
with ϑ ∼ − °28 , but also around 2.4 km with ϑ ∼ − °34 . The latter
parameters are representative for long bed waves, since the wa-
velength is between those of sand waves and tidal sand ridges,
albeit that the orientation angle found here differs from the ob-
servations (approximately �60° or 30°).

3.4. Anisotropic slope-induced sand transport

The growth rate of the bed perturbations in Exp. 4 using ani-
sotropic slope-induced sand transport is shown in Fig. 9. Com-
pared to the case using isotropic slope-induced sand transport
Fig. 13. (a) The e-folding time τe and (b) wavelength π k2 / of the fa
(Exp. 1), the fastest growing mode has a slightly smaller e-folding
time ( τ ≈ 250 yearse ) and a smaller wavelength (∼8.2 km). The
orientation of the fastest growing mode hardly changes.

3.5. Tidal ellipticity

The e-folding time, wavelength and orientation of the fastest
growing mode against tidal ellipticity ε (Exp. 5) are shown in
Fig. 10. The e-folding time of the fastest growing mode using cir-
cular tides is approximately 1.3 (ε¼1) and 2 (ε¼�1) times of that
using a rectilinear tide. Note that the smallest e-folding time of the
fastest growing modes along ε is not found at ε¼0, but rather near
ε¼�0.2. The wavelength of the fastest growing mode does not
change much for ε− ≤ ≤0.3 0.4, and the smallest wavelength is
stest growing mode as a function of ′ ′( + )U U U/
M M S2
2

2
2

2
2 (Exp. 8).
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observed near ε¼0.2. It increases as the absolute value of ε in-
creases for ε| | > 0.4. The orientation angle of the fastest growing
mode also depends non-monotonically on the tidal ellipticity. The
absolute value of ϑ decreases from ε = − 0.8 to ε = − 0.2, next
increases rapidly until ε¼0.2 and decreases again towards ε¼0.8.
Note that for ε = ± 1, the growth rates of the perturbation are
independent of the angle ϑ, thus in Fig. 10c no data are shown for
ε = ± 1.

3.6. Diurnal tide

Fig. 11 shows a contour plot of the growth rate of the bed
perturbations using a diurnal tide ′K 1 (Exp. 6). Compared to the
result in Exp. 1, it is found that the e-folding time of the fastest
growing mode using a diurnal tide hardly changes. Furthermore, it
is seen that the fastest growing mode using the ′K 1 tide has a
smaller wavenumber (equivalently the wavelength increases by
around 3 km) and a smaller orientation angle (around 3° smaller)
than that using the M2 tide.

3.7. Mixed tide and spring-neap tide

Fig. 12 shows the e-folding time and wavelength of the fastest
growing modes against the ratio of the velocity amplitude of the

′K1 tide and the ′M2 tide (Exp. 7). If ′UM2
is fixed, it is found that as the

ratio ′ ′U U/K M1 2
increases from 0.1 to 0.5, the e-folding time of the

fastest growing modes decreases (Fig. 12a) by approximately 40
years, while the wavelength of the fastest growing modes in-
creases (Fig. 12b) by 2.6 km. The orientation angles of the fastest
growing modes are between �36° and �35° (not shown). The
results of additional experiments show that phase difference be-
tween tide ′K 1 and tide ′M 2 has no effect on the growth rate,
wavelength and orientation of the fastest growing modes.

In Fig. 13, the e-folding time and wavelength of the fastest
growing modes are plotted against the ratio between the squared
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Fig. 15. (a) The e-folding time τe, (b) wavelength π k2 / and (c) orientation angle ϑ of th
maximum current velocity Umax (Exp. 12).
velocity amplitude of the ′M 2 tide and the squared representative
velocity (Exp. 8). It appears that the dependency of the e-folding
time of the fastest growing modes (Fig. 13a) on this parameter is
rather weak (changes are less than 15 years). In contrast, the
wavelength of the fastest growing modes (Fig. 13b) increases by
around 1.4 km when the ratio ( + )′ ′U U U/

M M S
2 2 2

2 2 2
increases from 0 to

0.5, i.e., from the S2 tide dominant to =′U UM S2 2
. The change of the

orientation angles is within 1° (not shown). Like in the case of the
mixed tides, the phase difference between the ′M 2 tide and the S2
tide does not affect the characteristics of the fastest growing
modes. The variations in the growth rate and the wavelength of
the preferred bedforms for the mixed tides and spring-neap tides
reveal that the characteristics of these bedforms are determined
by the dominant tidal constituent.

