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Abstract

Music emotion recognition (MER) is a subfield of Music Information Retrieval (MIR)
that deals with music classification and develops music similarity measures, using sig-
nal processing and machine learning techniques. In its methodology and applications
MER is similar to another flagship subfield of MIR — music genre recognition. How-
ever, unlike genre ontology (which is also ambiguous), emotion ontology for music
is even less well established. Musical emotion can be conceptualized through vari-
ous emotional models: categorical, dimensional, or domain-specific. Emotion can be
represented with a single label, multiple labels, or probability distributions. Also, the
time scale to which an emotion label can be applied ranges from half a second to a
complete musical piece.

Describing musical audio with emotional labels of any kind is an inherently sub-
jective task and it is not easy for the listener, because the task of recognizing musical
emotion is usually learned from exposure to music in an implicit way. MER field relies
on ground truth data from the human labelers. The quality of the ground truth labels
is crucial to the performance of the algorithms that are trained on these data. Lack of
agreement between the annotators leads to conflicting cues and poor discriminative
ability of the algorithms. Therefore, conceptualizing musical emotion in a way that is
most natural and understandable for the listener is crucial both to create better quality
ground truth and to build intuitive music retrieval systems.

In this thesis we mainly deal with the problem of representation of musical emo-
tion and how it affects the computational modeling of musical emotion. The thesis
consists of three parts.

Part I. In the first part, we focus on the problem of computational modeling of in-
duced musical emotion. To solve this problem, substantial amount of labeled ground
truth data is necessary, which is absent. We create a game with a purpose (Emotify) to
collect emotional labels through an app released on Facebook. We use Geneva Emo-
tional Music Scales, a new and promising domain-specific model that has not yet been
put to extensive testing in real-life labeling scenario. We analyze the data from the
game and find that the game is able to produce good enough agreement (and high
quality ground truth) with such fine-grained labels, as nostalgia or tenderness. How-
ever, some modifications to GEMS model are suggested. Also, we find that two factors
influence induced emotion most: musical taste of the listener and current mood. Next,
we use the data from the game to create a computational model. We show that the



x

performance of the model can be improved substantially through developing better
features and this step is more crucial than finding a more sophisticated learning algo-
rithm. We suggest new features that describe the harmonic content of music. These
features slightly improve the performance. However, a much bigger improvement is
expected, when it will become possible to predict high-level musical concepts such as
rhythmic complexity, articulation or tonalness. This requires progress in all the areas
of MIR: onset detection, source separation, beat tracking, and a deep understanding of
human music perception, which can be hopefully achieved in the future.

Part II. In this part (in collaboration with M. Soleymani and Y.H. Yang) we create
a benchmark for MER algorithms. The benchmark is mainly focused on Music Emo-
tion Variation Detection (MEVD) algorithms (tracking per-second change in musical
emotion). We describe our evaluation metrics and list the steps taken to improve the
quality of the ground truth. Then we conduct a systematic evaluation of the algorithms
and the feature sets presented at the benchmark. The results suggest that the best ap-
proach is to develop separate feature sets for Valence and Arousal dimensions, and
that incorporating local context either through algorithms that are capable of extract-
ing data from the time-series (LSTM-RNN), or through smoothing, is crucial.

Part III. In this part we build on the experience obtained in benchmark organiza-
tion and suggest that a better approach to MEVD is to view music as a succession of
emotionally stable segments and transitional unstable segments. We proceed to list the
reasons why the established MEVD approach is flawed and can not create good qual-
ity ground truth. Then we compare different approaches to emotional segmentation
problem and propose an approach based on a CNN combined with MER-informed
filtering.

Three public datasets, corresponding to each part of the thesis, are released.



CHAPTER 1

Introduction

A short fiction story called ‘The Fog Horn’ by Ray Bradbury is set far in the sea on
a lighthouse, which emits red and white light and a sound, called the ‘Voice’, to warn
the passing ships of the proximity of land in foggy weather. On one dark November
night something happens. An ancient, giant, dinosaur-like sea creature, the last of its
kind, arrives at the lighthouse and makes a deep cry very similar to the ‘Voice’, trying
to communicate. The whole gist of the short story is in how the fog horn sounds. This
sound is specified in the story by describing what the creator of the ‘Voice’ must have
been thinking:

I’ll make a voice that is like an empty bed beside you all night long, and
like an empty house when you open the door, and like the trees in autumn
with no leaves. A sound like the birds flying south, crying, and a sound
like November wind and the sea on the hard, cold shore. I’ll make a sound
that’s so alone that no one can miss it, that whoever hears it will weep in
their souls, and to all who hear it in the distant towns. I’ll make me a
sound and an apparatus and they’ll call it a Fog Horn and whoever hears
it will know the sadness of eternity and the briefness of life.

This description of a sound is very peculiar in being metaphoric throughout. Not a
single property of the sound is actually mentioned: whether it was brief or sustained,
shrill or deep, noisy or melodic. Yet, probably, you could imagine this sound much
more vividly than if you were provided with its amplitude, range of frequencies, and
pattern of their fluctuations. We can understand how it feels to enter a cold empty
house. We have heard November wind and the cries of the birds flying south. But have
your experiences been similar to mine? Were the birds that flew over your house in
autumn the same birds, that flew over mine? And did you, in the end, imagine the
‘Voice’ in the same way that I imagined it?
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People resort to emotional terms when talking about sound or music because it
is convenient and natural. Cross-cultural studies of emotional expression in music
show that many of the expressive cues in music are universal. Balkwill and Thompson
(1999) showed that Western listeners, unfamiliar with Hindustani ragas, could rec-
ognize joy, sadness or anger far better than chance relying on such cues as tempo,
melodic complexity and timbre. Similarly, cross-cultural understanding was demon-
strated by Balkwill, Thompson, and Matsunaga (2004) for Japanese music and by
Fritz et al. (2009) for Western music. Music shares some of its expressive cues with
speech prosody (Ilie & Thompson, 2006), which possesses universal traits across lan-
guages (Elfenbein & Ambady, 2002). Anger is expressed in most cultures by raising
the loudness and tempo of speech, sadness is expressed by lowering them, and hap-
piness is characterized by high pitch and fast tempo. It is not a coincidence, that the
same traits are shared by angry, sad and happy music. But music is an abstract art
that can express nuances of meaning way beyond the simplicity of the basic emotions.
The relationship between acoustic cues and emotional expression is less universal and
more culture-specific for refined emotions (such as tenderness, humour, solemnity or
triumph). Patrick Juslin proposed to explain emotional expression in music through a
version of a Brunswick’s lens model: as a process of communicating emotion through
a set of redundant and probabilistic cues and interactions between them (Juslin, 2000;
Juslin & Lindström, 2010). The cues are encoded by composer and performer, and
decoded by the listener. Figure 1.1 illustrates this process.

Figure 1.1: Lens model of emotional expression in music (adapted from (Juslin, 2000)
and (Juslin & Lindström, 2010)).

Within a musical culture, correlational relationships are established between cues
and emotions. The mapping is not deterministic, but probabilistic, and therefore sev-
eral cues need to be combined for effective communication. The accuracy of the com-
munication (ra) is confined by the degree of matching between listeners’ and per-
formers’ cues (G) and the consistency with which they are able to use them (Rl for
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the listener and Rp for the performer), according to the lens model equation (Juslin,
2000):

ra =GRpRl+C
�

1−R2
p

�
1−R2

l , (1.1)

where ra is a point-biserial correlation between the performer’s intentions and lis-
tener’s judgements (i.e., efficiency of the communication), Rp and Rl are multiple
correlations between emotion (intended or perceived) and cues in the performer and
listener models (similarly to α and β weights on Figure 1.1), and C, or unmodelled
matching, represents the correlation between the residuals of the performer’s model
and the residuals of the listener’s model. The lens model describes the sources of dis-
tortion in emotional communication for perceived (not felt) musical emotion. For felt
musical emotion, there are more listener-related and situation-related factors, such as
associations with a piece of music, listener’s mood, evoked imagery (we will study
how some of these additional factors influence induced emotion in Chapter 2). For the
purposes of this thesis we are mostly interested in the right half of the lens model —
the process of decoding an emotion by the listener from a set of probabilistic acoustic
cues.

The cues are learned by the listener through exposure to music. Some of the cues
are identical to the ones in emotional speech, as we mentioned above. Others, such as
mode, rhythm and harmony related cues — are music-specific and most often learned
through enculturation in the music culture of the listener.

Generally, even musicians do not receive or receive little formal training on the
relationship between the acoustic cues and emotional expression. In contrast, a lot
of time is spent on teaching performance technique, and other formal knowledge: la-
belling harmonic sequences, chords, sections and recognizing musical instruments.
Though ability to play expressively is regarded as one of the most important skills
for a performer, perhaps the most important skill, the training is often vague and
mostly relies on metaphors, aural modeling, and felt emotion to teach expressive skills
(Lindström, Juslin, Bresin, & Williamon, 2003). For an overview of studies analysing
the content of music lessons we refer to (Zentner & Eerola, 2011a).

The problem of music emotion recognition, therefore, is very well adapted for
supervised machine learning, with the task to learn a relationship between a set of
acoustic cues and emotional expression. In that it is similar to other problems in Music
Information Retrieval (MIR) that rely on human annotations, such as genre recognition
and audio similarity tasks.

1.1 Music Information Retrieval
An early definition of MIR was given by Futrelle and Downie (2002):

Music Information Retrieval (MIR) is an ... interdisciplinary research area
encompassing computer science and information retrieval, musicology
and music theory, audio engineering and digital signal processing, cogni-
tive science, library science, publishing, and law. Its agenda, roughly, is
to develop ways of managing collections of musical material for preser-
vation, access, research, and other uses.
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The MIR community is driven by the demand to tackle the massive amounts of
musical data with automatic categorization and retrieval methods. MIR research is
directed at enabling the creation of the tools for automatic audio and score analysis.
The field is concerned with a range of problems: audio-to-score transcription, chord,
key and onset detection, source separation, as well as problems that lack well-defined
answers and can only be solved through supervised machine learning, such as mu-
sic similarity, classification by genre or emotion. The set of problems is well repre-
sented on the annual Music Information Retrieval Evaluation eXchange1 (MIREX) —
a benchmark for MIR algorithms.

1.1.1 Music Emotion Recognition
Music industry strives to improve automatic music categorization methods for huge
online music collections, and emotion is one of the key targets. Enabling keyword-
based search is crucial both for personal and commercial use, especially for production
music databases, when providing a more detailed query (by artist or composer) is
impossible. In (Inskip, Macfarlane, & Rafferty, 2012), an analysis of written music
queries from creative professionals showed that 80% of the queries for production
music contain emotional terms, making them one of the most salient and important
components of exploratory music search.

Music emotion recognition (MER) is one of the cornerstone audio classification
tasks in MIR, which thrives on all of the MIR knowledge and expertise. For such
an all-encompassing and ubiquitous in music concept as emotion, almost any MIR
retrieval or recognition task, feature extraction method, sound processing technology
is relevant in some way.

The MER field is only about a decade young, with the first study dating to the year
2003 (Li & Ogihara, 2003). There are still many unsolved problems in MER:

1. The subjectivity of the task leads to performance ceiling, which can hang quite
low depending on the data.

2. There is a so-called “semantic gap” between the cognitive perceptual concepts
and the data that we are currently able to extract from the audio signal.

3. The process of human emotion recognition is not well understood yet.

4. MER completely relies on human annotated ground truth, but due to high sub-
jectivity and lack of understanding of human music emotion cognition assem-
bling ground truth is a very challenging task.

We will review the different aspects of the MER field later in this thesis, for now
we just refer to (Y.-H. Yang & Chen, 2012) for a survey.

1music-ir.org/mirex



Introduction 5

1.2 Contribution

1.2.1 Problem statement

Music emotion recognition research depends on the ground truth data annotated by hu-
mans. As described in the previous section, there is a lot of ambiguity and subjectivity
in such data. When the consistency of the annotations is low, and there is no infor-
mation in the data to account for inconsistency, no learning algorithm, no matter how
powerful, can achieve improvement in prediction accuracy. This problem, presumably,
is now faced by the MIREX mood classification competition, where the performance
has not increased for the last five years (Figure 1.2).

Figure 1.2: Classification accuracy in Music Mood Classification on MIREX compe-
tition, since year 2007 when the task was first introduced.

In the MIREX mood competition, the algorithms have to classify 30 second audio
excerpts into five mood clusters. Some examples of the moods represented in these
clusters are passionate, cheerful, bittersweet, humorous and aggressive. For most of
the clips, only two out of three judges could agree on the assignment of the cluster (Hu,
Downie, Laurier, Bay, & Ehmann, 2008), which indicates around 66% agreement.
This is approximately the performance ceiling that was reached by the algorithms.

Part of the solution to the problem of subjectivity and inconsistency in musical
emotion ratings lies in the realm of representation. When abstract musical meaning
is translated into words, the emotional ontology is of utter importance in order not
to hinder, but to help this process in a natural way. There are many ways to represent
musical emotion — as static or time-varying, as a single label or multiple labels, using
dimensional or categorical models. In this thesis we will show that some of these
representation choices are more natural and can lead to better recognition results, and
to more convenient music retrieval for the end users.
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There are other sources of inconsistency as well, such as individual variation in
listener perception of cue–emotion relationship (Rl in the lens model equation), lis-
tener inconsistency in cue application, and situational factors. In this thesis we will
also deal with some of these variability sources.

1.2.2 List of contributions
1. Datasets of music annotated with emotion, publicly available:

• The Emotify dataset: musical excerpts labelled on GEMS scale collected
using a game with a purpose, and demographic information on the la-
bellers (this is the first public dataset available on induced emotion).

• MediaEval Database for Emotional Analysis in Music (DEAM) — the
biggest available dataset of per-second ratings of musical emotion on the
Valence and Arousal scale (1744 music excerpts and 58 complete pieces).

• An emotional segmentation dataset, which offers a novel way of studying
emotion variation in music through annotations of emotionally stable and
unstable segments, boundaries between them, and Valence and Arousal
values of the stable segments.

2. We put a promising domain-specific emotional model GEMS through a robust-
ness test in an online game, and suggest modifications to this model. Namely,
new categories boredom, humour and impetus are suggested, and some of the
existing categories should be renamed or removed.

3. We find which perceptual features are related to induced emotion and show
that the bottleneck in the performance of MER systems is extraction of these
sort of cognitively motivated features. We also suggest new features to describe
harmonic content of audio.

4. In a joint effort with Mohammad Soleymani and Yi-Hsuan Yang we create
an evaluation framework for dynamic (per second) music emotion recognition
algorithms. Using this framework, we systematically evaluate music emotion
variation detection methods and feature sets.

5. Based on experience from the benchmark, we develop a more cognitively mean-
ingful way to conceptualize continuity in musical emotion through a series of
emotionally stable segments and transitions (unstable sections) between them.

6. We propose the first supervised method for emotional boundary detection based
on CNN and filtering boundaries by strength.

1.3 Organization of the thesis
This thesis consists of three parts. The first part deals with induced emotion, data
collection and computational modeling. The second part describes a benchmark for
music emotion variation detection algorithms and its outcomes. The third part deals
with a novel problem of emotion-based segmentation.
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Chapter 1

In an introductory chapter we explain the focus of this thesis: representation of musical
emotion. We motivate this focus by a need to improve the consistency of emotional
annotations, which will result in better models.

1.3.1 Part I. Induced musical emotion
This part consists of two chapters. The first chapter describes a Game with a Purpose
and a dataset collected using this game. Second chapter describes creating a model to
explain these data.

Chapter 2

We introduce a game with a purpose, called Emotify, and a corpus of annotations
collected using that game. For the data annotation, we choose a domain-specific emo-
tional model GEMS, which was specifically created to describe induced musical emo-
tion (Zentner, Grandjean, & Scherer, 2008). We test consistency and comprehensibil-
ity of the model’s categories, and analyze the extra-musical parameters (mood, age,
gender, musical preferences) through a series of mixed models and report which pa-
rameters influence induced emotion. These findings can be used to improve induced
emotion prediction in group-based predictions.

Chapter 3

We show that a 9-item GEMS scale can be sufficiently consistent to be used as an
underlying model for computational modelling, except for some of the categories.
We suggest new features that describe harmonic content of audio, and show that the
state-of-the-art low level spectral features seriously underperform. However, the re-
sult achieved with cognitive perceptual ratings shows that there is a lot of room for
improvement for MER algorithms.

1.3.2 Part II. Benchmarking MEVD algorithms

Chapter 4

We describe the design of the benchmark for Music Emotion Variation Detection
(MEVD) algorithms. The winning algorithms and feature sets over the years are an-
alyzed, and the design, evaluation metrics and data that we used are described. We
also release the largest available dataset of continuous annotations of music with emo-
tion, and suggest some transformation and data cleaning procedures which improve
the quality of these data.

1.3.3 Part III. Emotion-based segmentation

Chapter 5

Based on the experience of benchmark organization, we challenge the basic assump-
tions of dynamic MER approach, and argue that the problems that we encountered
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originate from the unnaturally low time resolutions that dynamic MER is usually
dealing with. We suggest to move to longer and more meaningful segments of music
and conduct a proof-of-concept experiment. The three annotators achieve a very good
agreement on emotional boundary annotations. We also show that though emotional
boundaries often coincide with the structural ones, there is no full overlap.

Chapter 6

We propose a method for emotional segmentation based on a combination of CNN
trained on mel-spectrograms for boundary candidate detection, and MER-informed
emotional boundary strength estimation for filtering.

