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The Variscan mountain belt in Iberia defines a large “S” shape with the Cantabrian Orocline in the north and the
Central Iberian curve, an alleged orocline belt of opposite curvature, to the south. The Cantabrian Orocline is ki-
nematicallywell constrained, but the geometry and kinematics of the Central Iberian curve are still controversial.
Here, we investigate the kinematics of the Central Iberian curve, which plays an important role in the amalgam-
ation of Pangea since itmay have accommodatedmuch of the post-collisional deformation.Wehave performed a
paleomagnetic study on Carboniferous granitoids and Cambrian limestones within the hinge of the curve. Our
paleomagnetic and rock magnetic results show a primary magnetization in the granitoids and a widespread
Carboniferous remagnetization of the limestones. Syn-kinematic granitoids show ca. 70° counter-clockwise rota-
tions consistentwith the southern limbof theCantabrianOrocline. Post-kinematic granitoids and Cambrian lime-
stones show consistent inclinations but very scattered declinations suggesting that they were magnetized
coevally to and after the ~70° rotation. Our results show no differential rotations between northern, southern
limb and the hinge zone. Therefore, we discard a late Carboniferous oroclinal origin for the Central Iberian curve.

© 2016 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The latest supercontinent, Pangea, formed after several collisions
during the Paleozoic that amalgamated Laurentia, Baltica, Gondwana,
Siberia and an assortment of micro-continents to form a global plate
(e.g. Nance et al., 2010; Domeier and Torsvik, 2014). Among the many
orogens formed during the birth of Pangea, the Variscan–Alleghanian
orogen in Europe and North America stands out because of its
sinuous geometry. It shows several striking curves in map view: the
Alabama (Thomas, 1977); Pennsylvanian (Wise, 2004); New Foundland
(O'Brien, 2012); Bohemian (Tait et al., 1996; Edel et al., 2003), Cantabrian
(van der Voo, 2004) and the putative Central Iberian curve (Fig. 1;
e.g. Staub, 1926; Martínez-Catalán, 2011).

Orogenic curves can be classified according to their kinematics by
two end members: (1) primary curves, inherited from physiographic
features (e.g. gulfs, embayments) and (2) secondary oroclines, curves
that form from a previously linear continental fragment. All intermedi-
ate bent orogens are termed as progressive oroclines (Weil and
Sussman, 2004; Johnston et al., 2013). Oroclines are widespread in
.
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space and time (Rosenbaum, 2014), show varying curvature ranging
from a few degrees to as much as 180° (Johnston, 2001), may affect
the entire lithosphere (Pastor-Galan et al., 2012a) and may represent
up to thousands of kilometers of shortening (Shaw et al., 2016). Most
tectonic restorations consider plates as rigid bodies that move across
the Earth's surface following the basic principles of plate tectonics
(e.g. Stampfli et al., 2013; Domeier and Torsvik, 2014). However,
oroclines are the proof that plates are far less rigid through time
than reconstructions often assume. Properly identifying oroclines
and unraveling their kinematics is therefore essential for accurate
and viable tectonic and paleogeographic reconstructions.

The trend of the Variscan–Alleghanian belt in Iberia depicts thewell-
known Cantabrian Orocline in the north and an orogenic curve of oppo-
site curvature to the south, known as the Central Iberian curve (Fig. 1;
Shaw et al., 2012). After its first description in the early 20th century
this curve has been largely ignored. Due to lack of exposure, some of
the geometry and most of the kinematics of the Central Iberian curve
are largely unknown (Pastor-Galan et al., 2015a). Nonetheless, some au-
thors proposed that the Central Iberian curve is a secondary orocline
(Martínez-Catalán, 2011, 2012; Shaw et al., 2012). This hypothesis
involves hundreds of kilometers of shortening, large-scale strike-slip
tectonics and/or the presence of subduction zones, which has drastic
V. All rights reserved.
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Fig. 1. A) Schematic map of the Variscan belt showing the major terranes, sutures and
strike-slip shear zones and the traces of the Cantabrian Orocline and the putative
Central Iberian bend. B) Different geometries suggested for the Central Iberian bend, all
of them locating the Morais Complex in its core: (1) after Shaw et al., 2012; (2) after
Aerden, 2004 and (3) after Martínez-Catalán, 2011.

97D. Pastor-Galán et al. / Gondwana Research 39 (2016) 96–113
implications for the amalgamation of Pangea including its configuration
and inner stability (Martínez-Catalán, 2011; Shaw et al., 2014; Shaw
and Johnston, 2016). In this paperwe explore the kinematics of the Cen-
tral Iberian curve in its core using paleomagnetic analysis. We sampled
Carboniferous granitoids around its putative hinge and Cambrian lime-
stones in its southern limb. Our new results indicate that formation of
the Central Iberian curve is incompatible with a secondary orocline ori-
gin during the late Carboniferous. Therefore, we need an alternative ki-
nematic model to accommodate the observed curve geometry in this
part of the Variscan orogen.

2. Overview of the Variscan orogen in Iberia

The Late Paleozoic Variscan orogen of central and western Europe is
generally interpreted to be the result of convergence and collision
between Laurussia and Gondwana during closure of the Rheic Ocean
(e.g. Scotese, 2001; Stampfli and Borel, 2002; Murphy et al., 2006;
Nance et al., 2010; Nance et al., 2012; Domeier and Torsvik, 2014). It is
one of the major orogenic belts that formed during the amalgamation
of Pangea (e.g. Murphy et al., 2009; Stampfli et al., 2013 and references
therein).

The Variscan Orogen is classically divided into a number of
tectonostratigraphic zones based on fundamental differences in
their stratigraphic, structural, magmatic and metamorphic evolution
(e.g. Lotze, 1945; Franke, 1989; Martínez-Catalán et al., 2007;
Ballevre et al., 2014). These zones record different aspects of the
Late Cambrian–Early Ordovician opening of the Rheic Ocean and the
migration of terranes from themargin of Gondwana towards Laurussia,
as well as the tectonothermal events that accompanied the closure of
that ocean. Similarities within individual zones facilitate their corre-
lation along the length of the entire orogenic belt. Relevant to this
paper are the Central Iberian Zone – not to be confused with the
Central Iberian curve – and Galicia–Tras-os-Montes.

The earliest Variscan deformation in Iberia is interpreted to have
occurred prior to c. 400 Ma and its origin is debated (Dallmeyer
and Ibarguchi, 1990; Quesada, 1991; Gómez Barreiro et al., 2006;
Martínez-Catalán et al., 2009). The first evidences of continental
collision, however, occurred later, at ca. 365–370 Ma (Dallmeyer
et al., 1997; Rodriguez et al., 2003; López-Carmona et al., 2014)
with the underplating of the Gondwanan margin below Laurussia,
giving rise to an east-northeastward (in present-day coordinates)
migration of deformation, metamorphic and magmatic episodes
and syn-orogenic sedimentation (Dallmeyer et al., 1997).

