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ABSTRACT

The impact of initial conditions relative to external forcings in decadal integrations from an ensemble of

state-of-the-art prediction models has been assessed using specifically designed sensitivity experiments

(SWAP experiments). They consist of two sets of 10-yr-long ensemble hindcasts for two initial dates in 1965

and 1995 using either the external forcings from the ‘‘correct’’ decades or swapping the forcings between the

two decades. By comparing the two sets of integrations, the impact of external forcing versus initial conditions

on the predictability overmultiannual time scales was estimated as the function of lead time of the hindcast. It

was found that over time scales longer than about 1 yr, the predictability of sea surface temperatures (SSTs)

on a global scale arises mainly from the external forcing. However, the correct initialization has a longer

impact on SST predictability over specific regions such as theNorthAtlantic, the northwestern Pacific, and the

Southern Ocean. The impact of initialization is even longer and extends to wider regions when below-surface

ocean variables are considered. For the western and eastern tropical Atlantic, the impact of initialization for

the 700-m heat content (HTC700) extends to as much as 9 years for some of the models considered. In all

models the impact of initial conditions on the predictability of theAtlantic meridional overturning circulation

(AMOC) is dominant for the first 5 years.

1. Introduction

Decadal climate predictions exploit the predictability

of the climate system arising both from the initial con-

dition information and from external forcings arising

from changes in atmospheric composition, solar radia-

tion, and land use (Collins 2002; Hawkins and Sutton

2009). As such, decadal climate forecasts represent a

hybrid problem at the edge between predictions of the

first and the second kind (Lorenz 1975). A prediction of

the first kind is essentially the prediction of the evolution

of a system, given some knowledge of its initial state.

Predictability of the first kind is therefore primarily an

initial-value problem, and skill is limited by how un-

certainties in the initial state evolve during the forecast

(and by inevitable uncertainties in model formulation).

On the other hand, in a prediction of the second kind, we

estimate how (the attractor of) a given dynamical system

responds to a change in some prescribed parameter or

external forcing. Uncertainties in such predictions may

arise from the accuracy in prescribing the forcings
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themselves and the accuracy of the model response to

changes in the forcings. Predictability of the second kind

is thus a boundary value problem. A numerical weather

forecast is clearly a prediction problem of the first kind,

as is a forecast of El Niño. By contrast, estimating the

effects on climate of prescribed emissions after a vol-

canic eruption or prescribed anthropogenic changes in

atmospheric composition or land use would constitute a

climate prediction of the second kind.

Near-term climate predictions from one to several

years in advance represent the natural extension of

seasonal predictions, so they can be considered as initial-

value problems where the correct initialization of the

ocean surface and subsurface variables together with the

sea ice plays a central role in keeping the trajectory of

the system close to the observed one. However, as lead

time increases from one season to several years, the

component of predictability arising from changes in the

external forcing becomes more and more important

(Meehl et al. 2009). The progressive change in the main

predictability’s drivers with time is illustrated in Fig. 1.

The schematic shows the time evolution of a given ob-

served climatic variable (black solid line) and three

different ensemble predictions with the shading around

the lines representing the ensemble spread. The back-

ground color changes from blue to red as time

progresses, indicating the increasing dominance of the

forcing with respect to the initial conditions for

the prediction. The blue dotted line represents the

ensemble-mean evolution of an initialized ensemble

prediction constrained by a boundary forcing different

from the observed one. By contrast, the red dashed line

sketches the evolution of the ensemble mean when the

prediction is uninitialized (i.e., the model initial condi-

tions are not close to the observations), but the correct

observed forcing is applied during the whole length of

the integration. For short lead times, the blue line fol-

lows the observations, but since the system is chaotic and

the forcing is not correct, as time advances the two lines

diverge. On the other hand, the red line is far away from

the observation at the beginning, but it starts to ap-

proach the black line and reproduce its trend at longer

lead times, when the system response becomes domi-

nated by the forcing. Between short and long lead times,

there is a period when both the blue and red lines fail to

reproduce the observed trajectory. The blue–purple–red

solid line represents the ensemble-mean evolution when

both initialization and forcing are close to the observed

ones. In this case, the simulated trajectory lies close to

the observed climate all along the forecast length, filling

the predictability gap at medium-term lead times.

Since the seminal papers ofGriffies andBryan (1997a,b),

whose results suggested that variations in the dominant

multidecadal sea surface temperature patterns in the

North Atlantic can be predicted if the Atlantic Ocean is

adequately monitored, several studies showed the po-

tential added value of initialization for climate pre-

dictions (e.g., Collins 2002; Collins and Sinha 2003;

Pohlmann et al. 2004; Collins et al. 2006; Dunstone and

Smith 2010; Msadek et al. 2010; Hazeleger et al. 2013b;

Wouters et al. 2013). However, the question of when

exactly the impact on climate forecasts of the initial state

becomes smaller than the impact of an imposed external

forcing (i.e., when the blue and red lines cross in the

schematic) is still a debated issue and an area of active,

current research.