3.8. Combined tidal ellipticity and critical velocity for sand erosion

The combination of tidal ellipticity and critical shear stress is
considered in Exp. 9. The drag coefficient was calculated using the
same formulation as that of Blondeaux et al. (2009), i.e.,

( )( )= ~ −
C D z2. 5ln 11 /d r

2
, where zr¼2.5 cm is the roughness of the

sea bottom. In that case, the morphological time scale, for the
given sand transport formulation and parameters, is

∼T 500 yearsm . The result is shown in Fig. 14, in which several local
maxima in the growth rate Γr (LM1 to LM6) with both positive and
negative orientation angles are observed. The maximum in Γr with
the smallest wavenumber LM1 is identified at ∼k 1.30 rad/km and
ϑ ∼ − °27 , the corresponding e-folding time is around 13 times of
the morphological time Tm. This is related to the tidal sand ridge
mode that has a wavelength of around 4.8 km and crests that are
∼27° cyclonically oriented with respect to the principal current
direction. The other local maxima in Γr occur for wavenumbers
that correspond to those of long bed waves modes (wavelengths
are in the range of 1–3 km). Two local maxima in Γr with negative
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e local maxima (LM2, LM4, LM5 and LM6 as shown in Fig. 14) as a function of the



Fig. 16. Growth rate Γr of the bed perturbations as a function of wavenumber k and angle ϑ between the principal current direction and the crests of the bed perturbations,
for different values of tidal ellipticity (Exp. 13). The crosses in the white circles correspond to local maxima in Γr.
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ϑ, LM2 and LM3, are observed at a wavelength of around 2 km. One
is found at ∼k 2.9 rad/km (wavelength around 2.2 km) and
ϑ ∼ − °33 , and the other at ∼k 3.3 rad/km (wavelength around
1.9 km) and ϑ ∼ − °13 . Another long bed wave mode with negative
ϑ, LM4, is found at ∼k 5.2 rad/km (wavelength around 1.2 km) and
ϑ ∼ − °11 . For ϑ > °0 , LM5 occurs at ∼k 2.4 rad/km (wavelength
around 2.7 km) and ϑ ∼ °22 , and LM6 is found at ∼k 4.2 rad/km
(wavelength around 1.5 km) with ϑ ∼ °16 . The e-folding times of
the long bed wave modes from LM2 to LM6 are approximately 23,
22, 70, 30 and 29 times of the morphological time Tm, respectively.
The wavelength and orientation of the local maxima agree quite
well with those in Blondeaux et al. (2009). Generally, the
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Fig. 17. Tidal current patterns for the preferred bedform in Exp. 1. The solid/dashed line
basic flow is 35.8° clockwise rotated with respect to the x-axis. (a) Total tidal current du
Note that the current velocity is larger upstream of the crest and smaller downstream of
arrow indicating its magnitude/vector. Note that the residual current is anticyclonic aro
small.
differences in the e-folding times between the present results and
those of Blondeaux et al. (2009) are within 15%. The reason for the
differences is given in Section 4.

3.9. Key parameters for the initial formation of long bed waves

The results above demonstrate the ability of the present nu-
merical model to simulate the initial formation of long bed waves.
An additional experiment using a constant drag coefficient of
0.003 gives similar wavelength, orientation and growth rate of the
local maxima as in Exp. 9 (not shown). To further test the essential
conditions under which long bed waves form, experiments (Exp.
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stands for the crest/trough of the bed perturbation. The principal direction of the
ring flood. The colormap/arrow indicates the magnitude/vector of the tidal current.
the crest, which also occurs during ebb. (b) The residual current, with the colormap/
und the crest, and its magnitude is small because the amplitude of the bedform is
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10–13) were carried out in which linearized bed shear stress,
isotropic sand transport, different values of maximum current
velocity and tidal ellipticity were considered. A constant drag
coefficient of 0.003 was used in those experiments except in Exp.
10, in which a linear friction coefficient = × − −r 1.5 10 m s3 1 was
employed, obtained from π= ( )r C U8/ 3 d max.