The magmatic history of Central Iberia can be divided into three
main episodes: the first episode comprises the so called “Early
Granodiorites” (Capdevila and Floor, 1970). Their ages are poorly
known, but these granodiorites are interpreted to have intruded at
ca. 340 Ma (Gallastegui, 2005). Subsequent “Syn-kinematic” anatectic
leucogranites and granodiorites (Capdevila et al., 1973; Castro et al.,
2002; López-Plaza et al., 2008; López-Moro et al., 2012) have been
dated at ca. 325–318 Ma in NW Iberia (Escuder Viruete et al., 1994;
Díez Balda et al., 1995; Escuder Viruete, 1998; Ferreira et al., 2000;
Valverde-Vaquero et al., 2007; Costa et al., 2014; Gomes et al., 2014).
These intrusive features have been related to large extensional shear
zones and are interpreted to reflect themain phase of orogenic collapse
(Bea et al., 2006; Castiñeiras et al., 2008). Finally, the “Post-kinematic”
granodiorites, dated mostly between ca. 310 and 295 Ma, postdate
all Variscan deformation and are coeval with the development of
the Cantabrian Orocline. These late granitoids are interpreted to be
the result of lithospheric delamination caused by orocline buckling
(Gutiérrez-Alonso et al., 2011a, 2011b) or by thermal enhancement in
an orogenically thickened continental crust (Bea et al., 2003; Alcock
et al., 2009, 2015).

2.1. The Cantabrian Orocline

The Cantabrian Orocline (a.k.a. Ibero–Armorican Arc) is arguably
one the best studied oroclines on Earth (e.g. Weil et al., 2013;
Gutiérrez-Alonso et al., 2012). It is characterized by a curved struc-
tural trend that traces an arc from Brittany across the Bay of Biscay
into the Central Iberian zone (Fig. 1). An assortment of geological
data support a secondary oroclinal model for the Cantabrian
Orocline, in which an originally near-linear Variscan orogenic edifice
buckled around a vertical axis (e.g. van der Voo et al., 1997; Kollmeier
et al., 2000; Weil et al., 2001; Pastor-Galán et al., 2012b). Orocline for-
mation is constrained to a short period of ca. 10 to 15 Myr between
310 and 295 Ma based on paleomagnetic (Weil et al., 2010), structural
(Merino-Tomé et al., 2009; Pastor-Galán et al., 2011; Pastor-Galán
et al., 2014; Shaw et al., 2016) and geochronological data (Gutiérrez-
Alonso et al., 2015). The closure of the Rheic Ocean resulted in shorten-
ing during the Devonian and Carboniferous, which produced a near-
linear Variscan orogen. Subsequent change in the shortening direction
close to the Carboniferous–Permian boundary resulted in oroclinal
buckling (e.g. Weil et al., 2001; Pastor-Galán et al., 2011). Petrologic
and isotopic data indicate penecontemporaneous magmatic and
tectonothermal activity with the oroclinal buckling over the short 10–
15 Myr time window at the end of the Carboniferous (Gutiérrez-Alonso
et al., 2011a, 2011b). Orocline formation and large scale intrusions are
thought to be part of a single process of lithospheric buckling. Buckling
of the entire lithospherewouldproduce thinning in the outer arc, thicken-
ing in the inner arc, and ultimately foundering and delamination of the
mantle lithosphere under western Europe (Fernández-Suárez et al.,
2002; Gutiérrez-Alonso et al., 2004, 2011a, 2011b), an hypothesis that
was successfully testedwith analogmodeling (Pastor-Galan et al., 2012a).
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2.2. The Central Iberian curve

The Cantabrian Orocline is not the only orogenic curve described in
the Iberian Variscides. Another arcuate structure of similar magnitude
and opposite curvature occurs in the central part of the Iberian Massif.
It is known as the Central Iberian curve (Fig. 1) and was described by
Staub (1926) for the first time and included in seminal works by
Holmes (1929) and Du Toit (1937) (see Martínez-Catalán et al. (2015)
for a historical perspective on the Central Iberian curve). Due to the
lack of exposure its shape, kinematic and tectonic implications
remained ignored for several decades.

In the early 21st century Aerden (2004) brought back the Central Ibe-
rian curve hypothesis. Since then, several authors tried to unravel its ge-
ometry and kinematics with contradictory results. The new arguments
used in support of the Central Iberian curved geometry are:
(i) paleocurrents recorded in Ordovician quartzites (Shaw et al., 2012;
Fig. 1B-1); (ii) structural trend of folds and inclusions in garnets
(Aerden, 2004; Fig. 1B-2) and (iii) aeromagnetic lineations and
fold trends (Martínez-Catalán, 2012; Fig. 1B-3). Based on those
arguments, three geometries have been proposed (Fig. 1B). All of them
share two features: (1) The curvature runs parallel to the Central Iberian
Zone, located in the center-west of Iberia and (2) all place the Galicia–
Tras-os-Montes Zone in the core of the curve. In all these geometries the
Morais Complex, a set of mafic and ultramafic rocks roughly circular in
shape (Pin et al., 2006), is cross-cut by the axial trace of the curve (Fig. 1B).

There have been several attempts to explain the kinematics of the
curved geometry of the Galicia–Tras-os-Montes and Morais Complexes.
Sometimes it has been considered the result of an extrusionwedge prod-
uct of a non-cylindrical collision (Martínez-Catalán, 1990; Frois da Silva,
2014) or a klippe, a relic of a larger allochtonous thrust sheet (e.g. Rubio
Pascual et al., 2013). More recently, Martínez-Catalán (2011) and Shaw
et al. (2012, 2016) speculated that both the Cantabrian and Central Iberi-
an zones buckle together as secondary oroclines. Later, Martinez Catalan
et al. (2014) reformulated his original hypothesis and proposed that the
Central Iberian curve formed as an orocline just before the Cantabrian
orocline during a period between 315 and 305 Ma. However, none of
these papers contain data that are providing kinematic constraints
concerning the timing of the Central Iberian curve. Pastor-Galan et al.
(2015a) presented paleomagnetic data from the southern limb of the
curve. These authors discard a coeval secondary formation for the
Cantabrian orocline and Central Iberian curve and suggest that Central
Iberian curve, if real, had to be generated previous to 310 Ma.

3. Local geology

The Central Iberian zone consists of two domains: the “Schist–
Greywacke” domain and the “Ollo de Sapo” domain. The Schist–
Greywacke Domain, a.k.a. Upright Folds Domain, contains a dominantly
terrigenous, marine, Neoproterozoic and early Paleozoic sequence that
includes volcanic rocks and granitic orthogneisses (Díez Balda, 1986;
Valladares et al., 2000; Rodriguez-Alonso et al., 2004). Variscan defor-
mation started with the development of upright folds (e.g. Díez Balda,
1986), followed by the formation of extensional detachments
(Escuder Viruete et al., 1994; Díez Balda et al., 1995). Finally, a third
phase of deformation formed strike-slip shear zones and a new phase
of upright folding (Díez Balda et al., 1990).

