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In this paper, the performance of six types of techniques for comparisons of means is

examined. These six emerge from the distinction between the method employed

(hypothesis testing, model selection using information criteria, or Bayesian model

selection) and the set of hypotheses that is investigated (a classical, exploration-based set

of hypotheses containing equality constraints on the means, or a theory-based limited set

of hypotheseswith equality and/or order restrictions). A simulation study is conducted to

examine the performance of these techniques.We demonstrate that, if one has specific, a

priori specified hypotheses, confirmation (i.e., investigating theory-based hypotheses) has

advantages over exploration (i.e., examining all possible equality-constrained hypothe-

ses). Furthermore, examining reasonable order-restricted hypotheses has more power

to detect the true effect/non-null hypothesis than evaluating only equality restrictions.

Additionally, when investigatingmore than one theory-based hypothesis, model selection

is preferred over hypothesis testing. Because of the first two results, we further examine

the techniques that are able to evaluate order restrictions in a confirmatory fashion by

examining their performance when the homogeneity of variance assumption is violated.

Results show that the techniques are robust to heterogeneity when the sample sizes are

equal. When the sample sizes are unequal, the performance is affected by heterogeneity.

The size and direction of the deviations from the baseline, where there is no

heterogeneity, depend on the effect size (of the means) and on the trend in the group

variances with respect to the ordering of the group sizes. Importantly, the deviations are

less pronouncedwhen the group variances and sizes exhibit the same trend (e.g., are both

increasing with group number).

1. Introduction

A central issue in most research is to evaluate the researcher’s theory. When comparing
group means, the researcher would often like to know whether these differ and, if so,

which ones are different from each other. There are two approaches that can be used to

address this question: exploratory and confirmatory (i.e., theory-based). In exploration, all

the possible configurations of subsets of means are examined. That is, all possible pairs or

subsets of means are examined to determinewhether they are equal (‘=’) or not (‘ 6¼’). The

number of possible configurations increases rapidly with an increase in the number of

groups k. For example, when k = 3 and 5, there are 5 and 52 possible configurations (see
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Table 6), respectively. In the confirmatory approach, researchers solely evaluate their

theories or expectations, provided that they can specify reasonable ones. This

specification should be done before seeing or even collecting the data. We refer the

reader to Wagenmakers, Wetzels, Borsboom, van der Maas, and Kievit (2012) for a more
detailed discussion, also in light of replicability of results. Considering solely prespecified

expectations typically results in a small set of hypotheses thatmay not include the classical

null,allmeans are equal (H0), and the classical alternative, there are no restrictions (HA).

This set will often include one or more order-restricted hypotheses, representing

particular orderings of the means (e.g., the first three out of five group means are

increasing with group number and the others are equal, that is, l1 < l2 < l3 = l4 = l5),
but also hypotheses without inequalities (e.g., the first three out of five group means are

equal and the others are not restricted, that is, l1 = l2 = l3, l4, l5). In adopting this
approach, the researcher aims to confirm or refute his theory or compare a limited set of

theories rather than to explore all the possibilities. In both exploration and confirmation,

different methods can be used: hypothesis testing, model selection using information

criteria, and Bayesian model selection (BMS). These two distinctions lead to six different

types of techniques. Table 1 displays, for each of the six, at least one technique that can be

used in the analysis of variance (ANOVA) model to evaluate group means. The

descriptions of these techniques are summarized in the next section and accompanied

with an illustration. A more detailed description is given in Kuiper and Hoijtink (2010).
Kuiper and Hoijtink (2010) show for one data set that, in ANOVA models, techniques

evaluating order-restricted and possibly equality-constrained hypotheses perform better

than those evaluating solely equalities. In this paper, we will quantify the performance of

the three methods using the exploratory approach and the three employing the

confirmatory approach, all applicable for ANOVA models, by means of simulation. Since

theories often lead to order-restricted hypotheses, we select in our simulation study as

confirmatory techniques those that can handle inequality constraints, that is, the �F test,

the order-restricted information criterion (ORIC), and posterior model probabilities
(PMPs). Notably, the Akaike information criterion (AIC) can be used in both an

exploratory and confirmatory way by examining solely theory-based hypotheses.

However, it cannot evaluate order-restricted hypotheses, whereas the ORIC, a modified

form of the AIC, can. In contrast, techniques able to evaluate order-restricted hypotheses

can be employed in either a confirmatory or an exploratory mode. Hence, when

necessary, we make a clear distinction between being suitable for examining order

Table 1. Examples of the six types of techniques for testing or evaluating hypotheses

Method

Exploration: Inspect all

possibilities

Confirmation: Inspect

theory ∕ theories

Hypothesis testing Equal ni: Shaffer–Welch

Fq (SWFq) test

�F test; notably, the F test is a

special case

Unequal ni: Tukey–Kramer

(TK) test

Model selection based

on information criteria

Paired-comparison information

criterion (PCIC); e.g., PCIC

based on the AIC (PCIC-AIC)

Order-restricted information

criterion (ORIC); notably, the

AIC is a special case

Bayesian model selection Posterior model probabilities

(PMPs)

Posterior model probabilities

(PMPs)

Note. ni is the number of observations for group i; AIC = Akaike information criterion.
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restrictions or not. In this study, wewill investigate both the effect of confirmation versus

exploration and examining order-restricted hypotheses or not. In addition, we compare

the performance of the three methods: hypothesis testing, model selection using

information criteria, and BMS. Here, the performance of a technique is measured by the
true hypothesis rate, that is, the percentage of times the correct hypothesis is chosen. It

should be stressed that hypothesis testing serves a different purpose thanmodel selection.

The goal of the former is to reject the null hypothesis, whereas the goal of the latter is to

select the best out of a set of hypotheses. Hence, in hypothesis testing, the null hypothesis

is of more importance, while in model selection all hypotheses are equally important.

Nevertheless, we do think it is valuable to examine the true hypothesis rates of the null

hypothesis and other (order-restricted) hypotheses.1 Owing to their purposes, we expect

that the true hypothesis rate of the null hypothesis is the highest for hypothesis testing and
that of non-null hypotheses for model selection.

Robustness of performance is also of importance. The effect of ANOVA assumptions

violations on performance has been widely studied for the traditional ANOVA F test (e.g.,

Box, 1954; Schumacker & Akers, 2001), but little is known for techniques able to

investigate order restrictions. To the authors’ knowledge, only Wesel, Hoijtink, and

Klugkist (2011) have examined this for BMS. To gainmore insight into the performance of

the three techniques appropriate for confirmatory evaluationof order restrictions,we also

investigate, via simulation, their robustness to the violation of the homogeneity of
variance assumption.

In the next section, we briefly illustrate six techniques that can be applied to

comparing group means using an example based on Lucas (2003). Subsequently, the

design and results of the two simulation studies are described.We endwith a discussion of

extensions to techniques appropriate for inequality constraints and of software available

to implement order-restricted inference.

2. Description of the six techniques

The techniques for testing hypotheses and selecting models are introduced using data

from Lucas (2003).

2.1. Example
Lucas (2003) reports a study with five experimental groups: (1) a group with a randomly

selected male leader, (2) a group with a randomly selected female leader, (3) a group

where themale teammemberwho scores highest on the first task is selected as leader, (4)

a group where the female teammember who scores highest on the first task is selected as

leader, and (5) a group inwhich female leadership is institutionalized and the female team

member who scores highest on the first task is selected as leader. The institutionalization

manipulation is achieved by showing the participants a film in which female leadership is

1Weshow thehypothesis rates for eachof the techniquesperformed asdone inpractice.Hence,wedonot adjust
them to have, for example, equal true null hypothesis rates. Although thiswouldmake the comparisonof the true
non-null hypothesis rates between the three methods fairer, we prefer to show the hypothesis rates to be
expected in practice. Notably, in this study, when comparing techniques of the same method, (1) the true non-
null hypothesis rates are approximately the same or (2) the technique used in a confirmatorymanner and suitable
for order restrictions has not only a higher true non-null hypothesis rate but also a higher true null hypothesis rate
than its exploratory counterpart. However, when comparing techniques belonging to anothermethod based on
true non-null hypothesis rates, one has to take into account the difference in true null hypothesis rates.
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normal and females do well as leaders. The dependent variable is the influence of the

leader derived from performance on a second task. The model of interest is an ANOVA

model with k = 5 groups and ni = n = 30 observations per group (for i = 1, . . ., 5). The
group means and standard deviations are shown in Table 2.