1.4 Related publications

Chapter 2
• Aljanaki, A., Bountouridis, D., Burgoyne, J. A., van Balen, J., Wiering, F., Hon-

ing, H., & Veltkamp, R. C. (2014). Designing games with a purpose for data
collection in music research. Emotify and Hooked: Two case studies. In Lec-
ture notes in computer science, pages 29–44, 2014.

• Aljanaki, A., Wiering, F., & Veltkamp, R. C. (2016). Studying emotion induced
by music through a crowdsourcing game. Information Processing and Manage-
ment, 52(1), 115–128.

Chapter 3
• Aljanaki, A., Wiering, F., & Veltkamp, R. C. (2014). Computational modeling of

induced emotion using GEMS. In Proceedings of the 15th International Society
for Music Information Retrieval Conference (pp. 373–378).

Chapter 4
• Aljanaki, A., Soleymani, M., & Yang, Y.-H. (2015). Emotion in Music Task at

MediaEval 2015. In Working Notes Proceedings of the MediaEval 2015 Work-
shop.

• Aljanaki, A., Soleymani, M., & Yang, Y.-H. (2014). Emotion in Music Task at
MediaEval 2014. In Working Notes Proceedings of the MediaEval 2014 Work-
shop.

• Soleymani, M., Aljanaki, A., & al., Y.-H. Y. et. (2014). Emotional Analysis
of Music: a comparison of methods. In Proceedings of the ACM International
Conference on Multimedia.

• Soleymani, M., Caro, M. N., Schmidt, E. M., & Yang, Y.-H. (2013). The Media-
Eval 2013 Brave New Task: Emotion in Music. In Working Notes Proceedings
of the MediaEval 2013 Workshop.
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Chapter 5
• Aljanaki, A., Wiering, F., & Veltkamp, R. C. (2015). Emotion-based segmen-

tation of musical audio. In Proceedings of the 16th International Society for
Music Information Retrieval Conference (pp. 770–777).





Part I

Induced musical emotion





CHAPTER 2

Emotify: game with a purpose and a data corpus

Within music-related emotions, an important distinction can be made between emo-
tions that are expressed by music (while the listener is not necessarily feeling them as
well), and emotions felt by the listener in response to music. The former are referred to
as perceived emotions, and the latter as induced emotions. In this chapter we describe
and analyze the dataset of music annotated with induced (felt) musical emotion. We
designed an online game with a purpose, Emotify (emotify.org), to collect induced
emotion annotations from a varied sample of participants, using a nine item domain-
specific emotional model GEMS (Geneva Emotional Music Scales) (Zentner et al.,
2008). This corpus of annotations1 will be used in the next chapter to create a content-
based music induced emotion recognition system. In this chapter we will describe the
game and analyse the corpus, i.e., agreement of participants on different categories
of GEMS and influence of extra-musical factors on induced emotion (gender, mood,
music preferences).

2.1 Introduction
Some of the practical applications of music emotion recognition (MER) demand pre-
dicting induced emotion — e.g., emotion-based music recommendation, generation
of situational context-based playlists (for example, a workout playlist or meditation
playlist), music retrieval for music therapy. Machine learning approaches to computa-
tional modeling of musical emotion require large amounts of annotated data, however
large enough datasets are only available for perceived emotion (and not for induced
emotion). In an absence of data, it is not even possible to determine whether non-
personalized approach to induced emotion is viable (this kind of approach could be

1www.projects.science.uu.nl/memotion/emotifydata
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useful in a public space, such as fitness club, restaurant, supermarket, or on a non-
subscription website).

Predicting induced emotion is arguably more difficult than predicting perceived
emotion, because individual differences play an even larger role. Patrick Juslin pro-
posed BRECVEMA framework that describes eight mechanisms, through which mu-
sic might arouse emotion (Juslin, 2013). Some of these mechanisms are related to the
properties of the music (brain stem reflex, rhythmic entrainment, musical expectancy),
but most are specific to the listener or situation (evaluative conditioning, visual im-
agery, episodic memory, aesthetic judgement). The predictions can be improved, if we
understand the factors that contribute to individual fluctuations. For instance, group-
wise MER approach suggested by Y.-H. Yang, Lin, Su, and Chen (2008) would benefit
from such knowledge.

Another source of variance, which is equally important both for induced and per-
ceived emotion, emerges when musical emotions are translated into verbal descrip-
tions with fuzzy meaning. There is still no consensus between researchers on the most
efficient model to describe musical emotions, despite numerous attempts to find one
(see Section 2.2.3 for a review of different models). The choice of model is essential to
the performance of MER algorithms. A model that fails to describe the phenomenon
precisely will result in poor agreement between listeners and conflicting musical cues
associated with different emotions, which will impede the accuracy of prediction. A
model that oversimplifies the problem might result in a better agreement, but would be
less useful in a retrieval system. Thus the difficulty is, on the one hand, in creating a
model that reflects the complexity and subtlety of the emotions that music can demon-
strate, while on the other hand providing a linguistically unambiguous framework that
is convenient to use to refer to such a complex non-verbal concept as musical emotion.
Currently, a wide variety of emotion ontologies can be found not only in research, but
in music industry as well, from the valence–arousal model used by Musicovery2, or ten
categories ranging from happy and fun to dramatic and stressful by Aupeo3, to no on-
tology at all, as in a bottom-up approach of Stereomood4 that hosts emotional playlists
non-systematically created by users. In 2008, a model designed to be domain-specific
for music was developed by Zentner et al. (2008): Geneva Emotional Music Scales
(GEMS). It was targeted specifically at induced musical emotion, and, as compared
to other categorical models, GEMS describes refined positive responses to music in
much more detail. Since 2008, GEMS has been used in several studies with promising
results (J. K. Vuoskoski & Eerola, 2010; Torres-Eliard, Labbe, & Grandjean, 2011;
Baltes, Avram, Miclea, & Miu, 2011; Jaimovich, 2013). The music corpora used in
these studies were not large enough to serve as ground truth for a content-based MER
system, and no public data have been released.

GEMS is a relatively new and somewhat less frequently employed emotional
model, which still requires additional real-life verification. Some of the choices of
the original study by Zentner et al. (2008) left some questions to be answered: mostly
classical music was used, and the study was conducted in French (the terms were later
translated to English). The data from that study is also not available.

2musicovery.com
3aupeo.com
4stereomood.com
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Obtaining ground truth remains a challenging task for MER research, where both
music copyright and costs of annotation (with music annotation being a particularly
time-consuming task) pose problems. Outside the laboratory, there are two possible
ways of assembling a dataset labeled with emotion annotations: through social tag
mining (relying on websites such as last.fm or allmusic.com) and in a more system-
atic way through user surveys or data collection games. Social tag mining makes it
possible to collect a huge dataset, but lacks the homogeneity and control that a prese-
lected emotional model and a controlled experimental setting provides. In most cases
it is unfeasible in tag mining to measure the level of agreement between multiple users
on certain tags (or it would be necessary to apply an additional cross-verification pro-
cedure as it was done in case of the MIREX audio mood recognition task (Hu et al.,
2008)). A controlled user experiment would be an ideal way of data collection. In this
case, in addition to self-report, researchers can collect physiological measurements
and exclude external factors that might influence the outcome. However, firstly, such
a setup lacks ecological validity, and secondly, tasks involving music are very time-
consuming. In the end, researchers seem to be left with a difficult choice between a
small-scale or a very expensive survey. To avoid these costs, some researchers are
trying to collect information through online multiplayer games with the underlying
purpose of collecting scientific data. Games with a purpose are also not without their
flaws as a way of data collection: it is very difficult to design a game that is attractive,
fun to play, and difficult to cheat (where cheating can result in garbage data).

For our purpose (collecting a large enough dataset suitable for training a MER
method on induced emotion recognition and studying the influence of extra-musical
factors on emotion induction), it is essential to attract as many participants as possible.
This is why in this study we used a game with a purpose to collect the data on induced
musical emotion. We advertised our game, Emotify, through social networks, and it
attracted a big and varied set of participants. Games with a purpose are designed in
such a way that the winning strategy is to provide the most correct and precise result
possible. It is not possible to exclude vandalism or errors entirely when dealing with
human-provided data, but as designers of a GWAP, we tried to minimize the risks, and
we will discuss the techniques that we employed for that below.

2.1.1 Organization

This chapter is organized as follows. In Section 2.2, background research related to
serious games, emotional models (and, in particular, our model of interest — GEMS)
is reviewed. Then we proceed with the experimental part. Section 2.3 presents the
procedure (the GWAP) of the experiment. In Section 4, we describe the music we
used and the questionnaire. In Section 2.4, we describe the dataset that we collected
and released as an outcome of this study. In Section 2.5, we analyze the consistency
of responses made using GEMS model, and the feedback and suggestions from game
players. In Section 2.7, we analyze the extra-musical factors that influence emotion.
In Section 2.8, we discuss the main findings and Section 2.9 concludes the chapter.
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2.2 Background
The research in this chapter closely concerns two fields: music information retrieval
and music psychology. In the last decade, researchers from both fields actively en-
gaged in research of music-related emotion. We will review the work in this domain
that is the most relevant for this chapter. First, we will describe the situation with the
datasets for MER. Then, we will talk about serious games and music-related GWAPs.
Then we will review dimensional and categorical approaches to representing emotion,
and, lastly, experiments which involved the GEMS model and measured its reliability.

2.2.1 Datasets of music annotated with emotion
Data collection for MIR is hindered by two major problems: copyrighted music which
can not be freely distributed among researchers, and cost of annotation (annotating a
song takes much more time than annotating an image or a sentence, for instance). The
biggest datasets collected for MER usually use folksonomy tags instead of being an-
notated in the lab. Y.-C. Lin, Yang, and Chen (2011) use tags from AMG5 to create an
impressive dataset of 7922 songs annotated with 183 emotional tags (the most popular
tags are confident, amiable, playful, earnest). The same data source (AMG) was used
by the MIREX Mood Classification task (Hu et al., 2008). Hu and Downie (2010a)
assembled a dataset of 5296 songs labelled with 18 emotion labels from last.fm (most
popular — calm, sad, glad, romantic). Though online sources allow to collect much
bigger datasets, the online tags are often noisy, and we certainly can not know whether
tagger meant induced or perceived emotion. Also, the songs with most labels are usu-
ally popular commercial songs, and the audio can not be redistributed. Sometimes the
audio features extracted from the audio can be distributed instead of the audio record-
ing, as in the case of the Million Song Dataset (Bertin-Mahieux, Ellis, Whitman, &
Lamere, 2011), but audio feature development is a very active area of research in MIR
(one of the key areas) and absence of audio is a very serious hindrance.

The largest public datasets for MER annotated by consistently instructed anno-
tators (in the lab and on Amazon Mechanical Turk) are AMG1608 and DEAM.
AMG1608 contains 1608 30-second fragments of music in various music genres an-
notated by 665 subjects on valence and arousal (Chen, Wang, Yang, & Chen, 2015).
DEAM contains 1802 song excerpts and full songs annotated continuously on valence
and arousal and is extensively described in Chapter 4. Another large dataset compiled
by Y.-H. Yang and Chen (2011b) contains 1240 Chinese pop songs annotated with
valence and arousal using rankings scheme (the annotators compared two songs on
arousal and valence). The latter dataset is not public.

All the mentioned datasets have perceived emotion annotations (or it is unknown
whether emotion is perceived or induced). There is however a much smaller dataset of
195 song excerpts annotated with induced emotion (valence and arousal) (Y.-H. Yang
et al., 2008), but the data is not public. The only sizeable (120 one minute excerpts)
and public dataset annotated with induced emotion is the DEAP dataset, created by
Koelstra et al. (2012). In this dataset, each clip was annotated by 14–16 listeners (50%
female), who were asked to rate the felt valence, arousal and dominance on a 9-point

5allmusic.com



Emotify: game with a purpose and a data corpus 17

scale for each clip. However, DEAP contains annotations for music videos and not
music alone.

2.2.2 Serious gaming
Serious games, i.e., games that have non-entertainment purposes, have found mul-
tiple applications in health-care (Deponti, Maggiorini, & Palazzi, 2009), education
(Gaggi, Galiazzo, Palazzi, Facoetti, & Franceschini, 2012), and professional training
(Backlund, Engstrom, Hammar, Johannesson, & Lebram, 2007). Serious games are
often perceived as a type of edutainment (Ratan & Ritterfeld, 2009), for which there
can be a diversity of goals: acquiring new skills, theoretical knowledge application
in a simulation of a real world situation, or even informing oneself about a particular
political situation. Serious gaming comprises all games that pursue goals other than
entertainment (Ratan & Ritterfeld, 2009). The non-educational type of serious games
is called ‘games with a purpose’ (or GWAPs). These games normally have the purpose
of gathering data from participants as a form of crowdsourcing.

The term and concept of ‘gaming with a purpose’ was first suggested by Luis
von Ahn, a pioneer in the area of human-based computation games (Ahn & Dab-
bish, 2004), who introduced the ESP game in 2004. The ESP game is a competitive
two-player game, whereby people provide labels for the pictures and score points by
guessing the same answer. Google purchased a license to create its own version of the
game in 2006. The data collected by the ESP game have been used to improve image
search and image recognition algorithms.

GWAPs for music research

Games with a purpose are relatively popular in MIR. For some tasks, such as tonality
or chord labeling, musical experts are needed to perform the annotation task. For other
tasks, such experts are unnecessary and sometimes even undesirable. This is the case
when annotating music with tags or emotions, or measuring music similarity, because
for these tasks researchers are more interested in variation in listeners’ perception in
general, as opposed to the theoretically more consistent opinions of the experts.

Hence, there are several reasons why games with a purpose are especially suitable
for data collection in the realm of music:

1. The commonsense expertise that every adult music listener possesses is usually
sufficient to participate.

2. Listening to music is pleasant and self-rewarding and therefore it is easy to
create engagement.

3. Sometimes it is simply infeasible to collect data in other ways.

In 2008, a game called TagATune, similar in design to ESP, was created to enable
music annotation with tags (Law, Ahn, Dannenberg, & Crawford, 2007). TagATune
was designed to produce tags that would be much less subjective than those one could
obtain from social music websites like last.fm. In TagATune, a player is randomly
paired with a partner, both of whom must label a short (thirty-second) musical excerpt
with a series of tags. Based on their opponent’s tags, players must guess whether
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they and their opponent have listened to the same song or not. In such a setup, tags
referring to personal musical taste or subjective associations with music will naturally
be avoided by players, as such tags are unlikely to provide useful information to a
random opponent. Some of the tags, collected by the game, were also mood-related.
MajorMiner and HerdIt! (Mandel & Ellis, 2008; Barrington, O’Malley, Turnbull, &
Lanckriet, 2009) are similar to TagATune in design and purpose, but HerdIt! uses
Facebook as a platform and supports multiplayer games.

A specifically emotion-targeted GWAP called MoodSwings, for continuous emo-
tional annotation of music, was created by Kim, Schmidt, and Emelle (2008). In this
game, players are paired up with a partner and both of them mark the perceived musi-
cal emotion on a per second basis on the valence–arousal plane. They earn points by
guessing their opponent’s position on the valence–arousal plane for the same fragment
of music. The GWAP we present, Emotify, is different from MoodSwings in several
respects: it collects data on induced (not perceived) emotion, the measurements are
discrete rather than continuous, and it uses a categorical emotional model instead of a
dimensional one.

2.2.3 Models of musical emotion

In this section we will review different ways to conceptualize emotion, with a partic-
ular emphasis on emotions in music. Juslin and Västfjäll (2008) define emotions as
follows: “Relatively intense affective responses that usually involve a number of sub-
components — subjective feeling, physiological arousal, expression, action tendency,
and regulation — which are more or less ‘synchronized’.”

Several areas of science, such as psychology, musicology and neuroscience, have
come up with general or domain-specific models of emotion. These models can be di-
vided in two groups: categorical and dimensional models. Categorical models present
emotions as consisting of several basic clusters. Dimensional models present emotions
as changing along several orthogonal dimensions.

Categorical models

Categorical emotion models are based on the idea of existence of a certain number
of basic emotions. Based on his studies of facial expression, Paul Ekman suggested
that there are 6 basic emotions: anger, disgust, fear, happiness, sadness, and surprise
(Ekman, 2005). Plutchik proposed eight basic emotions: anger, disgust, fear, joy, sad-
ness, surprise, anticipation and trust (Plutchik, 1980), and arranged them in a circular
diagram (Figure 2.1). Each emotion has gradations of strength (e.g., weak — serenity,
medium — joy, and strong — ecstasy). Opposite emotions (e.g., interest — distrac-
tion) are situated against each other on the diagram. There are also eight additional
derivative emotions added that are each composed of the two basic ones. For instance,
annoyance combined with boredom create contempt.

Categorical models are problematic, because emotion words may not have exact
translations in different languages. This problem does not exist in the case of dimen-
sional models.
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Figure 2.1: Plutchik’s wheel of emotions. Source: (Plutchik, 2001).



20 2.2. Background

Dimensional models

Dimensional models arrange emotions in a continuous space along several (usually
two or three) principal dimensions. Russell (1980) proposed a model that consists of
two dimensions: valence (ranging from unpleasant to pleasant) and arousal (ranging
from passive to active) (Figure 2.2). This is the most widely used emotional model
in Music Information Retrieval. A. Mehrabian and J.A. Russel proposed that per-
ception, experience, and psychological responses to environmental stimuli are de-
scribed by a three dimensional model: pleasure (valence), arousal and dominance
(PAD) (Mehrabian & Russell, 1974).

