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Abstract We study how payoffs and network structure affect reaching the payoff-dominant
equilibrium in a 2× 2 coordination game that actors play with their neighbors in a network.
Using an extensive simulation analysis of over 100,000 networks with 2–25 actors, we show
that the importance of network characteristics is restricted to a limited part of the payoff
space. In this part, we conclude that the payoff-dominant equilibrium is chosen more often if
network density is larger, the network is more centralized, and segmentation of the network
is smaller. Moreover, it is more likely that heterogeneity in behavior persists if the network
is more segmented and less centralized. Persistence of heterogeneous behavior is not related
to network density.

Keywords Coordination · Social networks · Dynamic games · Simulation methods

1 Introduction

While social networks are widely considered as facilitators for cooperation and are judged
as instrumental for reaching more efficient outcomes in society [11,24], not all networks are
equally beneficial under all circumstances. When game play occurs on networks, it is not at
all obvious to which state—if any—equilibrium behavior will converge. This theoretical and
empirical controversy has been most apparent in research based on Harsanyi and Selten’s
[18] equilibrium selection principles payoff dominance and risk dominance. The payoff-
dominant equilibrium is the equilibrium that Pareto dominates other equilibria, while the
risk-dominant equilibrium is the equilibrium that actors are more likely to choose if they are
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more uncertain about what the other actor will do. The choice between different equilibria
is then considered a matter of coordination on an appropriate convention, more than it is
a matter of optimal choice. Several scholars have analyzed theoretically how equilibrium
behavior, and thereby the emergence of conventions, depends on differences in the size and
shape of the networks between actors (the ‘local interaction structure’), in ways similar to
the seminal work of Nowak and May [23] regarding the feasibility of cooperative behavior
in the Prisoner’s Dilemma when played on a lattice.

1.1 Theoretical Research on Network Effects in Coordination Games

With respect to coordination games, Ellison [14] has argued that, in general, local (as opposed
to random) interaction strongly increases the speed of convergence to the risk-dominant
equilibrium. Ellison takes this as evidence in favor of the applicability of evolutionarymodels
to larger populations of locally interacting actors. Anderlini and Ianni [1] likewise show,
among other things, how stable states that cannot be reached in a situation where interaction
is not local, can be reached when local interaction is assumed. Networks in these studies
most often have regular structures such as a line [14] or a lattice [4,5]. What these studies
also have in common is that the networks are relatively small in size, and the number of
different networks being considered is usually relatively small. The networks that are being
compared serve as stylized examples of real- life networks and are mainly meant (1) to show
that (different kinds of) network effects on (the speed of) cooperation can exist and (2) to
compare theoretical predictions on given networkswith empirical behavior in these networks.
Although the general gist of this research seemed to be that networks favor cooperation
in different contexts, several puzzling findings remained, and more extensive (simulation)
analyses have followed, with different research approaches. One prominent research line
focuses on which kinds of network characteristics are known to exist in real-world networks
and then compares collections of networkswith such characteristicswith a baseline collection
of networks. Analyses along these lines have been conducted in for instance Santos et al.
[28], Tomassini and Pestelacci [30] and Roca et al. [25–27]. Santos et al. [28] show that
heterogeneity in terms of the degree distribution positively affects cooperation in several
games, by comparing populations of single-scale networks with scale-free networks. This
positive effect of the degree distribution, however, seems not in line with several other results.
Tomassini and Pestelacci [30] compare large random networks, scale-free networks and
networks based on a real-world structure. They conclude that only small differences between
the different types of networks exist in Stag Hunt games, although community structure does
play a role for somenetwork types.Roca et al. [25–27] conduct similar kinds of analyses based
on a larger set of underlying games, different kinds of strategy updating rules and a larger
set of networks (different variants of random, scale-free and small-world networks). Among
many other things not directly related to our paper, they find that ‘best response [network
simulation] is largely unaffected by the underlying network, which implies that, in most
cases, no promotion of cooperation is found with this dynamics.’ What is well established is
that the findings on network characteristics (can) depend on several dimensions, including the
strategy update rule, the kind of network and game, the possibility of dynamically rewiring
ties, and the game and the choice of payoffs. Typical for research in this direction is that
although large classes of (often also large) networks are compared, the focus in terms of
network characteristics is on a comparison of one or two network characteristics across
groups, with no or less attention for potential effects of other network characteristics. That is,
a found difference or a lack of a found difference between, say, a group of random networks
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and a group of scale-free networks might be due to other characteristics of the networks in
the respective groups.

Cassar [10, p. 228], when considering hypotheses about the effects of network characteris-
tics on the kind and speed of convergence, argues ‘it is important to note that these results [on
the effects of network characteristics] are exploratory, because a theory linking network char-
acteristics to individual behavior is yet not available. It is hoped that these empirical findings
stimulate such theoretical development.’We argue that, because results in the studies summa-
rized above focus on comparisons of large groups of networks that do not control for possible
other structural differences in the networks, the reasons for effects of network characteristics
on cooperation (in games in general and coordination games in particular) are incomplete.We
try to fill this gap, at least for smaller networks in coordination games. The focus on smaller
networks allows us to consider many different networks and to control for the differences in
structural characteristics between these networks to a large extent. In addition, the focus on
smaller networks allows our results to be directly applicable to empirical research on smaller
networks, for instance, on public good provision in small groups or social influence in school
classes, or on cooperative behavior in networks in the experimental social sciences.

1.2 Coordinating on Efficient Play as Dependent on Network Characteristics

By simulating game play in a large number of different networks, we analyze how char-
acteristics of networks affect the likelihood of ending up in a specific equilibrium. This is
a research technique applied also in some sociological studies (see [7, Chapter 4], [9,36]).
Common to these analyses is the idea that the way in which actors are connected is of key
importance for their behavior and that simulation can be used to eventually ‘partial out the
net effects’ of the different network characteristics. Moreover, varying the payoff configu-
rations allows us to consider interactions between the payoffs and network characteristics
as well. By including a completely deterministic and a more probabilistic version of the
simulation, we likewise investigate whether our results change as a consequence of these
different setups. Our main research question is how network characteristics such as network
size, density, centralization and segmentation affect the probability that locally interacting
actors in a network converge to the payoff-dominant equilibrium in a coordination game and
how these effects depend on the payoffs of the underlying coordination game. In addition,
we examine how those network characteristics determine the probability that the behavior
in the network becomes homogeneous (everybody chooses the same behavior) or remains
heterogeneous (see also [27]). Compared to earlier theoretical analyses, we cover a larger
variation of network characteristics simultaneously, including the density of the network, the
variation in numbers of ties between actors (centralization), the clustering of social ties (seg-
mentation) as well as some network aspects (such as the specific number of neighbors actors
have) that turn out to have theoretical relevance, but were not identified in earlier analyses.
As we will show, the different types of network effects that we encounter are only relevant
in a limited part of the payoff parameter space of the games we analyze.