3.1. Tamames syncline

The part of the Central Iberian Zone (CIZ) in the studied area, the so
called Upright Folds Domain (Díez Balda et al., 1990), is characterized
by: (i) a predominance of Ediacaran and Lower Paleozoic sediments;
(ii) a large number of Variscan granitoids intruding these strata;
(iii) in the center of the CIZ, NW–SE upright folds that occasionally
also preserve Silurian, Devonian and, in some cases, Carboniferous
sediments in synclines. One of these synclines, the Valongo–Tamames
syncline, extends for more than 250 km along strike from Portugal to
the province of Salamanca and is intruded to the east by the Carbonifer-
ous Central System Batholith (Yenes et al., 1999). The syncline folds
Ediacaran to Devonian sedimentary rocks comprising, from bottom
to top, the Aldeatejada, Tamames sandstone, Tamames limestone
formations, all of them are overlain uncomformably by the Lower
Ordovician Armorican Quartzite followed by other siliciclastic
rocks with some interbedded volcanics up to the Middle Devonian
(Gutiérrez-Alonso et al., 2008).

Pastor-Galan et al. (2015a) studied paleomagnetic directions from
the Early Cambrian Tamames limestone formation (Rölz, 1975; Díez
Balda, 1986), which only crops out in the northern limb of the syncline.
In that study, authors interpreted the dispersion in declination they
found as a remagnetization taking place during a counter-clockwise
rotation related to the formation of the Cantabrian Orocline. We
have performed rock magnetic analysis of the same sample collec-
tion to further examine this rather unconventional interpretation.
We have also integrated the directional results from that study in
the discussion here.

3.2. Tormes and Martinamor Domes

One of the main features of the Central Iberian Zone is the presence
of gneiss domes produced during the main collapse of the Variscan oro-
genic edifice. The gneiss domes are characterized by the presence of
large extensional shear zones and the abundance of syn-kinematic
anatectic granitoids (Díez Balda et al., 1995; Escuder Viruete, 1998).

We sampled two gneiss domes (Fig. 2): the TormesDome (Martínez,
1977; López-Plaza, 1982; Martínez et al., 1988; López-Plaza and
Gonzalo, 1993; Escuder Viruete et al., 1994, 1997; López-Plaza et al.,
1999; Viruete et al., 2000) and the Martinamor Dome (Díez Balda,
1981; Díez Balda et al., 1995). Both domes are characterized by an
antiformal shape, which folds the structural fabric. They are linked to
the km thick, top to the SE, extensional shear zones in which lenticular
shaped anatectic granitoids preferentially intruded (Escuder Viruete,
1998; López-Moro et al., 2012). The age of the syn-kinematic granitoids
is loosely constrained but U–Pb monazite ages between 329 and 320 Ma
were obtained in metasediments of the Tormes and Martinamor Domes
(Valverde-Vaquero et al., 2007), and between 325 and 320 Ma in granit-
oids (Valverde-Vaquero et al., 2007). Zircon U–Pb ages from the continu-
ation of the Tormes Dome to the west, in Portugal, yielded ages of 322 to
316Ma (Costa et al., 2014; Gomes et al., 2014). A subsequent extensional
event in the Tormes Dome is interpreted to have occurred between 317
and 313Ma (Valverde-Vaquero et al., 2007). Finally, a series of conjugated
strike-slip shear zones crosscut all the previous structures at ca. 308 Ma
(Ar–Ar in synkinematic mica growths; Gutiérrez-Alonso et al., 2015).

3.3. Post-kinematic granitoids

Widespread in western Iberia are volumetrically large igneous bod-
ies that intruded between ca. 310 and 285 Ma, and thus postdate all
Variscan structures (e.g. Gutiérrez-Alonso et al., 2011a). These intru-
sions are interpreted to be linked to mantle replacement during and
the generation of the Cantabrian Orocline (Gutiérrez-Alonso et al.,
2011b) or to temperature increase related to crustal thickening and an
associated increase in radiogenic heat production (Bea et al., 2003;
Alcock et al., 2015). In either case, the post-kinematic granitoids are co-
eval to the development of the Cantabrian Orocline.

In the study area several post-kinematic igneous bodies have been
sampled (Fig. 2):

(1) The Béjar–La Alberca Pluton — This is a large composite pluton
dated (ziron U–Pb) at ca. 306 and 308 Ma (Zeck et al., 2007;
Gutiérrez-Alonso et al., 2011a). The pluton is composed mostly
by quartz–monzonites (Yenes et al., 1999).

(2) Villavieja de Yeltes and Cipérez granites — These plutons have
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been dated (zircon U–Pb) at ca. 304 and 300 Ma respectively
(Gutiérrez-Alonso et al., 2011a, 2011b) and postdate the devel-
opment of the Juzbado-Traguntia-Penalva do Castelo Shear
Zone that bounds the Tormes Dome to the south. The shear
zone age is determined at ca. 309 Ma (40Ar/39Ar in biotite;
Gutiérrez-Alonso et al., 2015).

(3) Gredos Pluton— In this region, the cristalization age of the post-
kinematic granitoids has been constrainedwith zirconU–Pb ages
between ca. 312 and 303 Ma (Zeck et al., 2007; Villaseca et al.,
2011; Gutiérrez-Alonso et al., 2011a, 2011b; Orejana et al.,
2012; Díaz Alvarado et al., 2013). The samples collected in this
pluton include monzogranites, granodiorites, and leucogranites
as well as pelitic enclaves.

4. Remanent magnetization directions

4.1. Sampling and laboratory procedures

We drilled a total of 169 cores and 14 blocks, that were
obtained from 32 different sites in Carboniferous granitoids
(sample_locations.kml file with exact locations is in the Supple-
mentary material). We grouped the sites in localities according
to their geological setting: Tormes Dome; Martinamor Dome and
post-kinematic granites. We have also performed extensive rock
magnetic analysis in 209 cores and 4 blocks from the Tamames
Limestones, whose paleomagnetic directions were published in
Pastor-Galan et al. (2015a). In the discussion we merge the inter-
pretation of our new results together with those already published.

The natural remanentmagnetization (NRM) of samples was investi-
gated through thermal and alternating field (AF) demagnetization. AF
demagnetization was carried out using a robotized 2G-SQUID magne-
tometer, through variable field increments (4–10 mT) up to 70–
100 mT. In those samples where high-coercitivity and low-unblocking
temperature minerals were expected, we carried out a thermal demag-
netization step at 150 °C before AF demagnetization. Stepwise thermal
demagnetizationwas appliedwith 20–50 °C increments up to complete
demagnetization. Principal component analysis (Kirschvink, 1980) was
used to calculate magnetic component directions from “Zijderveld”
vector end-point demagnetization diagrams (Zijderveld, 1967).
Some representative Zijderveld diagrams are shown in Fig. 3. A min-
imum of 5 points were considered to characterize a remanent direc-
tion; directions showing Maximum Anglular Deviation (MAD) over
15° were discarded.

In many of the granitoid samples, NRM components appear to over-
lap; for such samples we determined remagnetization great circles
(Fig. 3). We used the approach of McFadden and McElhinny (1988) in
combining great circles and linear best fits (set points). For the interpre-
tation, we only considered great circles passing through previously
identified components from vector end-point diagrams (Fig. 3).