The time when the influence of the initial conditions

becomes of secondary importance compared to the

forced response has been defined as the second limit of

initial-value predictability by Branstator and Teng

(2010). These authors applied the concept of relative

entropy from information theory (Teng and Branstator

2011; Kleeman 2002) to a large ensemble of climate

change scenario experiments with the Community Cli-

mate System Model, version 3 (CCSM3). They found

that, for the upper 300-m ocean temperature on a global

scale, the information from initial conditions is of pri-

mary importance for about 7 years. When the same

methodology was applied to study the predictability of

FIG. 1. Schematic illustrating progression from predictions of the

first kind (initial-value problems) to predictions of the second kind

(boundary condition problems). The black curve represents the

observed evolution of a climate variable under the effect of on-

going changes in the eternal forcing (e.g., greenhouse gases). The

dotted blue curve and its shading represent the trajectory of the

ensemble mean of initialized predictions with an erroneous ex-

ternal forcing. (The shading represents the ensemble spread. It

increases with time until it reaches saturation.) The dashed red

curve represents the trajectory of an ensemble mean of non-

initialized predictions. The solid blue–purple–red curve represents

the trajectory of an ensemble mean of initialized predictions with

correct forcing.
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the Atlantic meridional overturning circulation (AMOC)

in CCSM3, it was found that ocean initial conditions are

the predominant factor in driving predictability for

about a decade (Teng et al. 2011). However, these esti-

mates cannot be easily generalized since model to model

variations appear to be substantial (Branstator et al. 2012;

Branstator and Teng 2012).

In this study, we investigate this problem using an

experimental setup based on decadal ensemble in-

tegrations initialized in two different decades, 1965 and

1995, carried out by four different Earth system models.

Two reference simulations in which all the models are

initialized with states as close as possible to observations

and forced with the observed external forcings for the

whole 10-yr length of the integration were performed

following the protocol from phase 5 of CMIP (CMIP5)

for decadal hindcasts (Taylor et al. 2012). (Each set of

reference integrations is represented ideally by the blue–

purple–red solid curve and its shading in Fig. 1.) Then,

following Troccoli and Palmer (2007), two sensitivity

ensemble integrations were carried out. Specifically, we

integrate the 1965 hindcast starting from correct initial

conditions but with the forcing from the 1995 decade and

vice versa. By comparing the reference and the sensi-

tivity integrations, we can assess the relative importance

of initial conditions compared to the external forcing. In

particular, two estimates of the decadal predictability

arising from initial conditions only (i.e., the pre-

dictability associated with the blue dotted line in Fig. 1)

and two estimates of the predictability driven by the

external forcing (i.e., the predictability associated with

the red dashed curve in Fig. 1) can be obtained.

The paper is structured as follows: Section 2 describes

the experimental setup. Section 3 discusses the results of

the experiment in terms of sea surface temperature

anomalies. The relative effect of external forcing and

initial conditions on the AMOC is the subject of section

4. In section 5, we define the ‘‘crossover time,’’ that is,

the time that separates the region in which predictability

is mostly driven by the knowledge of initial conditions

(denoted by the blue background in Fig. 1) from the

region where predictability is mostly driven by changes

in the external forcing (red background in Fig. 1). In

section 6, the definition of crossover time is applied to

sea surface and subsurface variables. A summary of the

main results and some conclusions are presented in

section 7.

2. Experimental setup

To investigate the relative roles of initial and bound-

ary conditions in decadal predictability sensitivity ex-

periments consisting of swapping initial and boundary

conditions for two different decades has been carried

out (SWAP experiments). Two initial dates, namely,

1965 (preceding a decade of global cooling) and 1995

(preceding a decade of global warming), were cho-

sen, and the following four 10-yr-long hindcasts were

produced:

IC65F65 for 1965 initial conditions and correct

observed forcing from 1965;

IC95F95 for 1995 initial conditions and correct

observed forcing from 1995;

IC65F95 for 1965 initial conditions and swapped

observed forcing from 1995; and

IC95F65 for 1995 initial conditions and swapped

observed forcing from 1965.

By comparing IC65F65 with IC95F65, and IC95F95 with

IC65F95, we have two estimates of the decadal pre-

dictability arising from having different initial condi-

tions and the same forcing. By comparing IC65F65 with

IC65F95, and IC95F95 with IC95F65, we have two es-

timates of the impact of forcing (since initial conditions

are identical) on the predictability of climate variables.

A schematic of the four experiments is given in Table 1.

The SWAP experiments were carried out bymodeling

groups at ECMWF, KNMI, the Met Office (UKMO),

and theMax Planck Institute forMeteorology (MPI-M).

Different initialization strategies have been employed,

and different ocean analyses have been used. ECMWF

andKNMIuse a full field initialization, whileUKMOand

MPI-M apply anomaly initialization [see Magnusson

et al. (2013), Hazeleger et al. (2013a), and Smith et al.

(2013) for a comparison between the two methodolo-

gies]. All the models except MPI-M derive atmospheric

initial conditions from the reanalyses ERA-40 and

ERA-Interim (Uppala et al. 2005; Dee et al. 2011). The

ocean initial conditions are derived from the NEMO

variational data assimilation (NEMOVAR)–Ocean

Reanalysis System, version 4 (ORAS4) (Balmaseda

et al. 2012) for ECMWF and KNMI, while MPI-M uses

the Ocean Reanalysis System, version 3 (ORAS3)

(Balmaseda et al. 2008). The Met Office creates ocean

analysis following the strategy described by Smith and

Murphy (2007). [See Hazeleger et al. (2013b) for more

TABLE 1. Sensitivity experiments (see main text for explanation

of IC65F65, IC95F95, IC65F95, and IC95F65). Comparing exper-

iments in the same row gives the impact of forcing. The comparison

in the same column gives the impact of initialization.