1.3 Empirical Research on Coordination Games

A series of empirical analyses, mainly in experimental economics, has considered the con-
ditions under which human subjects choose which kind of equilibrium in games where both
kinds of equilibria exist (cf. early studies by Cooper et al. [12] and Van Huyck et al. [33,34]),
again, often related to theoretical arguments aimed at developing a theory of the evolution of
conventions [20,37]. Unfortunately, the empirical studies do not provide consistent evidence
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on the empirical importance of network structure to convergence to one or the other equi-
librium. Keser et al. [21] found that play in a ring network (each actor has two neighbors)
is less likely to lead to the efficient outcome than play in a mixed network. Berninghaus
et al. [4] also found that a ring network (of size 8 or 16) leads to less convergence to the
Pareto-efficient strategywhen compared to groups of three connected players and that lattices
of size 16 also lead to efficient play less often. Frey et al. [15] find no evidence of network
effects in coordination games (using networks of size 6). In part, this could be due to the fact
that the power to find such differences was relatively low given that the more experienced
participants quickly converged to the Pareto-optimal solution. Antonioni et al. [2] find that
subjects are equally likely to converge to the efficient outcome when comparing a random
with a ‘cliquish’ network. The experiments by Cassar [10] showed that coordination on the
efficient outcome was more likely in a scale-free network (compared to a random network,
both of size 18), possibly because of the higher level of clustering in the scale-free networks.
Given that the theoretical results depend on several parameters of the model, as mentioned
above, that the variance in game and network conditions that can be accomplished in labo-
ratory settings is necessarily restricted, and that humans are influenced by many other things
than just following a strict rule of play, these diverging experimental findings are perhaps not
that surprising. Still, they signal that a more detailed theoretical analysis of how behavior in
coordination games is conditioned by the network in which actors are embedded might be
informative also for the interpretation of the divergent empirical results. We will interpret
some of these experimental findings in more detail in light of our theoretical implications in
Sect. 6.

2 Simulation of Coordination Games Played on a Network

In our simulation, actors interact in connected symmetric binary networks, where the number
of actors varies between 2 and 25. In each round, actors play the same 2 × 2 coordination
game with their neighbors, the actors with whom they are connected. Actors have a fixed
strategy with respect to all their neighbors within a single round. After each round, actors
can choose to update their choice of behavior in the coordination game in the next round.
The simulation ends when convergence is reached (no actor wants to change behavior any
more) or a given number of rounds (see below) have been played. After a simulation, we save
the proportion of actors playing the behavior related to the payoff-dominant equilibrium, the
payoffs in the constituent coordination game and the characteristics of the network. Across
simulations, we vary the network (we ran simulations for 112,614 networks) and the payoffs
(81 different payoff configurations). The details of the simulation are presented below.

2.1 Sampled Networks and Network Characteristics

We only consider connected networks, with network sizes (the number of actors) varying
from 2 to 25. For networks with size 2 through 8, we generated all 12,112 connected non-
isomorphic graphs. For network sizes larger than 8, we generated all connected networks
for smaller and larger numbers of ties and sampled networks from the set of networks with
intermediate numbers of ties. For networks with sizes from 9 through 12, we generated
roughly 10,000 networks per network size. For networks with sizes from 13 through 16, we
generated roughly 5000 networks per network size, and for networks of size 17 through 25,
we generated roughly 3800 networks per network size. Taken together, this gives us a set of
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Table 1 The constituent
coordination game
(b < c < a < d)

D C

D a, a c, b

C b, c d, d

112,614 different networks. A more detailed description of the sampling of networks can be
found in the Appendix.

We calculated several characteristics for each network:

• Size: the number of actors in the network.
• Density: the proportion of ties present in the network, which equals the number of ties

divided by (size · (size − 1))/2.
• Degree: the number of neighbors each actor has (an actor characteristic that we use to

calculate further network characteristics).
• Centralization: the standard deviation in the degrees of the actors divided by the size of

the network (cf. [29]; ‘heterogeneity’ in terms of Santos et al. [28]).
• Segmentation: comparing across all distances between pairs of actors in the network that

are larger than 1,1 this is the proportion of distances that is 3 or larger. If all actors are
directly connected, all distances are equal to 1 and the measure is defined as 0 [3].

Loosely speaking, we tried to capture ‘howmany ties there are’ (density), ‘the extent to which
there are actors with much more ties than others’ (centralization) and ‘the extent to which
the network consists of strongly connected groups that are themselves loosely connected’
(segmentation). There are of course more possibilities to include network characteristics,
but these are some of the most basic ones. Whereas these measures are of clear substantial
interest, we also control for other network characteristics that affect the results, aswill become
clear in Sect. 3.

• Maximal degree: the largest degree that occurs in the network.
• Proportion of actors with an odd number of neighbors

2.2 The Choice of Payoffs in the Constituent Game

The coordination game being played in each round of a simulation is the two-actor symmetric
normal-form game as displayed in Table 1. Because b < c < a < d , (D, D) and (C, C) are
both Nash equilibria. (C, C) is always the payoff-dominant equilibrium. If a − b = d − c,
then the mixed equilibrium is risk-dominant, and if a − b < d − c, then (C, C) is both the
risk-dominant and the payoff-dominant equilibrium. We focus on the more interesting case
where a − b > d − c. In this case, (D, D) is the risk-dominant equilibrium and (C, C) the
payoff-dominant equilibrium. That (D, D) is the risk-dominant equilibrium can easily be
inferred by considering what actors would do as a best reply if the other actor would play
D and C with equal probability. In our simulations, we chose b = 0 and d = 20 and varied
a and c randomly between 0 and 20, while making sure that a > c and a + c > 20. Using
integers for all payoffs, this gives 81 different payoff configurations.

For each network of size 2–12,we ran two simulations, eachwith a randomly chosen payoff
configuration. For networks with sizes 13–25, we ran only one simulation with a randomly
chosen payoff configuration. In sum, this leads to a total number of 165,428 simulations.
Although this implies that we simulate either one or two payoff configurations per network

1 Distance is the minimal number of ties through which two actors can reach each actor, also called minimal
path (see [35]: 110–111).
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structure, we chose to restrict our simulations in this sense because the number of networks
is large enough to ensure that all payoff configurations are adequately represented in the
simulation sample: All payoff configurations co-occur with all network characteristics.