In this example, two hypotheses, designated H1 and H2, can be derived from theory.

Both are based on the expectation that leaders appointed on the basis of their ability

(groups 3 and 4) exert more influence over participants than leaders of the same sex

appointed randomly (groups 1 and 2, respectively); that is, l1 < l3 and l2 < l4, where li
is the mean influence of group i.H1 is based on two additional propositions derived from

theory: Women, according to the status characteristics theory, are disadvantaged

relative tomen in social interactions, all other things being equal and Institutionalizing

women as leaders overcomes the influence gap between women and men. In the
context of the experiment, the first proposition leads to the expectation that female

leaders (groups 2 and 4) exert less influence over the members of a group they lead than

male leaders selected in the same manner (groups 1 and 3, respectively); that is, l2 < l1
and l4 < l3. These expectations yield l2 < l4 < l3 and l2 < l1 < l3, which will be

written as l2 < {l1, l4} < l3 for ease of notation. The second proposition can be

interpreted in a few ways. Our interpretation is that ‘overcome’ means that the gap is

closed. Hence, it is expected that institutionalized female leaders selected on the basis of

their ability (group 5) exert the same amount of influenceover participants asmale leaders
appointed on the basis of their ability (group 3) and thus l5 = l3. These three

expectations lead to the hypothesis

H1 : l2\fl1; l4g\l3 ¼ l5: ð1Þ

H2 is based on theoretically derived propositions competing with those of H1: Female

leaders selected on the basis of their competence (group 4)have less influence thanmale

leaders selected at random (group 1) and Institutionalizing women as leaders has no

effect. The first proposition is represented by l4 < l1. Following the second proposition,

it is expected that there is no difference between the influence of female leaders selected

on the basis of their competence in the case of institutionalization (group 5) or in the
normal case (group 4), that is, l5 = l4. These three expectations are represented by the

hypothesis

H2 : l2\l5 ¼ l4\l1\l3: ð2Þ

Table 2. Sample group means and standard deviations of influence (Lucas, 2003)

Group Mean influence SD n

1. Randomly selected male leader 2.33 1.86 30

2. Randomly selected female leader 1.33 1.15 30

3. Male leader highest score 3.20 1.79 30

4. Female leader highest score 2.23 1.45 30

5. Female leader highest score and female

leadership is institutionalized

3.23 1.50 30

Note. SD = standard deviation; n = group size.
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2.2. Hypothesis testing

2.2.1. Exploration

The most common procedure to analyse the data of Lucas (2003) is to conduct an

ANOVA F test followed by post hoc tests or pairwise multiple comparisons

procedures when F is significant.2 A powerful procedure, for equal group sizes, is

the Shaffer–Welch Fq (SWFq) test (Ramsey, 2002; Toothaker, 1993, pp. 42–43, 48,
note that the technique is called Shaffer–Ryan here). The SWFq test starts with an
overall F test and is followed by testing only a selection of pairs of means which is

based on the order of the sample means (and thus not on any expectation or

hypothesis about their order). Note that this test is by definition an exploratory

hypothesis testing technique.

In the omnibus test of the main effect, F(4, 145) = 7.57(p < .001). Thus, the null

hypothesis that the group means are all equal is rejected and we proceed with testing a

certain selection of pairs ofmeans based on the ordering of the samplemeans. FromTable

2, it can be seen that the ordering fromhigh to low is as follows: group 5, group 3, group 1,
group 4, group 2. We will not give the details of the procedure here, as they can be found

in Kuiper and Hoijtink (2010), Ramsey (2002), and Toothaker (1993, pp. 42–43, 48).
Using a nominal a level of .05, it is concluded that themeans of groups 2 and 5 and those of

groups 2 and 3 are significantly different; all the other pairs of means are not significantly

different.

From these results, it is hard to conclude anything with respect to a specific

hypothesis such as H1 and H2 as set out in equations (1) and (2), respectively, let alone

with respect to two (or more) competing theoretical expectations. This is the case even
if your hypotheses do not contain order restrictions. Moreover, the results of

exploratory tests may appear logically inconsistent and thus hard to interpret. For

example, when k = 3, it is logically impossible that H0: l1 = l2 and H0: l2 = l3 are true
if H0: l1 6¼l3 is true. Although it might not be directly clear, our example also presents

such an inconsistency. Neither the difference between the means of groups 1 and 2 nor

the difference between the means of groups 5 and 1 is significant. However, the

difference between the means of groups 5 and 2 is significant, apparently in conflict

with the other two results. Both problems are avoided by testing the hypotheses of
interest (i.e., H1 and H2) directly with a confirmatory hypothesis test (able to evaluate

order restrictions).

2.2.2. Confirmation

The �F test (Silvapulle & Sen, 2005, pp. 25–42) is a modification of the F test such

that it can test theory-based hypotheses directly. Notably, theory-based hypotheses

may comprise order-restricted hypotheses (such as H1 in equation (1) or
Hm: l1 ≥ l2 ≥ l3) as well as hypotheses without inequalities (e.g., Hm: l1 = l2, l3,
where the first two groups are said to be equal and the third is not restricted). One

can test the classical null (H0: l1 = . . . = lk) against a theory-based alternative (e.g.,

H1) and one can test a theory-based null (e.g., H1) against the classical alternative

(HA: l1, . . ., lk). When conducting solely these two tests for (say) H1, a possible

result is to favour H0 over H1 (by not rejecting H0 in the first test) and to favour HA

2 There are post hoc tests and pairwise multiple comparisons that do not require a significant overall F test; for
example, the Ryan test (Toothaker, 1993).
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over H1 (by rejecting H1 in favour of HA in the second test). In that case, another

test is required to conclude whether H0 or HA is preferred. Therefore, we

recommend testing H0 against HA as well.3

In the case of Lucas, H0 is tested against HA, H1, and H2, and both H1 and H2

are tested against the unconstrained hypothesis HA. The results are presented in

Table 3 for a = .05 (without multiple testing corrections). These results reveal

that HA is preferred over H0 and that both H1 and H2 are preferred over both H0

and HA.
Although the �F test provides clearer information about our hypotheses (H1 and

H2), there is still a drawback. The conclusions from the five tests must be combined

and, therefore, the results do not always lead to a single preferred hypothesis. This

is also the case in Table 3. Since no direct comparison between theory-based

hypotheses is possible with the �F test, nothing can be concluded with respect to H1

versus H2. Hence, the �F test is best restricted to the case of one theory-based

hypothesis.

2.3. Model selection using information criteria

2.3.1. Exploration

Familiar information criteria include the Akaike information criterion and the Bayesian

information criterion (BIC). They consist of a likelihood-derived ‘fit’ part and a penalty

part based on complexity. The purpose of model selection is not to reject a null

hypothesis but to select the best from a set of hypotheses. When applied in a classical

exploratory manner, all possible configurations of means are examined. Dayton (2003)

introduces the paired-comparison information criterion (PCIC), which does not

examine all possibilities but only the possible configurations based on the ordered

sample means. This avoids inconsistencies (Dayton, 1998, 2003) and yields higher true
hypothesis rates when not all population means are equal (Cribbie & Keselman, 2000;

Dayton, 2003). For k = 5 groups, as in the Lucas example, there are 52 possible

configurations, but only 2k�1 = 24 = 16 based on ordered sample means. It should be

stressed that the PCIC, like the SWFq test, bases the set of hypotheses on the order of

the sample means and not on theory, like H1 and H2. Thus, by definition, the PCIC is an

exploratory model selection technique. The PCIC can be applied with, for example,

Table 3. Results of the five �F tests for the two theory-based hypotheses

Hypotheses tested �F p value

H0 against HA 30.27 <.001
H0 against H1 30.26 <.001
H1 against HA 0.01 .995

H0 against H2 22.91 <.001
H2 against HA 7.36 .070

Note. Bold type indicates the preferred hypothesis.