The valence–arousal (V–A) model is often criticized for its lack of granularity. For
instance, anger and fear are placed very close to each other in the upper left quadrant of
the valence–arousal plane. Emotions can also be contradictory (e.g. bitter-sweetness)
(Hunter, Schellenberg, & Schimmack, 2008). It is impossible to present these on the
valence–arousal plane. Though the valence–arousal model is very popular with MIR
researchers, many have concluded that V–A model fails to capture all the variance
reflected by music (Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005; Collier,
2007; Ilie & Thompson, 2006; Fontaine, Scherer, Roesch, & Ellsworth, 2007).
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Figure 2.2: Valence and Arousal model. Multidimensional scaling of 28 affect words
marked on the two-dimensional plane. Source: (Russell, 1980).

Music-specific emotional models

In the case of music it might be crucial for a model to be domain-specific. Scherer
(2004) argues that everyday utilitarian emotions should be distinguished from aes-
thetic emotions, induced by works of art. Aesthetic emotions are usually much more
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subtle, and don’t coincide with everyday emotions (for instance, shame or guilt are
almost never felt in response to music (Zentner et al., 2008)).

The earliest attempt to create a specifically musical categorical model of emo-
tion was undertaken by Hevner (1936). She created an ontology of eight emotional
clusters, where each cluster contained from six to eleven adjectives (see Figure 2.3).
This list was later revised by Farnsworth (1958), the adjectives were rearranged and
a ninth cluster was added (sacred, spiritual). The list was revised again by Schubert
(2003). There were about a dozen other studies that identified between 3 and 12 clus-
ters (Asmus, 2009). The clusters are very different in terms of vocabulary and struc-
ture, which should not be very surprising as over time words change their meaning
(gay), fall out of fashion (stately, benevolent), and the emotional content of music
changes as well.

The categorical models used in Music Information Retrieval research usually pos-
sess few (4–6), but sometimes as many as 18 classes (Y.-H. Yang & Chen, 2012).
Some of these models are derived from online tags or surveys using techniques such
as hierarchical clustering or latent semantic analysis (Skowronek, McKinney, & Par,
2006; Laurier, Sordo, Serra, & Herrera, 2009; Hu et al., 2008).
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Figure 2.3: K. Hevner’s adjective circle (Hevner, 1936).

Several two or three-dimensional emotional models were experimentally derived
for music. The dimensions are similar in meaning: tension–energy, gaiety–gloom, and
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solemnity–triviality (Wedin, 1969, 1972a), intensity–softness, pleasantness–unplea-
santness, and solemnity–triviality, obtained using multi-dimensional scaling (Wedin,
1972b), tension–relaxation, gaiety–gloom, and attraction–repulsion (Nielzen & Ce-
sarec, 1969); gay/vital–dull, excited–calm (Gabrielsson, 1973); ‘Heiterkeit–Ernst’
(cheerful–serious) and ‘Robustheit–Zartheit’ (strong/powerful–soft/tender) (Kleinen,
1968). For a more comprehensive review of models of musical emotion we refer to
(Juslin & Sloboda, 2011).

None of the models described before were specifically developed for induced
emotion. In 2008, a new domain-specific categorical emotional model called GEMS
(Geneva Emotional Music Scale) was proposed by Zentner et al. (2008). GEMS is
unique in that it addresses induced emotion, was created specifically for describing
musical emotion, and has a level of granularity that other models do not provide.
Zentner et al. conducted four consecutive studies to derive the model. First, a list of
music-related terms was compiled both for induced and perceived emotion. It showed
that these two types of emotion differ from each other, the major difference being the
bias for positive emotions in case of induced emotions. In the following studies, a
structure of music-induced emotions was examined through factor analysis of ques-
tionnaire data. As a result, the GEMS scale was created.

Through further factor analysis, shorter versions of the scale were added. The full
GEMS scale consists of 45 terms, with shorter versions contain 25 and 9 terms. These
nine terms can in turn be grouped into 3 superfactors: vitality, sublimity and unease.
Originally, the terms were collected in French, and later translated to English. In 2012,
an additional research was conducted to improve the short GEMS scale (Coutinho &
Scherer, 2012). In this research, the problem of classical music overrepresentation in
the original work behind GEMS was addressed. The experiment confirmed the nine-
factor structure of GEMS. It was suggested to add new terms related to feelings of
harmony, interest and boredom. The final results from the study were still unpublished
at the time when the game was created, so we used the original short nine term ver-
sion of GEMS for our online game (Wonder, Transcendence, Tenderness, Nostalgia,
Peacefulness, Power, Joyful Activation, Tension and Sadness).

Induced vs perceived emotion

There is no doubt that music can reliably communicate emotions and listeners can
reach some degree of agreement on them, as demonstrated, e.g., in (Eerola & Vu-
oskoski, 2011; J. Vuoskoski & Eerola, 2013; Bigand et al., 2005; Torres-Eliard et al.,
2011). Some doubts were expressed whether instrumental music can induce emotions,
most notably by P. Kivy, but also by E. Payne and C. Pratt (Pratt, 1952; Payne, 1961;
Kivy, 1990, 1993). This issue is still sometimes debated, but in contemporary music
psychology, the most supported position is that music can induce emotion (Konečni,
2008; Scherer, 2004; Krumhansl, 1997; Rickard, 2004). In a study conducted by Alf
Gabrielsson, more than thousand respondents provided reports on their strong expe-
riences with music, and almost any emotion can be found in those reports as having
been elicited by music (Gabrielsson, 2011). Wager et al. demonstrated in an extensive
meta-analysis of PET (Positron Emission Tomography) and fMRI (Functional Mag-
netic Resonance Imaging) studies that perception and induction of emotions involve
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‘peak activations’ of different areas of the brain, supporting the idea that these are
different processes (Wager et al., 2008).

The relationship between perceived and induced emotion is not straightforward.
Gabrielsson (2002) argues that perceived and induced emotion can relate in four ways:
positive, negative, no systematic relation or no relation. Positive relation, though being
most common, should not always be assumed. Also, though a qualified listener can
nearly always recognize emotion expressed in the music, emotion induction is less
frequent. Recent studies suggest that listeners experience strong emotions only about
55% of the time they spend listening to music (Juslin & Laukka, 2004), or that in
65% of the musical episodes music affects how they feel (Juslin, Liljeström, Västfjäll,
Barradas, & Silva, 2008). It was also demonstrated that negative types of emotions
(anger, fear) are less likely to be induced by music, though music can express them
(Zentner et al., 2008).

Emotional responses can be measured from self-report, expressive behaviour and
physiological responses (heart rate, skin conductivity, blood pressure, as well as bio-
chemical responses) (Krumhansl, 1997; Rickard, 2004). In case of music, pronounced
expressive behaviour is not the rule. Measuring physiological responses can help to
verify the presence of induced emotion, because in case when emotion is only per-
ceived, but not felt, the response may be more subtle. Most studies show that listening
to music can create pronounced physiological response — change in heart rate, hor-
mone levels, skin conductivity (many such studies are reviewed in (Hodges, 2011)).
Unfortunately, the results from different studies so far are very contradictory and
it is difficult to make definitive conclusions about the actual influence of music on
physiological response. Self-report is the most widely used measure. For obtaining
fine-grained measurements on musical emotion, self-report is also arguably the most
informative measure, because it provides information on the otherwise inaccessible
cognitive part of emotion (Zentner & Eerola, 2011b).

2.2.4 Experiments involving the GEMS model

In this section we will describe some of the research, where GEMS was used as an
underlying model for data collection.

The biggest experiment, involving nearly 4000 participants, took place in 2010
(Jaimovich, Coghlan, & Knapp, 2012) in Dublin. Participants listened to music and
reported their emotional state, using several self-assessment methods, GEMS among
them. Physiological measurements were also recorded. The dataset contained 53 songs
from different genres (rock, classical, pop, jazz, world etc.), specially selected for their
emotional content. The analysis of the collected data is presented in the PhD thesis of
Jaimovich (2013). Unfortunately, due to a software error, the answers to the GEMS
questionnaire had to be discarded.

In 2010, Vuoskoski et al. performed a comparison of three emotional models: one
dimensional (valence–arousal–tension), one categorical (anger, fear, happiness, sad-
ness, tenderness), and GEMS. Only 16 excerpts from movie soundtracks were used
(J. K. Vuoskoski & Eerola, 2010, 2011). The most consistent ratings were produced
in the case of the two-dimensional valence–arousal model, while basic emotions and
GEMS were less consistent, with GEMS’s possessing both the most consistent (joyful
activation, tension) and inconsistent (wonder, transcendence) categories. It was also
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found that GEMS categories are redundant, and valence and arousal dimensions ac-
count for 89% of variance. That experiment, though, was performed on 16 musical ex-
cerpts only, and the excerpts were selected using criteria based on V–A model, which
might have resulted in a bias. In 2011, K. Torres-Eliard et al. used GEMS for contin-
uous emotion measurements (Torres-Eliard et al., 2011). Every rater controlled one
GEMS dimension. Data on emotion expressed in 36 musical excerpts were collected.
The inter-rater agreement (based on the extent to which a single emotion was present
in the music at a given moment of time) was found to be in the range of good agree-
ment (Cronbach’s alphas ranged from 0.84 to 0.98). In (Lykartsis, Pysiewicz, Coler,
& Lepa, 2013), the GEMS-25 model was tested for invariance across genre (classi-
cal vs. electronic music) and language (English vs. German version GEMS-28-G), by
examining the data using confirmatory factor analysis. The model was found to be
configurally invariant across language (same configuration of factor loadings on latent
variables) and weakly invariant across genre (configurally invariant and the values of
loadings are also equal) for German version only.

In (Choppina et al., 2016), both patients with bypolar disorder and a healthy con-
trol group could assign musical excerpts the “correct” (defined by researchers) emo-
tion on GEMS scale for slightly more than half of the excerpts. In (Baltes et al., 2011),
GEMS was used in a study of operatic performance, and this self-report measure
showed significant correlation with physiological parameters (such as systolic blood
pressure, respiratory sinus arrhythmia, etc.). In (Kaelen et al., 2015), it was shown
that emotional response to music is enhanced by LSD, especially the emotions from
the GEMS scale named wonder, transcendence, power and tenderness. Pearce and
Halpern (2015) studied age differences in emotional reactions to music, measuring
those reactions using GEMS-9, and found significant age-related effects in peaceful-
ness, sadness and tension.

In the original study that introduced GEMS (Zentner et al., 2008), a small-scale
experiment with 16 classical pieces showed that GEMS equips listeners with a more
adequate instrument to measure musical emotion and results in better agreement than
V–A or basic emotions. As this experiment was very small, based on one genre only,
and the questions asked for V–A model were unconventional, this finding needs further
investigation. In all the studies that we described above the datasets were not big, and
the data are not publicly available.

2.3 Emotify: game design
In this section we will start describing the experimental part of this chapter. We created
a GWAP called Emotify to collect labels using GEMS.

Emotify was launched on the 1st of March 2013. As a platform, we used both a
social network (a Facebook application6) and a stand-alone website7. Using a social
network as the platform for a GWAP simplifies dissemination, but for those who do not
possess or want to use or create a Facebook profile, we provided a stand-alone version.
Figure 2.4 shows a screenshot of the game interface. Involving a social network gave

6apps.facebook.com/emotify
7emotify.org
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us the possibility to provide users with inter-player comparison in a non-competitive
manner.

Figure 2.4: Emotify interface. Calmness and tenderness are selected and highlighted.
An explanation for the hovered button is shown below the buttons (Sensuality, affect,
feeling of love).

The gameflow is as follows.

1. The player authenticates through Facebook (or alternatively, enters the game
from the stand-alone website) and provides personal details: age, gender, musi-
cal preferences, first language, level of English, and current mood. At this stage,
the player is also provided instructions and is asked to report his or her personal
emotions in response to music (i.e., induced emotion).

2. The player is randomly assigned to one of four musical genres (rock, pop, clas-
sical and electronic music) and can switch to any other if he or she so wishes.
The player may also switch at any later time.

3. In every genre, the player is presented with a random sequence of musical ex-
cerpts, each one minute in length. If a player is invited by a friend through
Facebook, he or she is presented with the same (whenever possible) sequence
as the player who sent the invitation. This constraint is necessary in order to
enable comparison between them.
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4. After listening to the one-minute fragment, the player selects up to three emo-
tions from a list of nine. This limitation should encourage players to think more
carefully about the choices and name only the strongest emotions.

5. The player also may indicate whether he or she liked or disliked the music and
whether he or she knows the song. The player may also provide a new emotion
definition if none of the nine corresponds to what he or she is feeling.

6. At any time, it is possible to skip listening and go to another song or another
genre.

7. There is a countdown from 10 to 1, saying that after 10 fragments the player
will receive final feedback on his or her emotional perception of music. The
countdown should encourage players to listen to at least 10 fragments to earn
a “reward”. Players may continue after listening to 10 fragments, but we prefer
them not to do so, because feeling emotional content of music requires concen-
tration and sensitivity, which is difficult to maintain for a long period of time.

Before starting with the game, the players were explained that they will be asked
to describe what they feel in response to music, and also they were encouraged to
skip the song if it fails to elicit any emotions in them. We tried to encourage more
personal induced emotion responses by providing feedback in a style of psychological
questionnaire.

2.3.1 Incentives
When discussing related work, we mentioned MoodSwings, a game for emotional an-
notation of music. MoodSwings focuses on perceived emotion (as opposed to induced
emotion), which is also apparent in their choice of emotional model and their method
of data collection. In our game, in contrast, we are trying to collect induced emotion
annotations. For a game with a purpose, induced emotion creates a design problem.
A standard type of player engagement in GWAPs is making players compete over giv-
ing the most uniform answer possible (which is also supposed to be the correct one).
In case of induced emotion there is no correct answer, and it would be misleading
to encourage the listener to look for one. Induced musical emotion is by its nature
personal and subjective.

This is why we introduced a different fun element than competition. We decided
to create engagement by providing a feedback on a player’s answers in the manner of
a psychological quiz. In addition, we decided to use a social network in order to give
the player a possibility to compare his musical tastes and perception to those of his or
her friends in the social network. There were three feedback elements in the game:

• Continuous feedback: A score calculated as a correlation of the player’s an-
swers to the averaged answers of other players. This score is recalculated after
every answer and averaged over all answers.

• Final feedback: A histogram of the player’s emotional responses for songs that
the player liked or disliked. This feedback was provided only after completing
10 songs and was used to stimulate the user to continue playing.



Emotify: game with a purpose and a data corpus 27

Figure 2.5: Emotify interface. Playlist feedback.
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• Playlist feedback: Feedback on every song to which the player listened. Players
had the possibility to listen to the whole song (not just the initial one-minute
excerpt), and to see a detailed comparison to other players (see Figure 2.5).

We hope that by designing such a feedback scheme, we encouraged players to give
sincere and serious answers and at the same time provide a reward for their contribu-
tion.

2.4 Methods
In this section, we will explain the details on the selection of the musical material and
the modifications to the GEMS questionnaire that we made.

2.4.1 Music
In existing research on musical emotion, music is often selected for its strong and
obvious emotional content (J. K. Vuoskoski & Eerola, 2010; Jaimovich, 2013; Zent-
ner et al., 2008). In such a case, it is unclear how obtained results are comparable
to non-preselected music. In our experiment we intentionally chose music randomly
from a larger collection. We assembled a set of 400 musical pieces from the Mag-
natune recording company (magnatune.com), 100 pieces from each of four selected
genres (classical, rock, pop and electronic). Genres were assigned by the recording
company. The resulting dataset contains music from 241 different albums by 140 per-
formers. There were several reasons to choose music from Magnatune: the quality
of sound recordings is generally good and the music little known, except for classical
genre (familiar music might precondition induced emotion (Schubert, 2007)). The mu-
sic was reviewed manually and some recordings (around 2%) were removed because
of insufficient quality.

We randomly divided our musical corpus into two subsets, maintaining the genre
ratio (15 songs from each of the four genres). The smaller subset of the data (which
will be called subset A) consists of 60 songs. The remaining 85% of the corpus
(subset B) consists of 340 songs. We collected different amounts of annotations for
subset A and subset B. The smaller subset was intended to be used to calculate the
listener agreement on the GEMS categories, the bigger subset was intended to be dis-
tributed as a public dataset of annotated music together with smaller subset. In subset
A, each song is annotated with at least 10 measurements per variable, which makes
it at least 90 labels per song, since there are nine questions in the questionnaire. We
count all labels given to a song independently, thus if a person assigns 2 labels to a
piece of music, we count each. On average there were 48 annotators per song in sub-
set A, and for subset B, at least 10 people listened to and annotated each song (on
average — 18) (see Section 2.5.2).

2.4.2 Questionnaire

GEMS questionnaire adaptations

In order to adapt the GEMS questionnaire to an online game, we made several mod-
ifications. Originally, GEMS is designed to be answered using a Likert scale ranging
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Superfactor Emotional category Explanation

Sublimity

Amazement* Wonder, happiness
Solemnity* Transcendence, inspiration, thrills
Tenderness Sensuality, affect, love
Nostalgia Dreamy, melancholic, sentimental
Calmness* Relaxation, serenity, meditativeness

Vitality Power Strong, heroic, triumphant, energetic
Joyful activation Dancing, bouncy, animated, amused

Unease Tension Nervous, impatient, irritated
Sadness Depressed, sorrowful

Table 2.1: GEMS categories with explanations as used in the game. The categories
marked with asterisk were modified.

from 1 to 5. The Likert scale is a psychometric scale commonly used in question-
naires. When answering a question using a Likert scale, a participant has to choose
one of several items typically ranging from “Not at all” to “Very much”. This way of
data collection is, however, very slow, requires quite some mental effort, and is not
suitable for a dynamic online game. Therefore we modified the task and asked to se-
lect several labels from a list instead. This means that for each emotion we obtain one
value, which is either 1 or 0 (emotion is present or not), which results, for each song,
in a vector of 9 binary values.