2.3 Behavior in One Round of Play and the Adaptation Strategy

In each round, an actor can choose between C and D, but we assume that actors must play
their choice of behavior against all their neighbors: They cannot differentiate their behavior
with respect to their neighbors. Note that this is similar to the way in which [14] and most
others discussed in the introduction operationally define the freedom of choice of behavior
that actors have. After each period, actors observe the percentage of their neighbors that
played C and can decide to change their behavior for the following round.2 We ran separate
simulations for two so-called adaptation strategies, i.e., two ways in which actors could adapt
their behavior between rounds of play with their neighbors:

• [Adaptation Strategy 1:Myopic best reply] Each actor plays eitherC orDwith probability
1 in round 1. In round t + 1, an actor plays what would have been the best reply against
his neighbors’ play in round t .

• [Adaptation Strategy 2: Changing propensities] In round 1, each actor has a propensity
to play C equal to 0.5. If his best reply against the behavior of his neighbors at time t
would have been D, he increases his propensity to play Dwith 0.1. If his best reply would
have been C, he decreases his propensity to play D with 0.1. Clearly, propensities will
be bounded between 0 and 1.3

We continued the simulation until convergence was reached or a specific number of rounds
(depending on the adaptation strategy, see below) had been played.

For adaptation strategy 1 (in which behavior is completely deterministic), we calculated
the average proportion of C choices after the process converged. Convergence was reached
if, given the behavior of others, no actor wanted to change behavior anymore. For networks
with at most 10 actors, we calculated this average proportion across all possible starting
configurations of C and D behavior in a network (210 = 1024 configurations). For network
sizes n larger than 10, we chose 1024 starting sets of playing C or D out of the 2n possible
starting configurations. The starting sets were chosen such that starting states with many
Ds as well as with many Cs were guaranteed, while taking into account that the average
probability to play C or D across the whole set of networks with a given size remained
0.5.4 Most of the time we found convergence to all-D, sometimes to all-C and sometimes
to a heterogeneous equilibrium in which some play D and some play C (only in 1.6% of
the simulations all starting configurations within one network converged to the same state,
namely all-D). In addition, because of the discrete and deterministic updating rule, sometimes
a starting configuration led to flipping back and forth between two states (9.4% of the times).
When this occurred, we saved the average of Ds across these two states. It never occurred
that there was a larger cycle of states in which the process got stuck.

2 It would not make a difference to assume that actors observe the behavior of all their neighbors. Because
actors cannot differentiate their behavior among their neighbors, their replies are necessarily based on the
proportion of neighbors playing D or C anyway.
3 One could also use a slightly more sophisticated (and standard) adaptation strategy in which the propensity
p to play ‘X’ in round t + 1 is reinforced through p(t + 1) = p(t)+q(1− p(t)), with q a learning parameter.
The results are very similar.
4 To see how this was accomplished, suppose n = 25. We need to create 1024 binary strings of length 25,
representing behavior of the 25 actors. Then for every k, with k = 1, . . . , 1024, we first randomly select a
binary string of length 15 and then complete it with the number k in 10-digit binary representation.
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In the case where actors’ behavior is not deterministic but based on propensities (adap-
tation strategy 2), we chose a starting position with propensities all equal to 0.5 (for all
network sizes) and replicated the simulation 100 times. Convergence was reached when no
actor wanted to change propensity any more, and at that point, we registered the percentage
of actors who played C. This percentage we averaged across the 100 replications. Most of the
time, these replications converged to an all-D or an all-C state. Only in 2.3% of the replica-
tions, a heterogeneous equilibriumwas reached.We set themaximal number of roundswithin
these replications to 1000, and for the smaller networks, convergence was always reached.
We discovered later that convergence was not always reached within 1000 rounds for larger
networks.We checkedwhether excluding the networks that did not always converge (this hap-
pened in less than 0.2% of the networks, while it happened in less than 0.06% of the networks
more than four times out of 100 replications) changed our results, but this was not the case.

Taken together, this generates a data set with 165,428 ‘observations,’ where each observa-
tion consists of the average proportion of actors playing C across the replications at the end
of a simulation, the payoff configuration that was used in the constituent game and the set of
network characteristics as described above. This enables us to analyze how network charac-
teristics (and choice of payoffs) relate to the likelihood that the payoff-dominant equilibrium
is reached. Before we do that, we first present some analytic results.

3 Analytic Preliminaries

Let A be the binary incidence or adjacency matrix representing the ties in the network of
actors and bt is the vector of behavior of actors at time t . bt,i = 1 means that actor i played
C with probability 1 at time t . Define RISK := (a − b)/(a − b − c + d). RISK > 0.5 refers
to the situation where (D, D) is the risk-dominant equilibrium. RISK < 0.5 refers to the
situation where the risk-dominant and payoff-dominant equilibrium (C, C) coincide.

We now consider how the cooperation level depends on RISK. For the simulations on
the basis of adaptation strategy 1, ‘myopic best reply,’ the following claims can be easily
checked. Given a vector of behavior bt , actor i changes to bt+1,i = 1 − bt,i if and only if

(1 − 2bt,i )

⎛
⎝∑

i �= j

Ai j
(
(b − a) + bt, j (a + d − b − c)

)
⎞
⎠ > 0.

Likewise, given a complementary behavioral vector 1 − bt , actor i changes to bt+1,i = bt,i
if and only if

(1 − 2bt,i )

⎛
⎝∑

i �= j

Ai j
(
(c − d) + bt, j (a + d − b − c)

)
⎞
⎠ > 0.

Note that the only difference between the two equations is that the (b− a) term that appears
in the first equation changes into (c− d) in the second equation. These inequalities have two
important implications. Consider two complementary states bt and 1 − bt . In that case,

1. If a − b = d − c (we then have RISK = 0.5), the two inequalities are exactly the same.
This implies that given two simulations with complementary starting positions, across
these two simulations, any two complementary states are equally likely to occur (the
two simulations with complementary starting positions are each other’s mirror image).
Consequently, in this situation, we expect an average percentage of actors playing C of
50% at the end of the simulation runs: For each network converging to a percentage of
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actors playing C equal to p, there is a ‘mirror network’ that converges to a percentage
of actors playing C of 1 − p. In particular, this result does not depend on the network
in which the simulation takes place, which implies that when RISK = 0.5, there are no
effects of network characteristics whatsoever.