3 If there is no (a priori) interest in H0, it suffices to test only the theory-based hypothesis against the
unconstrainedone. Sincewewant to compare the �F testwith its exploratory counterpart andbecausewewant to
report on the null hypothesis rate, we do include H0 in the set and thus do three tests.
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AIC (PCIC-AIC) or BIC (PCIC-BIC). Notably, the small-sample-corrected AIC (AICC)

could also be used (if
Pk

i¼1 ni is small). Since Burnham and Anderson (2002, section
6.4) argue that the AIC has theoretical advantages over the BIC and the model selection

criterion able to handle order restrictions (which will be discussed next) is a

modification of the AIC, we will only evaluate the PCIC-AIC.

For the example, the order of the sample means and the corresponding group

numbers are given in the upper panel in Table 4. Based on the ordering, 16

hypotheses/models4 can be distinguished, see Table 4 under ‘Model’, where a

number represents the group number and a comma separates two subsets. For

example, {24135} represents the classical null (H0), {2, 4, 1, 3, 5} equals the
classical alternative (HA), and {2, 41, 35} denotes l2, l4 = l1, l3 = l5. Table 4

additionally displays the AIC penalty (qm, the number of distinct group means plus

one for the unknown r2), the log-likelihood (log Lm), and the PCIC-AIC values (=
�2 log Lm + 2 qm) for each of the 16 models. The hypothesis with the lowest PCIC-

AIC value is the preferred one. This is model 7 with group structure {2, 41, 35} or

l2, l4 = l1, l3 = l5.

Table 4. Results of model selection (PCIC-AIC) and Bayesian model selection (PMP) for the 16

hypotheses based on ordered sample means

Ordered sample means: 1.33 2.23 2.33 3.20 3.23

Corresponding group no.: 2 4 1 3 5

Model no. (m) Model qm log Lm PCIC-AICm PMPm

1 {24135} = H0 2 �292.27 588.54 .00

2 {2,4135} 3 �283.38 572.76 .03

3 {24,135} 3 �283.68 573.36 .03

4 {241,35} 3 �281.79 569.57 .11

5 {2413,5} 3 �288.36 582.71 .00

6 {2,4,135} 4 �281.27 570.53 .04

7 {2,41,35} 4 �278.08 564.16 .45
8 {2,413,5} 4 �281.54 571.09 .03

9 {24,1,35} 4 �280.57 569.14 .06

10 {24,13,5} 4 �282.84 573.67 .01

11 {241,3,5} 4 �281.78 571.57 .02

12 {2,4,1,35} 5 �278.05 566.10 .09

13 {2,4,13,5} 5 �280.39 570.79 .02

14 {2,41,3,5} 5 �278.08 566.16 .01

15 {24,1,3,5} 5 �280.57 571.13 .09

16 {2,4,1,3,5} = HA 6 �278.05 568.10 .02

Note. PCIC-AIC = paired-comparison information criterion based on the Akaike information

criterion, with PCIC-AICm = �2 log Lm + 2 qm; PMP = posterior model probability. Bold type

indicates the preferred hypothesis: the lowest PCIC-AIC value in model selection and the highest

PMP value in Bayesian model selection.

4 In model selection, hypotheses are often referred to as models. Therefore, we will use both terms
interchangeably in discussing model selection.
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Although PCIC-AIC does not yield inconsistencies, it still does not give clear

information when examining a set of hypotheses containing at least one order-restricted

hypothesis, likeH1 andH2 in the example. This problem is solved by evaluating the set of

theory-based hypotheses directly.

2.3.2. Confirmation

In confirmatorymodel selection, one evaluates the set containing solely the hypotheses of

interest (e.g., those derived from theory such asH1 andH2 in our example). One could use

the AIC, but often theories lead to order-restricted hypotheses and in that case this AIC is

not appropriate. The ORIC (Anraku, 1999), on the other hand, is a modification of the AIC

designed to evaluate order-restricted hypotheses as well. We will therefore employ the
ORIC rather than the AIC; but note that in the absence of order restrictions, the ORIC

reduces to the AIC. Like the AIC, the ORIC comprises a fit term and a penalty term. The fit

is also here based on the group means that maximize the likelihood subject to the

restrictions in the hypothesis at hand, but now the restrictions may contain inequality

constraints (‘<’ and/or ‘>’). For instance, let the theory-based hypothesis be HC1:

l1 < l2 < l3.When the samplemeans are 1, 2, and 4 and thus in accordancewithHC1, the

meansmaximizing the likelihood subject toHC1 (referred to as the order-restrictedmeans)

are equal to the sample means. When the sample means are not in accordance with HC1,
the order-restrictedmeans cannot by definition be equal to the samplemeans. In that case,

the order-restricted means are adjusted samples means such that they not only comply

with the restrictions but also maximize the likelihood given those restrictions. When, for

example, the sample means are 1, 4, and 2, the sample means are not in accordance with

HC1 since the second samplemean is not smaller than or equal to the third.Maximizing the

likelihood subject to the restrictions in HC1 provides order-restricted means that are the

(weighted with sample size) averages of these sample means. Hence, assuming equal

sample sizes per group, the order-restricted means are 1, (4 + 2)/2 = 3, and (4 + 2)/
2 = 3, respectively. Another difference with respect to AIC is that the penalty, in the

presence of order restrictions, equals the expected number of distinct parameters. For

example, the expected number of distinct parameters of HC2: l1 = l2 < l3 is 2.5 in the

case of equal group sizes. Namely, 1 for theunknownr2, 1 for thedistinct value ofl1 = l2,
and an additional 0.5 for l2 < l3. The latter can be deduced from the fact that, under the

null where all means are equal, the sample means will be in accordance with l2 < l3 half
of the time in the case of equal group sizes, leading to two distinct order-restricted mean

values; in the other half, the order-restricted means are set equal, leading to one distinct
value. That is, the expected number of distinct mean values for HC2 is

0.5 9 2 + 0.5 9 1 = 1.5. In practice, the penalty is often hard to determine by hand,

but can easily be simulated (Silvapulle & Sen, 2005, pp. 78–81). For instance, the value of
the penalty forHC1 equals 2

5
6
. Notably, this is lower than that forHA (i.e., 1 + 3 = 4), since

we restrict the parameters, and it is higher than that for H0 (i.e., 1 + 1 = 2), since our

constraints are not that strict.

In contrast to the �F test, the ORIC can evaluate multiple theory-based hypotheses

simultaneously. It should be stressed that the traditional alternativeHA should be included
in the set as a safeguard forweakhypotheses (Kuiper&Hoijtink, 2010), that is, hypotheses

not supported by the data. Namely, when all hypotheses are weak, HA will receive the

most support. In the Lucas example, we will evaluate the traditional null H0 as well, for

illustrative purposes, since it is also used in exploration. Hence, the following set of

hypotheses is employed:
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H0 :l1 ¼ l2 ¼ l3 ¼ l4 ¼ l5;

H1 :l2\fl1; l4g\l3 ¼ l5;

H2 :l2\l5 ¼ l4\l1\l3;

HA :l1; l2; l3; l4; l5:

ð3Þ

Note that, in explorationwithk = 5, 16 hypotheses are evaluated,whereas the researcher

often has a limited number of competing hypotheses under serious consideration; here
only four. In Table 5, the values for the penalty term (qm, the expected number of distinct

model parameters), the log-likelihood values (log Lm), and the ORIC values

(= �2 log Lm + 2qm) are given for the four a priori specified hypotheses denoted in

equation (3).Note that for hypotheseswith no inequalities theORIC reduces to theAIC, as

formodels 1 (H0) and 16 (HA) in Table 4. In the Lucas example, hypothesisH1 is preferred,

since it has the smallest ORIC value, and thus the best trade-off between fit (likelihood)

and complexity (penalty).