Mean directions and uncertainties of each componentwere evaluat-
ed using Fisher statistics of virtual geomagnetic poles (VGPs). Analyses
were carried out with the open-source software paleomagnetism.org
(Koymans et al., 2016). We applied the sample number (N)-dependent
A95 envelope of Deenen et al. (2011) to assess the quality and reliability
of the different component distributions. These criteria evaluate the
scatter of VGPs facilitating its interpretation. In general, if scatter is
-mostly- due to paleosecular variation (PSV) of the geomagnetic field,
the associated VGP distribution has to be circular and A95 will be within
certain minimum and maximum values, i.e. A95min ≤ A95 ≤ A95max.
However, if an important other source of scatter is present such as struc-
tural problems, vertical axis rotation or inclination shallowing, VGP distri-
butionswill be elongated instead of circular. If in such a case A95 becomes
larger than A95max, then traditional statistical parameters (Fisherian
mean, uncertainties, poles) are not representative of the dataset. Finally,
if A95 is smaller than A95min, the scatter underrepresents paleosecular
variation or other sources of noise. This may indicate NRM acquisition
over a short time period (e.g. a lava flow) or inappropriate sampling. On

http://paleomagnetism.org
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the other hand, NRM acquisition over a prolonged interval may also
smear out short-duration PSV and then essentially represents a geocen-
tric axial dipole direction.We applied a fixed 45° cut-off to the VGP dis-
tributions of each locality except for the Tamames limestone whose
VGP distribution shows some remarkable features (see discussion).

4.2. Post-kinematic granitoids

We sampled 83 cores and three blocks, in eight plutonic bodies
(Fig. 4; sample_locations.kml file in supplementary material), six of
the bodies are known to be post-kinematic with U–Pb crystallization
ages in zircons spanning from 310 to 300 Ma (Béjar [2 sites], Villavieja
de Yeltes, Cipérez, La Alberca and El Álamo plutons; Gutiérrez-Alonso
et al., 2011a). The age of the other two bodies is unknown, but they
are interpreted to be post-kinematic because of their petrological simi-
larities and vicinity to dated post-kinematic granitoids (Navarredonda
de Gredos and San Martín del Pimpollar; Gutiérrez-Alonso et al.,
2011a; Díaz Alvarado et al., 2013).

Many specimens appear to be too weakly magnetic to recover any
meaningful Characteristic Remanent Component (ChRM hereafter, see
supplementary material file demagnetization.zip). In 12 specimens we
recovered a clear ChRM component (MAD b 15°) and in 39 specimens
we could fit great circles that passed through the aforementioned com-
ponent and a present day component (Fig. 4; Table 1). After combining
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great circle solutions and linear best fits (McFadden and McElhinny,
1988) we defined a ChRM for the post-kinematic rocks that we named
eP because of its similarity to the eP magnetization component in the
Cantabrian Zone (e.g. Weil et al., 2000). This eP component in our col-
lection is of single polarity with declination/inclination =
146°/−7.4° (K = 21.3 and A95 = 4.4°). A95 lies between A95max and
A95min (Table 1) although the VGP distribution is notably elongated
(Fig. 5).
4.3. Syn-kinematic granites

Wehave sampled the syn-kinematic granites in two different exten-
sional domes: the larger Tormes Dome (58 cores and 11 blocks), which
surrounds the Morais Complex (Fig. 6) and the smaller Martinamor
Dome (21 cores), located to the south of the Morais Complex, in the
southern limb of the Central Iberian curve (Fig. 7).

4.3.1. Tormes Dome
We have identified three different components in the samples

taken in the Tormes Dome (Table 1; Fig. 5). A low temperature com-
ponent showing Dec/Inc= 5.1°/53.9° was identified in most (112) of
the analyzed specimens (Fig. 5; Table 1; file demagnetization.zip in
supplementary material). We consider this component as a Viscous
RemanentMagnetization (VRM), because of similarity to the Quater-
nary Geocentric axial dipole (in Salamanca: Dec/Inc = 0/60°). We
have also found reversed directions to this component (Fig. 5) in
site G6 (file Tormes.dir in demagnetization.zip in the supplementary
material). We interpret that site as remagnetized during a reversed
chron in the Neogene.

In 35 of the specimens we identified a single polarity NRM
component with Dec/Inc = 150.4°/−1.3° (K = 77.6 and A95 = 2.8°),
i.e. with a similar attitude as that retrieved from the post-kinematic
granitoids. We have grouped this component with the eP component
of the post-kinematic granitoids since it passes the common true direc-
tion tests of McFadden and McElhinny (1990) and Tauxe et al. (2010;
see supplementary material's Common_true_eP.pdf).

Finally, we have identified a component, labeled C, only found in the
syn-kinematic granitoids that we consider the ChRM (Fig. 5; Table 1).
This component was isolated in 53 specimens and additionally, we
could fit 71 great circles that are a combination of the C component
and either one of the previously described eP or present-day compo-
nents (Fig. 5). The C component is dual-polarity that shares a common
true mean direction (Fig. 6C). When combined (as reversed polarity),
its direction is Dec./Inc. = 82.7°/15.4° (K = 15 and A95 = 3.4°, cf.
Fig. 6 and Table 1).

4.3.2. Martinamor Dome
Contrary to the Tormes Dome, we only identified a single NRM

component in the Martinamor Dome (Figs. 3, 4 and 7). Combining
directions (13) and great circles (8) we obtained a dual-polarity
component that shares a common true mean direction (Fig. 7C);
Dec/Inc (reversed polarity) = 67.4°/11.4° (K = 12.6 and A95 = 10.1°;
Fig. 7; Table 1). In addition, the reversed polarity shows a common
true mean direction with both reversed and normal polarities of the C
component of the Tormes Dome collection (see C-comp.pdf in the sup-
plementary material). Therefore, we consider this to be the same C
component in both domes.

5. Rock magnetism in the Tamames syncline

A total of 209 cores and 4 blocks were collected in three lo-
calities in the Tamames limestone Formation (Fig. 8A and C;
sample_locations.kml file in supplementary material). Magnetic
directions, demagnetization procedure and discussion of the results
were reported in Pastor-Galan et al. (2015a). In this paper we provide
extensive rock magnetic analyses to further evaluate the hypotheses
casted in Pastor-Galan et al. (2015a, 2015b).

Identifying magnetic carriers provides crucial information about
the magnetization, timing and information about the geological pro-
cesses involved during the magnetization of the rock. We analyzed the
anisotropy of magnetic susceptibility (AMS) and applied several rock
magnetic analyses to the Cambrian limestones, including thermomag-
netic experiments, hysteresis measurements and IRM component anal-
ysis (Kruiver et al., 2001), both a room temperature, with the goal of
identifying the magnetic carrier(s).



Table 1
Statistics on the results per studied locality. N, number of successful analyses; Ns number of analyses passing the 45° cut-off; mDec, average declination; mInc, average inclination; k pre-
cision parameter ondirections;α95, confidence cone at 95% on directions; K, precision parameter on poles; A95 confidence coneat 95% onpoles.ΔDxandΔIx confidence interval at 95%on
declination and inclination.