Boundary conditions (forcing)

Initial conditions 1965 1995

1965 IC65F65 IC65F95

1995 IC95F65 IC95F95
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details on the models’ configurations.] The sea ice con-

ditions have been obtained from NEMO version 2 and

LIM, version 2 (LIM2), forced by surface fluxes ob-

tained from the Drakkar forcing set, version 4.3

(Brodeau et al. 2010), for ECMWF and KNMI, while

MPI-M does not initialize sea ice. In HadCM3, sea

ice concentration was initialized by relaxing (with a 6-h

time scale) to monthly mean anomalies obtained from

HadISST (Rayner et al. 2003). The external forcing is the

same for all models, and it is based on the CMIP5 rec-

ommended historical datasets (Taylor et al. 2012), the

integrations are carried out in ensemble mode. A sum-

mary of the model setups can be found in Table 2. (Ex-

pansions of acronyms for the model names are available

at http://www.ametsoc.org/PubsAcronymList.)

We focus our analysis on oceanic variables. In par-

ticular, we want to investigate the relative roles played

by initial and boundary conditions on the predictability

of SST, heat content in the upper 700m (HTC700), and

the AMOC.

3. Observed and simulated SST anomalies

Figure 2 shows the difference in sea surface temper-

ature from the ERA-40 and ERA-Interim datasets in

the two investigated decades for different averaging

windows. In Fig. 2a, the difference between the 1-yr

average fromNovember 1995 to October 1996 and from

November 1965 to October 1966 is shown. Most of

the oceanic basins show a global warming signal, with

the important exception of the Pacific Ocean, where the

anomaly is consistent with the cold phase of the El

Niño–Southern Oscillation (ENSO). In fact, the year

1995/96 is characterized by a strong La Niña event.

Figure 2b shows the mean SST difference in the first 5

years of the two decades under consideration. The

warming now extends to the equatorial eastern Pacific,

but the cold signal is still pronounced in the northern

central Pacific. The difference in SST between the two

decadal means is shown in Fig. 2c. The global feature of

the decadal anomaly is consistent with the global

warming trend observed from 1960 to 2010.

The SST maps in Fig. 2 are compared with corre-

sponding maps from the individual model simulations.

Figure 3 shows the difference between the mean of the

first year of integration in the ECMWFmodel. Figure 3a

is the difference between the ensemble mean of the two

reference integrations (i.e., IC95F95 minus IC65F65).

The panels below in the left column are the differences

TABLE 2. Summary of model setup used for the SWAP experiments.

Model Initialization method Ocean analysis No. of ensemble members

ECMWF IFS–NEMO Full NEMOVAR–ORAS4 5

KNMI EC-EARTH Full NEMOVAR–ORAS4 3

MPI-M ECHAM5–MPI-OM Anomaly ORAS3 5

UKMO HadCM3 Anomaly UKMO analysis 3

FIG. 2. Observed SST differences (K) between decade 1995 mi-

nus decade 1965. (a) Differences between the first year mean of the

two decades. (b) As in (a), but for the first 5-yr mean. (c) As in (a),

but for 10-yr mean.
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IC95F95 minus IC95F65 (Fig. 3b) and IC65F95 minus

IC65F65 (Fig. 3c). They show the impact of the forcing.

The panels in the right column show the impact of initial

conditions [IC95F95 minus IC65F95 (Fig. 3d) and

IC95F65 minus IC65F65 Fig. 3e)].

The ECMWFmodel is able to reproduce the observed

anomalies reasonably well in the reference simulation,

that is, when both correct initial conditions and forcings

are applied (cf. Fig. 2a and Fig. 3a). When only the

correct initial conditions are applied (and the forcing

FIG. 3. As in Fig. 2a, but for the difference between the ensemble-mean SST anomalies (K) simulated by the

ECMWFmodel. (a) Reference IC95F95minus IC65F65. (b),(c) The impact of forcing is shown. (d),(e) The impact

of initialization is shown. Shown are (b) IC95F95 minus IC95F65, (c) IC65F95 minus IC65F65, (d) IC95F95 minus

IC65F95, and (e) IC95F65 minus IC65F65. Black contours show anomalies statistically significant at 5% level.
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from the other decade is used), the performance of the

model compares well with the observations (and the

reference simulation). The magnitude of the cold

anomaly in the equatorial Pacific is even better simu-

lated in both IC95F95 minus IC65F95 and IC95F65

minus IC65F65 than in the reference. The impact of the

forcing seems very modest in the first year and

produces a wrong warm signal on the equatorial Pacific

(which is also common to the EC-EARTH and

HadCM3models, while the impact of the forcing during

the first year of integration is negligible in the MPI-M

model). A Student’s t test was applied to check whether

the anomalies in the simulations are significantly dif-

ferent from noise. It was found that the cold signals on

the equatorial Pacific shown in Figs. 3d and 3e are sta-

tistically significant at 5% level, while the same signal in

Fig. 3a is marginally significant. On the other hand, the

warm anomalies in the same region (Figs. 3b,c) are

statistically significant in Fig. 3b (i.e., IC95F95 minus

IC95F65) but cannot be distinguished from noise in

Fig. 3c (i.e., IC65F95 minus IC65F65). This seems to

indicate that the ECMWF model tends to overestimate

the warming effect of climate forcing over the equatorial

Pacific. The performance of the other models (not

shown) in the first year of integration compares well with

the ECMWFmodel. When the correct initial conditions

are applied, all the models are skillful in reproducing the

observed anomalies.

Thus, it seems reasonable to conclude that, during the

first year, all the models considered are far more sensi-

tive to the initial conditions than to the application of the

correct boundary/external forcing. In other words, 1-yr

predictions seem to be essentially initial-value prob-

lems. This is consistent with previous results (e.g., Matei

et al. 2012). Skill in predicting the sea surface tempera-

tures for year one comes mostly from persistence;

however, the ENSO high predictability during the first

six months of integrations (Stockdale et al. 2011;

Magnusson et al. 2013) may also play a role.