2.4. Bayesian model selection

In BMS, the selection of the best hypothesis is not based on an information criterion but on

themarginal likelihood of the hypotheses, which is ameasure of the degree of support for

a hypothesis provided by the data. To interpret several marginal likelihoods at once, it can

be helpful to transform them into PMPs. A PMP is the probability that, given the data, the

corresponding hypothesis is the best of the set of hypotheses (assuming that all the

hypotheses have equal a priori probabilities). The marginal likelihood depends on the
likelihood and a prior. A prior reflects pre-existing knowledge or a belief with respect to

the parameters (e.g., means). For an elaboration on the role of priors see, for instance,

Gelman (2002) and Gelman (2012). In this paper, we use, based on Klugkist, Laudy, and

Hoijtink (2005), the normal distribution with a data-based mean and a large variance for

every li (i = 1, . . ., k). The prior mean and variance depend not only on the data, but also

on a user-specified term (PV) that reflects the vagueness of the prior (see Kuiper &

Hoijtink, 2010; Kuiper, Klugkist, & Hoijtink, 2010), where a higher PV value corresponds

to an increasing prior vagueness. Klugkist and Hoijtink (2007) show that, if a hypothesis
does not contain equality constraints (‘=’), the relative support of this hypothesis with

respect to the unconstrained hypothesis (or other hypotheses without equalities) is not

sensitive to the choice of the prior. In contrast, in a set of hypotheses with at least one

equality restriction (in at least one hypothesis), the results do depend on the prior

Table 5. Results of model selection (ORIC) and Bayesian model selection (PMP) for the four

specified hypotheses

Model Hm qm log Lm ORICm PMPm

H0: l1 = l2 = l3 = l4 = l5 2.00 �292.27 588.54 .00

H1: l2 < {l1, l4} < l3 = l5 3.19 �278.05 562.48 .96
H2: l2 < l5 = l4 < l1 < l3 3.14 �281.76 569.80 .02

HA: l1, l2, l3, l4, l5 6.00 �278.05 568.10 .01

Note.ORIC = order-restricted information criterion,withORICm = �2 log Lm + 2qm; PMP = pos-

terior model probability. Bold type indicates the preferred hypothesis: the lowest ORIC value in

model selection and the highest PMP value in Bayesian model selection.
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specification. In that case, the vaguer the prior (i.e., a higher PV value), the more support

for hypotheses with equality constraints. This is known as Lindley’s or Bartlett’s paradox.

Klugkist and Hoijtink (2007) discuss this paradox in the context of BMS in detail. In

addition, they show that for reasonable choices ofPV, the prior sensitivity does usually not
lead to a different evaluation of the hypotheses. Although Klugkist et al. (2005) designed

BMS for the evaluation of order-restricted hypotheses in a confirmatory manner, it can be

used in an exploratory fashion as well.

2.4.1. Exploration

One can, for instance, evaluate the 2k�1 configurations based on ordered sample means
(comparable with the PCIC). The last column in Table 4 shows the results (i.e., PMPs) for

the example, when examining this exploratory-based set of hypotheses. In BMS, the

hypothesis with the highest PMP value is the preferred one. Hence, model 7 with group

structure {2, 41, 35}, that is, l2, l4 = l1, l3 = l5, is the preferred hypothesis in

exploration. Note that the same conclusion was obtained before with the PCIC-AIC.

2.4.2. Confirmation

In confirmation, a limited set of well-defined, theory-based hypotheses, such as that in

equation (3) above, is evaluated. The results of the confirmatory model selection are

revealed in Table 5. The PMP values in the final column indicate that H1 is the preferred

hypothesis (by somemargin). Notably, the same conclusion was obtained with the ORIC.

3. Performance of the six techniques

The performance of the six techniques (summarized in Table 1) is evaluated by

conducting a simulation study. The performance of hypothesis testing techniques can be

measured by statistical power: the probability that the test will reject a false null

hypothesis. Thus, statistical power is the ability to detect a true effect. In model selection,

one can employ an equivalent of statistical power, namely the probability that the

technique will render the most support for the correct or best hypothesis. In the
simulation study, the performance is therefore quantified by the number of times the

technique prefers the correct or best hypothesis, which is referred to as the true

hypothesis rate.

In this section, three comparisons are made: (1) between the performance of

hypothesis testing, model selection using information criteria, and BMS; (2) between the

performance of methods when evaluating hypotheses with and without order restric-

tions; and (3) between the performance ofmethods when evaluating all possible equality-

restricted hypotheses versus a solely theory-derived set of hypotheses. Before describing
the results, we discuss the chosen values for the number of groups (k) and observations

per group (ni), the hypotheses, and the population parameter values employed in the

simulation.

3.1. The number of groups and observations

Techniques able to evaluate order-restricted hypotheses have added value when

comparing three or more means, since order-restricted inference with two means
reduces to the trivial case of a one-sided test. To obtain a first insight into the performance
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of the six techniques, we start with a simulation with k = 3 groups (for both n = 20 and

n = 50)5 and k = 5 groups (for n = 30).6 From these two simulations, a pattern becomes

clear with respect to the performance of methods in the exploratory and confirmatory

approach and that of those evaluating (reasonable) order-restricted hypotheses or not.

3.2. Hypotheses

Table 6 shows the hypotheses of interest in the simulation study for k = 3 and k = 5. In
the exploratory approach, the hypotheses to be examined are certain group structures

represented by pairwise equality (‘=’) and non-equality (‘ 6¼’) restrictions. As explained in

theprevious section, in the exploratory approach (whereweuse the SWFq test, PCIC-AIC,

and BMS), not all possible configurations of means in the observed data set are evaluated,

but a subset based on the ordering of the sample means of the data set at hand (e.g., for

PCIC-AIC, 4 out of 5 for k = 3 and 16 out of 52 for k = 5). Nevertheless, in the simulation,

more configurations of means can be examined, since the ordering of the sample means

may differ by data set in the simulation. Notably, combining the significant and non-
significant pairs of means resulting from the SWFq test can lead to favouring one of the

hypotheses in thefirst columnofTable 6or can give inconsistencies. In contrast, PCIC-AIC

and BMS always result in preferring one of the hypotheses in Table 6.

In the confirmatory approach (where we here use the �F , ORIC, and BMS), the

hypothesis or hypotheses to be tested or selected need to be specified by the researcher.

This can be based on previous research or theory. Table 6 displays the hypotheses that are

Table 6. Hypotheses tested for k = 3 and k = 5 in the exploratory (HE.) and confirmatory (HC.)

approach

Exploration: inspect all possibilities Confirmation: inspect theory/theories

k = 3 H0: l1 = l2 = l3 H0: l1 = l2 = l3
HE1: l1 = l2, l3 HC1: l1 < l2 < l3
HE2: l1, l2 = l3 HC2: l1 = l2 < l3
HE3: l1 = l3, l2 HC3: l1 < l2 > l3
HA: l1, l2, l3 HA: l1, l2, l3

k = 5 H0: l1 = l2 = l3 = l4 = l5 H0: l1 = l2 = l3 = l4 = l5
HE1: l1 = l2 = l3 = l4, l5 HC1: l5 = l3 > {l1, l4} > l2
HE2: l1 = l2 = l3 = l5, l4 HC2: l3 > l1 > l4 = l5 > l2

HA: l1, l2, l3, l4, l5
⋮
HE49: l1, l2, l4, l3 = l5
HE50: l1, l3, l2, l4 = l5
HA: l1, l2, l3, l4, l5

5 The results for n = 20 are not shown here, since the patterns are the same as for n = 50. The only difference is
that the performance itself is lower.
6Note that the performance of a technique improveswhen the number of observations per group increases. As a
consequence, it ismore interesting to examinedata setswith small tomediumgroup sizes, that is, group sizes that
can detect a large and medium effect, respectively. According to Cohen (1992), with a power of .80 and an a of
.05, one needs (at least) 21 observations per group to detect a large effect size in an ANOVA model with three
groups, and 52 for a medium effect size. For five groups, one needs (at least) 16 and 39 observations per group,
respectively. Based on these figures, we chose to examine k = 3 groups for both n = 20 and n = 50 and (also
because of the Lucas example) k = 5 groups for n = 30.
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evaluated in this paper. Bear in mind that the type and number of hypotheses are

examples. We choose to include the classical null and alternative and some hypotheses

with order restrictions, since this is an advantage of the techniques we examine here. For

k = 3, we choose to evaluate five hypotheses. This number equals the number of possible
configurations of means in exploration, but the structure is different. The set for k = 5 is

based on Lucas (2003) and consists of the four hypotheses presented in equation (3). Note

that, for k = 5, 16 hypotheses are evaluated for one data set in exploratory model

selection,whereas the researcher is typically only interested in a limited number of (order-

restricted) hypotheses.