The linearized bed shear stress (Exp. 10) causes only minor
changes in the wavenumber and orientation of the local maxima
in Γr that correspond to long bed waves (not shown). The growth
rates of anticyclonically oriented long bed wave modes (LM5 and
LM6 as shown in Fig. 14) become almost twice of those using
nonlinear bed shear stress, while for cyclonically oriented modes,
the change in the growth rate is negligible.

For isotropic sand transport (Exp. 11), long bed waves (LM2,
LM5 and LM6) with similar wavelengths and orientations are ob-
served compared to those using anisotropic sand transport (not
shown). Another long bed wave mode with the same wavelength
as LM4 in the anisotropic sand transport case but much larger
absolute value of the orientation angle ( ϑ ∼ − °40 ) is identified.
Besides, a cyclonically oriented long bed wave mode with a wa-
velength of 1.3 km ( ϑ ∼ − °25 ) is observed instead of the mode
LM3. In general, the growth rates of the long bed wave modes with
isotropic sand transport (LM2, LM5 and LM6) are a factor of about
1.6 times larger than those with anisotropic sand transport. Note
that the difference in the e-folding time between LM2 and LM1 is
within 100 years when isotropic sand transport is used, which
means that long bed waves and tidal sand ridges could emerge on
the same time scale.

The variations of the e-folding time τe, wavelength π k2 / and
orientation angle ϑ of several long bed wave modes (LM2, LM4,
LM5 and LM6 as shown in Fig. 14) along the maximum current
velocity Umax are shown in Fig. 15 (Exp. 12). It is seen from Fig. 15
that as Umax increases, the e-folding time (Fig. 15a) decreases for
the modes with larger wavelengths (LM2 and LM4), while it in-
creases for the modes LM5 and LM6. The wavelengths of all the
modes except LM6 become larger (Fig. 15b), and the number of the
long bed wave modes decreases with an increasing Umax: LM6

disappears at = −U 0.62 m smax
1 and LM5 at = −U 0.64 m smax

1, fol-

lowed by LM2 at = −U 0.66 m smax
1. The change in the orientation of

the modes is subtle (Fig. 15c). The anticyclonically oriented mode
LM4 has a wavelength of 3 km at = −U 0.67 m smax

1, hence it could
still be considered as a long bed wave mode. However, it may not
be identified as a long bed wave anymore if Umax keeps increasing,
as the wavelength of the mode will increase accordingly.

Fig. 16 (Exp. 13) shows the growth rate of the bed perturbations
for different values of tidal ellipticity. A maximum (wavelength
around 4.2 km) related to tidal sand ridge is seen from Fig. 16a for
a rectilinear tide. When ε = − 0.4 (Fig. 16b), three long bed wave
modes are observed: two cyclonically oriented modes at

∼k 2.2 rad/km and ϑ ∼ − °29 , and ∼k 3.9 rad/km and ϑ ∼ − °20 ,
and an anticyclonically oriented mode at ∼k 3.5 rad/km and
ϑ ∼ °10 . Fig. 16c shows that more anticyclonically oriented long
bed waves ( ∼k 2.2 rad/km and ϑ ∼ °23 , ∼k 3.1 rad/km and
ϑ ∼ °16 , and ∼k 4.2 rad/km and ϑ ∼ °11 ) appear when the tidal
ellipticity is large and positive. In contrast, more cyclonically or-
iented long bed waves ( ∼k 2.2 rad/km and ϑ ∼ − °31 ,

∼k 3.1 rad/km and ϑ ∼ − °20 , ∼k 4.2 rad/km and ϑ ∼ − °15 and
∼k 5.2 rad/km and ϑ ∼ − °10 ) are found when the tidal ellipticity

is negative and its absolute value is large (Fig. 16d). Moreover, it is
seen from Figs. 16b and d that for anticyclonic tides, as the abso-
lute value of tidal ellipticity increases, the growth rate increases
significantly for cyclonically oriented long bed waves, while it
decreases for anticyclonically oriented long bed waves.
4. Discussion

4.1. Mechanism of the formation of large-scale bedforms

The physical mechanisms causing the initial formation of tidal
sand ridges and long bed waves have been discussed in several
studies. Among many of the hypotheses, linear stability theory has
been proven to be successful in explaining the characteristics of
observed bedforms, which is also supported by the results in this
study. The crucial aspect for both types of bedforms is the joint
action of the background tidal current and the residual current
that is generated by tide-topography interaction.