2. If RISK �= 0.5, we see something similar. The two expressions above imply that when
we compare two simulations in which the values of a − b and d − c are reversed (say,
a − b = 1 and d − c = 5 in one simulation, and a − b = 5 and d − c = 1 in the other),
the occurrence of a state in one of these simulations coincides with the occurrence of
the complementary state in the other simulation. Thus, if the network is the same in both
simulations, the number of times we find actors playing D in one simulation corresponds
with the number of times they play C in the other simulation. As a consequence, to the
extent to which the network facilitates playing C in one simulation, it facilitates playing
D in the other simulation. Note also that when we interchange the values of a − b and
d − c, we change the value of RISK to 1 − RISK. Taken together, this implies that if
we would analyze network effects for RISK < 0.5, we should find exactly the reversed
effects as the ones we will find for values of RISK > 0.5 (under the assumption, as we
have here, that the population of networks that are considered is symmetric). Therefore,
we can restrict our analyses below to values of RISK > 0.5 and can infer the network
effects for RISK < 0.5.

In the simulations on the basis of adaptation strategy 2, ‘changing propensities,’ the arguments
are basically the same. We can follow the line of argumentation as given for the myopic best
reply adaptation strategy, because the same inequalities determine the probabilities to change
propensities. Hence, also in this case, we can restrict ourselves to values of RISK > 0.5.

Next, we show that the relation between RISK and the cooperation level is a step func-
tion. Assume a − b > d − c, and hence that RISK > 0.5. An actor will increase his

propensity to play C in a round of a simulation if and only if Number of neighbors playing C
Total number of neighbors

> a−b
a−b−c+d > 1

2 . This implies that if an actor has only one or two neighbors, the above equa-

tion is fulfilled if and only if all of his neighbors play C, irrespective of the precise values of
the payoffs. Consequently, in this particular case, variations in RISK do not directly affect
the propensity to play C of actors with one or two neighbors. Hence, should we happen to
consider a network in which all actors have two neighbors or less, then the expectation to
reach the (C, C) equilibrium does not depend on RISK, as long as RISK > 0.5. In a similar
fashion, one can argue that for actors with three neighbors, it matters only whether RISK
is larger or smaller than 2/3, and for actors with four neighbors, it matters only whether
RISK is larger or smaller than 3/4. For actors with five neighbors, it matters whether RISK
is smaller than 3/5, between 3/5 and 4/5, or larger than 4/5. Note that these RISK thresholds
are of importance in the complete network and depend crucially on the maximal number of
neighbors (the maximal degree) in the network.

As one example, consider the case where the maximal degree in a given network equals 6.
The threshold values are 1/2 (for those with two neighbors), 2/3 (for those with 3 neighbors),
3/4 (for those with 4), 3/5 and 4/5 (for those with 5), and 4/6 and 5/6 (for those with 6
neighbors).

As Table 2 clarifies, for networks with a maximal degree of 6, the simulation results are
stable in between the RISK thresholds. In general, based on the same logic, the simulation
results are stepwise constant for all networks (and hence for all our simulation data). Note
that when the number of neighbors one has is even, it is generally more difficult ‘to pass a
threshold.’ This is because in our simulation, for any given number of neighbors, the first
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Table 2 RISK thresholds in the
simulations for networks with
maximal degree at most 6

Because the proportion of
neighbors that behaves the same
or differently as a focal actor can
only take the values mentioned,
the expected percentage of C
choices does not vary between
these RISK thresholds

RISK threshold Number of neighbors for which threshold is relevant

1/2 2, 4, 6

3/5 5

2/3 3, 6

3/4 4

4/5 5

5/6 6

threshold of interest is the first proportion that can occur that is larger than 50%. For even
numbers, this tends to be a larger number. For instance, an actor needs 3 neighbors out of
4 playing C before the actor switches to C, but with a total of 3 neighbors, the actor would
have needed only 2 out of 3, or with 5 neighbors only 3 out of 5. Therefore, if we are dealing
with a network with a lot of actors who have an even number of neighbors, it will be more
difficult to reach the (C, C) equilibrium.

4 Simulation Results

We now estimate the relation between the proportions of times actors play C after conver-
gence as dependent on the network characteristics and the payoffs. The analyses for the two
different adaptation strategies, ‘myopic best reply’ versus ‘changing propensities,’ are in
perfect concordance. We therefore only report the analyses for the simulation based on the
propensities.

For reasons outlined in the previous section, we chose to analyze the relation between
the network characteristics and the proportion of times actors play C separately for different
values of RISK (as opposed to including the value of RISK as a covariate). The next question
is for which values of RISK these steps are made in our simulations. We ran our analyses
under the restrictions that b = 0, d = 20, b < c < a < d , and a + c > 20. Given these
restrictions, there are 17+ 15+ 13+ 11+ 9+ 7+ 5+ 3+ 1 = 81 ways to choose a and c.
In fact some of these choices lead to the same value of RISK. For instance, (a, c) = (16, 12)
and (a, c) = (18, 11) both correspond to RISK = 2/3. It turns out that there are 76 different
RISK values larger than 0.5 in our simulations. To keep matters tractable, we group some of
theRISKcategories that are created using these 76 thresholds together, based on a preliminary
analysis predicting the proportion of C choices on the basis of dummies for all but one of the
RISK values. This revealed where the most substantial steps in the described step function
were made. On the basis of these preliminary results, we divided the RISK values in 14
categories (cf. Table 3).

We start to see network effects aroundRISK = 10/19 (=0.526). Actorswith 19 neighbors
or more are the sole cause of this effect. Therefore, our first interval of RISK values is (0.5,
0.526). The next cutoff value is reached for actors with 17 neighbors at 9/17, leading to
a second interval [0.526, 0.53). The other cutoff levels are likewise related to actors with
a specific number of neighbors who become important as soon as that particular level of
RISK is passed. Explaining the proportion of actors playing C with this limited number of
categories hardly reduced the explained variance compared to the full model.5

5 Note that the cutoff value for actors with 18 neighbors is only at 10/18 = 0.556, which is even beyond
the cutoff levels for 15, 13 and 11 actors and is the same as for actors with 9 neighbors. This shows once
again that when we compare actors with a given odd number of neighbors with actors with an even number
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Table 3 Average percentage of C choices and proportion convergence to heterogeneous state, per RISK
category

RISK category Interval per RISK
category

Average
percentage of C
choices

Proportion
convergence to
heterogeneous state

1 0.500–0.526 26.9 3.8

2 0.526–0.530 26.1 4.1

3 0.530–0.534 25.7 4.1

4 0.534–0.540 24.8 4.0

5 0.540–0.546 23.5 3.9

6 0.546–0.552 22.2 4.1

7 0.552–0.556 20.5 3.6

8 0.556–0.567 18.7 3.9

9 0.567–0.572 15.5 3.7

10 0.572–0.599 12.9 3.6

11 0.599–0.601 8.2 2.8

12 0.601–0.666 3.7 2.5

13 0.666–0.667 0.9 0.26

14 0.667–1.000 0.2 0.09

Another reason why it makes sense to divide our simulation in several RISK categories
is that network effects turn out to depend to a considerable extent on the value of RISK. In
extreme cases (RISK close to 0.5 or closer to 1), network effects do not matter at all, but
for specific values of RISK, the network effects get to be more important. By running our
analyses per RISK category, we can study the variation in the sizes of the network effects
while moving from low to high-risk situations.