The difference between the average SST fields

in the first 5 years of integrations for the ECMWF,

EC-EARTH, MPI-M, and HadCM3 models can be

found in Fig. 4. For each model, we show the differ-

ence between the ensemble mean of the two reference

integrations (i.e., IC95F95 minus IC65F65), the im-

pact of the forcing (for IC95F95 minus IC95F65), and

that of initialization (for IC95F95 minus IC65F95).

The corresponding maps for IC65F95 minus IC65F65

and IC95F95 minus IC65F65 are consistent with those

shown in Fig. 4.

All the models show a predominant influence of the

forcing compared to the impact of the initial conditions

over most of the oceanic basins. The tropical Indian

Ocean stands out as the region with the largest impact of

the forcing, in agreement with previous studies (see, e.g.,

Deser et al. 2010; Boer 2011; Guemas et al. 2013).

However, in some regions, such as the North Atlantic

subpolar gyre, the North Pacific subpolar gyre, and the

Southern Ocean, the initialization signal is still pro-

nounced in all models. The role played by the in-

formation contained in the initial climate state for the

predictions of sea surface temperatures over the North

Pacific and North Atlantic Oceans has been found in

many studies (see, e.g., Keenlyside et al. 2008; Pohlmann

et al. 2009; Smith et al. 2010; Branstator et al. 2012;

Chikamoto et al. 2013; Doblas-Reyes et al. 2013). In the

reference integrations, EC-EARTH and ECMWF

models show statistically significant warm anomalies

over the whole North Atlantic region very similar to the

observations (cf. Fig. 2b with Figs. 4a,b). The forcing

seems to be the main driver of predictability in the

tropical Atlantic (see Figs. 4e,f), while the initial con-

ditions influence the subpolar gyre region (see Figs. 4i,l).

Here, MPI-M and HadCM3 show cold (but not signifi-

cant) anomalies. Another region where the effect of

initialization is still detectable (especially in the EC-

EARTH, ECMWF, and HadCM3 models) is the

southern Indian Ocean, where significant warm anom-

alies persist even when the 10-yr average is considered

(see Fig. 5), although there are pronounced differences

in regional detail. This simulated warming extends to

about 608S in contrast with the observations, where the

warming ends at around 458S. South of 458S, cooling is

observed, which extends between 408 and 1208W. This

negative anomaly is reproduced by the MPI-M model,

both in the reference (Figs. 4c and 5c) and in the sensi-

tivity to initial condition simulation (Figs. 4k and 5k).

This long memory of initial conditions in the southern

Indian Ocean (with some extension to the southwestern

Pacific and southern Atlantic) is consistent with the di-

agnostic potential predictability at decadal time scales

found in several studies (Boer 2004; Pohlmann et al.

2004; among others).

Figure 5 shows the differences between the two

decades over the whole period for the ECMWF,

EC-EARTH,MPI-M, and HadCM3models, respectively.

It can be noticed that in all the models the fingerprint of

initialization is still detectable over the North Atlantic

and in different regions of the Southern Ocean. How-

ever, the four models produce anomalies of opposite

sign and different extension. In the Atlantic subpolar

gyre region, the EC-EARTH model shows a warm

anomaly consistent with the reference simulations and

observations. A reduced cold anomaly shifted south-

ward, slightly amplified with respect to the reference

integration, is shown in the MPI-M model in the same

1 JUNE 2015 CORT I ET AL . 4459



region. The ECMWF and HadCM3 models do not

show significant anomalies over the North Atlantic

(north of 508N); however, they both display significant

warm SST anomalies over the North Atlantic Current

(Gulf Stream region) in agreement with observations

and the reference simulation. The fact that only the

EC-EARTH model shows a significant signal in the

Atlantic subpolar gyre region might be explained by

the different representation of the internal variability of

SSTs in the different models (shown in Fig. SM1 of the

supplementary material). In EC-EARTH, the internal

variability of the North Atlantic, estimated from the

spread of the ensemble members, is less pronounced

than in the other models; therefore, a more coherent

signal can emerge. The fingerprint of initial conditions

is detectable in the EC-EARTH model also in the

tropical North Atlantic (between 158 and 308N), where a

warm SST anomaly extends from the African coast to

about 458W.

Aweaker (but still significant) signal of thememory of

initial conditions is detectable in EC-EARTHandMPI-M

models also in the western part of the North Pacific

(ECMWF exhibits a similar feature). This signal seems

not well reproduced in HadCM3. Again, the corre-

sponding difference fields for IC65F95minus IC65F65 and

IC95F95 minus IC65F65 compare well with those shown

in Fig. 5.

Overall, we can conclude from the comparison be-

tween the reference and sensitivity simulations that for

SST, in all the models considered, the correct initiali-

zation has a strong impact up to about 1 yr on a global

domain, but it continues to affect the predictability over

specific regions in the North Atlantic over a decade. In

the subpolar gyre region, only EC-EARTH shows a

significant anomaly persisting over a decade. The long

lasting memory of initial conditions over the North At-

lantic is consistent with the results of recent analyses

performed on the skill (and reliability) of decadal

FIG. 4. As in Fig. 2b, but for the difference between the ensemble-mean SST anomalies (K) simulated by (a),(e),(i) ECMWF; (b),(f),(j)

EC-EARTH; (c),(g),(k) MPI-M; and (d),(h),(l) HadCM3 models. (left) Reference IC95F95 minus IC65F65. (center) The impact of forcing

IC95F95 minus IC95F65. (right) The impact of initialization IC95F95 minus IC65F95. Black contours show anomalies statistically significant

at 5% level.
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predictions (see, e.g., van Oldenborgh et al. 2012; Corti

et al. 2012; Doblas-Reyes et al. 2013). Other regions also

may have a long lasting sensitivity to initial conditions,

such as the North Pacific, tropical Atlantic, and southern

Indian Oceans. However, the signal over these latter

ocean basins varies from model to model.