Component Considering N Ns mDec mInc R k α95 K A95 A95min A95max ΔDx ΔIx

Post-kinematic eP Only lines 12 12 149.3 2.5 11.1 11.8 13.2 14.5 11.8 4.4 17.1 11.8 23.6
Lines + circles 51 59 146 −7.4 47.4 13.9 5.6 21.3 4.4 2.5 6.9 4.4 8.7

Syn-kinematic
Tormes DOME C Only lines 53 56 81.6 22 47 8.7 7.1 12.3 5.8 2.5 6.7 5.9 10.4

Lines + circles 125 127 82.7 15.4 112.7 10.1 4.2 15 3.4 1.7 3.9 3.4 6.4
eP Only lines 34 35 150.4 −1.3 33.4 51.3 3.5 77.6 2.8 2.9 8.9 2.8 5.6
Present day Only lines 86 112 6.8 51.8 82 21.2 3.4 19 3.6 2 5 4.3 3.9

Martinamor dome C Lines + circles 18 21 67.4 11.4 16 8.5 12.6 12.6 10.1 3.8 13.3 10.2 19.7
Tamames ChRM Lines 234 234 123.5 9.5 215.7 12.8 2.7 14.3 2.5 1.4 2.6 2.5 4.9
C component All results 142 149 81.1 15 127.5 9.7 4 14.5 3.2 1.7 3.6 3.3 6.1
eP Component All results 85 97 148.1 −3.6 80.6 19.2 3.6 29.8 2.9 2 5 2.9 5.7
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5.1. Thermomagnetic analyses

Thirteen high-field thermomagnetic runs weremeasured in air with
an in-house-built horizontal translation-type Curie balance with a
sensitivity of approximately 5 × 10−9 Am2 (Mullender et al., 1993).
About 50–80 mg of powdered sample material from representative li-
thologies were placed into quartz glass sample holders and were held
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thermomagnetic run pyrrhotite could be identified, albeit dominant-
ly the non-magnetic variety (hexagonal) (Fig. 9B). However, the
presence of pyrrhotite also was inferred from the demagnetization
diagrams from the ChRM component with a maximum unblocking
temperature of ~320 °C (Fig. 9B) and the very high coercitivity in
such ChRM (no demagnetization at 100 mT; Pastor-Galan et al.,
2015a, 2015b). All pyrrhotite varieties are platy, monoclinic pyrrhotite
(Fe7S8) has a Curie temperature of 325° (e.g. Dekkers, 1988). Pyrrhotite
occurs commonly as a secondary mineral in high-diagenetic and very
low-grade metamorphic limestones (Appel et al., 2012; Aubourg et al.,
2012).

5.2. Hysteresis loops

We analyzed eleven hysteresis loops (at room temperature) with an
alternating gradient force magnetometer (MicroMag Model 2900 with
2 Tesla magnet, Princeton Measurements Corporation, noise level
2 × 10−9 Am2). Representative samples with masses ranging from 20
to 50 mg were measured using a P1 phenolic probe. Hysteresis loops
were measured to determine the saturation magnetization (Ms), the
saturation remanent magnetization (Mrs), and coercive force (Bc).
These parameters were determined after correction for the paramag-
netic contribution. The maximum applied field was 1 T. The field incre-
ment is 10mT and the averaging time for eachmeasurementwas 0.15 s.

Different loop shapes were found (Fig. 9C; Hysteresis_raw.zip in
supplementary material for all loops): (i) Wasp-waisted or goose-
necked loops that do not saturate at 1 T which point to the presence
either of two magnetic carriers or two particle-size distributions with
distinct coercivity windows (TAM9-4P) indicating the presence of a
hard (likely pyrrhotite) and a soft phase (either soft pyrrhotite or
magnetite); (ii) pseudo-single domain loops (TAM1-9), that hardly
saturates at 1 T indicating fine grained pyrrhotite; (iii) typical single
domain (SD) loops (TAM3-8) likely indicating magnetite; (iv) very
narrow loops suggesting quasi superparamagnetic behavior pointing
to very fine-grainedmagnetic particles (TAM2-3-15), plausibly mag-
netite particles.

5.3. IRM acquisition curves

We have obtained 96 isothermal remanent magnetization (IRM)
curves from our Tamames limestone samples covering the entire syn-
cline. They were obtained with the robotized magnetometer system.
Before the actual IRM acquisition, samples were AF demagnetized
with the static 3-axis AF protocol with the final demagnetization axis
parallel to the subsequent IRM acquisition field, a procedure that gener-
ates IRM acquisition curves with a shape as close to a cumulative-
lognormal distribution as possible (Egli, 2004; Heslop et al., 2004).
IRM acquisition curves consist of 61 IRM levels up to 700 mT.

5.3.1. IRM component analysis
IRM component analysis enables a semi-quantitative evaluation of

different coercivity components (i.e. magnetic minerals) to a measured
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IRM acquisition curve. 12 specimens were analyzed following the
cumulative log-Gaussian approach (Kruiver et al., 2001). An exam-
ple of fitted IRM acquisition is in supplementary material's file
IRM_examples.pdf.

Measured IRM curves can be decomposed into one of more cumula-
tive log-normal coercivity components representing individualmagnet-
ic mineral phases that are characterized by three parameters: (1) B1/2,
the field atwhich half of saturation isothermal remanentmagnetization
(SIRM) is reached; (2) Mri, the magnitude of that phase, i.e. how much
of it is present in the sample, providing an indication of the component's
SIRM and therefore its contribution to the bulk IRM acquisition curve;
and (3) DP: the dispersion parameter, expressing thewidth of the coer-
civity distribution of that mineral phase and corresponding to one stan-
dard deviation of the log-normal function (Kruiver et al., 2001; Heslop
et al., 2002). Results from individual samples are characterized by two
main IRM components: (a) a high coercitivity component with a high
B1/2 N 280 mT and DP between 0.29 and 0.31 (log units); and (b) a sec-
ond component 2 with B1/2 ~45 mT and dispersion parameter (DP) of
~0.35 (log units). Component 1 is present in all samples; SIRM percent-
ages vary from 75% to ~100%. Component 2 therefore represents 0% to a
maximumof ~25% of the SIRM.We interpret component 1with high co-
ercivity, to be pyrrhotite and component 2 to represent very fine-
grained magnetite.

5.3.2. End member modeling
In an attempt to further shed light on the magnetic mineralogy and

recognizing different remagnetization episodes, we performed end-
member modeling as in Gong et al. (2009a). The program (Heslop and
Dillon, 2007) to interpret the IRM acquisition curves uses the algorithm
developed by Weltje (1997). It assumes that the measured data can be
represented by a linear mixture of a number of invariant constituent
components, which are referred to as end-members. By least-squares
minimization calculated normative compositions are optimized to the
measured IRM acquisition curves, eliminating the need for prior knowl-
edge of end-member properties (cf. Weltje, 1997). For further informa-
tion about this technique in the framework of remagnetization see the
review by Dekkers (2012).