Hence, the simulation results for k = 3 will provide insight into the gain in statistical

‘power’ when evaluating hypotheses with inequality constraints versus those without.

The study with k = 5 will additionally investigate the effect of evaluating fewer, theory-
derived hypotheses.

The �F test is designed for testing one theory-based (order-restricted) hypothesis, such

as HC1. One can choose to test both H0 against HC1 and HC1 against HA, in addition to H0

againstHA. The decision rules for these three �F tests are rather straightforward. However,

ifM theory-based hypotheses are evaluated by 1 + 2M �F tests, the decision rules become

very ad hoc and more than one plausible set of decision rules exists. Moreover, no direct

comparison is possible between the M theory-based hypotheses. As a consequence, we

will only examine the performance of the �F test for one theory-based (order-restricted)
hypothesis, namely HC1.

3.3. Populations

Several populations based on the general ANOVA model are considered. In all

populations, the population standard deviation r is set equal to 1. Sets of population

means are given in Table 7. The values are based on the number of groups (k), the true

hypothesis, and the effect size given by

ES ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k

Xk
i¼1

ðli � lÞ2
vuut ; ð4Þ

with l ¼ 1
k

Pk
i¼1 li. According to Cohen (1992), an effect size of ES = 0.10 is small, of

ES = 0.25 is medium, and of ES = 0.40 is large. Two types of populations can be

Table 7. Population groupmeans (li for i = 1, . . ., k) for zero, small,medium, and large effect size

(i.e., ES = 0.00, 0.10, 0.25, and 0.40, respectively)

k True Hm ES l1 l2 l3 l4 l5

3 H0 0.00 0.000 0.000 0.000

HC1 0.10 �0.122 0.000 0.122

HC1 0.25 �0.306 0.000 0.306

HC1 0.40 �0.490 0.000 0.490

5 H0 0.00 0.000 0.000 0.000 0.000 0.000

HC1 0.10 0.000 �0.122 0.130 0.122 0.130

HC1 0.25 0.000 �0.306 0.321 0.306 0.321

HC1 0.40 0.000 �0.490 0.516 0.490 0.516
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distinguished: one where all the population means are identical (ES = 0) and one where

they are in accordance with HC1 (ES = 0.10, 0.25, 0.40). Based on each population in

Table 7, 1,000 data sets are simulated. Subsequently, the corresponding hypotheses in

Table 6 are evaluated in each of these data sets. Note that, in explorationwhen ES > 0,HA

and HE49 are the correct hypotheses for k = 3 and k = 5, respectively.

3.4. Results

3.4.1. Exploration for k = 3

Table 8 displays the proportions of times the hypotheses are preferred for each technique

and each population (i.e., effect size). The SWFq test chooses, as expected, H0 as the

preferred hypothesis about 95% of the timewhen it is indeed true. Notably, the SWFq test

is designed such that a = .05. The other two techniques, PCIC-AIC and BMS for PV = 2

(BMS-PV2), do not choose H0 as often. For ES = 0.10, all three techniques lack power to

prefer the correct hypothesis, as is to be expected for a small effect size. When ES = 0.25

or ES = 0.40, the performance is still questionable, but PCIC-AIC clearly outperforms the

other two. Thus, the SWFq test performs well under H0 and PCIC-AIC under HA, as to be
expected owing to their purpose.7

Table 8. Proportion of times a hypothesis is preferred in exploration for k = 3

k = 3 and n = 50

ES Technique H0 HE1 HE2 HE3 HA Inconsistent

0.00 SWFq .944 .012 .009 .007 .000 .028

0.00 PCIC-AIC .653 .109 .116 .117 .005 –
0.00 BMS-PV2 .807 .060 .063 .059 .011 –
0.10 SWFq .845 .042 .037 .004 .000 .072

0.10 PCIC-AIC .445 .252 .231 .060 .012 –
0.10 BMS-PV2 .631 .017 .181 .116 .055 –
0.25 SWFq .227 .268 .262 .000 .043 .200

0.25 PCIC-AIC .040 .335 .337 .002 .226 –
0.25 BMS-PV2 .066 .431 .433 .000 .070 –
0.40 SWFq .006 .260 .281 .000 .416 .037

0.40 PCIC-AIC .000 .139 .149 .000 .712 –
0.40 BMS-PV2 .001 .256 .279 .000 .464 –

Note. SWFq = Shaffer–Welch Fq test; PCIC-AIC = paired-comparison information criterion applied

to the Akaike information criterion; BMS-PV2 = Bayesian model selection with PV = 2. Bold face

indicates the true hypothesis rate.

7We stress that the comparison between the three methods (i.e., hypothesis testing, model selection using
information criteria, and BMS) should be donewith great care. It is not fair to compare the techniques in terms of
power when their Type I error rates are not equal, and vice versa. Bear in mind that there is a trade-off between
the Type I error rate andpower. For example, in Table 8, the true difference in power between the SWFq test and
PCIC-AIC can be obtained by inspecting the SWFq test with a nominal a level of approximately .35, since the true
hypothesis rate of PCIC-AIC forH0 underH0 is about .65. Asmentionedbefore,wemerelywant to showthe (true)
hypothesis rates for each of the techniques when employed as commonly done in practice. Again, we then
expect the true hypothesis rate of the null hypothesis to be the highest for hypothesis testing and that of non-null
hypotheses for model selection, as is the case here.
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3.4.2. Confirmation for k = 3

In Table 9, the performance of the three techniques suitable for order restrictions is

presented for one theory-based, order-restricted hypothesis in addition to the classical

null and alternative hypothesis. The �F test chooses H0 as the preferred hypothesis about
90% of the time when it is indeed true. This is to be expected, since we perform two tests

with respect toH0 with a = .05 and do not correct for multiple testing. The performance

of BMS for PV = 2 (BMS-PV2) resembles that of the �F test, while the ORIC performs less

well under H0. For ES = 0.10, the three techniques do not perform very well, as is to be

expected with a small effect size. For ES = 0.25 and ES = 0.40, all three techniques

perform very well, all preferring HC1 more than 88% of the time. For all ES > 0, the ORIC

performs (somewhat) better than the other two.We refer the reader again to footnote 7on

comparisons of the three methods, which applies to all the comparisons of the three
methods throughout this paper.

Table 10 shows the results of evaluating multiple theory-based, order-restricted

hypotheses. Since the �F test is hard to use if more than one theory-based hypothesis is

evaluated, that test is excluded. To illustrate the effect of prior vagueness on the results of

BMS, we report on the performance of BMS for PV = 1 (BMS-PV1), 2 (BMS-PV2), and 3

(BMS-PV3). This table shows that, out of the three, BMS-PV3 most often has the highest

support for H0 and BMS-PV1 the least, as is to be expected with a set of hypotheses

containing equality restrictions owing to Lindley’s paradox. Additionally, out of the three,
the performance of BMS-PV1 resembles that of the ORIC themost. Furthermore, the table

shows that,whenH0 is true, BMS-PV3performs better than the other three techniques and

that, whenHC1 is true, the ORIC outperforms the others. Comparing this table to Table 9,

one can see that includingmore hypotheses decreases the proportion of times the correct

hypothesis is chosen.

3.4.3. Evaluating order versus equality restrictions

Comparing Table 10 to Table 8, it is evident that techniques evaluating hypotheses

with (reasonable) inequalities have more ‘power’ than those that only inspect

Table 9. Proportion of times a hypothesis is preferred in confirmation for k = 3 (H0, HC1, andHA)

k = 3 and n = 50

ES Technique H0 HC1 HA Inconsistent

0.00 �F .912 .052 .033 .003

0.00 ORIC .724 .187 .089 –
0.00 BMS-PV2 .881 .075 .044 –
0.10 �F .682 .310 .007 .001

0.10 ORIC .413 .563 .025 –
0.10 BMS-PV2 .615 .354 .031 –
0.25 �F .114 .886 .000 .000

0.25 ORIC .017 .981 .002 –
0.25 BMS-PV2 .072 .917 .011 –
0.40 �F .004 .995 .001 .000

0.40 ORIC .000 .999 .001 –
0.40 BMS-PV2 .000 .998 .002 –

Note. ORIC = order-restricted information criterion; BMS-PV2 = Bayesian model selection with

PV = 2. Bold face indicates the true hypothesis rate.
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equalities. For instance, for medium effect sizes (i.e., ES = 0.25), the ORIC selects HC1

in about 74% of the simulated data sets and the PCIC-AIC selects HA in about 23% of

cases.8 Bear in mind that HA is the ‘correct’ hypothesis in exploration when HC1 is the

true hypothesis.