We also restricted users on how many labels they could select, by instructing them
to select no more than 3 labels. We did this because we wanted the players to select
only the strongest emotions. As we abandoned the Likert scale, limiting the number
of responses was the only way to measure the strength of emotion.

Following the findings from (J. K. Vuoskoski & Eerola, 2010; Torres-Eliard et
al., 2011), where it was discovered that participants have trouble with understanding
certain categories of GEMS, we changed the wording of three GEMS categories by
replacing them with one of the emotions from the list of explanatory synonyms that
accompany each GEMS category. Transcendence was changed to solemnity, wonder
to amazement, and peacefulness to calmness (see Table 2.1).

Personal questions

We collected the following personal data about participants: age, gender, first lan-
guage, level of English (Beginner, Intermediate, Advanced), musical preferences (we
asked the participants to report their preferences on the four selected genres (binary,
whether a genre is liked by participant or not), and added an open question where
other preferred genres could be indicated), and current mood (on a Likert scale from
1 (in a very bad mood) to 5 (in a very good mood)).

Other information

For every piece of music the participant listened to we collected, apart from the data
described above:
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• Whether the participant is familiar with the piece (binary).

• Whether the participant liked or disliked the piece (binary).

• The order in which GEMS categories were presented to the participant (ran-
domized between participants).

• Optionally, a suggestion of a new emotion label not represented by GEMS, or
an explanation of choices that participant made.

2.5 Annotations
Creating a publicly accessible dataset was one of the main motivations of this study.
All the data is available at the following link8. Below, we list statistics on game players
and describe the size and contents of our dataset.

2.5.1 Participants
1778 participants (747 females, 1031 males) took part in the study and 16191 labels
were collected for 400 songs during 8358 listening sessions. The average age of partic-
ipants was 30.32 years (sd = 11.74). Participants listed different languages as their first
language: 38% English, 19% Dutch, 19% Russian, the remaining 24% of the partici-
pants indicated 41 other languages (mostly European, with some Chinese, Hindi, etc.).
The style preferences were as follows: 61% Rock, 55% Classical, 44% Pop and 43%
Electronic (multiple genres were allowed). 11% of the participants reported that their
English language proficiency was on the beginner level, 26% were on intermediate
level and 63% were advanced. On average, they listened to 8 songs, and spent 13 min-
utes and 40 seconds playing the game (sd = 12.62). The actual time spent in the game
differed a lot over all players. As we were advertising a game through online media,
there were many players who merely examined the game and quit almost immediately,
but there were also devoted players who spent a lot of time listening to music. Overall,
the players gave positive feedback to the game. In the experiment, participants had to
select one, two or three main emotions they felt after listening to a one minute excerpt.
For 37% of samples they selected only one emotion, 30% obtained two emotional la-
bels and 33% three emotional labels. There were no complaints about not being able
to select more than three labels, but some participants reported not being able to find
exact emotion they felt in GEMS model, and about 7% of participants suggested new
emotion labels.

2.5.2 Amounts of annotations
The annotations produced by the game are spread unevenly among the songs, which is
caused both by the design of the experiment and the design of the game. Participants
could skip songs and switch between genres, and they were encouraged to do so,
because induced emotional response may not occur on every music listening occasion.
Therefore, less popular (among our particular sample of participants) genres received

8www.projects.science.uu.nl/memotion/emotifydata
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fewer annotations, and the same happened to less popular songs. A density histogram
on Figure 2.6 illustrates the spread of annotations among 400 songs. On average, each
song from subset A was annotated by 48 participants (sd = 4.54) and each song from
subset B by 18 participants (sd = 7.8).

Figure 2.6: Density curves for number of annotators per song for subsets A and B.

2.5.3 Confounding factors

Influence of button order on the frequency of button selection

For each of the participants, positions of the buttons (the nine buttons with emotional
labels on them) in the game interface were randomized. The buttons were placed in a
three by three grid, as shown on Figure 2.4. We need to verify whether the buttons in
certain positions were selected more often than buttons in other positions (regardless
of the text on the button). Table 2.2 shows the frequencies of button selections in
listening sessions. The position in the table corresponds to the button position on the
screen. Since up to three emotions could be selected during one listening session, the
percentages do not sum up to 100.

2021 = 19% 1840 = 17% 1969 = 19%
1916 = 18% 2027 = 19% 1946 = 19%
1804 = 17% 1862 = 18% 1816 = 17%

Table 2.2: Frequency of button selection (the absolute number of clicks and a percent-
age from all the listening sessions).

The buttons in the lowest row were selected less frequently than the buttons in the
upper and middle row (about 7% less than the buttons above them). We conducted
a Chi-Squared test on these frequencies and found that these differences are higher
than chance: χ2 = 13.309, df = 4, p-value = 0.0098. We conclude that the quality of
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the annotations would be compromised, should the order of the buttons have not been
randomized.

Influence of English language proficiency

For almost 62% of the game participants, the first language was another language than
English. From these participants, 15% indicated that their level of English fluency is
“Beginner”, 36.5% indicated “Intermediate” and 48.5% “Advanced”.

The group of beginner-level participants was too small for their answers to be
separately compared to the other groups. This is why we studied the effect of remov-
ing those participants and computed intra-class correlation coefficients for each of
the songs with and without beginner-level participants. Removing “beginners” didn’t
affect intra-class correlation coefficients significantly. Also, in Section 2.6.4, we esti-
mated the expertise of each labeler. The expertise estimation is based on consistency
of responses. If there were language understanding problems for Beginner level par-
ticipants, their responses would be less consistent. We used expertise estimation to
compare Beginner level participants with the other groups and didn’t find any signifi-
cant difference in means of expertise.

This leads us to believe that the level of their understanding was satisfactory
enough for their answers to not degrade the quality of our dataset.

2.6 GEMS model comprehensibility

One of the objectives of our experiment was to test whether the GEMS model is suit-
able for large-scale music retrieval systems. In our game, we involve a varied sample
of participants from different age groups and linguistic backgrounds, which resembles
an actual composition of the users in online music services. We ask them to provide
feedback on using GEMS, and we also compute implicit consistency measures.

2.6.1 Feedback questionnaire

After completing 10 excerpts, game players could view their scores and were asked
to fill in a feedback questionnaire. 556 participants did so. They were asked to rate
how difficult it was to use GEMS on a scale from 1 to 5 (where 1 means “very easy”)
and on average they gave rating of 2.92 (sd = 1.07, mode = 3). On average they rated
their liking of music on a scale from 1 to 5 (where 1 means “disliked completely”) as
3.16 (sd = 1.08, mode = 4). Also, participants were asked to indicate which GEMS
categories were most difficult to understand and to associate with the emotions they
felt (see Table 2.3, column 2).

From the feedback we can see that we did not manage to improve the situation
(J. K. Vuoskoski & Eerola, 2010) with categories wonder and transcendence by giving
them synonymous names. A very big number of participants (one third) considered
them unclear. The most easy to understand categories were calmness and sadness.
Those were also the most often selected ones as well. The rest of the categories were
considered unclear by approximately one tenth of the players.
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Emotion Considered unclear Frequency of selection

Amazement 31% 13%
Solemnity 31% 20%
Tenderness 12% 18%
Nostalgia 10% 26%
Calmness 3% 30%
Power 11% 18%
Joyful activation 11% 25%
Tension 13% 23%
Sadness 4% 30%

Table 2.3: GEMS categories and feedback questionnaire statistics. Second column:
considered unclear by percentage of respondents (n = 556). Third column: how often
an emotion was selected in the listening sessions (n = 8358).

Emotion Classical Rock Pop Electronic Average

Amazement .70 .36 .31 .48 .46
Solemnity .48 .70 .72 .72 .65
Tenderness .75 .86 .85 .85 .82
Nostalgia .81 .81 .64 .60 .71
Calmness .92 .72 .90 .78 .83
Power .90 .87 .82 .82 .85
Joyful activation .96 .92 .91 .87 .91
Tension .55 .75 .83 .75 .72
Sadness .78 .81 .46 .70 .69

Table 2.4: Cronbach’s α values per category per genre (subset A).

2.6.2 Listener agreement on emotional categories

We collected especially a big amount of data for one subset of songs (subset A), in
order to examine the inter-rater agreement. Here we will analyze these songs.

From the 60 songs of subset A, only 25 songs possessed at least one emotional
category that was selected by the majority (more than a half) of the respondents (the
highest percentage of respondents to select a category unanimously was 77%). The
most frequent highly selected categories were calmness and joyful activation (both
for 8 songs), tension (7 songs), and the least frequent were power, nostalgia and ten-
derness. The rest of the categories (amazement, solemnity and sadness) in most cases
weren’t selected by more than one third of the participants unanimously. Though most
of the songs failed to reach a majority vote on any of the emotional categories, all of
the songs demonstrate agreement that is much better than chance.

To assess agreement, we calculated Cronbach’s α per category (see Table 2.4).
Cronbach’s α is a coefficient of internal consistency, commonly used in psychometric
tests (Cronbach, 1951). Technically, Cronbach’s α is the mean of all possible split-
half reliabilities, corrected for test length. Split-half reliability test divides the test
in two halves, computes their means and calculates the correlation between them.
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Standardized Cronbach’s α is calculated as follows:

α =
Kr̄

1+ (K −1)r̄
, (2.1)

where K is the number of components in the test, and r̄ is the mean of all the non-
redundant correlation coefficients (i.e., excluding self-correlations and correlations
computed in reverse order). In our case, we are interested in correlations between
the answers of the players for the same song.

In psychological research, Cronbach’s α above 0.7 is viewed as acceptable agree-
ment, and three categories do not pass that threshold: amazement, solemnity and sad-
ness. There were known problems with categories amazement and solemnity and they
were also marked as least understood categories on feedback questionnaire. Sadness,
however, didn’t arise questions in most participants (96%). In recent research by Pel-
tola and Eerola, it was shown that a range of emotions, experienced in response to
music, is named under a joint umbrella word “sadness”: Sweet Sorrow, Melancho-
lia and Grief (Peltola & Eerola, 2016). We hypothesize that our participants did not
really agree on the meaning of that category. We conducted the Tukey HSD test on
Cronbach’s α values between genres and didn’t find any significant differences. Tukey
HSD test is essentially a t-test which allows multiple comparisons and corrects for an
increased probability of making a Type I error.

2.6.3 Suggestions to modify the model
Players were given the opportunity to suggest a new emotional term that was miss-
ing from the model, or comment on existing ones. We received 437 such comments.
Of them, 125 comments suggested new emotional terms, and the rest explained the
reasons behind choosing from a list of GEMS terms or contained other notions.

Table 2.5 lists the most frequent semantic groups of comments, ordered by popu-
larity. As we can see from the table, by far the most frequent suggestion is not related
to emotion induced by music but to disliking it — boredom. In groups 1 and 2 we
placed all the comments which referred to the fact that music failed to induce any
emotion in the respondent. Though we asked the participants to skip the fragments
which did not induce any emotion in them, not all the participants did so. Group 3
contains comments on liking the music. Groups 1–3 confirm the findings of Coutinho
and Scherer (2012), who discovered that feelings of interest, boredom (“bored”, “in-
different”, “weary”) and feelings of harmony and clarity are lacking from the model.
Indeed, when reporting their induced emotion, participants find it very important to
be able to report their interest, engagement and enjoyment (or, on the other hand, in-
difference, boredom and irritation from disliked music). These emotions can also be
regarded as music-induced emotions and should be included in the model.

Other semantic groups of comments, not related to liking or disliking the music,
are introduced in groups 4 to 8. Anger (group 6) and fear (group 7), according to
Zentner et al. (2008), are often expressed by music, but are unlikely to be induced by it.
It is possible that respondents were confusing what they perceive in music and what it
induces in them. Impetus (group 4) was the next most suggested semantic group after
feelings of interest and boredom. Less frequently suggested semantic groups were
humour (group 5) and contentment (group 8). These emotions, along with boredom
and interest, are not covered by GEMS as well.
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Group Category Examples Occurrence
frequency

1 Disliking the music boring, boredom, bored
annoyance, annoyed, ennui

68

2 Neutral neutral, no emotion,
indifferent

10

3 Liking music interesting, nice, good 10
4 Impetus anticipation, determined, hope-

ful, impatient, call to action
8

5 Humour humour, humorous, sarcastic,
silly

7

6 Anger aggression, anger, wild 6
7 Fear scared, fear, tense scene in a

movie
6

8 Contentment content, contented, satisfied 5

Table 2.5: Emotions that were suggested by players of Emotify.

Some suggestions that only occurred once were “religious” and “awkward”.

2.6.4 Factor analysis and correlation analysis of the data
In this section we analyze the relationships between GEMS categories and conduct
factor analysis of the data.

Averaging labels across participants

The data produced by the game is in form of vectors with binary values per player per
song. There are several possible ways to average these data per song across players.

In the original GEMS questionnaire, the responses are collected using Likert scale.
In our game, we ask the players to indicate only the strongest of the experienced
emotions. Therefore, we can assume that the emotions that are mentioned more often
with regard to a particular song, are the ones that are most strongly associated with it,
and their strength is proportional to how often they are mentioned.

On this assumption, there are two possible ways to average the scores. An emotion
could be given a fixed weight regardless of how many other emotions are selected,
according to Formula 2.2:

score1
i j =

1
n

n�

k=1

ak, (2.2)

where score1
i j is an estimated strength of emotion i for song j, ak is the answer of the

k-th participant on a question whether emotion i is present in song j or not (answer
is either 0 or 1), and n is the total number of participants who listened to song j. The
other way of averaging is to inversely weight each individual answer based on the
number of selected emotions, according to Formula 2.3
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score2
i j =

1
n

n�

k=1

ak

�9
z=1 ak

z
, (2.3)

where ak
z are the answers to all emotions for song j by participant k, and the rest of

the variables are the same as explained for the first score. To find out which score is
closer to the original Likert scales questionnaire, we asked 5 labellers to label 15 songs
on original Likert scale, averaged their answers, and compared the result to the one
obtained by averaging using both methods. On basis of this, we chose the first method
to average our labels as it was more similar with Likert-scale answers.

We could also try to infer the strongest emotions for each song, based on the
votes from the players. We will do that using a method by Whitehill, Wu, Bergsma,
Movellan, and Ruvolo (2009) for integration of labels from labelers with unknown
expertise. This method is based on an assumption that labeling process depends on
two hidden factors: difficulty (ambiguity) of an item to be labeled 1

β and expertise of
the labeler α. From that we can calculate the probability of a label Li j being equal to
a true label Z j as follows:

Pr(Li j = Z j |αi,β j) =
1

1+ e−αiβ j
. (2.4)

Now we can infer Li (strongest emotions per song), α and β, using expectation
maximization. For more information on implementation see (Whitehill et al., 2009).

We consider an emotional category present in a song, if the estimated probability
of this is bigger than 0.5. Only half of the songs (218) have at least one identifiable
strongest emotion that labellers agreed on. Moreover, for some of the emotions, the
number of songs where these emotions are a “majority vote”, is very scarce: 0 for
amazement, 11 for solemnity, 16 for tenderness, 9 for sadness, and between 27 and 75
for the rest of the categories. As far as this averaging method seems to lose too much
detail from our data, we only use the result of this method in Section 2.5.3 to compare
participants’ expertise. The expertise in our case is not the expertise of labeling music
with emotion, but the expertise of using English language to express the felt emotion
with words.

Correlation analysis

We used the score described in Formula 2.2 to average the annotations, and calcu-
lated correlations (Spearman’s correlation coefficient, as the data is strongly positively
skewed) between the GEMS categories (see table 2.6). Before doing correlation anal-
ysis, we excluded the annotations from those listening sessions where participants
indicated that they disliked the music.

Strong positive correlations mean that the correlated categories were either often
selected together by the same annotator, or were often selected by different people for
the same music. Therefore, these emotions can either be co-occurring, or could also
be confused and potentially redundant categories. Prominent examples are: tenderness
and nostalgia with r = 0.55 and p < 0.001 (compare to (Zentner et al., 2008) where
r = 0.5), power and joyful activation with r = 0.41 and p < 0.001 (compare to (Zentner
et al., 2008) where r = 0.38). The strongest correlations are negative: sadness and
joyful activation with r = −0.64 and power and calmness with r = −0.64.
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Sol. Tend. Nost. Calm. Power J. act. Ten. Sad.

Amazement −.08 −.13 −.23 −.26 .16 .41 −.11 −.32
Solemnity −.17 −.18 .08 .06 −.26 −.20 .14
Tenderness .51 .53 −.59 −.38 −.50 .26
Nostalgia .43 −.49 −.41 −.45 .42
Calmness −.64 −.51 −.41 .25
Power .41 .42 −.28
J. activation .03 −.64
Tension −.03

Table 2.6: Correlations between emotional categories.

Factor analysis

Zentner et al. (2008) used factor analysis on the GEMS ratings and found that 9 GEMS
factors could be accounted for in terms of three higher-order superfactors, which they
called Sublimity (highly correlated with wonder, transcendence, tenderness, nostalgia,
peacefulness), Vitality (joyful activation and power) and Unease (tension and sadness).
J. K. Vuoskoski and Eerola (2010, 2011) conducted principal component analysis on
data from ratings of 16 film music excerpts and obtained a two-dimensional solution
(the third factor only accounted for 6% of variance and was difficult to interpret, so
it was discarded). The orthogonally rotated solution accounted for 89.9% of variance
and the factors were named Valence and Energy. Pearce and Halpern (2015) collected
another set of responses for the same 16 excerpt dataset, and factor analyzed these
data. This resulted in retaining three factors with eigenvalues bigger than 1, accounting
for 82% of variance. The factors were named Animacy (wonder, transcendence and
power), Valence (sadness and tension and joyful activation (negative loading, the axis
varies from positive to negative valence and not vice versa as usual)) and Arousal
(tenderness, peacefulness, joyful activation (positively) and tension (negatively)).