End-member modeling is a helpful technique for identifying
remagnetized and non-remagnetized sedimentary rocks independent
of paleomagnetic field tests and directional information (Gong et al.,
2009a; Van Hinsbergen et al., 2010; Meijers et al., 2011; Dekkers,
2012; Aben et al., 2014; Huang et al., 2015a, 2015b). We have applied
this technique in order to find possible remagnetization ‘pulses’
(e.g. syn-folding and/or post-folding) in the Tamames syncline. A
two end-member model with a high r2 value of 0.91 (supplementary
material's IRMEnd_member.zip) is our preferred model. The three
end-member model with an r2 value of 0.96 shows an even better
fit and represents the break-in-slope in the curve of r2 vs. number of
end-members. However, the third end-member (End Member 2 in
Fig. 10 (the program happens to number end members in a random
manner, not paying attention to similarity in shape for example)) ap-
pears to be represented by only three samples (Fig. 10). In addition,
End Members 1 and 2 show unusual IRM curve shapes. Therefore, it
was not considered further.
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To evaluate the coercivity distribution of the end members we
applied IRM component analysis to these two end members (for the
analysis of the three end member model see IRM_3End_member.zip
in the supplementary material). The end members are character-
ized by two main IRM components: (a) a hard component 1 with
a high B1/2 of ~400 mT and DP ~0.30 (log units) which is the only
component found in End Member 1; and (b) component 2 with
B1/2 ~30 mT and dispersion parameter (DP) of ~0.35 (log units)
which occurs together with component 1 in End Member 2. In
this end member, component 1 with large coercivity constitutes
varying percentages of the SIRM from ~25 to ~100%; component
2 thus represents 0% to ~75% of the SIRM. We interpret component
1 (with high coercivity) to be pyrrhotite and component 2 to represent
very fine-grained magnetite. These interpretations of the IRM compo-
nent analysis are consistent with the other paleomagnetic and rock-
magnetic experiments performed.
5.4. Anisotropy of the magnetic susceptibility

Themajority of theNRM resides in pyrrhotite, inwhich themagnetic
easy direction is confined to the basal crystallographic plane; the intrin-
sic anisotropy is very strong because of the ‘hard’ crystallographic c-axis
(Schward and Vaughan, 1972; Schwarz, 1974). If pyrrhotite grows
oriented in a preferred fabric, themagnetic remanence would be biased
towards the fabric plane. As a corollary, AMS fabrics can reveal whether
pyrrhotite would be oriented in a given geological fabric.

We measured the magnetic anisotropy of Tamames limestones to
explore possible causes for the elongated VGP described here and in
Pastor-Galan et al. (2015a). We determined the composite fabric of
the paramagnetic, diamagnetic and ferromagnetic grains by measuring
the anisotropy of magnetic susceptibility (AMS) of all 209 drilled sam-
ples from our Tamames syncline collection with an AGICO MFK1-FA
susceptometer.
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The degree of anisotropy (P) appears to be very low (b1.02; Fig. 9A)
indicating a quasi-isotropic fabric at specimen level. The samples'
three principal ellipsoid axes (Kmax, Kint, and Kmin) are distributed
randomly both in geographic and tectonic coordinates (Fig. 9A). Actual
measurements are in supplementary material (file AMS_raw.zip). The
quasi-isotropic fabric precludes bias in NRM directions caused by a pre-
ferred orientation of pyrrhotite particles.

6. Discussion

The paleomagnetic sampling performed in the area surrounding the
Morais Complex, together with previously published datasets (Pares
and Van der Voo, 1992; Weil et al., 2013; Pastor-Galan et al., 2015a;
Fernández-Lozano et al., 2016), permits the study of the kinematics of
the Central Iberian curve during the Pennsylvanian (318 to 299 Ma).
In the following sections we interpret the obtained results.

6.1. C component

We have assigned the C component in the Tormes and Martinamor
domes (Figs. 6 and 7) as the ChRM. The average of the C component,
in reversed polarity to ease comparison with the other results (see
also Section 3), is Dec/Inc = 81.1°/15.0° (K = 14.5 and A95 = 3.2°;
Fig. 11; Table 1).We interpret the C component as a primarymagnetiza-
tion acquired during the cooling of the syn-kynematic extensional gran-
itoids. Three aspects support this interpretation: (1) the occurrence of
normal and reversed polarities, (2) a low paleolatitude (λ) of 7.7°S
(Table 1), and (3) a circular VGP distribution. The age of Tormes and
Martinamor domes ranges between 325 to 318 Ma (Valverde-Vaquero
et al., 2007; Costa et al., 2014; Gomes et al., 2014), just before and at
the beginning of the reversed Kiaman superchron (e.g. Langereis et al.,
2010). Therefore, the magnetization is likely to date from around the
onset of the long-lasting Kiaman. We also know that Iberia crossed the
Equator from the southern to northern hemisphere during the early
Permian (Weil et al., 2010). A paleolatitude of 7.7°S constrains the
pole to a youngest possible age of 318 Ma, and consequently as a pri-
mary (or pseudo-primary) magnetization. C components define
a pole for the studied area of Plat/Plong = 264°/−11.7° that we
assigned to a minimum age of 318 Ma (Table 2). This pole shows
the expected paleolatitude but also a counter-clockwise rotation ex-
ceeding 60° (Fig. 12) when compared to the global apparent polar
wander path (GAPWaP) of Torsvik et al. (2012) calculated for Iberia
(from Paleomagnetism.org, Koymans et al., 2016).

6.2. The Tamames syncline magnetization

Pastor-Galan et al. (2015a) described the Tamames ChRM as a single
polarity (reversed) and with consistent shallow inclinations in in-situ
coordinates (Average inclination=9.5°). In contrast, thepaleomagnetic
declinations notably vary with orientations ranging from 78° to 169°
(Fig. 8B; K = 20.2, A95 = 2.5°, cf. Table 1). The VGP distribution is
very elongated, although A95 (2.5°) is between A95min (1.4°) and
A95max (2.6°). Pastor-Galan et al. (2015a) interpreted the dispersion
in declination and elongated VGP distribution (Fig. 8) as a
remagnetization taking place during a counter-clockwise rotation
related to the formation of the Cantabrian Orocline (315–297 Ma).
We have performed extensive and new rock magnetic analysis to
the same sample collection to test this rather unconventional inter-
pretation of remagnetization over a prolonged time interval.

Following the results of the new rock magnetic analyses, pyrrhotite
appears to be by far the dominant magnetic carrier. Pyrrhotite is a sec-
ondary mineral which is formed under anchimetamorphic and very

http://Paleomagnetism.org
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low grade metamorphic conditions (Aubourg et al., 2012). Some sam-
ples contain minor amounts of very fine grained magnetite, however
all samples were totally demagnetized at 350 °C following the typical
decay curves of pyrrhotite (Fig. 9; Dekkers, 1989). From the performed
experiments we can deduce that magnetite in the Tamames limestones
behaves as (quasi-)superparamagnetic, and therefore it does not carry
an ancient remanence. Pyrrhotite is a strongly anisotropic mineral and
within individual grains the magnetic easy direction is controlled by a
strong basal plane anisotropy (Schward and Vaughan, 1972; Schwarz,
1974). It is, thus, relevant to test for pyrrhotite growth in a preferred
stress field during metamorphism which could bias the obtained
ChRM directions. The obtained AMS values show an almost isotropic
fabric, incompatible with a preferred orientation of the pyrrhotite. So,
the observed dispersion in declinations (Fig. 8B) represents the record-
ing of the geomagnetic field, and not an artifact from a structural fabric.