3.4.4. Exploration for k = 5

In exploration, when k = 5, there are 52 possible hypotheses based on ordered sample
means when inspecting more than one data set. Because of the large number of

hypotheses, only the results of three of these are given and the results of the other

hypotheses are combined (in the ‘Other’ column in Table 11). We display the results for

the null hypothesis H0, the alternative hypothesis HA, and the correct hypothesis HE49.

Furthermore, we do not include BMS, since evaluating 16 hypotheses per data set with

BMS is very time-consuming. Moreover, given the results of the other two techniques, we

do not expect that examining BMS would yield additional information.

The proportions of times the hypotheses are selected are displayed in Table 11. This
shows that in exploration, if H0 is true, H0 is frequently preferred when using the SWFq

test (around 95% of the time). In contrast, ifHE49 is true, the true hypothesis is not chosen

by the SWFq test. PCIC-AIC gives the most support to H0 only 35% of the time when it is

true, and to HE49 less than 2% of the time when it is true. Hence, exploratory techniques

Table 10. Proportion of times a hypothesis is preferred in confirmation for k = 3

(H0, HC1, HC2, HC3, and HA)

k = 3 and n = 50

ES Technique H0 HC1 HC2 HC3 HA

0.00 ORIC .661 .070 .116 .115 .038

0.00 BMS-PV1 .637 .056 .161 .109 .037

0.00 BMS-PV2 .777 .025 .114 .063 .021

0.00 BMS-PV3 .853 .014 .078 .040 .015

0.10 ORIC .353 .294 .299 .047 .007

0.10 BMS-PV1 .327 .248 .345 .074 .006

0.10 BMS-PV2 .461 .153 .333 .052 .001

0.10 BMS-PV3 .537 .132 .290 .039 .002

0.25 ORIC .014 .744 .228 .014 .000

0.25 BMS-PV1 .011 .709 .254 .026 .000

0.25 BMS-PV2 .039 .634 .297 .030 .000

0.25 BMS-PV3 .070 .593 .316 .020 .001

0.40 ORIC .000 .944 .056 .001 .000

0.40 BMS-PV1 .000 .910 .090 .000 .000

0.40 BMS-PV2 .000 .888 .109 .003 .000

0.40 BMS-PV3 .001 .875 .122 .002 .000

Note. ORIC = order-restricted information criterion; BMS-PVx = Bayesian model selection with

PV = x. Bold face indicates the true hypothesis rate.

8Note that, in this case, comparison in terms of ‘power’ is appropriate since both techniques not only serve the
same purpose but also have approximately the same Type I error rate.
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perform poorly under non-null hypotheses such as HE49. Note that HA is never the

preferred hypothesis.

Table 11 shows that the power to test any specific configuration of means is very low

whereas the power to detect at least one effect (1 minus first column) is not. Hence,

employing these techniques will usually give one or more statistically significant results

but the pattern of significance will vary across data sets. This was also discussed by

Maxwell (2004), who distinguished between power to detect any specific comparison

(any-pairs power) and power to detect the true pattern of differences (all-pairs power).

3.4.5. Confirmation for k = 5

Table 12 shows the results of the three techniques able to examine order-restricted

hypotheses for evaluating one theory-based, order-restricted hypothesis. This table

exhibits the same patterns as that for k = 3, that is, �F and BMS-PV2 outperform the

ORIC under H0, whereas the ORIC has more power to detect small and medium effect

Table 12. Proportion of times a hypothesis is preferred in confirmation for k = 5 (H0, HC1, andHA)

k = 5 and n = 30

ES Technique H0 HC1 HA Inconsistent

0.00 �F .920 .045 .031 .004

0.00 ORIC .752 .162 .086 –
0.00 BMS-PV2 .965 .027 .008 –
0.10 �F .715 .264 .019 .002

0.10 ORIC .421 .536 .043 –
0.10 BMS-PV2 .779 .200 .021 –
0.25 �F .130 .860 .007 .003

0.25 ORIC .026 .935 .039 –
0.25 BMS-PV2 .201 .768 .031 –
0.40 �F .002 .990 .008 .000

0.40 ORIC .000 .965 .035 –
0.40 BMS-PV2 .005 .970 .025 –

Note. ORIC = order-restricted information criterion; BMS-PV2 = Bayesian model selection with

PV = 2. Bold face indicates the true hypothesis rate.

Table 11. Proportion of times a hypothesis is preferred in exploration for k = 5

k = 5 and n = 30

ES Technique H0 HE49 HA Other

0.00 SWFq .947 .000 .000 .053

0.00 PCIC-AIC .349 .000 .000 .651

0.10 SWFq .878 .000 .000 .122

0.10 PCIC-AIC .201 .000 .000 .799

0.25 SWFq .371 .000 .000 .629

0.25 PCIC-AIC .015 .002 .000 .983

0.40 SWFq .007 .000 .000 .993

0.40 PCIC-AIC .000 .016 .000 .984

Note. SWFq = Shaffer–Welch Fq test; PCIC-AIC = paired-comparison information criterion applied

to the Akaike information criterion. Bold face indicates the true hypothesis rate.
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sizes. For large effect sizes, all three techniques perform very well and approximately

equally.

Table 13 depicts the performance of the ORIC and BMS (for PV = 1, 2, and 3) for

examining two theory-based, order-restricted hypotheses. Tables 12 and 13 show that

adding a hypothesis lowers the performance of the techniques. Nevertheless, the trend

remains the same, as was the case for k = 3. In summary, BMS-PV3 performs better

than the other three techniques under H0 (Lindley’s paradox), whereas the ORIC has

more power to detect the correct non-null hypothesis (HC1) for a small effect size. In
addition, the ORIC and BMS-PV1 outperform the others for a medium effect size; and all

techniques perform equally well for a large effect size.

3.4.6. Examining theory-based hypotheses

From Tables 8 and 9, one could see that techniques evaluating hypotheses with

(reasonable) inequalities have more ‘power’ than those solely inspecting equality

restrictions. Comparing Table 11 to Table 12 or Table 13, one can see the additional effect
of investigating a theory-based set instead of exploring all possible equalities based on

ordered samplemeans. Tables 11 and12 show that the hypothesis testing techniques both

yield high true null hypothesis rates; as they are designed to do. Furthermore, the tables

show that the exploratory one (i.e., the SWFq test) gives no support to the true non-null

hypothesis, while the confirmatory one (i.e., the �F test) does support the true non-null

hypothesis and this support (logically) increases with effect size. Tables 11 and 13 show

that confirmatory model selection (i.e., the ORIC) not only has a (much) higher true null

Table 13. Proportion of times a hypothesis is preferred in confirmation for k = 5 (H0, HC1, HC2,

and HA)

k = 5 and n = 30

ES Technique H0 HC1 HC2 HA

0.00 ORIC .719 .111 .111 .063

0.00 BMS-PV1 .874 .039 .053 .034

0.00 BMS-PV2 .948 .024 .018 .010

0.00 BMS-PV3 .974 .009 .013 .004

0.10 ORIC .398 .365 .199 .039

0.10 BMS-PV1 .617 .267 .087 .029

0.10 BMS-PV2 .761 .152 .074 .013

0.10 BMS-PV3 .804 .140 .052 .004

0.25 ORIC .028 .771 .164 .036

0.25 BMS-PV1 .083 .782 .088 .047

0.25 BMS-PV2 .181 .690 .101 .028

0.25 BMS-PV3 .212 .688 .076 .024

0.40 ORIC .000 .904 .066 .029

0.40 BMS-PV1 .000 .913 .049 .038

0.40 BMS-PV2 .002 .918 .035 .045

0.40 BMS-PV3 .005 .950 .023 .022

Note. ORIC = order-restricted information criterion; BMS-PVx = Bayesian model selection with

PV = x. Bold face indicates the true hypothesis rate.
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hypothesis rate than its exploratory counterpart (i.e., the PCIC-AIC), but also a much

higher true non-null hypothesis rate.