4. Simulation of the Atlantic meridional
overturning circulation

The AMOC is responsible for approximately 90% of

the northward ocean heat transport in the subtropical

North Atlantic (Johns et al. 2011) and is believed to

have a significant influence on the mean state and vari-

ability (Latif and Keenlyside 2011) of North Atlantic

climate. In addition, modeling studies have shown that

the AMOC is an important source of potential pre-

dictability (e.g., Collins et al. 2006). SinceApril 2004, the

Rapid Climate Change Programme–U.S. Meridional

Overturning Circulation and Heat Flux Array (MOCHA)

(hereinafter referred to as RAPID) has made continu-

ous observations of the strength and vertical structure

of the AMOC at 26.58N (Cunningham et al. 2007),

allowing investigation of AMOC variability on subsea-

sonal and interannual time scales. During the RAPID

observation period, the AMOC at 26.58N had a strength

of 17.5 6 2.0 Sv (1 Sv [ 106m3 s21; mean 6 standard

deviation of annual means). However 11 yr of obser-

vations still represent a record too short to establish

robust statistics on the interannual AMOC variability

and are definitely insufficient to evaluate AMOC mul-

tiannual variations. Moreover, observations are avail-

able only at a single latitude. On the other hand, the

historical reconstructions of the AMOC by ocean re-

analysis products show a nonnegligible inconsistence in

the estimation of both trends and year-to-year vari-

ability (Munoz et al. 2011).

In this context, considering that the SWAP experi-

ments have been designed to study the relative impor-

tance of initial conditions and external forcing in driving

decadal predictability, we do not compare the AMOC

historical simulations to observations and/or reanalysis

and therefore we do not assess the ‘‘realism’’ of such

simulations. Our analysis is aimed at a comparison of the

FIG. 5. As in Fig. 4, but for the 10-yr mean.
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AMOC simulations in the models’ reference hindcasts,

which is a prerequisite to evaluate the impact of forcing

and initial conditions for each model in the sensitivity

integrations.

The average Atlantic overturning streamfunctions,

the associated year-to-year variability, and the average

spread have been computed for all models from their

reference simulations (see Fig. SM2 in the supplemen-

tary material). (It is worth stressing that the AMOC

mean state and the associated variability shown in

Figs. SM2a–i refer to the hindcast runs and, as such, do

not represent an estimate of the AMOC amplitude and

internal variations in the models.) The AMOC in the

MPI-M model is considerably stronger than in the other

models. EC-EARTH shows two well-pronounced

maxima at about 268 and 408N, while HadCM3 has a

shallower maximum at about 458N. The AMOC in the

ECMWF model is very similar to that simulated with

EC-EARTH, although weaker, and it does not present

evident latitudinal peaks. AMOC year-to-year vari-

ability, estimated from the reference simulations, is

shown in Figs. SM2e–h. The different models manifest

different depth, intensity, and meridional structure.

However, a common feature is the maximum in the high

latitudes, at about 458N, near the AMOC mean state

maximum, with an amplitude from 3Sv (in ECMWFand

EC-EARTH) to 1.6 Sv (in MPI-M and HadCM3).

AMOC average spread, which gives an estimate of the

AMOC internal variability, varies considerably from

model to model (Figs. SM2i–l). The HadCM3 model

shows the smallest spread with a maximum in the sub-

tropical AMOC and very low internal variability in the

North Atlantic. The other systems exhibit the maximum

of internal variability between 308 and 508N, which ex-

tends to 808N in the MPI-M model.

The difference IC95F95 minus IC65F65 for the

ensemble-mean average over each one of the 10-yr

reference integrations is shown for all models in Fig. 6.

The EC-EARTH and ECMWFmodels exhibit virtually

the same anomaly below 2500m. Closer to the surface,

the AMOC anomaly in ECMWF, EC-EARTH, and

HadCM3models is a dipole consistent with a weakening

FIG. 6. As in Fig. 5, but for AMOC streamfunction (Sv).
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of the overturning streamfunction south of about 408N
and a strengthening at the northern latitudes in the later

decade. In the MPI-M model, the AMOC negative

anomaly extends up to 608N. These results can be

compared with the findings of Lozier et al. (2010, see

their Fig. 4b). Only the MPI-M model can simulate the

rather substantial deep weakening of the AMOC over

the subtropical gyre. The other systems, on the other

hand, do simulate the reported intensification of the

overturning over the subpolar gyre. However, with the

exception of theHadCM3model, theymiss the subtropical

weakening (the negative anomalies in Figs. 6a,b are not

significant).

The different models’ representations of the AMOC

change between the two decades are not surprising and

are somehow expected. Several studies reported on the

strong model dependency of AMOC predictability (e.g.,

Pohlmann et al. 2013; Ba et al. 2014). These variations in

predictability may depend on the remarkable differ-

ences in the AMOC representation in the state-of-the-

art ocean reanalysis products (Munoz et al. 2011; Kröger
et al. 2012). Indeed, the plots shown in Fig. SM3 of the

supplementary material support this interpretation.

Here, the difference between the mean of the first

month of integration in 1995 minus the mean of the first

month of integration in 1965 for all the models is dis-

played. These patterns, which are very close to the dif-

ference between the correspondent ocean analyses,

show no general coherence between systems initialized

using different ‘‘best observed AMOC estimate.’’