We searched for possible correlations between the observed dec-
linations and other parameters that could have influenced the NRM
acquisition (distance between sites and granites and a contact meta-
morphism gradient, stratigraphic position, lithology, rock chemistry
and IRM acquisition curves). There is no evidence of any kind of cor-
relation between the declinations observed and the different param-
eters tested. For instance, we sampled several sites in a space of less
than a square kilometer finding no relation between location and
declination (Fig. 8C). Neither does declination correlate with the
stratigraphic position, where declinations vary between strata with no
particular order (Column.pdf in the supplementary material). IRM end
member modeling could not reveal any kind of relation with any
other geological constraint. Neither do IRM end-members correlate
with declinations (i.e. a certain end member would dominantly show
declinations of 80° and the other of 170°), geographic location, or
stratigraphic position. For instance, samples TAM1-9 and TAM1-4
were collected less than two meters apart and show vastly different
IRM end-member contributions. However, they show almost identi-
cal declinations (124° and 126°). In contrast, samples TAM10-16 and
TAM10-19, separated a few centimeters, show very different decli-
nations (152° and 85°) while having exactly the same IRM end-
member contribution (20% and 80%) (supplementary material's
IRMEnd_member.zip).

In contrast to the expected distribution in samples magnetized at
low latitudes, here the distribution of the paleomagnetic directions
shows a large scatter in declination and consistent inclinations.
Additionally, the distribution in VGP is very elongated, suggesting
an additional source of scatter to the magnetic field variations. The
main candidates to produce such aberrant scatter in declination are:
(i) structural complications, (ii) inclination shallowing, or (iii) vertical
axis rotations.

Structural analysis of the Tamames syncline (π and β diagrams
Fig. 8C) shows that Tamames Syncline is, at least locally, a simple struc-
ture: an open upright fold with a gently plunging fold axis (162°/15°).
No major faults or other structures are found in the area (Fig. 8C). We
can, therefore, discard structural complications as a source of scatter.
The widespread presence of pyrrhotite, negative fold-test following
the Tauxe and Watson (1994), and the fact that results gets sensibly
more scattered after structural correction, implies that ChRM compo-
nent is post-folding, and related to one ormore remagnetization events.
This result also discards inclination shallowing as a source of scatter. The
only plausible cause, therefore, for the observed scatter is vertical axis
rotations. Pastor-Galan et al. (2015a) calculated a reference declination
of ~155° for Tamames based on theEarly Permian pole obtained byWeil
et al. (2010). Using the C component (~80°) and the reference direction,
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we find that the Tamames region rotated about 70° counter-clockwise,
whichfits in bothmagnitude and time (310–297Ma)with the expected
rotation if Tamames syncline is considered a part of the southern limb of
the Cantabrian Orocline (Pastor-Galán et al., 2011; Weil et al., 2013;
Pastor-Galan et al., 2015a). The Central Iberian curve hypothesis explic-
itly demands a clockwise rotation to accommodate the “S” shape around
the Morais Complex (Fig. 1A).

It is challenging to explain how a small area as the Tamames
syncline registrated a 10 Myr protracted process of remagnetization.
Remagnetization during rotation is a non-unique process. Gong et al.
(2009b) documented remagnetization during rotation locked into the
rocks in various rather small basins during themiddle Cretaceous ro-
tation of Iberia. It is indeed true that these basins show a single
remagnetization direction across an entire basin and not a rotation
recorded in samples from a single basin (please, note that in Organyà
Basin the recorded rotation is argued to be from non-remagnetized
Table 2
Pole for Iberia at 318 Ma and polar wander path obtained from the moving average (see
text for details).

Age (Ma) Plong Plat A95

C-comp 318.0 264.0 −11.7 3.2
Movavg4 307.5 249.0 9.5 2.3
Movavg3 305.0 239.6 21.7 1.3
Movavg2 300.0 231.0 29.8 1.7
Movavg1 297.5 215.1 37.5 2.3

Lat 41
Lon −6
rocks, cf. Gong et al., 2009a, 2009b). This absence of analog situations
maymake the process suggested here counter-intuitive. However, in
our view it is the most plausible scenario to explain the paleomag-
netic and rock magnetic results,. First, it is important to notice that
the Tamames syncline outcrop is surrounded by post-kinematic
granitoids (Fig. 2) of ages that span the period between 310 and
300 Ma (Gutiérrez-Alonso et al., 2011a).

We suggest that the NRM acquisition of the Tamames limestones
happened as a consequence of a complex granitoid-induced fluid-
plumbing system that took advantage of differences in porosity in the
limestones, fractures, bedding, and possibly the angular unconformity
below the lower Ordovician quartzites. Fluids, would have remagnetized
the rock in a quasi-random style, following the lack of correlation be-
tween different magnetic properties and ChRM directions. The process
would transform pyrite and magnetite into pyrrhotite. Pyrrhotite is
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quite stable in low-grade rocks under reducing conditions, so theportions
of the rock that got remagnetizedwith the first arrival of fluids would re-
main unaffected by the next pulses of fluids. A ‘front of remagnetization’
would affect the rock where fluid can migrate (fractures, differential
porosity…). In the scenario, the fluid causes pyrrhotite formation but
once formed pyrrhotite is either immune to further reaction and/or the
rock is cemented precluding further fluid migration at that specific spot.

The process may be more common than we currently suspect it ap-
pears to be.Most of paleomagnetic applications to tectonics disregarded
the meaning of elongated VPGs and have used site averages. A syncline
like Tamames,would traditionally consist of amaximumof three or four
site averages. Thosemeandirectionswould oversimplify the data, losing
the crucial information about remagnetization during vertical axis rota-
tion that the data contain.

6.3. eP component

All post-kinematic and some syn-kinematic granitoid samples
yielded a single polarity component with declinations to the SE and
very shallow inclinations. With such results, the magnetization had to
be acquired during a reversed superchron, when Iberia was situated at
equatorial latitudes. The data obtained constrain the eP component to
Late Carboniferous–Early Permian times, being primary for the post-
kinematic granitoids, and an overprint in the syn-kinematic granitoids.
We have named this component eP due to its similarity with the eP
component observed in the core of the Cantabrian Orocline (Weil
et al., 2013). The average parameters of component eP are Dec/Inc =
148°/−3.6° (K = 29.8 and A95 = 2.9°; Table 1). Like in the Tamames
syncline, this component is also characterized by an elongated VGP
distribution (Fig. 11) with ~75° of variability in declination (from 120°
to 195°) and very consistent shallow inclinations. A95 is in between
A95min and A95max, meaning that the average of the data set can be
considered representative. Contrary, for low latitudes is expected a larger
scatter in inclination rather than declination (Deenen et al., 2011).