Regarding tidal sand ridges, Zimmerman (1981) used vorticity
concepts to show that for a ridge that is obliquely oriented with
respected to the tidal current, the frictional torque generates a
residual current that acts with the tidal current on the upstream
side of the ridges, whilst it acts against the tidal current on the
downstream side (Fig. 17). The intensity of this residual current is
maximum if the distance between successive ridges is of the order
of the tidal excursion length ωU/ (the distance traveled by particles
in one tidal period). Here, U and ω are the characteristic current
velocity amplitude and radian tidal frequency, respectively. As
explained by Huthnance (1982), since advective sand transport
induced by the flow increases faster than linearly with the in-
stantaneous current, sand transport on the upstream side is larger
than that on the downstream side. In the case of a symmetric tidal
current, this results in net accumulation of sand at the crest. On
the other hand, the sand transport due to local bed slopes is di-
rected downslope, thus this transport is divergent at the crests,
which increases if ridges are spaced closer together (larger wa-
venumber k). The competition between advective and slope-in-
duced sand transport gives rise to a fastest growing mode with a
certain wavelength and orientation. In addition, if Coriolis torque
is considered, it generates a residual flow in the same direction as
that due to the frictional torque if the ridge is oriented cyclonically
with respect to the tidal current. The opposite occurs if the ridge
has an anticyclonic orientation with respect to the tidal current.
Thus, convergence of advective sand transport at the crest is larger
than that in the former case. This explains the preferred cyclonic
orientation of tidal sand ridges. In the case of an asymmetrical
tidal current, Roos et al. (2001) and Walgreen et al. (2002) have
shown that a flood-dominant current (the maximum flood current
is larger than the maximum ebb current) causes convergence of
advective sand transport to occur downstream of the crests,
thereby affecting the growth of the ridges and causing the ridges
to move downstream. If the current is ebb-dominant, i.e., the
maximum ebb current is larger than the maximum flood current,
the ridges migrate upstream.

Concerning long bed waves, it was demonstrated by Blondeaux
et al. (2009) that they form if sand transport takes place during
only part of the tidal cycle (tidal current amplitude slightly above
the critical velocity for sand erosion) and the tidal current is el-
liptical. In those cases, the growth or decay of bedforms is de-
termined by the joint action of the tidal current and the residual
current that is calculated over the interval that the bed is active.
For cyclonically oriented bedforms, the residual current is antic-
yclonic due to the combined effect of friction torque and Coriolis
torque. The residual current around anticyclonically oriented
bedforms is generally weaker than that around cyclonically or-
iented bedforms. However, the residual current computed over the
interval that the bed is active can be in the same order as that for
cyclonically oriented bedforms and be cyclonic. As a result, bed-
forms with either cyclonic or anticyclonic orientation with respect
to the tidal current occur.

4.2. Differences between present results and those in previous
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studies

Comparing the results of Exp. 1 (Fig. 5) with those in Hulscher
et al. (1993), it turns out that the growth rate, wavelength and
angle between the principal current direction and the crests of the
fastest growing mode from the present model are slightly larger.
The difference is caused by two reasons. First, Hulscher et al.
(1993) used a harmonic truncation of the perturbed flow, in which
the cut off was taken place after the second overtide of the prin-
cipal M2 constituent. In contrast, since the upper limit frequency of
the harmonic components is determined by the time step in a
numerical model, many more harmonic components generated by
the basic current are included automatically in the present model.
Second, Hulscher et al. (1993) neglected the ζ∂ ∂t/ term in the
continuity equation (rigid-lid approximation).