We perform maximum likelihood exploratory factor analysis to compare our find-
ings with the results described above.

Determining the number of factors to retain is usually a rather subjective proce-
dure, based both on graphic and non-graphic tests, and interpretability criteria. Figure
2.7 shows the eigenvalues (computed from the correlation matrix) sorted from biggest
to smallest (Scree plot). Keiser criterion suggests retaining components where eigen-
value exceeds one. There are three factors with eigenvalue bigger than 1 (eigenvalues
are 3.39, 1.76 and 1). Examining the Scree plot for an elbow also suggests three fac-
tors. Figure 2.7 also illustrates three other diagnostic tests: Optimal Coordinate (OC),
Acceleration Factor (AF) and Parallel Analysis (PA). OC method attempts to deter-
mine the location of the scree by measuring the gradients associated with eigenvalues
and their preceding coordinates. AF determines the coordinate where the slope of
the curve changes most abruptly. Parallel analysis of Monte Carlo simulations uses
a comparison with random datasets of the same size. OC method indicates 3 factors,
AF method — 2 factors, PA — 3 factors. We also use Very Simple Structure (VSS)
test (Revelle & Rocklin, 1979), which compares the fit of a number of factor analyses
with the loading matrix simplified by deleting all except the c greatest loadings per
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Figure 2.7: Scree plot that illustrates four of the test criteria — Scree test, AF, OC and
PA.

item, where c is a measure of factor complexity. VSS and MAP criterion (which in-
volves a complete PCA followed by the examination of a series of matrices of partial
correlations) both suggest 2 factors. Four out of seven tests suggest retaining three
factors.

In the end, we decided to retain three factors, which together explain 84.2% of
variance in our data. We extracted and rotated them using orthogonal varimax rota-
tion. Table 2.7 shows the factor loadings. The first factor (named Arousal) strongly
correlates with calmness and tenderness, and negatively with power. The second fac-
tor (Valence) correlates with sadness and negatively with joyful activation and amaze-
ment. The third factor (Tension) correlates with nostalgia and negatively with tension.
All the names of our factors are given by the direction of the strongest negative cor-
relation of the factor. Three factors of a similar nature have been already discovered
in musical emotion research before (Wedin, 1969, 1972b; Nielzen & Cesarec, 1969),
making these findings highly plausible.

In the original study by Zentner et al. (2008) tension and sadness contribute to one
factor Unease and are correlated with r = 0.22. In our case, sadness and tension are
not correlated at all (r = 0.03). Factor Sublimity is similar to our factor Tension. But
Solemnity (former transcendence) in our study is negatively correlated with tenderness
and nostalgia, while it was positively correlated in (Zentner et al., 2008) (r = 0.42 and
r = 0.33, respectively). See Table 2.6 for correlation values.

2.7 Influence of personal factors on induced emotion
Personal and situational factors can significantly affect the emotion induced by music
in the listener (Thompson, Graham, & Russo, 2005; Dibben, 2004). In this section,
we will examine the degree of this influence for various factors.
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Arousal Valence Tension

Amazement −.15 −.40 .16
Solemnity −.01 .18 −.51
Tenderness .54 .27 .33
Nostalgia .37 .49 .52
Calmness .88 .21 −.09
Power −.66 −.21 −.19
Joyful activation −.37 −.81 .25
Tension −.49 .07 −.54
Sadness .05 .72 .07

Table 2.7: Factor loadings of the GEMS categories.

2.7.1 Influence of mood

Emotion induction by music might produce a different effect in the listener, depend-
ing on his mood (not necessarily so with perceived emotion). Cantor and Zillmann
(1973) found that induced musical emotion is influenced by prior emotion induction.
Schellenberg, Corrigall, Ladinig, and Huron (2012) found that listener’s induced emo-
tion is stronger when a listener experienced a contrasting emotion induction (through
another piece of music) before listening to music. In (Dibben, 2004), participants’
arousal was manipulated with physical exercise prior to listening to music. Their self-
reported induced emotion changed, while perceived emotion did not differ between
groups that did or did not exercise. Likewise, in (Zagrodski, 2013) no effect of previ-
ous mood was observed for recognizing perceived emotion from music.

We construct a linear mixed effects model with mood as fixed effect and musical
excerpts as random effects for each of the emotions.

Linear mixed effects model allows to model both fixed effects (our explanatory
variable) and random effects (the extra factor in our data that we want to account for).
The responses for the same song are dependent, which violates the independence as-
sumption necessary to use a linear model. Mixed model accounts for this by estimating
different random intercepts per song. The model has a form:

y = Xβ+Zθ+ε, (2.5)

where y is a vector of observations (in our case, strength of an emotional category), β
is a vector of fixed effects (mood), θ is a vector of random effects (ID of the song), ε
is a random error, and X and Z are the design matrices related to y, β and θ.

To find which of the emotions were influenced by mood, we perform likelihood
ratio test with ANOVA. This test compares two models: without the factor of interest
and with the factor. We find significant differences for the categories sadness, ten-
sion, tenderness and amazement (Table 2.8). The clearest tendency is observed for
sadness. The lower the participant’s mood, the more often he or she selects sadness as
an emotion induced by music. Participants who indicated that their mood was “very
bad” selected sadness almost twice as often as the participants whose mood was “very
good”. A similar trend is observed for tension — the lower the mood, the more ten-
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sion the music induces. An opposite trend is observed for amazement — the better the
person feels, the more amazement is induced by music.

Emotion Participant’s mood
χ2(4) p-value1 2 3 4 5

Amazement 14% 12% 15% 16% 18% 37.89 1.2 ·10−7

Solemnity 17% 21% 22% 22% 24% 0.90 0.92
Tenderness 23% 19% 20% 23% 18% 9.69 0.04
Nostalgia 25% 27% 26% 28% 26% 2.00 0.57
Calmness 56% 43% 40% 44% 44% 2.32 0.67
Power 20% 17% 19% 20% 21% 5.10 0.28
Joyful activation 23% 25% 29% 27% 29% 5.29 0.25
Tension 21% 15% 14% 15% 16% 10.01 0.04
Sadness 28% 17% 14% 15% 15% 34.11 7.1 ·10−7

Table 2.8: Mood and frequency of selection of emotional category.

2.7.2 Influence of genre
Again, we used a linear mixed model in the same way as in the previous section to
investigate the influence of genre on emotion selection. We found that all the emotions
except Joyful Activation are induced with different frequency depending on genre.
Figure 2.8 shows the boxplot of the distribution of emotion strength as computed by
Formula 2.2 per emotion per genre.

2.7.3 Influence of age and gender
We did not find any influence of gender on emotion induction. However, we observed
an effect of age for three emotional categories: for amazement (χ2(1) = 17.52, p =
2.84 ·10−5), for solemnity (χ2(1) = 4.55, p = 0.03) and the biggest effect for calmness
(χ2(1)= 42.75, p= 6.2 ·10−11). Table 2.9 shows the trends — for every emotion, where
an effect was observed, the emotion is induced less frequently as the age increases (the
data was discretized into 10 year lapses).

2.7.4 Influence of musical preference
Liking and disliking the music appears to be very important for induced emotions,
and is even sometimes considered to be a musical emotion per se. From table 2.10

Emotion < 20 20 to 30 30 to 40 40 to 50 50+

Amazement 16.7% 14.2% 11.3% 14.4% 10%
Solemnity 26% 19.6% 22.8% 20.5% 19.1%
Calmness 36.9% 31.6% 27.3% 26.7% 26.2%

Table 2.9: Emotion induction frequency with age.
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Figure 2.8: Boxplots of emotion distribution by genre.

Emotion When music is liked When music is disliked

Amazement 8% 2%
Solemnity 11% 6%
Tenderness 11% 5%
Nostalgia 12% 11%
Calmness 17% 12%
Power 10% 8%
Joyful activation 15% 8%
Tension 5% 27%
Sadness 6% 27%

Table 2.10: Category assignment by percentage of song listenings (n = 8358) depend-
ing on liking or disliking the music.
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we can see that selection of emotional category is strongly dependent on whether
participant liked or disliked the music, especially for such categories as amazement,
joyful activation, tension and sadness. It is important to understand whether we can
rely on the knowledge about the preferred genres to predict whether someone will
enjoy the music.

Genre Regular Listeners Non-Listeners
Liked songs Disliked songs Liked songs Disliked songs

Classical 60% * 4% * 48% * 12% *
Rock 40% * 24% * 30% * 35% *
Pop 39% 26% 30% 29%

Electronic 37% 25% 27% 30%

Table 2.11: Liking and disliking music by genre preference. Significant on a 5% level
on a Chi-Squared test, if marked with asterisk.

We asked the players to indicate their genre preferences before the game (see a list
of questions in Section 2.4.2). From Table 2.11 we see that in all cases people who
report frequently listening to genre X tend to like songs in genre X more and dislike
them less than those who do not prefer this musical genre. Though this difference
exists, it is not as big as might be expected, and for pop and electronic music the
differences between liking and disliking the music depending on genre preferences
were not even statistically significant on a Chi-Squared test.

2.7.5 Effect of liking the music on the response consistency
For more than half of the listening sessions, participants reported whether they liked
or disliked the music (the question was optional). There was a positive dependency
between the consistency of the ratings (as measured by intraclass correlation coeffi-
cients) and liking the music. When the disliked listening sessions were excluded, the
data showed more consistency (mean ICC (Intraclass Correlation) = 0.18 as compared
to ICC = 0.16, significant on a t-test with p-value < 0.01).

Figure 2.9 shows a correlation between liking the music and response consistency.
Such a correlation might mean that people can understand an emotion of the song
better when they like the song, or it might mean that people like the song more when
it is easier to understand its emotion.

2.8 Discussion
In this chapter we described a GWAP for music induced emotion annotation and an-
alyzed the data collected using this GWAP. We were aiming at improving automatic
music emotion recognition methods by creating a new sizeable and public dataset,
providing further testing to the GEMS model, and studying the extra-musical factors
that contribute to emotion induction.

The game that we presented is a serious game created for the purpose of data col-
lection, but in contrast with the other GWAPs, it does not make players compete to
guess the correct answer. Emotify rewards the players by giving them feedback on
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Figure 2.9: Scatterplot of song ICC vs. likes ratio. Pearson’s r = 0.26.

their own input and comparing their answers to other players’ input. Emotify uses
Facebook as a platform. We faced some limitations, however, when using the Face-
book application platform. The Emotify game tried to use invitations to involve new
players into the game, but the acceptance rate of the invitations was very low: of the
invitations sent by the players of Emotify, only 6% were accepted. Moreover, people
were reluctant to use the Facebook version of the game. After running the pilot of
the game on Facebook, we launched an independent website for hosting the game,
and both the Facebook version and the independent website were advertised together.
Having a choice, more than 90% of the players preferred to use the independent web-
site.

We modified the GEMS model because it was found that participants find some of
the categories confusing (J. K. Vuoskoski & Eerola, 2010; Torres-Eliard et al., 2011).
Two of the modified categories (amazement and solemnity, previously wonder and
transcendence) still resulted in a low agreement between participants (0.46 and 0.65
in terms of Cronbach’s alpha, interpreted as Unacceptable and Acceptable, respec-
tively), which might be caused by two issues. Firstly, low agreement might imply that
these categories are inherently more subjective and depend on situational, cultural and
other factors. Secondly, the feedback questionnaire showed that these two categories
are less understood (amazement and solemnity were considered unclear by one third
of the participants), which might be the second cause of low agreement. For the ma-
jority of the categories, such as tenderness, joyful activation, power, and calmness,
the inter-rater agreement is high, and these categories also are comprehensible enough
according to the feedback questionnaire.
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When conducting factor analysis on our data, we found three factors — Arousal,
Valence and Tension — similarly to (Wedin, 1969, 1972b; Nielzen & Cesarec, 1969).
The structure of the factors we found was not similar to the original GEMS study
by Zentner et al. (2008). We did not observe that tension and sadness jointly con-
tribute to any of the factors, and amazement and solemnity were not correlated with
the same factor with other emotions that contributed to factor Sublimity in (Zentner
et al., 2008). The reason may be that our experiment was conducted in a different lan-
guage, and the meaning of emotional words shifted after translation. Also, the music
genres differed from the original study.

We did not find any significant differences in inter-rater agreement across genres,
and therefore we conclude that GEMS is equally suitable for describing all the four
studied genres.

In this chapter we also studied factors external to music. We found that the most
important factor that should be taken into account when predicting induced emotion
is liking or disliking the music. However, for our particular selection of broad music
genres, the self-reported genre preferences failed to predict liking of the music accu-
rately. In our study we did not intend to control participants’ liking of the music using
their self-reported genre preferences, but this finding might be important for designing
further experiments. We also found that participants’ induced emotions were affected
by their mood (to a considerable extent) and age, but not by gender.

2.9 Conclusion

One of the open research questions that we addressed with this study was whether
music can express and induce a complex fine-grained range of emotions, or it is only
possible to find crude counterparts of verbally expressible emotions in music. On basis
of our study we conclude that there indeed is enough variety and expressive power in
music to convey and induce such emotions as tenderness, nostalgia or peacefulness
in such a way, that they can be distinguished by participants with sufficient inter-rater
agreement. We also concluded that the GEMS model can be successfully used by
participants from various linguistic backgrounds, though there obviously exists a lack
of understanding concerning categories wonder and transcendence. It is a direction
for future research to find out what should be done with them.

Apart from this modification, we would also leave for future work to research
how the GEMS model should be augmented with more emotional categories. Our
study suggests that some of the nuances of emotional experience might be absent
from the GEMS model (8% of our participants were not able to use GEMS to describe
their induced emotions). Our findings agree with (Coutinho & Scherer, 2012) that
feelings of boredom and interest must be added to the model, but also suggest that
more semantic categories are lacking from it. Such semantic groups as impetus (call to
action), humour and contentment were repeatedly named by the players of our game.

Another motivation for our study was collecting a dataset of music annotated with
induced musical emotion which could be used as a ground-truth for MER research.
The size of the dataset makes it possible to apply computational methods to explore
the mechanisms underlying music emotional expressiveness, and to use these methods
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for automatic music classification and retrieval. We will describe research on that in
the next chapter.

We hope that this work will contribute to solving the problem of finding the most
appropriate model of musical emotion. Though this problem is important both for
research on music psychology and music industry, currently it is far from being solved.





CHAPTER 3

Computational modeling of induced musical emotion

3.1 Introduction

As was demonstrated in the previous chapter, induced emotion is highly subjective
and depends on listener’s perception, which is influenced by musical taste, mood and
age of the listener. There is also a substantial agreement across the listeners, which is
based on the shared understanding of the relationship between musical audio (musical
cues) and emotion.

A recently proposed multi-level framework BRECVEMA, which we already men-
tioned in the previous chapter, explains emotion induction by music through a set of
eight psychological mechanisms (Juslin, 2013). The mechanisms that are related only
to musical audio (and not to a particular listener’s memories and associations) are
brain stem reflex (reaction to startle stimuli), rhythmic entrainment (locking up with
the rhythm of music), emotional contagion (mimicking the perceived emotion of mu-
sic) and musical expectancy (when a specific feature of the music violates, delays,
or confirms the listener’s expectations). The acoustic cues in music that trigger these
mechanisms are loudness (through the brain stem reflex), tempo and rhythm stability
(through the rhythmic entrainment), structure and repetition (through the musical ex-
pectancy), and all the numerous cues that influence perceived emotion (through the
contagion mechanism). The latter cues have been extensively studied.

Gabrielsson and Lindström (2011) reviewed more than 100 empirical studies on
a relationship between musical expressive mechanisms and perceived emotion, con-
ducted between the end of the 19th century and the present time, and found that the
most important cues are tempo, mode, loudness (dynamics), timbre, harmony (con-
sonance/dissonance, chords, melodic and harmonic intervals), melody, pitch (pitch
height and pitch range), rhythm and articulation.

The cues might interact, and the relationship between the cues and emotions might
not be linear. Whether this is so, was studied in (Juslin & Lindström, 2010; Ilie &
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Thompson, 2006; Eerola, Friberg, & Bresin, 2013). Juslin and Lindström (2010) ma-
nipulated eight cues (all of them are listed above in italics as the most important cues
for emotion) to create musical pieces. Listeners rated emotions expressed in these
pieces (basic emotions). A total of 77–92% of listeners’ ratings could be predicted
by a linear combination of cues, accounting for interactions only provided a small
(4–7%) improvement. Ilie and Thompson (2006) manipulated three cues and found
interactions between intensity and pitch height, and pitch height and tempo. Eerola et
al. (2013) manipulated six cues and found that most of the variance in ratings was ex-
plained by linear influence of the cues, and no interactions were found. These findings
have limited ecological validity, as they all were conducted on specially composed
pieces which are bound to be much simpler than real music.

In this chapter we investigate the problem of audio features for automatic music
emotion recognition and their adequacy. First, we conduct a perceptual experiment
to find a set of musical cues which can describe emotional categories in the GEMS
model through cognitive constructs. Then, we extract a comprehensive set of audio
features, using several open-source toolboxes for audio signal processing, speech pro-
cessing and MIR for feature extraction. We also develop new features that describe
the harmonic content of music (interval features and chord features). We extract low-
level spectral features related to timbre and energy with OpenSmile feature extration
tool, and a more musically motivated feature set, containing high-level features re-
lated to mode, rhythm, and harmony, with MIRToolbox, PsySound, SonicAnnotator
and Essentia. We compare the performance of extracted audio features and perceptual
features.