In line with the Tamames interpretation, we interpret the elongated
VGP distribution (scatter in declination) is a consequence of NRMacqui-
sition during the ca. 70° counter-clockwise rotation. Post-kinematic
granitoids emplaced in the same interval as the Cantabrian Orocline
formed (Gutiérrez-Alonso et al., 2011a, 2011b; Weil et al., 2013).
There is, however, a difference between the declination directions
from the Tamames syncline (80°–170°) and those of the eP component
(120°–195°).We argue that this difference is caused by the timingof the
NRM acquisition. Whereas Tamames syncline rocks remagnetized
through pulses of fluids coming from the surrounding post-kinematic
granitoids in a chemical process, the post-kinematic granitoids only ac-
quired their NRM once they were cold enough, so delayed to variable
extents with respect to the Tamames limestone. In that way, Tamames
limestones would have recorded mostly the first stages of the rotation,
approximately about two thirds of it (its average declination is ~124°,
Table 1) and the post-kinematic granitoids (with average declination
148°) would record primarily the later stages, until completion.

6.4. Apparent polar wander path

Tamames limestones and the eP component cover all the possible
declinations between the pole obtained in the syn-kinematic granites
(Dec.=80°) and the pole obtained for stable Iberia in the Early Permian
(Dec. = 155°). Since the Tamames and eP components were likely
acquired during the formation of the Cantabrian Orocline, we have
constructed an apparent polar wander path for the studied area be-
tween 318 and 297 Ma (Fig. 12; Table 2). The first point of the path is
the pole obtained from the syn-kinematic granitoids for 318 Ma. We
have obtained the other four poles (Table 2) combining all individual
directions from Tamames limestones and the eP component. The data-
points were ordered by declination, assuming that easterly declinations
were acquired earlier, since their directions are closer to the syn-
kinematic granitoid direction. Southerly declinations are considered to
have been acquired subsequently, since they are similar to the Early
Permian pole for stable Iberia (Weil et al., 2010). From this distribution,
we obtained amoving average of 93data-points and steps of 31, therefore
each pole shares 31 data points with the neighboring poles. We assigned
the ages (Table 2) assuming a constant rotation rate of the Cantabrian
orocline from 310 to 297 Ma (Pastor-Galán et al., 2011; Weil et al.,
2013). The resulting apparent polar wander path fits in paleolatitude
with the GAPWaP (adapted for Iberia from Paleomagnetism.org;
Torsvik et al., 2012; Koymans et al., 2016) but shows a continuous coun-
terclockwise rotation following the remagnetization during rotation
(Fig. 12).

6.5. Kinematic evolution of the Central Iberian curve: “two”many oroclines
in Iberia

The Cantabrian and Central Iberian orogenic curves draw an “S” in
plan-view throughout Iberia (Fig. 1). If this “S” geometry is the product
of secondary oroclinal bending, declinationswould contort around such
a geometry resulting in clockwise rotations in the northernmost and
southernmost limbs and counter-clockwise rotations in the then shared
intermediate limb. It would be expected that strong changes in dec-
lination would take place around the hinges of both oroclines. This
observation is true for the Cantabrian Orocline, its northern limb
shows clockwise rotations (Weil et al., 2013; Edel et al., 2014,
2015; Pastor-Galán et al., 2015b), and around the hinge declinations
progressively turn around until they indicate counter-clockwise ro-
tation for the shared limb (southern limb of the Cantabrian Orocline;
Weil et al., 2000, 2001; Fernández-Lozano et al., 2016). However, the
results we have found around the hinge and southern limb of the puta-
tive Central Iberian orocline togetherwith previous results from the liter-
ature (Perroud et al., 1991; Pares and Van der Voo, 1992; Pastor-Galan
et al., 2015a) show consistent counter-clockwise rotations (Figs. 12 and
13). The latter rotations are in full agreement with the counter-
clockwise rotations observed in the southern limb of the Cantabrian
Orocline (Fig. 13; Weil et al., 2013; Pastor-Galan et al., 2015a). From
the kinematic point of view, our results do not allow the formation of
the Central Iberian curve after 318Ma, in contrast to what was proposed
by several authors (Martínez-Catalán, 2011; Shawet al., 2012;Weil et al.,
2013; Martinez Catalan et al., 2014; Shaw et al., 2014, 2016).

Our results can only be interpreted in the sense of permitting the
Central Iberian curve to be an inherited feature that originated prior to
the extensional collapse of the Variscan orogen which produced the
syn-kinematic granitoids, if it ever existed. Therefore, the curved geom-
etry may be either a syn- or pre-collisional feature. Examples of plausi-
ble mechanisms capable of producing large scale, hairpin-shape
progressive oroclines (i.e. syn-collisional) are indentation of a sharp
and large rigid block during earlier collision (e.g. in Late Devonian or
Early Carboniferous times) or a roll-back of a subducting slab previous
to the final continent-continent collision (e.g. Rosenbaum et al., 2012).
Until now, there is no evidence for either of these processes. Another
possibility is that the Central Iberian curve is an inherited primary fea-
ture (e.g. a large embayment). However, this hypothesis would require
a particular distribution of sedimentary rock facies which is not ob-
served in the Central Iberian Zone (Aramburu et al., 2002).

We coin that the Central Iberian curve is just a mislead observation.
The putative hinge of the Central Iberian curve is largely covered, being
the Galicia–Tras-os-Montes Zone and Morais Complexthe only place
where its trace is observable (Figs. 1 and 2). The peculiar geometry of
Morais has to be explained by other mechanisms rather than vertical
axis rotations (Martinez Catalan et al., 2014) since neither a secondary
nor a progressive orocline scenario satisfies the available paleomagnetic
data. Up to now, there are two kinematicmodels that explain the curved
geometry of Morais Complex that do not invoke large differential verti-
cal axis rotations: (1) The allochtonous complexes are the relic of an ex-
trusion wedge product of a non-cylindrical collision (Martínez-Catalán,
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1990; Frois da Silva, 2014); (2) Morais Complex is just a large scale
rounded klippe of the larger allochthonous unit that thrusted over
NW Iberia (Ries and Shackleton, 1971; Ribeiro, 1974). We find both ex-
planations good starting hypotheses for further work to unravel the
subtle nature of the Central Iberian curve.

7. Concluding remarks

Our new paleomagnetic data from intrusives from the Central
Iberian Zone support 60° to 75° counter-clockwise rotations over
its entire extension. This rotation is consistent in theMorais Complex
region, where the alleged hinge of the Central Iberian curve was
interpreted. The geometry of the Morais Complex can also be ex-
plained without invoking vertical-axis rotations: it could be a simple
large scale klippe or an extrusion wedge. Our results are in agree-
ment with the whole Central Iberian Zone being the southern limb
of the Cantabrian Orocline, which starting from at least the Central
Iberian Zone turns around NW Iberia and involves Southern Ireland
and the Armorican Massif in France. From the kinematic point of view,
our results do not permit the formation of the Central Iberian curve
after 318 Ma, and therefore it is not a secondary orocline. No available
paleomagnetic or geological data is in agreementwith the Central Iberi-
an curve to be a progressive orocline (e.g. indenter or roll-back) or a pri-
mary physiographic feature (e.g. a gulf, embayment). We conclude that
the particular geometry of the Central Iberian Zone drove to kinematic
misinterpretation in absence of reliable data. Therefore, the kinematic
evolution of the Central Iberian curve requires revision.
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