Comparison between the results in Exp. 9 (Fig. 14) and those in
Blondeaux et al. (2009) shows marginal differences in the wave-
length and orientation of the preferred bedforms, though slight
differences in the growth rate are observed. The differences are
attributed to the fact that the rigid lid approximation was used in
their study, whereas the surface elevation ζ̃ varies in time and
space in the present model.

4.3. Key parameters for the initial formation of offshore large-scale
bedforms

Several parameters have been varied in this study to investigate
whether they are essential for the initial formation of tidal sand
ridges and long bed waves, i.e., linear versus nonlinear bottom
friction, critical velocity for sand erosion, isotropic versus aniso-
tropic slope-induced sand transport, tidal ellipticity and different
tidal constituents.

Nonlinear bed shear stress is neither crucial for the generation
of tidal sand ridges (Fig. 6 in Exp. 2), nor for long bed waves
(compare Exp. 9 with Exp. 10). Likewise, the anisotropic slope-
induced sand transport is not crucial for the formation of the
bedforms, albeit that the growth rate of the preferred bedforms is
sensitive to the formulations of the slope-induced sand transport
(Fig. 9 in Exp. 4, and compare Exp. 9 with Exp. 11). Compared to
the case using linear bed shear stress, using nonlinear bed shear
stress generates friction torques with slightly different values,
thereby giving rise to a different residual current, and further
different advective sand transport. If anisotropic slope-induced
sand transport is used, the coefficients for the slope-induced sand
transport change, hence different divergent sand transport is ob-
tained compared to the case in which isotropic slope-induced sand
transport is used.

Critical velocity for sand erosion (Fig. 8 in Exp. 3 and Fig. 15 in
Exp. 12) is crucial for the generation of long bed waves: the critical
velocity should be slightly smaller than the maximum flow velo-
city. If the critical velocity is considered, the tidal current and the
residual current in a tidal period are the same as that in the case in
which the critical velocity is absent (Uc¼0). However, the net sand
transport occurs only during the time that the bed is active. Hence
both the advective and slope-induced sand transport differ from
that in the case Uc¼0. If an elliptical tide instead of a rectilinear
tide is considered (Fig. 10 in Exp. 5 and Fig. 16 in Exp. 13), both the
advective and slope-induced sand transport change, which is due
to the change in the tidal current and the residual current.

Different tidal constituents are not essential for the generation
of the offshore tidal sand ridges. Nevertheless, compared to the
case using only the principal semidiurnal tide, due to the change of
the tidal current and the residual current, the advective and slope-
induced sand transport alter accordingly. Hence bedforms with
different characteristics appear, as has been seen from the results
of the experiments with the diurnal tide (Fig. 11 in Exp. 6), the
mixed tide (Fig. 12 in Exp. 7) and the spring-neap tide (Fig. 13 in
Exp. 8).

4.4. Comparison with field data

In the southern North Sea, tidal sand ridges with different
characteristics are observed (Fig. 1). The focus here is on the Dutch
Banks and the Flemish Banks. The Norfolk Banks will be con-
sidered in further research.

Although the areas of the Dutch Banks and the Flemish Banks
are characterized by the same mean water depth, compared to the
Flemish Banks, the Dutch Banks have a larger wavelength. From
Roos et al. (2004), the wavelength of the Dutch Banks is in the
range of 5.7–9.8 km, and the orientation angle is �25°; near the
Flemish Banks, the wavelength of the ridges is around 4.5 km, and
the orientation angle is �6°. To explain the different appearance
of the ridges mentioned above, several experiments were con-
ducted, i.e., with/without elliptical tide and with/without critical
velocity for sand erosion.