As induced emotion is a highly subjective phenomenon, the performance of the
model is confounded by the amount of agreement between listeners who have pro-
vided the ground-truth. The scenario when no other input (such as listener’s mood and
demographic details) from the listener is available is the most common application
scenario for MER. We show that a good performance can still be achieved for induced
emotion recognition with better high-level features, describing rhythmic and harmonic
content of the music.

3.2 Background
In this section we first review the findings from musicological studies on acoustic cues
important for emotion in music, then we review the audio features used for MER, and,
lastly, we review approaches to computational modeling of musical emotion and the
results achieved so far.

3.2.1 Musical structure and emotion
Gabrielsson and Juslin (2002) summarized the findings from 79 studies on the rela-
tionship between musical structure and expression. In Table 3.1 we list the emotions
that are represented in the GEMS model and the cues associated with them. We will
not cite the original studies, but we will indicate in parenthesis the number of studies in
which the relationship was found. The references to the original studies can be found
in (Gabrielsson & Juslin, 2002). Two of the emotions from the GEMS model are not
found in studies and are not represented in the table: amazement and nostalgia. The
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other emotions from the GEMS model appeared in the studies much less frequently
than the basic emotions or Valence–Arousal dimensions, and the list of cues might be
inconclusive.

In the Introduction we mentioned an adaptation of the Brunswick’s lens model by
Juslin (2000), which explains how emotion is decoded through a set of probabilistic
redundant cues. In the Table 3.1 we can see how one cue applies to many emotions
(e.g., slow tempo is associated with sadness, calmness, tenderness and solemnity), one
emotion is interpreted through a set of many cues, sometimes even contradictory (ac-
cording to different studies, solemnity can be associated with major or minor mode).
Contradictory cues might mean that either different combinations of cues can create
the same emotions, and across the combinations the cues can be contradictory, or,
simply and more plausibly, there was no agreement on the interpretation of a certain
emotion between the participants of different studies.

It must be noted that in most of the studies classical music or specially composed
music was used, and it is unknown to which extent these results can be generalized to
popular music.

3.2.2 Audio features for MER

Acoustic features extracted from the audio rarely have a straightforward counterpart
in musicology. Due to complexity of human auditory perception and music cognition,
and complexity of the audio signal itself, designing meaningful audio features requires
a lot of work. Separate areas of MIR research are chord recognition, onset detection,
tempo estimation, fundamental frequency detection, key detection and beat tracking,
each developing or modifying audio processing pipeline for their purposes. The per-
formance of MER methods depends on the progress in all of these areas. In Table 3.2
we list the main features that are used in MIR and explain their musical meaning. For
the in-detail explanation of feature extraction pipeline and description of more audio
features we refer to (Müller, 2015), (Y.-H. Yang & Chen, 2011a) and (Balen, 2016).

In this chapter we propose new interval and chord features, which is why we will
review other chord and interval features below. Then, we will review the studies on
the relationship between musical emotion and audio features.

Common mid-level audio features are chords. Chords are able to convey emo-
tion even without musical context (Sollberge, Rebe, & Eckstein, 2003; Lahdelma &
Eerola, 2016). Various chord-based statistical measures have been employed for dif-
ferent MIR tasks, such as music similarity or genre detection. Mckay and Fujinaga
(2004) successfully applied chord and melody based features to genre recognition of
symbolically represented music. Cheng, Yang, Lin, Liao, and Chen (2008) used chord
features (longest common chord sequence and histogram statistics on chords) to find
similar songs and to estimate their emotion (in terms of valence) based on chord simi-
larity. Schuller, Dorfner, and Rigoll (2010) used chord statistics for MER. In Schuller’s
histograms, the duration of chords was not taken into account, which we found impor-
tant and account for in this paper. B. Yang and Lugger (2010) improved the accuracy
of emotion detection from speech using interval-based features. These features were
calculated using circular autocorrelation of the pitch histogram (calculated from the
estimated pitch contour of an utterance) on the logarithmic semitone scale, and occur-
rence of different two-pitch intervals was measured. The reason why interval features
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Emotion Musical cues

Solemnity Slow tempo (7), major mode (1), minor mode (1), consonance
(4), high loudness (1), moderate or high loudness (2), few
loudness changes (1), low pitch (3), narrow melodic range (1),
regular rhythm (2), firm rhythm (1), legato articulation (2),
sharp envelope (1), small timing variation (1)

Tenderness slow tempo (4), moderate tempo (1), soft loudness (5), rising
intonation (1), little loudness variation (1), legato articulation
(3), round envelope (2), soft timbre (2), large timing variation
(2), softened contrasts between long and short notes (2)

Calmness slow tempo (4), consonance (3), soft loudness (3), high pitch
(1), low pitch (1), narrow pitch range (2), regular rhythm (1),
flowing rhythm (1), legato articulation (1), small vibrato extent
(2), low formal complexity (1)

Potency fast tempo (1), high loudness (1), high pitch (1), rising pitch
contour (1), many harmonics (1), round envelope (1)

Joy fast tempo (25), moderate tempo variation (2), major mode
(8), consonance (4), high loudness (12), small loudness varia-
tion (3), high pitch (5), large pitch range (3), ascending melody
(2), regular rhythm (2), varied rhythm (1), fluent rhythm (2),
staccato articulation (8), large articulation variation (3), bright
timbre (2), sharp envelope (3), moderate timing variation (2),
sharpened contrasts between long and short notes (2), low for-
mal complexity and average dynamism (2)

Tension dissonance (2), high sound level (2), ascending melody (2),
increased note density (2), harmonic complexity (1), rhythmic
complexity (2), lack of melody (1), various formal properties
(2)

Sadness slow tempo (24), minor mode (8), dissonance (4), soft loud-
ness (12), small loudness variation (1), moderate loudness
variation (1), low pitch (8), narrow pitch range (2), descend-
ing melody (2), firm rhythm (2), legato (7), little articulation
variation (3), soft timbre (4), round envelope (4), large timing
variation (2), softened contrasts between long and short notes
(2), slow vibrato (2), high formal complexity combined with
low dynamism (2)

Table 3.1: Musical structure and emotion, from (Gabrielsson & Juslin, 2002).
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worked for speech is probably related to consonance/dissonance rather than to har-
mony, as in the case of music.

Intervals (both melodic and harmonic) were shown to be important for musi-
cal emotion in musicological studies (Gabrielsson & Lindström, 2011). Costa, Fine,
and Bitti (2004) studied melodic intervals and found that activity was expressed by
melodies with a greater occurrence of minor seconds, tritones, and intervals larger
than the octave; potency (vigour, power) was associated with more frequent occur-
rences of unisons and octaves; pleasant melodies had greater occurrence of perfect
fourths and minor sevenths and no or less tritones.

Though a wealth of audio features is available, most of them are far away from
actually explaining the cognitive mechanisms of music processing, which are essen-
tial for decoding emotion (Wiggins, 2009; Aucouturier & Bigand, 2012). Currently,
low-level spectral audio features are a staple of MIR. Song, Dixon, and Pearce (2012)
evaluated 55 audio features related to dynamics, rhythm, spectrum and harmony, and
found that low level spectral features give the best performance in a four class clas-
sification task. The most plausible interpretation, in our opinion, is that high level
features are not up to the task yet. Eerola (2011) showed that models built using ex-
tracted audio features are not robust across genre (when tested on a different genre
they perform much worse). This might mean that current audio features are very sen-
sitive to particularities of sound production, or it might mean that music in different
genres expresses emotions in a different way. Trochidis, Delbe, and Bigand (2011)
found that for contemporary western classical music valence was best explained by
pulse clarity, articulation and brightness, and arousal was best explained by period-
icity amplitude of flatness and entropy of the magnitude of the highest peak in the
chromagram. Evaluating these sort of findings is always a challenging task, because
often particular transformations of the spectrum used as audio features do not have
any perceptual counterpart and hence it is difficult to find a meaningful motivation
why these particular transformations should work well or not. These concerns about
the evaluation of MIR methods are extensively raised by Bob Sturm (Sturm, 2013,
2014).

3.2.3 MER approaches

Automatic MER can be formulated both as a regression and a classification problem,
depending on the underlying emotional model, making it possible to apply almost any
machine learning algorithm to MER. There are also different ways to represent the
ambiguity (the subjectiveness of human emotional experience), such as multi-label
classification or representing emotion of a song as a Gaussian distribution (J.-C. Wang,
Yang, Wang, & Jeng, 2015). Below we will describe some of the approaches and
report the accuracy achieved using these approaches. It must be noted that different
classification, regression, multi-label classification approaches use different evaluation
metrics, which makes it difficult to compare the achieved accuracy. And in any case
we would like to stress that it is anyway inappropriate to compare the performance on
different datasets, because of different amount of inherent ambiguity in these datasets
and different emotional models used (and number of classes to distinguish). In order
to compare different feature sets and different learning algorithms, a benchmark is
necessary. We will develop and describe a benchmark for MER in Chapter 4.
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Musical concept Features

Timbre MFCCs, Δ MFCCs, ΔΔ MFCCs, spectral features (centroid,
shape, spread, skewness, kurtosis, contrast, flatness), tristim-
ulus, brightness, 95% rolloff, zero crossing rate, octave-based
spectral contrast, Daubechies wavelets coefficient histogram
(DWCH), auditory modulation features, inharmonicity, rough-
ness, dissonance, odd to even harmonic ratio

Loudness RMS energy, specific loudness on Bark critical bands
Harmony chromagram, chromagram peak, key, mode, key clarity, har-

monic change, chords, HCDF
Pitch height spectral centroid, low energy
Rhythm tempo (bpm), beat histograms, rhythm regularity (autocorrela-

tion on onset detection curve), rhythm strength, onset rate
Articulation attack slope, attack time

Table 3.2: Acoustic features and musical concepts.

The first research on automatic music emotion recognition dates back to year 2003
(Li & Ogihara, 2003), and the problem was formulated as a 13-class multi-label classi-
fication. In 2008, Y.-H. Yang et al. (2008) first used Valence–Arousal model in a MER
system. SVR was trained on low-level acoustic features (spectral contrast, DWCH and
other low-level features from Marsyas and PsySound), achieving performance of 0.76
for arousal and 0.53 for valence (in terms of Pearson’s r here and further). Laurier, Lar-
tillot, Eerola, and Toiviainen (2009) modeled five dimensions (basic emotions) with a
set of timbral, rhythmic and tonal features, using SVR. The performance varied from
0.59 to 0.69. In (Guan, Chen, & Yang, 2012), pleasure, arousal and dominance were
modeled with AdaBoost.RM using features extracted from audio, MIDI and lyrics. A
feature set consisting only of audio features performed worse than multimodal features
(audio + MIDI + lyrics) (0.4 for valence, 0.72 for arousal and 0.62 for dominance).
J. C. Wang, Lee, Chin, Chen, and Hsieh (2015) used a hierarchical Dirichlet process
mixture model, whose components can be shared between models of different emo-
tions, for multi-label classification. In (Xue, Xue, & Su, 2015), two modalities were
combined (lyrics and audio) and fused with Hough forest to create a deep network,
achieving 60% classification accuracy on a four class classification task. In (Hu &
Downie, 2010b) it was shown that lyrics outperformed audio features on almost all of
the 18 mood categories (except calmness). However, it is not clear whether the reason
for a good performance of lyrics features is that lyrics are more important than audio
(and listeners base their emotional judgements mostly on lyrics) or that audio features
were just not up to the task. This is possible, because only low-level spectral audio
features (MFCC, spectral flux and roll-off, etc.) were used. However, this still proves
that state-of-the-art lyrics features are better than audio features. And whatever the
precedence between lyrics and sound, lyrics undoubtedly are responsible for a large
part of emotional meaning in songs.

In most of the MER studies it was noted that modeling the Valence dimension (or
emotions that are related to valence, such as happiness or sadness) is always more dif-
ficult (Y.-H. Yang et al., 2008; Laurier, Lartillot, et al., 2009; Guan et al., 2012). This
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might happen because energy (Arousal) can generally be successfully predicted from
loudness and roughness of the timbre. These features are easier to extract. Valence,
on the other hand, is related to harmonic and melodic content and expectation, and
it is impossible to predict valence-related emotions using only low-level spectral fea-
tures. In this chapter we will work towards improving the situation by developing new
interval-based features and chord statistics to strengthen the harmony-related features.

3.3 Data preprocessing

The dataset was described in detail in Chapter 2. We clean the data and remove some
annotations and some songs. We are not interested in modelling irritation and boredom
from listening to non-preferred music, so we remove the ratings of the listeners who
reported that they disliked the music from the annotations. We also remove the songs
which were most confusing for the listeners, and they failed to reach a certain level
of agreement on them (33 songs). To do that we compute Fleiss’s kappa, which is
a statistical measure designed to estimate agreement, when the answers are binary
or categorical. For each song, a number of people (players of the game) rate some
items (emotions) on a binary scale (emotion is either present or not). Fleiss’s kappa is
calculated as follows:

κ =
P̄− P̄e

1− P̄e
, (3.1)

where 1− P̄e gives the degree of agreement that is attainable above chance, P̄− P̄e
gives the actual degree of agreement above chance. If the agreement is at the chance
level, then κ � 0. P̄ is the mean of all Pi, which indicate the degree of agreement
per subject. In our case, subjects are emotional categories and there are nine subjects.
Agreement per subject is calculated as follows:

Pi =
1

n(n−1)

k�

j=1

ni j(ni js−1), (3.2)

where n is the total number of ratings per subject, k is the number of categories (in
our case, there are two categories). The categories are indexed j = 1, ...k. The subjects
(emotions) are indexed i = 1, ...N. Therefore, ni j is the number of raters who assigned
the i-th emotion to the j-th category (categories are ”emotion selected” and ”emotion
is not selected”). P̄e is calculated as follows:

P̄e =

k�

j=1

(
1

Nn

N�

i=1

ni j)2. (3.3)

We compute kappa on all the annotations for every musical excerpt, and discard the
songs with negative kappa (this indicates that the answers have chance-level consis-
tency).

We retain the remaining 367 songs for analysis (44 100 Hz, 128 kbps, converted to
mono). Each excerpt is 1 minute long, except for 4 classical pieces which were shorter
than 1 minute.
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3.4 Perceptual acoustic cues and GEMS emotions

In this section we will describe an experiment we conducted to explain the GEMS
categories through a set of musically motivated cues. We selected part of the dataset
(60 pieces out of 367) for this purpose, consisting of 15 pieces from each genre. We
chose pieces from the subset A (see section 2.4.1), because these pieces have more
emotion annotations.

3.4.1 Procedure

Three musicians (26–61 years, each with over 10 years of formal musical training)
annotated 60 pieces from the dataset with 10 cues, on a scale from 1 to 10. The list
of cues was adapted from the study of Wedin (1972b): tempo (slow—fast), articu-
lation (staccato—legato), mode (minor—major), intensity (pp—ff), tonalness (atonal
—tonal), pitch (bass—treble), melody (unmelodious—melodious), rhythmic clarity
(vague—firm), harmonic complexity (simple—complex). We added rhythmic com-
plexity (simple—complex) to this list, and eliminated style (date of composition) and
type (serious—popular) from it. Later, the harmonic complexity cue was discarded
because of the lack of agreement among annotators.

Cue Amz Slm Tnd Nst Clm Pwr Jfl Tns Sdn

Tempo .50 −.44 −.48 −.47 −.64 .39 .76 −.45
Articulation −.37 .39 .56 −.57 .48 −.35 −.70 −.36 .51
Rhythmic compl. *.27 *.27 −.38
Mode −.45 .30 *−.27 .24 −.36 −.23
Intensity *.27 −.48 −.30 −.50 .51 .41 −.24
Tonalness *.29 *.28 −.47
Pitch .44 *.27 .36 −.47 −.44
Melody .54 .50 −.43 −.66 *.27
Rhythmic clarity −.34 .31

Table 3.3: Correlations between musicological cues and emotional categories. Amz —
amazement, Slm — solemnity, Tnd — tenderness, Nst — nostalgia, Clm — calmness,
Pwr — power, Jfl — joyful activation, Tns — tension, Sdn — sadness.

3.4.2 Analysis

Interactions between cues

We tested for interactions between perceptual cues using linear models with added
interactions. The presence of a significant interaction indicates that the effect of one
predictor variable on the response variable is different at different values of the other
predictor variable. Interactions have implications for the way that the categories should
be modeled using the cues.

We found few interactions, mostly with mode. Mode interacted with tempo (for
joyful activation and calmness), intensity (for joyful activation), pitch height (for ten-
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derness) and rhythmic clarity (for power and nostalgia). Also, there was an interaction
between intensity and tonalness (for joyful activation and nostalgia).

Explaining categories through cues

Table 3.3 shows the correlations (Spearman’s ρ) between acoustic cues and GEMS
emotional categories. We used a non-parametric test, because distribution of emotional
categories is positively skewed (emotion was more often not present than present). All
the correlations are significant with p-value < 0.01, except for the ones marked with
asterisk, which are significant with p-value < 0.05. The values that are indicated in
grey failed to reach statistical significance, but are still listed, because they conform
with the trends previously found in the literature and are likely to reach statistical
significance on a bigger sample.