The first results of our simulations can be seen in Table 3. Table 3 shows the proportion of
actors that chooses C at the end of a simulation, averaged across RISK values within RISK
categories and across the 100 replications per simulation. It appears that the proportion of
times actors play C after convergence strongly decreases with RISK. Thus, the more risky the
payoff-dominant equilibrium is, the less likely that the strategy related to that equilibrium
is chosen. Even for RISK values relatively close to 0.5, the propensity that actors play C
after convergence is considerably lower than the propensity that they play D. Note that
in experimental research, a considerable likelihood, around 25%, for playing C seems to be
realized for larger values of RISK than in our simulation.Without network context, Friedman
[16] finds around 20% of C behavior for RISK = 2/3 (see also [32]). Berninghaus et al. [4]
find even more C behavior for RISK = 7/10 in a network context. We return to this issue in
our conclusion section. Only a limited percentage of the simulations converged to a state in
which the behavior of the actors remains heterogeneous. It also seems that this percentage is
relatively stable until RISK = 0.6 (category 11) where it drops down. A second drop occurs
at RISK = 2/3 (category 13).

Footnote 5 continued
of neighbors, actors with an odd number of neighbors are more likely to pass a threshold value of neighbors
such that playing C is advantageous.
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Table 4 Summary statistics of key dependent and independent variables (165,428 observations)

Variable Mean St. Dev. Minimum Maximum

Proportion C 0.11 0.13 0 0.62

Proportion heterogeneous 0.02 0.08 0 0.88

Density 0.56 0.23 0.08 1

Centralization 0.30 0.10 0 0.87

Segmentation 0.14 0.21 0 0.89

Size 13.11 4.97 2 25

Percentage actors with odd neighbors 0.51 0.16 0 1

Maximal degree 9.04 4.49 1 24

We further analyze the data produced by the simulations using standard linear regression
methods.6 The summary statistics of our variables are presented in Table 4, starting with our
two target variables: (1) the proportion of actors who play C after convergence (averaged
across 100 replications) and (2) the proportion of the 100 replications that converges to an
equilibrium in which behavior is heterogeneous (some actors play D while others play C).
The independent variables are the network characteristics that we defined above: density,
segmentation, centralization, size, proportion of actors with an odd number of neighbors and
the maximal degree.7

As we have argued above, there are no effects of networks for RISK = 0.5, the results are
symmetric around RISK = 0.5, and the cooperation level is dependent on RISK as a step
function.We split the data in three intervals of RISK values: between 1/2 and 3/5, between 3/5
and 2/3 and larger than 2/3. There is still variation in effect sizes of network characteristics
predicting the average propensity to play C within these intervals, but it nevertheless makes
the varying importance of network effects clearer (see Table 5). We show some more details
on variationwithin RISK categories later. Considering the propensity to end in an equilibrium
with heterogeneous behavior, there is hardly any further variation in the effect sizes of network
characteristics for different RISK categories than the differences between the three categories
as distinguished in Tables 5 and 6.

Table 5 shows that network density has a positive effect on playing C, but the size of
the effect decreases with increasing RISK. Segmentation has a negative effect if RISK is
between 1/2 and 3/5, but a positive effect if RISK is larger than 3/5. This can be explained as
follows. The effect of segmentation has two sides: segmentation inhibits the diffusion of a
behavior throughout the whole network, while it helps to maintain a given kind of behavior in
a small part of the network while others choose the other behavior. Therefore, if C behavior
starts to spread in the network, segmentation will reduce the probability that diffusion takes
over the whole network. If D is the more dominant behavior, segmentation helps to maintain
C in a small part of the network. Clearly, these two effects work in different directions,
and the second effect becomes more important when the likelihood that D takes over the
network becomes larger, that is, if RISK is larger. This argumentation is also confirmed by

6 As our target variable is a proportion, one could consider a logit transformation to ensure that predicted
proportions remain within the (0, 1) interval. As the results turned out to be substantially similar and the
disadvantage is that this makes interpretation and comparison of the coefficients more complicated, we chose
to present standard linear regression analyses.
7 We divided size by 25 and maximal degree by 24 in the analyses to make the effect sizes more comparable
with the other variables that also vary between 0 and 1.
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Table 5 Linear regression analyses on the average proportion of actors playing the payoff-dominant equilib-
rium for different sizes of RISK and controlling with dummies for relevant RISK categories

1/2 < RISK < 3/5 3/5 ≤ RISK < 2/3 RISK ≥ 2/3

Density 0.20 0.020 0.007

Segmentation −0.10 0.094 0.006

Centralization 0.086 (−0.004) 0.009

Size/25 0.049 −0.14 −0.002

Proportion actors with odd neighbors 0.30 0.056 (−0.001)

(Maximal degree)/24 −0.093 0.059 −0.002

Constant (0.001) 0.081 0.004

R2 0.56 0.27 0.14

R2 (only dummies RISK categories) 0.21 0.044 0.099

Number of observations (networks) 75,777 (64,612) 34,473 (32,136) 55,178 (49,297)

Standard errors corrected for clustering within the same network, all coefficient are significant at p < 0.001
except for the coefficients between brackets

Table 6 Linear regression analyses on the proportion convergence to an equilibrium with heterogeneous
behavior for different sizes of RISK and controlled with dummies for the relevant RISK categories

1/2 < RISK < 3/5 3/5 ≤ RISK < 2/3 RISK ≥ 2/3

Density −0.037 (−0.017) −0.005

Segmentation 0.32 0.27 0.013

Centralization −0.078 −0.11 (−0.001)