Topography, tidal conditions and the grain size information are
based on those from Roos et al. (2004) and van Santen et al. (2011).
In the model, a mean water depth of 29 m is used. At the Dutch
Banks, the maximum velocity of the M2 tide is chosen as
0.75 m s�1 with an ellipticity of �0.2, and the grain size is
0.25 mm. At the Flemish Banks, a stronger current with a velocity
amplitude of 0.8 m s�1 and an ellipticity of 0.1 is employed, and
the sand is coarser (0.45 mm). Using θ = 0.05c yields values of the
critical velocity for sand erosion Uc of 0.46 m s�1 and 0.59 m s�1

in the areas of the Dutch Banks and the Flemish Banks, respec-
tively. A nonlinear bed shear stress with a constant drag coefficient
Cd of 0.003 is used. The sand transport is calculated from Eq. (14),
in which the parameters μd, KG and ρ ρ/s have the same values as
those in Exp. 9. The modeled preferred bedforms in the areas of
the Dutch Banks and the Flemish Banks have a wavelength of
around 6.0 km and 5.2 km, respectively, which qualitatively agree
with the observations. The e-folding times of the preferred bed-
forms are around 600 years at both locations. If the critical velocity
Uc¼0 and the ellipticity is kept the same as above, the wavelength
of the preferred bedforms changes to 7.0 km for the Dutch Banks
and 6.4 km for the Flemish Banks, and the e-folding time decreases
to 360 years and 280 years, respectively. Furthermore, if the cri-
tical velocity is included and rectilinear tides are used, the wave-
lengths of the preferred bedforms at both locations become
5.4 km, and the change in the e-folding time is within 50 years
compared to the experiment using both elliptical tides and the
critical velocity. Hence the differences in the critical velocity for
sand erosion (related to the grain size) and the tidal ellipticity
might explain the different wavelength of the ridges at those lo-
cations. The modeled orientation angles are around �40° for all
the experiments above, whilst the observed orientations are �25°
and �6° for the Dutch Banks and the Flemish Banks, respectively.

It should be noted that the observed ridges have finite height.
Nonlinear processes are likely to affect the wavelength of the
bedforms during their long-term evolution. This behavior has been
found in the case of other coastal bedforms, such as sand bars in
the near shore zone (Garnier et al., 2006) and shoreface-connected
sand ridges on the inner shelf (Nnafie et al., 2014).

Regarding long bed waves, Exp. 9 was designed to mimic the
situation in the bottom boxed area of Fig. 1. Several long bed wave
modes are found from the model results, the wavelength of these
being in the range of 1.2–2.7 km. These values are similar to that of
the observed long bed waves (1.6 km). The orientation angles are
11–33° and 60° for the modeled and observed cyclonically oriented
bedforms, respectively, whilst for anticyclonically oriented long
bed waves, the numbers are 16–22° and 30°, respectively. Thus,
regarding the orientation, qualitative agreement is obtained for
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long bed waves. The reason for the differences in the observed and
modeled orientations is discussed in the next subsection.

4.5. Limitations

The present model is idealized in the sense that several as-
sumptions have been made. First, the depth-averaged shallow
water equations are used, which means that the vertical flow
structure is not considered. Hence the model is not able to simu-
late sand waves (Hulscher, 1996; Besio et al., 2006; Borsje et al.,
2013). The difference between modeled and observed orientation
of tidal sand ridges and long bed waves could also be attributed to
that assumption, since the direction of the currents near the bot-
tom may differ from that of depth-averaged currents. Second, the
domain size is assumed to be much smaller than the wavelength
of tidal waves, so no phase differences of the background tidal
waves are accounted for. Third, the model assumes a constant
mean depth and periodic boundary conditions in all horizontal
directions, thereby mimicking the situation on an open shelf,
without considering the proximity of coasts. Fourth, the sand is
uniform, so sorting processes (Walgreen et al., 2004; Roos et al.,
2007) resulting in variation of mean grain size over the ridges are
not accounted in the present model. Also note that although
multiple tidal constituents in the forcing are considered, the re-
sidual flow and the nonlinear overtides of the principal tidal
constituents are not included in this study. Finally, for simplicity,
the orientations of tidal ellipses are chosen to be the same in the
cases in which multiple tidal constituents are used.

4.6. Choice of numerical aspects

Regarding the choice of the bottom modes, the domain size
( )L L,x y was chosen in the range of 1–36 km, and ( )k k,x y were
calculated from ( )L L,x y . In Exp. 1, 17�35 pairs of ( )k k,x y were
used. In the part of the (ϑ )k, parameter space where tidal sand
ridges were expected (− ° ≤ ϑ ≤ − °60 10 and ≤ ≤k0 1.5 rad/km), a
minimum of 25�20 pairs of (ϑ )k, were used. For long bed waves,
usually 57�25 pairs of (ϑ )k, were used.