The most important cues that influence almost every emotion in GEMS, are tempo,
articulation, intensity (loudness) and mode. For each of the emotions, the most promi-
nent cues are listed below, the new findings are highlighted in bold font, the finding
that contradicts previous ones in italic font (there is only one such finding):

• Amazement — fast tempo and staccato articulation.

• Solemnity — slow tempo, legato articulation, minor mode, flowing rhythm.

• Tenderness — slow tempo, legato articulation, major mode, soft loudness, high
pitch, melodious.

• Nostalgia — slow tempo, staccato articulation, soft loudness, tonal, high
pitch, melodious.

• Calmness — slow tempo, legato articulation, soft intensity, high pitch.

• Power — fast tempo, staccato articulation, minor mode, high intensity, low
pitch, unmelodious.

• Joyful activation — fast tempo, staccato articulation, high rhythmic complex-
ity, major mode, high intensity, high rhythmic clarity.

• Tension — staccato articulation, minor mode, atonal, low pitch, unmelodious.

• Sadness — slow tempo, legato articulation, low rhythmic complexity, minor
mode, soft loudness, melodious.

As we described in the previous chapter, several GEMS categories were strongly
correlated (tenderness and nostalgia: r = 0.51, tenderness and calmness: r = 0.53,
power and joyful activation: r = 0.41). All of these have, however, musical character-
istics that allow to differentiate them.

Both nostalgia and tenderness correlate with slow tempo, but tenderness is also
correlated with major mode, and legato articulation (as opposed to staccato for nos-
talgia). Calmness is characterized by slow tempo, legato articulation and smaller in-
tensity, similarly to tenderness. But tenderness has a correlation with melodiousness
and major mode as well. Both power and joyful activation are correlated with fast
tempo, and intensity, but power is correlated with minor mode and joyful activation
with major mode.
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3.5 Audio feature extraction
In the previous section we examined the perceptual features annotated by human ex-
perts. In this section we will move to automatically extracted features. First, we will
extract audio features using a number of different toolboxes (some of the features are
implemented in multiple toolboxes and we will not extract them several times). Then,
we will develop some new features.

3.5.1 Feature sets
We extract a comprehensive set of both high-level and low-level audio features. Be-
fore extracting any harmony-related features (such as mode, key, key clarity, chords),
we perform harmonic-percussive source separation using the method of Fitzgerald
(Fitzgerald, 2010) and then extract features from the harmonic part of the spectrum.
The method uses median filtering across successive frames to suppress percussive
components (and uses median filtering across frequency bins to suppress harmonic
components).

1. OpenSmile1: 260 low-level spectral features related to timbre and energy (mean
and standard deviation of 65 low-level acoustic descriptors, and their first-order
derivatives) (Eyben, Weninger, Gross, & Schuller, 2013). OpenSmile combines
features from Speech Processing and MIR and has shown good performance
on cross-domain emotion recognition (Weninger, Eyben, Schuller, Mortillaro,
& Scherer, 2013). The 260 feature set that we extract consists of features se-
lected for their good performance on music emotion recognition in the Media-
Eval 2014 Emotion in Music benchmark. Features developed to describe voice
were computed using 60 ms frames and Gaussian windows (σ = 0.4). Other
features were calculated using 25 ms frames and Hamming windows. In both
cases, overlapping windows were used with a step size of 10 ms.

2. MIRToolbox2: 43 features from MIRToolbox (Lartillot & Toiviainen, 2007)
(low level spectral features and high-level features: HCDF, mode, inharmonic-
ity, key clarity, tempo). MIRToolbox was conceived as a tool for investigating
the relationship between emotions and features in music. Low level features
are extracted with 50 ms frames and Hamming window, and high-level features
related to harmony are extracted with 200 ms frames.

3. PsySound3: 4 features related to loudness from PsySound (using the loudness
model of Chalupper and Fastl), and perceptual roughness.

4. Essentia4: Essentia’s functionality and audio features are similar to the ones
from the MIRToolbox. We only extract onset rate with Essentia.

1opensmile.sourceforge.net
2jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
3psysound.wikidot.com
4essentia.upf.edu
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Figure 3.1: Intervals and their inversions.

3.5.2 Harmonic features
In this section we describe the statistics that we suggest to compute on the intervals
and chords in each song. Before extracting these features, we also apply a harmonic-
percussive source separation step, as described in the previous section.

Interval Features

We segment the audio, using local peaks in the harmonic change detection function
(HCDF) (Harte & Sandler, 2006). HCDF describes tonal centroid fluctuations. The
segments that we obtain are mostly smaller than 1 second and reflect single notes,
chords or intervals. From these segments we compute the spectrum between 100 Hz
and 6400 Hz (corresponding to the integer number of octaves, in order to avoid the
range of the spectrum covering particular pitches more than others). From this spec-
trum we compute chromagrams. Then, from the 12 values (one octave) that we obtain,
we select the two peaks with the highest energy and compute the interval between
them. For each type of interval, we compute its combined duration, weighted by its
loudness (expressed by energy of the bins). Because the chromagrams only span one
octave, it is impossible to distinguish between, for instance, a fifth spanning A2–E3
and a fourth spanning E3–A3. Therefore we combine intervals and their inversions.
Figure 3.1 illustrates the concept (each bar corresponds to the musical representation
of a feature that we obtain). As there are 6 distinct intervals with inversions, we obtain
6 features.

Figure 3.2: Feature extraction pipeline for interval features.

Figure 3.2 shows the feature extraction pipeline. We expect that augmented fourths
and fifths (tritone) could reflect tension, and perfect fourths and fifths should have
opposite meaning. The proportion of minor thirds and major sixths, as opposed to
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Figure 3.3: A histogram of chonord distribution for Emotify dataset.

proportion of major thirds and minor sixths, could reflect the modality. The interval-
inversion pairs containing seconds are, hypothetically, rather unrestful.

Chord Features

To extract chord statistics, we used 2 chord extraction tools, HPA5 (Harmonic Progres-
sion Analyzer) and Chordino6 plugins for Sonic Annotator7. HPA provides 8 types of
chords: major, minor, seventh, major and minor seventh, diminished, sixth and aug-
mented. Chordino, in addition to these eight types, also provides minor sixth and slash
chords (chords for which bass note is different from the tonic, and might as well not
belong to the chord). The chords are annotated with their onsets and offsets.

After comparison we discarded the chords from HPA, because the chords from
Chordino could explain our data better. We computed the proportion of each type of
chord in each song, obtaining nine new features. The slash chords (the chords where
the base note is not the root of the chord, and can sometimes belong to the triad and
sometimes not) were merged with their base chord (e.g., Am/E chord is counted as
a minor chord). The distribution of chords was disparate, with major chords being in
majority (see Figure 3.3).

Weighting the chords by their duration was an important step, which improved the
performance of chord histograms and has not been suggested before.

5patterns.enm.bris.ac.uk/hpa-software-package
6isophonics.net/nnls-chroma
7isophonics.net/SonicAnnotator
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3.6 Evaluation
In this section we evaluate the perceptual features and the automatically extracted
features on emotion recognition. We have several goals. Firstly, modeling induced
emotion without taking into account any personal information about the listeners.
Secondly, comparing what can be achieved with automatically extracted features and
perceptual features.

3.6.1 Learning Algorithm
The focus of this chapter is not on choosing an algorithm for our regression task,
but on evaluating audio features. We tried the state-of-the-art algorithms which have
already shown good performance on MER: Support Vector Regression (SVR) and
Gaussian Processes Regression (GPR). GPR and SVR had comparable performance
and we chose SVR.

SVR brings training examples into higher-dimensional space and maps them so
that distinct examples are divided by a clear gap that is as wide as possible. SVR is
also called a large-margin classifier (we use the regression version). We trained SVR
with three different kernels: linear, radial basis function and polynomial kernels. The
SVR with linear kernel was performing much worse than the kernels that can learn
non-linear functions. In the following evaluation we will use the LIBSVM implemen-
tation8. The best performance was achieved using the RBF kernel, which is defined as
follows:

k(xi, x j) = exp
�
−γ
���xi− x j

���2
�
, (3.4)

where γ is a parameter given to SVR. All the parameters, C (error cost), epsilon (slack
of the loss function) and γ, are optimized with grid-search on the training data for
each feature set (but not for each emotion). To select an optimal set of features, we use
recursive feature elimination (RFE). RFE assigns weights to features based on output
from a model, and removes attributes until performance is no longer improved.

3.6.2 Evaluation
We evaluate the performances of the feature sets by incrementally adding more high
level features. We start with low-level OpenSmile features, then add more low-level
and some high-level features from MIRToolbox, PsySound and Essentia, then the
chord features and interval features that we designed. We evaluate using 10-fold cross-
validation (in a proportion 75% training set and 25% test set), splitting the dataset by
artist (there are 140 distinct artists per 400 songs). If a song from artist A appears
in the training set, there will be no songs from this artist in the test set. Splitting by
artist is particularly important for features from openSMILE, which tend to be able to
discriminate timbral differences very well and overfit to the dataset. Table 3.4 shows
evaluation results. With each addition of more features the performance is a little bit
improved. The accuracy of the models differs greatly per category, while all the feature
sets demonstrate the same pattern of success and failure (for instance, perform badly

8csie.ntu.edu.tw/˜cjlin/libsvm
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Feature set OpenSmile OS, MT, PS, E OS, MT, PS, E, HF

Emotion r RMSE r RMSE r RMSE

Amazement .21± .01 .10± .01 .28± .01 .10± .01 .32± .00 .09± .00
Solemnity .43± .01 .14± .01 .44± .01 .14± .01 .44± .01 .13± .01
Tenderness .52± .01 .15± .02 .47± .01 .15± .01 .51± .01 .15± .01
Nostalgia .46± .01 .17± .01 .44± .01 .16± .01 .52± .01 .15± .00
Calmness .51± .01 .20± .01 .54± .01 .19± .01 .58± .01 .18± .01
Power .53± .01 .16± .01 .55± .01 .17± .01 .56± .01 .16± .01
Joyful
activation .56± .01 .19± .01 .62± .01 .20± .01 .60± .01 .19± .01

Tension .52± .01 .16± .01 .48± .01 .17± .01 .55± .01 .15± .01
Sadness .28± .02 .16± .01 .31± .02 .16± .01 .43± .01 .14± .01

Table 3.4: Evaluation of 3 feature sets on the data. Pearson’s r and RMSE with their
standard deviations (across cross-validation rounds) are shown. OS — OpenSmile,
MT — MIRToolbox, PS — PsySound, E — Essentia, HF — harmonic features.

on amazement and well on joyful activation). This reflects the fact that these two cat-
egories are very different in their consistency, as we showed in Chapter 2. Figure 3.4
illustrates the performance of the systems (r) for each of the categories along with
Cronbach’s alpha (which measures agreement), and shows that the performance met-
ric and consistency metric are highly correlated. The low agreement between listeners
results in conflicting cues, which limit model performance.

In table 3.4 we observe a counter-intuitive trend — the emotional categories that
have better performance according to the r metric (larger r), such as joyful activation
or power, have worse performance in terms of the Root Mean Squared Error (RMSE)
metric (larger RMSE). This trend can be explained by the particular property of the
ground truth. The range of values for each of the emotional categories is in theory
between 0 and 1, but in practice it is different per emotional category. For instance,
for joyful activation the range is indeed between 0 and 1, but for amazement it is only
between 0 and 0.52. The players of Emotify game could unanimously agree on the
presence of joyful activation for some songs, but it never happened for amazement.
Different emotions have different inherent ambiguity and resulted in different consis-
tency of the annotations. The emotional categories with better consistency could be
predicted with more accuracy (higher r), but they also have wider range of values (and
therefore higher RMSE). Because of these complications, r is generally a more accu-
rate metric for this dataset, but for the sake of completeness we display both of them
in the table. We only show correlation coefficient on the Figures 3.5 and 3.4.

In general, the accuracy of our system is lower than that achieved for perceived
emotion by others (Y.-H. Yang et al., 2008; Laurier, Lartillot, et al., 2009; Guan et al.,
2012). This might be caused by the fact that all the categories contain both arousal and
valence components (as we have seen in factor analysis in previous chapter), and also
induced emotion annotations are less consistent. In (Laurier, Lartillot, et al., 2009),
tenderness was predicted with r = 0.67, as compared to r = 0.52 in our case. For
power and joyful activation, the predictions from the best systems demonstrated 0.56
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Figure 3.4: Comparison of systems’ performance (r), and Cronbach’s alpha per cate-
gory.
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and 0.62 correlation with the ground truth, while in (Guan et al., 2012; Y.-H. Yang et
al., 2008) it was 0.72 and 0.76 for arousal.

The performance of all the three feature sets is comparable, though the system with
most high-level features performs slightly better in most of the categories. Adding
harmonic features improves average performance from 0.45 to 0.50, and performance
of the best feature set decreases to 0.35 when answers from people who disliked the
music are not discarded. As we were interested in evaluating the new features, here we
show a list of features that were considered important by RFE. The 10 most important
features are displayed for each emotion, the new features are highlighted in bold font:

• Amazement — spectral centroid and brightness, loudness, 95% rolloff, first
MFCC, zerocross, entropy, major chords, major seconds and inversions.

• Solemnity — spectral features (centroid, brightness, skewness, spread), flatness,
95% rolloff, first MFCC, loudness, hcdf, major chords.

• Tenderness — spectral features (centroid, brightness, kurtosis, spread, skew-
ness, flux), 95% rolloff, hcdf, major chords, minor chords.

• Nostalgia — RMS, spectral features (centroid, spread, skewness, flux), first
MFCC, zerocross, 95% rolloff, major chords, HCDF.

• Calmness — RMS (and standard deviation), spectral features (brightness, skew-
ness, spread), entropy, 95% rolloff, major chords, HCDF, minor seconds and
inversions.

• Power — spectral features (centroid, skewness, brightness, kurtosis), 95%
rolloff, RMS, roughness, loudness, fourths and inversions, HCDF.

• Joyful activation — spectral features (spread, skewness, centroid, brightness,
kurtosis), loudness, onset rate, HCDF, seventh chords, 95% rolloff.

• Tension — spectral features (centroid, brightness, kurtosis, spread), 95% rolloff,
first MFCC, key clarity, major chords, minor chords, entropy.

• Sadness — spectral features (centroid, spread, kurtosis, skewness), flatness, on-
set rate, minor chords, loudness, minor seconds and inversions, HCDF.

Low level spectral features perform very well and are selected as very important.
High level features mode and tempo did not appear on the list for any emotion, though
the other (but relying on more low-level computations) features related to mode and
tempo are there: minor and major chords, onset ratio.

3.6.3 Perceptual cues and computationally extracted features
As we saw in the previous section, the most important audio features (as selected
by RFE) are low level spectral features, describing the timbre. We do not yet know
whether this is so because in popular music timbral qualities are the most important,
or because high-level feature extraction does not perform well enough yet. To find out,
in this section we will compare the performance of the audio features with the perfor-
mance of perceptual cues, manually annotated by musicians. None of the perceptual
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Figure 3.5: Comparison of performance of audio features and perceptual manually
annotated cues, and Cronbach’s alpha per category.
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cues describes the timbre. We use SVR as described in the previous section on a subset
of 60 songs (subset A) with 10-fold cross-validation. Table 3.5 shows the results, and
figure 3.5 visualizes our main metric (correlation coefficient) along with Cronbach’s
alpha.

Feature set OS, MT, PS, E, HF Perceptual cues

Emotion r RMSE r RMSE

Amazement .33± .01 .08± .01 .37± .01 .08± .01
Solemnity .51± .00 .09± .02 .61± .01 .10± .01
Tenderness .54± .02 .12± .02 .76± .02 .11± .02
Nostalgia .55± .02 .13± .01 .62± .02 .13± .02
Calmness .47± .02 .18± .03 .64± .02 .15± .02
Power .45± .03 .16± .03 .77± .02 .13± .02
Joyful activation .63± .02 .19± .02 .84± .02 .14± .02
Tension .58± .02 .13± .04 .63± .02 .12± .03
Sadness .48± .01 .12± .01 .57± .01 .16± .01

Table 3.5: Evaluation of 2 feature sets on the data. Pearson’s r and RMSE with their
standard deviations (across cross-validation rounds) are shown.

From this evaluation we see that the perceptual cues can predict the emotional
categories much better than audio features. On average r = 0.65 for perceptual cues,
and r = 0.50 for audio features. It is likely that high-level feature extraction is too noisy
and inaccurate as of yet, and this is why the low-level features are still demonstrating
better performance.

3.7 Conclusion
In this chapter we analyzed the performance of different audio features on the pre-
diction of induced musical emotion. We extract as wide variety of audio features as
possible, and suggest new features that describe the harmonic content of the music.
However, even with this very comprehensive feature set, we could not reach the per-
formance that could be reached with only 9 attributes manually annotated by musi-
cians. These attributes performed very well, despite being identified to be relevant for
classical music, and applied to mostly popular (rock, pop and electronic) music.

The advancement of MER methods depends on the advancement of all the other ar-
eas of MER, such as source separation, chord recognition, onset detection, beat track-
ing, audio-to-score transcription. Given that the ground truth is consistent enough, we
predict that the ‘glass ceiling’ has not been reached for music emotion recognition
yet. However, predicting complex concepts, such as rhythmic complexity, tonalness
or melodiousness, from acoustic signal, is utterly non-trivial and will require models
of human cognition (Wiggins, 2009).