3.5. Discussion

When interest lies in one or more specific hypotheses derived from theory, exploration

has some disadvantages. First, the hypotheses of interest are not evaluated directly and

often not indirectly either. Moreover, exploratory approaches can generate results that

are apparently inconsistent or difficult to interpret. Finally, techniques used in an

exploratory fashion exhibit low power to detect specific configurations of means,

especially when the number of groups (k) increases.

From the simulations, it can be concluded that techniques employed in a
confirmatory way (and able to handle order restrictions) outperform those used in an

exploratory way, if interest lies in one or more theory-based (and therefore often

order-restricted) hypotheses. There are two reasons for higher rates of true hypothesis

selection: (1) specific (often order-restricted) hypotheses are evaluated (analogously

to one-sided vs. two-sided testing); and (2) in confirmatory (Bayesian) model

selection, a smaller set of hypotheses is examined than in exploratory (Bayesian)

model selection.

The �F test performs verywell underH0. In contrast, it performs lesswellwhen another
hypothesis is true. Note that one could choose to relax protection of H0 by testing at a

lower a level, which improves the performance when a non-null hypothesis is true.

Nevertheless, a disadvantage of the �F test is that it can evaluate only one theory-based

hypothesis (in a straightforwardmanner). Hence, for a priori theories, we recommend the

use of confirmatory model selection, that is, the use of the ORIC or BMSwith a limited set

of reasonable, theory-based hypotheses. The ORIC performs better than BMS when H0 is

not true (with the exception of large effect sizes, where it is comparable to BMS), whereas

BMS is better when H0 is true (see footnote 7). With respect to prior vagueness, the BMS
results with PV values of 1, 2, and 3 show Lindley’s paradox as is to be expectedwith a set

of hypotheses including equality constraints. That is, the vaguer the prior, the more

support for H0. Therefore, with PV = 3 the false rejection rate of H0 is controlled best,

with PV = 1 the power to find the correct (or best) non-null hypothesis is greatest, and

with PV = 2 a compromise is provided.

4. Robustness of techniques suitable for order restrictions

Not only does confirmation have advantages over exploration, when a researcher has a

theory, evaluating reasonable order restrictions can also improve the power to detect the

correct (or best) non-null hypothesis. Therefore, more insight should be gained into the

performance of techniques able to examine order restrictions (in the case of confirma-

tion). Since little is known about the influence of violations of assumptions of the ANOVA

model for these techniques, wewill start by investigating their robustness in the presence
of heterogeneity.

4.1. Populations and hypotheses

As a starting point,we consider only k = 3 groups and the firstmentioned order-restricted

hypothesis in Table 6 (i.e., HC1). This produces the following set of hypotheses:
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H0: l1 ¼ l2 ¼ l3;

HC1 : l1\l2\l3;

HA : l1; l2; l3:

ð5Þ

As in the previous simulation study,H0 is included for illustrative purposes; often it is not a

plausible hypothesis and should not then be included in the set.

According to Schumacker and Akers (2001), Box (1954), and Tabachnick and Fidell

(2001), the ANOVA F test is not as robust to heterogeneity when the groups with the

largest sample sizes have the highest variances and those with the smallest sample sizes
have the lowest variances than when the group sizes are equal. Therefore, we will

examine both equal group sizes (n1 = n2 = n3 = n, withn = 20 andn = 50) and unequal

group sizes (n1 = 20, n2 = 50, and n3 = 100).

Here, the populations differ from the previous ones, because of the group-specific

variances, r2
i for i = 1, 2, 3. Although the population standard deviations are divergent,

they are assumed to be equal in the ANOVAmodel. Due to heterogeneity, the effect size is

calculated by equation (4), where r is replaced by the pooled standard deviation

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

Nir2
iP

Ni

s
;

withNi the size of group i in the population. In the simulation, wewill useni instead ofNi,

because we assume that the relative sizes of the groups in the samples equal those in the

population. By setting rp = 1, the same effect sizes and population means as in the
previous simulation study (upper panel in Table 7) are obtained. Again, we have one set

where all the populationmeans are identical (ES = 0) andH0 is true and three where they

exhibit an upward trend (ES > 0) and HC1 is true.

Tomanipulate the severity of (population) heterogeneity of variance in the simulation

study, we employ ameasure based on Hartley’s (1950) heterogeneity test. It is called Fmax

and equals the ratio of the largest and smallest group variance, that is,

Fmax ¼ r2
max

r2
min

: ð6Þ

Now, the standard deviations (ri) are with rp = 1 solely based on the Fmax value in

equation (6). An Fmax value of one implies that there is no difference in the group
variances, that is, the homogeneity of variance assumption is not violated, as was the case

in the previous simulation study. Consequently, we will use Fmax = 1 as the baseline.

Evidently, a higher Fmax value indicates a larger difference in group variances and vice

versa. Tabachnick and Fidell (2001) conclude that an Fmax value of 10 is acceptable for

analyses with equal group sizes and Fmax = 3 for unequal group sizes. However, Box

(1954) shows for Fmax = 3 that the F test is severely affectedwhen the group sizes and the

group variances exhibit opposite trends. Based on these findings, we additionally set Fmax

to 3 and 10. To examine the effect of a large violation, we examine Fmax = 100 aswell. For
Fmax>1, different orderings of theri values in relation to the ordering of group sizes exist.

Note that the ranking of the ri values is arbitrary in the case of equal group sizes. Hence,

for equal group sizes, we only examine ri values with an upward trend, that is, the r2
i

values increase with i. If the group sizes are unequal, we will investigate samples with
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sizes increasing with iwith two rankings of ri values based on the results of Box (1954),

namely one with an upward trend and one with a downward trend. Owing to the two

types of group sizes (equal and unequal), the four Fmax values, and the two types of trends

(upward or downward), 11 types of sets of population standard deviations are

investigated, which are given in Table 14.
For each combination of ni in relation tori, Fmax, and ES, 1,000 data sets are simulated.

Subsequently, the hypotheses in equation (5) are evaluated in each of these data sets.

4.2. Results and discussion

Figure 1 displays the proportion of timesHC1 is preferred by the three techniques suitable

for examining order-restricted hypotheses ( �F at the top, ORIC in the middle, and BMS at

the bottom) for effect size ES (represented by the different lines in each plot) and
heterogeneity level Fmax (depicted on the x-axis of each plot) for unequal group sizes. The

results for equal group sizes are not plotted, since they are very robust, but wewill briefly

elaborate on these later on. Performance is measured by the proportion of times the

correct hypothesis, that is,HC1, is preferred (displayed on the y-axis of eachplot). Notably,

complete robustness to heterogeneity would imply only horizontal lines. The figure

shows that the effect of heterogeneity on the performance of the three techniques, when

HC1 is true, depends on the effect size. Formedium to large effect sizes (i.e.,ES = 0.25 and

.40), the proportion of times HC1 is preferred increases with Fmax, when the rs show an
upward trend (see the two top lines in the panels on the left-hand side in Figure 1). In

contrast, the proportion decreases with Fmax, when the rs show a downward trend (see

the two top lines the panels on the right-hand side in Figure 1). The opposite holds true for

small effect sizes. That is, for ES = 0 and 0.10, the proportion of times HC1 is preferred

decreases (increases)with Fmax,when thers show an upward (downward) trend (see the

twobottom lines in the panels on the left-hand (right-hand) side in Figure 1). Furthermore,

the difference in performance owing to heterogeneity is larger when the rs have a

downward trend than when they exhibit an upward trend. It should be stressed that the
difference in performance due to heterogeneity is not large for Fmax = 3 in all cases or for

Fmax = 10 when the rs exhibit an upward trend. Moreover, an Fmax value of 100 can be

considered an extreme violation, compared to the benchmarks of Tabachnick and Fidell

(2001) discussed earlier, where an Fmax value of 10 and 3 is concluded to be acceptable for

analyses with equal group sizes and unequal group sizes, respectively.