Size/25 −0.11 −0.13 −0.012

Proportion actors odd neighbors 0.095 0.075 0.002

(Maximal degree)/24 0.11 0.12 0.015

Constant (0.008) (0.019) 0.003

R2 0.56 0.46 0.062

R2 (only dummies RISK categories) 0.0003 0.0002 0.0029

Number of observations (networks) 75,777 (64,612) 34,473 (32,136) 55,178 (49,297)

Standard errors corrected for clustering within the same network, all coefficients are significant at p < 0.001
except for the coefficients between brackets

the fact that the positive effect of segmentation disappears if we control for the proportion
of times the network converged to an equilibrium with heterogeneous behavior. The effect
of centralization is positive but a bit smaller than the effect of density and it almost vanishes
for RISK > 3/5. As expected, the effect of having an odd number of neighbors is positive
because in that case, the probability to have, by chance, a majority on your side is larger.
To prefer playing C, it is necessary to have a majority of neighbors playing C, while actors
prefer to play D if neighbors are equally divided among playing D or C. We do not have
adequate interpretations for the effects of network size andmaximal degree. The effect of size
is positive for RISK close to 0.5 and becomes negative for larger values of RISK. The effect
of maximal degree is negative for RISK close to 0.5 and becomes positive for larger values
of RISK. Notice that the explained variance decreases rapidly with RISK as well. If RISK
becomes larger, the likelihood that the network can actually help to prevent behavior from
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Fig. 1 Effects of network characteristics on the average proportion of actors playing the payoff-dominant
equilibrium for fourteen RISK categories. Effect size shows how much the likelihood of reaching the payoff-
dominant equilibrium increases with a one-unit increase in the related independent variable for a specific
RISK category. Note that the scale on the x-axis is not linear in RISK, because the RISK categories are not
equidistant (cf. Table 3)

moving to the risk-dominant equilibrium reduces quickly. Finally, we graph the regression
coefficients of the six network characteristics in Fig. 1, where the analyses are done for each
RISK category separately. This figure shows that in particular in the first 10 RISK categories,
the effects changewithRISK, butmostly stay consistently either positive or negative (network
size is the exception). The figure also demonstrates again that the network effects decrease
dramatically if RISK is larger than 2/3. All the network effects also seem to start decreasing
for RISK approaching 0.5. Note that in all likelihood, this is not a spurious effect, since all
network effects are 0 at RISK = 0.5.

In Table 6, we show three regression analyses predicting the probability to converge to
a state in which behavior is heterogeneous.8 As was shown in Table 3, this probability is
always low. Surprisingly, there is hardly any effect of density on expected heterogeneity of
behavior, and it shows a pattern that is difficult to interpret. Given the problems to interpret
significance in these simulated data and the relatively low t values for the coefficient, we
maintain the claim that there is hardly any evidence to support a substantial effect of density
here. By far, the most important predictor is segmentation of the network, and it has, as
expected, a positive effect on persistent heterogeneity of behavior. The proportion of actors
with an odd number of neighbors also has a substantial positive effect. Centralization has a
consistent negative effect on heterogeneity of behavior. Again, both the size of the network
and the maximal degree of the network have small and difficult to interpret effects. Given that
these hardly contribute to the explained variance, we will not try to interpret them in more
detail. As in Table 5, we see that the explained variance decreases with increasing RISK.

8 Again the results do not change substantially when we first logit-transform the target variable.
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The last column in Table 6 once again shows that we need to be conservative in interpreting
significance here, given that we have six highly significant effects although all the effects are
very small and together explain only 6% of the variance in the dependent variable.

5 Sensitivity Analyses

Given the issues with interpreting significance as well as that we would like to know whether
or not our results depend on the precise sample of networks we have drawn, we ran a set of
additional analyses to check the robustness of our results, none of which lead to substantial
differences in our results. By this, we mean that the statistical significances of effects of
variables as depicted in Tables 5 and 6 are not affected by these alternative analyses and that
the effect sizes are similar. We first ran some analyses where we weighted the observations in
different ways. First, using variance-weighted least-squares regression, we checked whether
it made a difference if we weight observations with the reverse of the variance that they had
within the 100 replications. The rationale behind this is that if there is considerable variance
across replications with respect to the proportion of actors that play C, one would expect that
regression analysis does worse in predicting the average proportion for such observations (as
compared to observations in which the variance is small). Second, we considered that every
network in our data represents an isomorphism group of networks. One could argue that
the larger this isomorphism group is, the more networks this particular network represents
and, thus, the higher the weight that this particular network should have in the analyses.
Therefore, we reran our regression analysis with the size of the isomorphism group that the
networks represent as an observation weight. An issue with this weighting scheme is that
the variation in network characteristics decreases and, as a consequence, effects become
somewhat smaller. Third, we ran regression analyses for all RISK values separately (not
only the 14 categories we described above), to make sure that effects do not depend on our
choice of categories. Fourth, we split the data in subgroups that are more homogeneous in
terms of network size to see whether the network effects strongly depend on the size of the
network. Fifth, because the target variable equals 0 for a large proportion of the observations,
especially when RISK is large, we ran regression analyses without the observations in which
the proportion was equal to 0. As mentioned above, our results are consistent across all five
alternative implementations of our analyses.

6 Conclusion and Discussion

In the majority of networks, we find that actors eventually play the behavior that goes with
the risk-dominant equilibrium in the 2 × 2 coordination game. This was to be expected
from the general result of Young [38] that in the long run, everyone is expected to play
risk-dominant behavior. A new and important finding is that the structure of the networks
affects the likelihood to converge only for values of RISK closely above and below 0.5
(when 0.33 < RISK < 0.67 and RISK �= 0.5). The most interesting case arises when
RISK > 0.5, because only then networks can facilitate emergence to the payoff-dominant
equilibrium. In this range, we find that density and centralization of a network have a positive
effect on the propensity to reach the payoff-dominant equilibrium, while segmentation has a
negative effect. In addition, our analyses on the state to which the network converges show
that in a relatively small band of payoffs, the more segmented and less centralized networks
(among the set of relatively small networks that we considered) are more likely to remain
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heterogeneous. Network density does not have an effect on the likelihood of behavior to
converge to a homogenous state.