However, the observed model dependency of AMOC

predictability may also be related to the different re-

lationship between the AMOC and temperature and

salinity in the subpolar gyre region in the four prediction

systems considered (Hazeleger et al. 2013b).

Figures 6e–h and 6i–l show the sensitivity of AMOC

to the forcing and initial conditions, respectively. The

figure is constructed in the sameway as Figs. 4 and 5; that

is, the left panels show the difference between the

ensemble-mean average of two reference integrations

over the 10 yr of integration. The impact of the forcing is

shown in the center column; the impact of the initiali-

zation is shown in the right column. It is evident that in

this case, the influence of the initial conditions is far

more important than that of the boundary forcing. It is

also evident that the forcing contributes to the weak-

ening of the streamfunction north of about 408N.

This feature is common to all the systems; however, in

ECMWF and HadCM3 models the response of the At-

lantic streamfunction to the external forcing is notice-

ably weaker than in the other models. In the MPI-M

model, on the contrary, the negative anomaly is partic-

ularly pronounced.

Overall, the AMOC predictability seems very sensi-

tive to the initial conditions for the first 10-yr lead time

over the North Atlantic subpolar gyre region. The

forcing plays a role, even if minor, in weakening the

circulation in the northern extratropical Atlantic.

5. Definition of the crossover time

In the previous analyses, temporally averaged fields

were analyzed. They provide an estimate of the relative

importance of boundary and initial conditions in

reproducing the observed difference between the two

decades. However, this analysis cannot provide any

quantitative estimate of the relative weight of forcing

and initial conditions during the forecast evolution.

To give a quantitative estimate of the potential pre-

dictability induced by initial conditions with respect to

the forced signal as a function of lead time, for each

variable x (averaged over a specific area or for each grid

point) the crossover time Tc(x) is defined as the time

when information from boundary and initial conditions

play an equal role in contributing to the forecast error

with respect to the reference forecast. The crossover

time is computed as follows:

If XA(t) (t 5 lead time) is a variable in reference ex-

periment IC65F65 and XB(t) is the same variable in

reference experiment IC95F95, then we can define

DAB(t)5 jXA(t)2XB(t)j (1)

as the evolving absolute distance between these two

variables in experiments IC65F65 and IC95F95. In the

same way, equivalent distances for sensitivity experi-

ments IC65F95 and IC95F65 can be defined as

DAD(t)5 jXA(t)2XD(t)j and

DBC(t)5 jXB(t)2XC(t)j ,
(2)

and

DAC(t)5 jXA(t)2XC(t)j and

DBD(t)5 jXB(t)2XD(t)j .
(3)

Expressions in (2) give the impact of initialization, while

the impact of forcing is given in (3). By construction,

both distances in (2) are expected to increase as a

function of time as soon as the system gradually loses the

memory of initial conditions. On the other hand, the

distances in (3) will decrease as time evolves as the result

of the constraint imprinted to the system by the radiative

forcing. A schematic illustration of this is given in Fig. 7.

Figure 7 also defined two new distances: dI(t) and

dF(t). The distance dI(t) measures the departure of the
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initial conditions–sensitivity curveDAD orDBC from the

reference DAB as time evolves. The distance dF(t), on

the other hand, measures the gap between the forcing–

sensitivity curves DAC and DBD and the reference:

dI(t)5

�jDAB(t)2DAD(t)j
jDAB(t)2DBC(t)j (4)

and

dF(t)5

�jDAB(t)2DAC(t)j
jDAB(t)2DBD(t)j (5)

The distance dI(t) starts very close to the reference, and it

diverges as the lead time increases. In contrast, dF(t) ap-

proaches the reference as time goes by. The distances dI(t)

and dF(t) will eventually cross at t 5 Tc. The crossover

time separates two regions (see the cartoon in Fig. 8 for a

schematic illustration). On the left there is a region in

which predictability is mostly associated with the knowl-

edge of the initial conditions (initial-value predictability

or predictability of the first kind). The region on the right

is where predictability is mostly driven by changes in ex-

ternal forcing (boundary value predictability or pre-

dictability of the second kind). For times shorter than Tc,

information from initial conditions ismore important than

information about the forcing. For times longer than Tc,

the forcing becomes the major driver of predictability.

6. Crossover times for AMOC, HTC700, and SSTs

a. AMOC

In this subsection, the definitions given in section 5 are

applied to the AMOC strength (i.e., meridional volume

transport at 458N and 1000-m depth in Sverdrups). Re-

sults for each model are shown in Fig. 9 for IC65F95

minus IC65F65 and IC95F65 minus IC65F65. A long

crossover time (about 8 yr) is found for the ECMWF

model. EC-EARTH and HadCM3 have a crossover

time of about 6 yr, while it is of 4 yr for MPI-M. The

uncertainty band (estimated from the spread of the en-

semble members) is very large in all models except for

HadCM3. If one considers this uncertainty, both the

ECMWF and the EC-EARTH models have an almost

10-yr crossover time. This is consistent with the anom-

alies shown in Figs. 6e–h, where only the MPI-M model

showed a significant weakening of the AMOC in the

subpolar gyre region, with all the other systems rela-

tively insensitive to the external forcing. Crossover

times decrease when they are computed at 258N (see

Fig. SM4 in the supplementarymaterial), suggesting that

subtropical AMOC variations may have a different

predictability horizon. It is interesting to note that the

crossover times (and the other general features of

the plots in Fig. 9) from the AMOC are similar when the

same diagrams are computed for IC95F95 minus

IC65F95 and IC95F95 minus IC95F65 (not shown), that

is, considering differences with respect to reference pe-

riods 1965–75 or 1995–2005. This seems to indicate that

the sensitivity to the forcing and/or to the initial condi-

tions does not vary much when the initial conditions

and/or the forcing are changed.

b. HTC700

Figure 10 shows the crossover time maps for the aver-

age heat content in the 0–700-m layer for IC95F95 minus

IC65F95 and IC95F95minus IC95F65. The corresponding

maps for IC65F95 minus IC65F65 and IC95F95 minus

IC65F65 are consistent with those shown in Fig. 10. We

FIG. 7. Schematic representation of distancesD defined in (1), (2),

and (3).