Regarding the numerical settings, it has been demonstrated
that using the grid size and time step mentioned in Subsection 2.5,
the model results agree well with those of the previous studies. By
using a smaller grid size Δ =y 100 m and a time step Δ =t 5 s in-
stead of Δ =y 200 m and Δ =t 10 s for Exp. 1, it turned out that the
relative change in the e-folding time of the fastest growing mode
is 0.4%. Hence, the effect of the numerical discretization on the
final results is very small. The initial amplitude of the bottom
perturbation used in this study, i.e., 0.001H, is adequate. Further
experiments using amplitudes of 0.0001H and 0.01H of the bed
perturbation for Exp. 1 revealed that the fastest growing mode has
the same characteristics as that using 0.001H.
5. Conclusions

Previous work has explained the mechanism of the generation
of tidal sand ridges and long bed waves in coastal seas by free
instability of the sandy bed subject to tidal currents. However,
little attention has been paid to the effect of bed shear stress for-
mulations (linear versus nonlinear), tidal characteristics (tidal el-
lipticity, different tidal constituents) and sand transport formula-
tions on the characteristics (growth rate, wavelength, and or-
ientation) of these large-scale bedforms during their initial for-
mation. To this end, an idealized nonlinear numerical model was
developed, which describes the interaction between depth-aver-
aged tidal currents and the sandy bed. The results demonstrate
that the present model is able to reproduce the initial formation of
tidal sand ridges and long bed waves as were found in earlier
studies that employed linear stability analysis (Hulscher et al.,
1993; Blondeaux et al., 2009). The advantage of the present ap-
proach is that it offers a framework to study the long-term non-
linear evolution of these bedforms, which will be done in future
research.

For tidal sand ridges, using nonlinear bed shear stress and
anisotropic slope-induced sand transport causes a slight increase
of the growth rate and a decrease of the wavelength of the pre-
ferred bedforms. Furthermore, if the critical depth-averaged ve-
locity for sand erosion is increased, the growth rate of the pre-
ferred bedforms becomes smaller, as well as the wavelength and
the angle between the principal current direction and the crests.
Note that besides tidal sand ridges, long bed waves could also
emerge if the critical velocity is close to the maximum current
velocity. The changes of the growth rate, wavelength and or-
ientation angle of the preferred bedforms due to changing tidal
ellipticity are non-monotonic: the largest growth rate and the
smallest orientation angle are found around ε = − 0.2, and the
smallest wavelength is found around ε = 0.2. The combined effect
of the critical velocity for sand erosion and elliptical tides might
explain the difference in the wavelength at the Dutch Banks and
the Flemish Banks in the North Sea. Using a diurnal tide increases
the wavelength of the preferred bedforms significantly, while the
orientation angle slightly decreases and the growth rate barely
varies. The characteristics of the preferred bedforms are de-
termined by the dominant tidal constituent if tidal currents with
more than one constituents are considered. At locations dominant
by the mixed tides, if the semidiurnal tide is known, as the am-
plitude of the diurnal tide increases, both the growth rate and the
wavelength of the preferred bedforms increase. In the case of
spring-neap tide dominant areas, if the representative current
velocity is fixed, the growth rate hardly changes, while the bed-
forms with longer wavelength are found if the amplitudes of the
two semidiurnal tides are close to each other. The change in the
orientation of the preferred bedforms is insignificant for mixed
tides and spring-neap tides.

Critical bed shear stress for sand erosion plays a key role in the
generation of long bed waves: long bed waves appear if the critical
velocity for sand erosion is slightly smaller than the maximum
current velocity. In addition, in the Northern Hemisphere, if the
tidal ellipticity is relatively large, more anticyclonically oriented
long bed waves are observed for cyclonic tidal currents, while
more cyclonically oriented long bed waves are found for antic-
yclonic tidal currents. Moreover, the growth rate of cyclonically
oriented long bed waves increases as the tidal ellipticity increases
under anticyclonic tidal currents. Linear/nonlinear and isotropic/
anisotropic slope-induced sand transport are not essential for the
formation of long bed waves.
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