The important advantage compared to earlierwork is thatwe identify a set of network char-
acteristics that affect coordination behavior in networks while controlling for simultaneously
varying other network characteristics. Santos et al.’s [28] finding that efficient coordination is
more likely in heterogeneous networks is in line with our finding that centralization promotes
efficient coordination, but we show that other types of heterogeneity in the network, such as
segmentation, can have negative effects on reaching efficient coordination. Our results also
provide alternative explanations for why previous theoretical papers in which sets of large
networks are compared often do not find network effects (cf. [25–27,30]). As we show for
smaller networks, network effects are relevant only in a limited part of the payoff parame-
ter space, but in this space, they do exist. In most of the papers comparing sets of (large)
networks, a large range of payoffs is considered and when one compares results across this
whole parameter space, network effects might indeed appear small or nonexistent. A second
alternative explanation is that in the papers in this tradition, usually a few sets of networks
are compared, for instance, scale-free networks and regular lattices, while the structural
differences between these networks are multi-dimensional. Clearly, scale-free networks are
more centralized than regular lattices, but they could also be more segmented (or differ in
other network characteristics). Given that these two structural network characteristics have
opposing effects according to our analyses, these two effects might cancel out by comparing
a set of scale-free networks with a set of regular lattices. On the other hand, any differences
found between, say, scale-free networks and regular lattices could have been due to multiple
differences in characteristics of the network structure. We consider the identification of this
issue as one of the main steps ahead of this contribution.

The positive effect of density on reaching the payoff-dominant equilibrium is consistent
with the neighborhood size effect found in Berninghaus and Schwalbe [5] because in their
models, a network is denser if neighborhood size increases. Our model gives a somewhat
more elaborate underpinning of this effect in Berninghaus and Schwalbe [5], as in their case,
their result was based on a restricted set of networks (only lattices were considered). There are
also some notable differences with previous research in terms of predictions for empirical
tests. Given that our model predicts that networks with odd neighborhood sizes are more
likely to evolve to the payoff-dominant equilibrium than networks with even neighborhood
sizes, we predict that the effect of neighborhood size is not monotonic. For instance, given
the coefficients in our model, we predict that three-person neighborhoods converge to the
payoff-dominant equilibrium more easily than four-person neighborhoods. Unfortunately,
this result cannot be tested with the kinds of experiments as reported in Berninghaus et al.
[4], because, probably coincidentally, only even-numbered neighborhoods were used in that
case.

Comparing our resultsmore closelywith the experimental results byBerninghaus et al. [4],
it is striking that although they use a rather high RISK value (0.7), they do find convergence
to the payoff-dominant equilibrium as well as large differences between network conditions.
This contrastswith our theoretical finding that the differences between networksmainly occur
at RISK values between 0.5 and 0.6. One potential explanation for this is that our simulation is
based on actors who start to make random choices, while subjects in the laboratory might use
starting propensities with a higher weight on playing the payoff-dominant-related behavior.
An alternative explanation is that introducing altruism in the model by placing at least some
positive weight on the payoff for the other person in a utility function of this person would
already decrease the RISK value of the game in terms of utility (as compared to in terms
of only the payoffs). Therefore, it may be reasonable for comparing our results with these
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and future experimental results to assume that the subjective risk for the participants to play
the payoff-dominant equilibrium is lower than if one would purely consider the payoffs. As
we mentioned in the introduction, Berninghaus et al. [4] also find that the payoff-dominant
equilibrium is reached more easily in the closed triad than in the circle with eight actors.
The main variation here is the change in the density of the network and this result clearly
corresponds with the positive effect we find for density on reaching the payoff-dominant
equilibrium. When one compares a lattice in which everybody plays with four neighbors,
with a circle where subjects also play with four neighbors (both networks with a total of 16
nodes), the only network characteristic that varies is segmentation. Density, centralization,
etc., are all constant. Our positive effect of segmentation for intermediate risk values could
explain the higher probability of subjects playing C on the circle. Of course, this cannot be
considered as conclusive evidence for our theory given that the subjective risk is unclear and
the effect of segmentation also changes depending on the value of RISK. Nevertheless, our
theoretical results seem to have at least some consistency with these empirical results.

The fact that network effects are limited to the range of payoffs where there is a slightly
stronger attraction of the risk-dominant equilibrium than of the payoff-dominant equilibrium
(or the other way round) might also be the explanation why Antonioni et al. [2] do not find
an effect of cliquish (segmented) networks on convergence to the payoff or risk-dominant
equilibrium and Frey et al. [15] do not find the network effects that are expected from our
analyses. Again one issue might be that the subjective risk is not the same as the risk we
consider purely based on monetary payoffs. A strong argument in favor of this explanation
is that the payoff-dominant equilibrium remains a strong attractor even with RISK is con-
siderably larger than 0.5. Both papers blame deviations from theoretical predictions also
on the assumption of myopic best reply behavior and suggest that subjects might use more
sophisticated behavioral strategies. Although in general we would prefer to stick to the more
simple behavioral theory, we concede that making the behavioral assumptions more complex
is an equally promising strand for further research in trying to understand the dynamics of
coordination on networks better.

Besides the comparisonwith existing empirical research, we provide several new hypothe-
ses on effects of network characteristics on both the playing behavior related to the payoff-
dominant equilibrium and the likelihood that multiple norms persist after convergence. Test-
ing some of these hypotheses empirically remains a challenge for future research. A likely
theoretical extension would be to consider how conclusions would change if we do not only
allow actors to change their ties but also to change their partners. For an overview on the
literature on these dynamic networks, one can consult Dutta and Jackson [13]. Specific mod-
els on coordination games played on networks are studied by Jackson and Watts [19], Goyal
and Vega-Redondo [17], Berninghaus and Vogt [6], Buskens et al. [8] and Tsvetkova and
Buskens [31].
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Appendix: Sampling of Networks

Below you find a more detailed account of the number and kind of networks sampled.
The networks are available for research purposes. For network sizes from 2 through 8, we
use all connected non-isomorphic networks (N = 12,112). Networks are generated using
specialized software called Nauty version 2.2 (see [22]).

For networks size 9 through 25, we use all the connected non-isomorphic networks for
densities (number of ties) for which the number of different networks is limited. For other
densities, we choose a random sample of the connected networks, where random means that
each tie had the same probability of being in the network.

In detail:

• Size 9: all networks with 8–10 or 26–36 ties; sample of 400 for networks with 11–25
ties.

• Size 10: all networks with 9–10 or 36–45 ties; sample of 300 for networks with 11–35
ties.

• Size 11: all networks with 10–11 or 46–55 ties; sample of 200 for networks with 12–45
ties.