FIG. 8. Schematic representation of distances d defined in (4) and

(5) and crossover time.
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computed dI and dF at each grid point. Before computing

the distancesD and d, the time series of the heat content

in the 0–700-m layer have been smoothed by applying a

2-yr running-mean time filter. The computations have

been done for the ensemble mean for both reference and

sensitivity runs. Therefore, the maps do not provide any

estimation of the uncertainty.

Extended areas characterized by crossover times ex-

ceeding 8 yr are evident in all the models considered.

The regions showing the longer crossing times are con-

sistent with those already detected for the SST fields in

the analysis described in section 3, although with some

exceptions. The Arctic, limited areas in the Atlantic and

Pacific Oceans, and large regions in the Southern Ocean

stand out as the regions with the longest crossover time

(about 9 yr). The long crossing time in the Arctic could

be in part related to the long memory of the AMOC

initial conditions, which could also affect the Arctic sea

ice predictability (Mahajan et al. 2011; Msadek et al.

2014). However, the calculation of the Arctic sea ice

extent crossing time (Fig. SM5 in the supplementary

material) shows that on average the effect of

initialization is predominant for the first 2–3 yr (4 yr in

EC-EARTH). The predominance of the initial condi-

tion ranges between 2 and 4 yr both in the North At-

lantic basin and, to a lesser extent, in the North Pacific

basin. However, the signal over these basins is not spa-

tially homogeneous, and in some limited regions of the

North Atlantic the crossover time is longer (almost 9 yr

for a few grid points). This result is partially consistent

with a recent analysis conducted by Branstator and Teng

(2012) on long-term preindustrial control experiments

produced within the CMIP5 protocol. These authors

show that the impact of initial conditions over the North

Atlantic becomes secondary (with respect to the forcing)

after 8 yr for the average heat content in the 0–300-m

layer. Our analysis shows an average crossover time of

about 3 yr over the Atlantic subpolar gyre region, which

might appear in contrast with the high skill of these

models in predicting the upper-ocean heat content

anomaly in this region at 6–9-yr lead time (Hazeleger

et al. 2013b, their Fig. 3). However, it is worth pointing

out that the results of Hazeleger et al. (2013b) are based

on a multimodel ensemble mean over 30 ensemble

FIG. 9. Distances dI for jIC95F65 2 IC65F65j (solid) and dF for jIC65F95 2 IC65F65j (dashed) for AMOC

at 1000-m depth and 458N for all models (Sv). The gray (yellow) shading represents the uncertainty associated with

dF (dI) estimated from the ensemble spread. A 4-yr running mean has been applied to dF and dI.
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members, while crossover time estimates are computed

here considering single-model ensemble means (over

three or five ensemble members). Indeed, combining

results from a multimodel ensemble of different pre-

diction systems has been shown to improve the pre-

diction skill (Palmer et al. 2004; Hagedorn et al. 2005).

We found a more prominent influence of the initial

conditions in the southwestern and southeastern parts of

North Atlantic, between 308 and 458N. In particular,

close to the U.S. East Coast, the crossover time range

varies from about 3 (in HadCM3) up to 9 yr (in MPI-M).

This last result seems consistent with the high forecast

skill (correlation of 0.7 at 9-yr lead time) of the MPI-M

model initialized with the ORAS3 reanalysis in predict-

ing the average heat content in the 0–700-m layer over

the North Atlantic (equator–608N) (Kröger et al. 2012).
The map in Fig. 10 shows another region where the

influence of initial conditions is more important than the

forcing for an extended period. This is the tropical At-

lantic, where the impact of initialization is larger than

the one from the forcing for about 5 yr (and can reach

9 yr for the MPI-M model). This result is consistent with

the findings of Matei et al. (2012). In this study, the skill

score maps of initialized predictions at 2–5-yr lead time

display high correlation scores in the tropical Atlantic.

The long memory of the heat content initial conditions

in this region is apparent in Fig. 11, where the time

evolution of dI and dF for the average heat content at 0–

700m in the tropical Atlantic (208S–208N) is shown. The

impact of initial conditions is larger than that of

boundary conditions for 10 yr (even considering the

uncertainty band) for the MPI-M model and lasts up to

about 4–5 yr in ECMWF and EC-EARTH. A similar

signal cannot be found in HadCM3.

c. SSTs

The same crossover time maps have been produced

for SSTs (shown in Fig. SM6 of the supplementary ma-

terial). The patterns are broadly consistent with those

found for the heat content, but the average crossover

times are shorter. This shortening of the duration of

information coming from initial conditions when look-

ing at the sea surface temperatures might be expected.