Table 14. Population standard deviations

Type of trend Fmax

Equal group sizes* Unequal group sizes**

r1 r2 r3 r1 r2 r3

Baseline 1 1.000 1.000 1.000 1.000 1.000 1.000

Upward 3 0.707 1.000 1.225 0.612 1.000 1.061

Downward 3 1.500 1.000 0.866

Upward 10 0.426 1.000 1.348 0.343 1.000 1.085

Downward 10 2.000 1.000 0.632

Upward 100 0.141 1.000 1.407 0.109 1.000 1.094

Downward 100 2.390 1.000 0.239

*n1 = n2 = n3 = n, with n = 20 and n = 50. **n1 = 20, n2 = 50, n3 = 100.
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Although the general trend is clear from Figure 1, the magnitude of the deviations

from the baseline is less clear. In addition, it does not reveal performance when the

group sizes are equal or the proportion of times H0 is selected. In this simulation,

interest lies in robustness of the techniques and not in the performance itself.

Therefore, we include two tables in the appendix which present the difference in

performance for an Fmax > 1 compared with Fmax = 1. These differences give an

indication of the robustness to heterogeneity on the performance under both H0 and

HC1, where a difference of zero indicates full robustness and a higher absolute
difference reflects a poorer robustness.

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1001031 Fmax
1001031 Fmax

Fmax Fmax

Fmax Fmax

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1001031

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1001031

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1001031

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

1001031

Figure 1. Proportion of timesHC1 is selected as best hypothesis, by each of the techniques (i.e., �F ,

ORIC, or BMS), for increasing heterogeneity (Fmax) for unbalanced designs with either larger

variances in larger groups (Upward) or smaller variances in larger groups (Downward). In each plot,

the four lines from bottom to top show results for ES = 0, 0.10, 0.25, and 0.40, respectively.

240 Rebecca M. Kuiper et al.



Table A1 shows the difference in performance with respect to H0 for ES = 0. With

equal group sizes, no obvious trend can be seen across techniques or Fmax values.

Additionally, the differences in proportion of timesH0 is preferred are extremely small for

the different Fmax values. In the unequal sample size condition, the proportion of timesH0

is preferred increases (decreases) with Fmax when the rs exhibit an upward (downward)

trend. Furthermore, the effects of heterogeneity on performance are more severe for the

downward trend than for the upward trend. It should be stressed that these results

resemble the effect of heterogeneity on the ANOVA F test.

Table A2 shows, for all effect sizes, the differences in the proportion of times HC1 is

preferred (for Fmax > 1 compared with Fmax = 1). These differences do not vary by

more than an absolute value of 0.05 for the three Fmax values with any effect size when

sample sizes are equal for both n = 20 and 50. Also no pronounced trend is apparent
here. The patterns in robustness for unequal group sizes have already been discussed in

relation to Figure 1. In addition, Table A2 shows that the absolute difference in

performance is less than 0.10 in case of the upward trend and 0.16 in case of the

downward trend.

We conclude that for all three techniques (i.e., the �F test, ORIC, and BMS) the

performance under both H0 and HC1 is robust to heterogeneity when the group sizes are

equal. For unequal group sizes and when the group standard deviations exhibit the same

trend, the performance under both H0 and HC1 is still quite robust. However, when the
group standard deviations exhibit a trend opposite to that of the group sizes, there are

larger deviations, especially for Fmax values larger than 3. Although more research is

required in order to state that these techniques are robust to heterogeneity, our results

should encourage their use.

5. Conclusion

In this paper, we have examined the performance and robustness of various statistical

methods for the evaluation of hypotheses in the context of analysis of variance models.

The focus was on the researcher having theories, in which case hypotheses often contain

order restrictions on themeans. Themain goal of the first set of simulation studies was the

comparison of the exploratory versus the confirmatory approach (and the additional

effect of being able to evaluate order restrictions) within the three methods: hypothesis

testing, model selection using information criteria, and BMS. Results showed that the
confirmatory approach outperforms the exploratory approach. Confirmation yields

higher true hypothesis rates, since (1) a specific (often order-restricted) hypothesis is

evaluated and (2) the set of hypotheses is usually (much) smaller than that in exploration

(especially when the number of groups increases). Moreover, the exploratory approach

exhibits low power to detect specific configurations of means. Additionally, techniques

used in an exploratorymanner fail to evaluate the hypothesis of interest directly and often

indirectly. When comparing the three methods, the results show (as to be expected) that

hypothesis testing techniques have high true null hypothesis rates and (Bayesian) model
selection techniques high(er) true non-null hypothesis rates (see footnote 7). Further-

more, hypothesis testing techniques can generate results that are inconsistent or hard to

interpret.

The second set of simulation studies addressed the robustness of three techniques

suitable for order restrictions (employed in a confirmatory way) in case of heterogeneity.

Results showed that all three techniques (i.e., the �F test, ORIC, and BMS) are robust to
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heterogeneity when the group sizes are equal and quite robust when the group standard

deviations exhibit the same trend as the group sizes. If the group standard deviations

exhibit a trendopposite to that of the group sizes, there are larger deviations, especially for

Fmax values larger than 3.
In this paper, we have investigated six techniques (distinguished by the threemethods

and being suitable for evaluating order restrictions or not) within the context of a simple

ANOVA model. Nevertheless, most of the techniques presented in this paper that are

suitable for inspecting order restrictions are also available for extensions of the model

(e.g., for multivariate designs). Theoretically, the �F test can be generalized to test

hypotheses inmultivariate normal linearmodels, but to the best of our knowledge this has

not yet been done. The ORIC is generalized to a criterion called the GORIC, which can

evaluate hypotheses in multivariate normal linear models (Kuiper, Hoijtink & Silvapulle,
2011, 2012). For BMS, extensions to a broad range ofmultivariate normalmodels have also

been formulated (Mulder, Hoijtink, & Klugkist, 2010). In the multivariate context, it

would be interesting to examine the performance and robustness of the various

techniques.

To apply the approaches investigated in this paper, tailor-made software is available;9

both the software and a tutorial are presented in Kuiper and Hoijtink (2010) and Kuiper

et al. (2010). The code is written in Fortran 90, providing stand-alone and free-to-use

software. This is also the case for the BIEMS program (Mulder, Hoijtink & de Leeuw,
2012) enabling BMS for a broad range of multivariate normal linear models with order

constraints on the model parameters.10 Alternatively, GORIC is available via stand-alone

and free-to-use software11 (Kuiper & Hoijtink, 2013) and in the R package goric
(Gerhard & Kuiper, 2012). Other relevant software includes the R package

contrast (Kuhn, with contributions from Weston, Wing, & Forester, 2011),

which can be used to evaluate a priori specified patterns by assigning weights to each

group mean, and the R library isoregbf,12 which can test various order restrictions

and is based on the computation of Bayes factors in an ANOVA-like set-up. In Wetzels,
Grasman, and Wagenmakers (2012) and Rouder, Morey, Speckman, and Province

(2012), the reader can find other work on BMS in an ANOVA setting. Both papers supply

R code and the latter have also written an R package called BayesFactor (Morey

& Rouder, 2013). Note, however, that these two papers do not address order-restricted

hypotheses.

To conclude, there are several options for researchers with specific theories that may

contain order restrictions. For more than one theory (i.e., competing theories), the two

model selection approaches are recommended. Both the ORIC and the BMS approach
perform well. They have acceptable error levels, good power to find the best model, and

are rather robust to violations of the homogeneity assumption. Researchers with just one

order-constrained hypothesis can also choose to conduct the �F test. Finally, we would

emphasize thatwe do not object to the use of exploratory data analysis; but, if a researcher

has specific theories, it is very worthwhile to use a confirmatory approach (with a

technique suitable for order restrictions).

9 http://staff.fss.uu.nl/RMKuiper.
10 http://vkc.library.uu. nl/vkc/ms/research/ProjectsWiki/Software.aspx.
11 http://staff.fss.uu.nl/RMKuiper.
12 https://sites.google.com/site/rosselldavid/software.
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