• Size 12: all networks with 11 or 57–66 ties; sample of 200 for networks with 12–56 ties.
• Size 13: all networks with 69–78 ties; sample of 50 for networks with 12–68 ties.
• Size 14: all networks with 82–91 ties; sample of 50 for networks with 13–81 ties.
• Size 15: all networks with 96–105 ties; sample of 50 for networks with 14–95 ties.
• Size 16: all networks with 111–120 ties; sample of 50 for networks with 15–110 ties.
• Size 17–25:

• all networks with size · (size − 1)/2 to size · (size − 1)/2 − 5 ties.
• sample of 20 for networks with size −1 to size · (size − 1) − 6 ties.

Total number of networks: 112,614.

References

1. Anderlini L, IanniA (1996) Path dependence and learning fromneighbors. GameEconBehav 13:141–177
2. AntonioniA,CacaultMP, LaliveR, TomassiniM (2013)Coordination on networks: does topologymatter?

PLoS One 8(2):e55033
3. Baerveldt C, Snijders TAB (1994) Influences on and from the segmentation of networks: hypotheses and

tests. Soc Netw 16:213–232
4. Berninghaus SK, Ehrhart K-M,Keser C (2002) Conventions and local interaction structures: experimental

evidence. Game Econ Behav 39:177–205
5. Berninghaus SK, Schwalbe U (1996) Conventions, local interaction and automata networks. J Evol Econ

6:313–324
6. Berninghaus SK, Vogt B (2006) Network formation in symmetric 2×2 games. Homo Oecon 23:421–466
7. Buskens V (2002) Social networks and trust. Kluwer, Boston
8. Buskens V, Corten R, Weesie J (2008) Consent and conflict: coevolution of coordination and networks.

J Peace Res 45:205–222
9. BuskensV,YamaguchiK (1999)A newmodel for information diffusion in heterogeneous social networks.

In: Becker M, Sobel M (eds) Sociological methodology. Blackwell, Oxford, pp 281–325
10. Cassar A (2007) Coordination and cooperation in local, random and small world networks: experimental

evidence. Games Econ Behav 58:209–230
11. Coleman JS (1988) Social capital in the creation of human capital. Am J Soc 94:S95–S120
12. Cooper R, DeJong D, Forsythe R, Ross TW (1990) Selection criteria in coordination games: some exper-

imental results. Am Econ Rev 80:218–234
13. Dutta B, Jackson MO (eds) (2003) Networks and groups: models of strategic formation. Springer, Berlin
14. Ellison G (1993) Learning, local interaction, and coordination. Econometrica 61:1047–1071



494 Dyn Games Appl (2016) 6:477–494

15. FreyV,CortenR,BuskensV (2012)Equilibriumselection in network coordinationgames: an experimental
study. Rev Netw Econ 11(3). doi:10.1515/1446-9022.1365

16. Friedman D (1996) Equilibrium in evolutionary games: some experimental results. Econ J 106:1–25
17. Goyal S, Vega-Redondo F (2005) Network formation and social coordination. Game Econ Behav 2:178–

207
18. Harsanyi JC, Selten R (1988) A general theory of equilibrium selection in games. MIT Press, Cambridge
19. JacksonMO,Watts A (2002) On the formation of interaction networks in social coordination. Game Econ

Behav 41:265–291
20. KandoriM,MailathGJ, RobR (1993) Learning,mutation, and long run equilibria in games. Econometrica

61:29–56
21. Keser C, Erhart KM, Berninghaus S (1998) Coordination and local interaction: experimental evidence.

Econ Lett 59:269–275
22. McKay BD (2003) Nauty user’s guide (version 2.2). Tech. Rpt. TR-CS-90-02, Dept. Computer Science,

Australian National University
23. Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829
24. Raub W, Weesie J (1990) Reputation and efficiency in social interactions: an example of network effects.

Am J Soc 96:626–654
25. Roca CP, Cuesta JA, Sánchez A (2009a) Effect of spatial structure on the evolution of cooperation. Phys

Rev E 80:046106
26. RocaCP,Cuesta JA, SánchezA (2009b) Promotion of cooperation on networks?Themyopic best response

case. Eur Phys J B Condens Matter Complex Syst 71:587–595
27. Roca CP, Lozano S, Arenas A, Sánchez A (2010) Topological traps control flow on real networks: the

case of coordination failures. PLoS One 5(12):e15210
28. Santos FC, Pacheco JM, Lenaerts T (2006) Evolutionary dynamics of social dilemmas in structured

heterogeneous populations. PNAS 103:3490–3494
29. Snijders TAB (1981) The degree variance: an index of graph heterogeneity. Soc Netw 3:163–174
30. Tomassini M, Pestelacci E (2010) Evolution of coordination in social networks: a numerical study. Int J

Mod Phys C 21(10):1277–1296
31. Tsvetkova M, Buskens V (2013) Coordination on egalitarian networks from asymmetric relations in a

social game of chicken. Adv Complex Syst 16(1): doi:10.1142/S0219525913500057
32. VanHuyck JB (2008) Emergent conventions in evolutionary games. In: Plott CR, Smith S (eds) Handbook

of experimental economics results. North Holland, Amsterdam, pp 520–530
33. Van Huyck JB, Battalia RC, Beil RO (1990) Tacit coordination, strategic uncertainty, and coordination

failure. Am Econ Rev 80:234–248
34. Van Huyck JB, Battalia RC, Beil RO (1991) Strategic uncertainty, equilibrium selection, and coordination

failure. Q J Econ 106:885–910
35. Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University

Press, New York
36. Yamaguchi K (1994) The flow of information through social networks: diagonal-free measures of ineffi-

ciency and the structural determinants of inefficiency. Soc Netw 16:57–86
37. Young HP (1993) The evolution of conventions. Econometrica 61:57–84
38. YoungHP (1998) Individual strategy and social structure: an evolutionary theory of institutions. Princeton

University Press, Princeton

http://dx.doi.org/10.1515/1446-9022.1365
http://dx.doi.org/10.1142/S0219525913500057

	Effects of Network Characteristics on Reaching the Payoff-Dominant Equilibrium in Coordination Games: A Simulation study
	Abstract
	1 Introduction
	1.1 Theoretical Research on Network Effects in Coordination Games
	1.2 Coordinating on Efficient Play as Dependent on Network Characteristics
	1.3 Empirical Research on Coordination Games

	2 Simulation of Coordination Games Played on a Network
	2.1 Sampled Networks and Network Characteristics
	2.2 The Choice of Payoffs in the Constituent Game
	2.3 Behavior in One Round of Play and the Adaptation Strategy

	3 Analytic Preliminaries
	4 Simulation Results
	5 Sensitivity Analyses
	6 Conclusion and Discussion
	Acknowledgments
	Appendix: Sampling of Networks
	References