In fact, numerical experiments (e.g., Griffies and Bryan

1997b) support the notion that subsurface quantities are

more predictable than SSTs. However, a priori one

FIG. 10. Crossover times (yr) for dI for jIC95F95 2 IC65F95j and dF for jIC95F95 2 IC95F65j for the mean heat

content at layer 0–700-m depth for all models. The crossing times are computed considering for each model the

distances dI and dF of the ensemble means. The white regions correspond to crossover times shorter than 2 yr.
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might not expect that the strong signal found over the

tropical Atlantic for the heat content at 700m almost

disappears in the SSTs. (The same analysis conducted

over the average heat content up to 400m is consistent

with the results found for the deeper layer.) A possible

explanation of the lack of signal in sea surface tem-

perature could be related to variations in either the

subtropical cells and equatorial undercurrent or

AMOC-related cross-equatorial flow (which partly

takes place in the North Brazil Undercurrent; e.g.,

Hazeleger and Drijfhout 2006) that are more

subsurface-related processes. In the case of the MPI-M

model, this result is consistent with those reported by

Matei et al. (2012). These authors found an enhanced

predictability of the tropical Atlantic at a lead time of 2–

5 yr for the upper-ocean heat content, but they did not

find a corresponding signal for SSTs.

The larger area with crossing times longer than 2–4 yr

for the sea surface temperatures is the southern Indian

Ocean. Over this region (608–308S, 308–1208E), even if

the uncertainty is large, it is possible, at least for EC-

EARTH, to estimate a lower limit for the crossover

time, which is about 2.5 yr (see Fig. 12). This signal is

consistent with the results of van Oldenborgh et al.

(2012) for the detrended anomaly correlation maps for

2–5-yr lead time in multimodel decadal hindcasts (see

their Fig. 5c). A large and fairly homogeneous signal is

found also over the western and tropical Pacific in the

MPI-M model (Fig. SM5c), while in the North Atlantic

the crossover time varies considerably over the region.

When the dI and dF for sea surface temperature over the

North Atlantic is computed (not shown), it is apparent

that the high natural variability over the region induces

large uncertainty, which makes estimates of the cross-

over time difficult.

7. Summary and discussion

Sensitivity experiments have been performed to iso-

late the impact of the initial conditions from the impact

of external forcing in decadal predictions. They consist

of two sets of 10-yr-long ensemble hindcasts carried out

with four different Earth system models for two initial

dates in 1965 and 1995 using either the external forcings

FIG. 11. Distances dI for jIC95F95 2 IC65F95j (dotted) and dF for jIC95F95 2 IC95F65j (dashed) for the heat

content at layer 0–700-m depth in the tropical Atlantic (208S–208N) for all models (K). The gray (yellow) shading

represents the uncertainty associatedwith dF (dI) estimated from the ensemble spread. A 2-yr runningmean has been

applied to dF and dI.
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from the ‘‘correct’’ decades or swapping the forcings be-

tween the two decades (SWAP experiments). By com-

paring reference and sensitivity integrations, we estimate

the impact of external forcing versus initial conditions on

the predictability over multiannual time scales. To give a

quantitative measure of the relative contributions, a

crossover time is defined as the forecast time range when

information from initial conditions and forcings are equal.

We focus on the impact of initial conditions versus ex-

ternal forcing in terms of predictability of sea surface (and

subsurface) temperatures and the AMOC.

Results from the sensitivity experiment indicate that,

over time scales longer than about 1 yr, predictability of

SSTs on a global domain arises mainly from the forcing.

However, the correct initialization seems to have a

longer impact on SST predictability over selected re-

gions around the extensions of the western boundary

currents and the Southern Ocean that are likely to be

related to changes in the gyre circulation (Figs. 4, 5).

There is also a consistent warming signal in the Arctic

that persists for the first 5 years in all the models. These

results are consistent with the findings of several other

studies (e.g., Boer 2004; Pohlmann et al. 2009; Smith

et al. 2010; Branstator et al. 2012).

The impact of initialization is longer and extends to

wider regions when subsurface ocean variables are

considered. For example, over the southwestern part of

the North Atlantic close to the North American coast

line, the impact of initialization for the 700-m heat

content extends to as much as 9 years for the MPI-M

model (this model shows a long memory of initial con-

ditions also in the tropical Atlantic). In all models con-

sidered, the impact of initial conditions on the

predictability of the AMOC is dominant for the first 5

years. In agreement with previous studies (e.g., Teng

et al. 2011), in some models the influence of initial

conditions is apparent even up to the 9-yr lead time.

All the models show a similar response to forcing:

weakening of the AMOC (Fig. 6) and warming of the

tropical oceans (Fig. 5). However, in spite of the con-

sistent response to forcing and to initial conditions, the

degree of predictability is model dependent, possibly

because the underlying dynamics varies from model to

model. Thus, the model with a strong AMOC (MPI-M),

FIG. 12. Distances dI for jIC95F65 2 IC65F65j (solid) and dF for jIC65F95 2 IC65F65j (dashed) for SST in the

southern Indian Ocean (608–308S, 308–1208E) for all models (K). The gray (yellow) shading represents the uncertainty

associated with dF (dI) estimated from the ensemble spread. A 2-yr running mean has been applied to dF and dI.
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which also shows a strong weakening due to the initial

conditions, has a pronounced first kind predictability in

the tropical Atlantic 700-m heat content (Fig. 10), con-

sistent with a decrease in the meridional heat transport.

The results shown here have to be tempered by the fact

that the band of uncertainty associated with the natural

variability is wide. Moreover, the question remains how

much these results depend on the use of the selected two

starting dates for the SWAP experiments. In particular,

onemight need a larger sample to filter out the short-term

internal variability in either the initial conditions and/or

the forcing. Indeed, in order to explore systematically the

importance of initial conditions with respect to external

forcing in multiannual predictions, the experimental ap-

proach described in this paper could be very helpful,

when applied systematically to a larger sample of starting

dates. The experiments and results described in this paper

can be seen as a prototype on which further future testing

with more models, larger sample sizes, and different ini-

tial dates could be based on.
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