In this chapter we analyzed which musicological concepts are important for in-
duced emotion. These findings could be used as a guideline for future feature devel-
opment.
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CHAPTER 4

Emotion in Music benchmark at MediaEval Evaluation
Campaign

This chapter contains a description of the benchmark design and an analysis of the out-
comes of the benchmark for Music Emotion Variation Detection (MEVD) algorithms
that was jointly organized by Mohammad Soleymani, Yi-Hsuan Yang and myself in
the years 2013–2015. The winning algorithms and feature sets over the years are an-
alyzed, and the design, evaluation metrics and data that we used are described. We
also release the largest available dataset of continuous annotations of music with emo-
tion, and suggest some transformation and data cleaning procedures which improve
the quality of these data.

4.1 Introduction

In the last decade, many new MER methods have been proposed (Y.-H. Yang & Chen,
2012). However, it is difficult to compare their performance because methodological
differences in data representation result in a choice of different evaluation metrics.
Figure 4.1 shows 14 different data annotation and representation choices in a form of
a labyrinth (each choice is a way to go through the labyrinth). In addition to these
choices, a wide variety of categorical and dimensional models are used, such as basic
emotions (Laurier, Lartillot, et al., 2009), valence and arousal model (Y.-H. Yang et
al., 2008; Eerola, 2014; Barthet, Fazekas, & Sandler, 2012), GEMS (J. K. Vuoskoski
& Eerola, 2011; Aljanaki, Wiering, & Veltkamp, 2014), or custom mood clusters (Hu
et al., 2008; Schubert, 2003). Despite differences in data representation, most of the
methods are essentially solving the same problem of mapping audio features (or lyrics
and metadata-based features) to the emotional annotations. A specific learning algo-
rithm cannot always be adapted to other representations (though many algorithms,
such as SVM or different types of neural networks, are versatile), but audio features



68 4.1. Introduction

are most certainly transferable. A benchmark can therefore enable a comparison of
different methods and feature sets, by fixing the data representation choice and releas-
ing a dataset.

Figure 4.1: A labyrinth of data representation choices for a MER algorithm. The
choices that we made for the benchmark are connected with a line.

Another problem of MER is that due to audio copyright restrictions, the datasets
used in various studies are seldom made public and reused in other studies. Anno-
tations are often obtained by crawling the tags from social music websites, such as
last.fm or allmusic.com. In this case, the audio is usually copyrighted and cannot be
redistributed by the researchers. The music that is distributed for free under a license
such as Creative Commons, usually is less well-known and has fewer tags, and there-
fore needs to be annotated. Annotation is a huge burden, because with such a subjec-
tive task many annotations are needed for every item ro bring out the consensus.

Therefore, a benchmark for MER is needed that would:

1. Fix a data representation choice, an emotional model and an evaluation metric.

2. Release a public dataset and keep a separate test set for evaluation. Some of
the benchmarks do not release any data, leaving it to the participants to find
the training data. This approach would not work well for MER, because the
internal subjectivity in the data can vary a lot across the different datasets, and
could compromise an otherwise worthwhile approach.

3. Design the evaluation procedure that would explain the meaningful differences
between approaches.

In our benchmark we fixed the data representation to continuous emotion anno-
tation. A fundamental property of music is that it unfolds over time. An emotion ex-
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pressed in the song may also change over time, though it is always possible to re-
duce this variety to a single value. The online music websites, such as moodfuse.com,
musicovery.com, allmusic.com, usually represent songs in a mood space by a single
label, which is always an approximation of the emotional content of the song. In the
design of the benchmark we recognize the time-dependent nature of music by setting
out to predict the emotion of the music dynamically (per-second), i.e., the main pur-
pose of the benchmark is to compare music emotion variation detection algorithms.

We also collected and released new data every year. The MediaEval Database for
Emotional Analysis in Music1 (DEAM) is the combination of the datasets developed
in three years (with data transformation and cleaning procedures applied to them), in
addition to the raw annotations. DEAM database contains 1802 songs (58 full-length
songs and 1744 excerpts of 45 seconds) from a variety of Western popular music
genres (rock, pop, electronic, country, jazz etc.). Part of the data was annotated in the
lab and part using Amazon Mechanical Turk crowdsourcing platform2. We made a
very traditional and safe choice for the emotional model: we used the Valence and
Arousal model (Russell, 1980; Thayer, 1989) to annotate the data.

The evaluation procedure that we designed allows to compare the two crucial com-
ponents of a machine learning system (algorithms and the feature sets) separately.

The benchmark was first organized in 2013, and over three years of activity 21
teams participated in the task. In this chapter we will systematically evaluate the fea-
ture sets and the algorithms.

4.2 Background
In this section we will describe the annotation interfaces for MEVD and the datasets
collected using these interfaces. Then, we will review the only other benchmark for
MER and its design choices. Lastly, we will describe the algorithms suggested for
MEVD, which we will benchmark and compare later.

4.2.1 Datasets and annotation interfaces for MEVD
Since the late 1980s, time-varying responses to music have been measured using the
Continuous Response Digital Interface (Robinson, 1988; Gregory, 1989). Usually,
only one dimension (such as tension, musical intensity or emotionality) was mea-
sured. Schubert proposed to use a two-dimensional interface (Valence–Arousal plane)
to annotate music with emotion continuously (Schubert, 1996). This approach was
adopted by MER researchers as well.

Speck, Schmidt, Morton, and Kim (2011) used an interface very similar to the one
suggested by Schubert to create a game with a purpose MoodSwings that was already
described in Chapter 2. The interface of the game is shown on Figure 4.2. The data
from MoodSwings was released publicly3. The dataset comprises 240 segments of US
pop songs (each 15-second long) with per-second V–A annotations, collected through
MTurk. After an automatic verification step that removes unreliable annotations, each
clip in this dataset is annotated by 7 to 23 subjects.

1cvml.unige.ch/databases/DEAM/
2mturk.com
3music.ece.drexel.edu/research/emotion/moodswingsturk



70 4.2. Background

Figure 4.2: MoodSwings game interface.

A discrete interface to collect continuous measurements with a discrete categori-
cal model, was also suggested by Schubert, Ferguson, Farrar, Taylor, and McPherson
(2012). The interface is shown on Figure 4.3.

Figure 4.3: Emotion face clock. Black boxes, arrows and labels were not visible to the
participant.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Rowdy Amiable Literate Witty Volatile
Rousing Good natured Wistful Humorous Fiery

Confident Sweet Bittersweet Whimsical Visceral
Boisterous Fun Autumnal Wry Aggressive
Passionate Rollicking Brooding Campy Tense/anxious

Cheerful Poignant Quirky Intense
Silly

Table 4.1: MIREX mood clusters.

The experiments involving continuous music annotations are numerous, but only
MoodSwings game resulted in publicly available data. In Section 2.2.1 we also de-
scribe the public datasets with static (per song) music emotion annotations.

4.2.2 MIREX benchmark
The only other benchmark that exists for MER methods is the audio mood classifi-
cation (AMC) task, organized by the annual Music Information Retrieval Evaluation
eXchange4 (MIREX) (Hu et al., 2008). In this task, the train set consists of 600 audio
files which are provided to the participants of the task. The test set is not disclosed.
Since 2013, another set of 1438 segments of 30 seconds clipped from Korean pop
songs has been used in MIREX as well.

The benchmark uses five discrete emotion clusters instead of the more widely ac-
cepted dimensional or categorical models of emotion. The clusters are derived from
cluster analysis of online tags from All Music Guide. The five clusters are shown in
Table 4.1. AMC has been criticized for using an emotional model that is not based
on psychological research. It was noted that there exists semantic or acoustic over-
lap between clusters (Laurier & Herrera, 2007). Probably, due to this overlap and the
inconsistency that it creates in the data, the performance in MIREX mood recogni-
tion has not improved in the last 5 years, indicating a possible glass ceiling. We have
already talked about this problem in the Introduction.

What is more, MIREX dataset only applies a singular static rating per audio clip,
which belies the time-varying nature of music.

4.2.3 MEVD methods
The first study that models (using linear regression) musical emotion (arousal and
valence) unfolding over time with musical features (loudness, tempo, melodic con-
tour, texture, and spectral centroid) was conducted by Schubert (2004). The model
could explain from 33% to 73% of variation in emotion. Korhonen, Clausi, and Jerni-
gan (2006) suggested a method to model musical emotion as a function of musical
features using system identification techniques. Korhonen et al. used the low-level

4music-ir.org/mirex/wiki
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spectral features extracted using Marsyas software5, and perceptual features extracted
with PsySound software (Cabrera, 1999). The system reached a performance of 21.9
for valence and 78.4 for arousal in terms of R2. Schmidt and Kim (2010) used Kalman
filtering to predict per-second changes in the distribution of emotion over time on 15
second music excerpts. Schmidt and Kim (2011) suggested to apply a new method
— Conditional Random Fields — to model continuous emotion with a resolution of
11×11 in valence–arousal space. A very small feature set was used — MFCCs, spec-
tral contrast and timbre — and the system reached performance of 0.173 in terms of
Earth Mover’s Distance (between the true 11× 11 2D histogram of Arousal–Valence
values and predicted one). Panda and Paiva (2011) used Support Vector Machines and
features extracted with Marsyas and MIRToolbox to track music over quadrants of
Valence–Arousal space. Imbrasaite, Baltrušaitis, and Robinson (2013) combined Con-
tinuous Conditional Random Fields with a relative representation of features. Later,
Imbrasaite, Baltrušaitis, and Robinson (2014) showed that using Continuous Condi-
tional Neural Fields offers improvement over the previous approach. In (J.-C. Wang,
Yang, Wang, & Jeng, 2012), the ambiguity of emotion was represented through a
Gaussian distribution, and tracking of emotion over time was implemented using a
mapping between music emotion space and low-level acoustic feature space through
a set of latent feature classes. Markov, Iwata, and Matsui (2013) used Gaussian Pro-
cesses for MEVD. The bidirectional Long Short-Term Memory Recurrent Neural Net-
works were first applied to continuous emotion recognition not in the domain of music,
but in the domain of multi-modal human emotion prediction (from facial expression,
shoulder gesture, and audio cues) (Nicolaou, Gunes, & Pantic, 2011).

It is also possible to detect changes in emotion by segmenting a song using a
sliding window and applying the static MER method to each of the windows. This
approach was suggested by Y.-H. Yang, Liu, and Chen (2006). A sliding window of
ten seconds with a 1/3 overlap was used to segment a music piece, and a fuzzy k-NN
classifier was trained to detect the emotion of the segments. This method would give
a distorted result when a sliding window has an emotional boundary in it.

Most of the algorithms mentioned in this section were employed in the benchmark:
Support Vector Regression, linear regression, Kalman filtering, Gaussian Processes,
Conditional Random Fields, Continuous Conditional Neural Fields and Long Short-
Term Memory Recurrent Neural Networks.

4.3 Music database
Our dataset consists of royalty-free (Creative Commons license enables us to re-
distribute the content) music from several sources: freemusicarchive.org (FMA),
jamendo.com, and the medleyDB dataset (Bittner et al., 2014). There are 1744 clips of
45 seconds from FMA and 58 full length songs, half of which come from medleyDB
and another half from Jamendo.

FMA contains music in a multitude of genres: rock, pop, soul, blues, electronic,
classical, hip-hop, international, experimental, folk, jazz, country and pop. We tried
to balance the genre distribution, but it was not always possible because songs are
annotated with multiple genres and the more common genres appear more often. The

5marsyas.info
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music from the MedleyDB dataset in addition had music in world and rap genres,
and the music from Jamendo also had reggae music. For the 2014 and 2015 datasets,
we manually checked the music and excluded the files with bad recording quality or
those containing speech or noise instead of music. For each artist, we selected no more
than 5 songs to be included in the dataset. From medleyDB and Jamendo we selected
full-length songs, which had emotional variation in them. In order to detect emotional
variation, we used a simple SVR-based MEVD algorithm for automatic filtering of
emotionally heterogenous songs, and then manually made the final selection (three
annotators voted for inclusion of the shortlisted songs).

4.4 Annotations
Getting high quality reliable annotations with sufficient agreement and consistency
is a crucial step for a highly subjective task. To collect annotations, we have turned
to crowdsourcing using Amazon Mechanical Turk (MTurk),6 which was successfully
used by others to label large libraries (Speck et al., 2011; Chen et al., 2015). We devel-
oped a procedure to filter out poor quality workers, following current state-of-the-art
crowdsourcing approaches (Soleymani & Larson, 2010). The workers passed a test to
demonstrate a thorough understanding of the task, and an ability to produce good qual-
ity work. The test contained several automatically scored multiple choice questions,
and several free-form questions and assignments, which were evaluated manually if
the automatically scored part was passed correctly. In years 2013 and 2014, each ex-
cerpt was annotated by a minimum of 10 workers. In 2015, each song was annotated
by five workers, three of which were recruited among the most successful workers
from previous years, and two were working in the lab. The dynamic annotations were
collected using a web-interface on a scale from −10 to 10, where the Mechanical Turk
workers could dynamically annotate the songs on valence and arousal dimensions
separately while the song was being played. The static annotations were made on the
nine-point scale on valence and arousal for the whole 45 seconds excerpts after the
dynamic annotations. Figure 4.4 shows the interface used for annotation. The annota-
tor had to keep the mouse in a box with the slider, otherwise the annotation paused.
Three songs were presented one by one in one batch. It was possible to rest between
doing the annotation, because we provided a generous time to the annotators to finish
every batch. Additional questions about the song were presented after completing the
main part. The extra questions are listed in Table 4.2.

In 2015 we also introduced a preliminary listening round. This is the round which
looks exactly like the normal annotation round, but the measurements are not recorded.
The annotator can familiarize himself or herself with the music and prepare to react
when needed. We hoped that listening to a song once before starting the annotation
would help to reduce the reaction time.

In addition to the audio features, we also provide meta-data covering the genre
labels obtained from FMA, medleyDB and Jamendo, and, if available, folksonomy
tags crawled from last.fm.

6mturk.com
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Figure 4.4: Annotation interface.

Year
Number
of songs Source Extra data

2013
1000
(744 unique) MTurk Time of the day, mood

2014 1000 MTurk
Confidence in rating, familiarity of music,
liking of music, free emotion label,
Big Five personality, preferred genre

2015 58 MTurk/Lab
Liking, maximum and minimum
arousal/valence value, free emotion label

Table 4.2: The data overview.

4.4.1 Annotation consistency

We resample the annotations from every annotator to the same rate (2 Hz). There are
between 60 to 600 samples per song, depending on the length of a song and whether
it is an excerpt or a full song.

To compare the consistency across annotators, we use two measures: we com-
pute Cronbach’s α on the sequences of annotations for each of the songs for all the
annotators, and a coefficient of determination of a Generalized Additive Model that
generalizes song’s annotations across annotators.

We normalize the annotations for each song as follows:

a∗j,i = a j,i+
�
A j−A

�
, (4.1)
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where a j,i is an annotation by annotator j at timestamp i, A j is the mean of the annota-
tions by annotator j, and A is a mean of all annotations for this song by all annotators
(global mean). This transformation shifts the annotations to the same range (they are
very often off-place if the annotator started from the wrong point, which is difficult to
correct in real time, especially for a short excerpt). See Figure 5.1 for an example of
such a shift. This problem is also discussed in the next chapter.

Cronbach’s α is used to estimate the degree to which a set of items measures a sin-
gle unidimensional latent construct. This measure should theoretically range between
0 and 1, but in practice it can be negative when inter-item correlations are negative.
There is no lower bound on negative values of this measure. Only positive values
are informative and accurately report the degree of agreement. Therefore, we clip the
negative tail by assigning the value of 0. Table 4.3 shows the averaged Cronbach’s α
for each year’s annotations. To test whether annotation consistency improved with a
change of experimental design, we will compare the three groups. The groups’ sample
sizes and variances are different, therefore we will use a non-parametric test based on
ranks. The Kruskal–Wallis test (one way ANOVA on ranks) shows that there are sig-
nificant differences between groups for arousal (χ2(2) = 81.24, p-value = 2.2×10−16)
and the Dunnett–Tukey–Kramer test shows that the differences are significant be-
tween all three years on a 1% significance level. For valence, the differences exist
(χ2(2) = 57.91, p-value = 2.6× 10−13), but only in 2015 annotations are significantly
different from the other groups.

The Cronbach’s α test has some deficiencies, such as being sensitive to the number
of items on the test (a greater number of items in the test can artificially inflate the
value of alpha). In the year 2015 dataset, the songs were much longer. We will conduct
an additional consistency test with GAMs.

A generalized additive model is a generalized (i.e., allowing non-normal error dis-
tributions of the response variable) linear model with a linear predictor involving a
sum of smooth functions of covariates. The model is defined as follows:

g(µ) = β0+ f1(x1)+ f2(x2)+ ...+ fn(xn), (4.2)

where g is a link function (a function defining a relationship between the linear pre-
dictor and the mean of the dependent variable); µ = E(Y), where Y is a dependent
variable; and fi(xi) are non-parametric smooth functions, estimated, e.g., via scatter-
plot smoothing techniques, or can also be parametric functions or factors.

GAMs are very suitable for modeling continuous annotations of emotion, because
these annotations are usually non-linear in nature and don’t have abrupt changes,
which makes it possible to model them using smooth functions. McKeown and Sned-
don (2014) describe how GAMs and their mixed model extension can be used to model
continuous emotion annotations and make inferences concerning linear differences be-
tween groups. In this paper we will only use GAMs to assess the effect size of shared
perceived emotion. We will do that by building a model for each of the songs, and
calculating the coefficient of determination (R2) of the model.

There is only one smooth component in the model — time. We use penalized cubic
regression splines with basis dimension of 20 and identity link function. The results
are shown in table 4.3. Figure 4.5 shows scatterplots of annotations and fitted GAMS
for 2 songs.
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(d) Clip 1008, 2014, valence. R2 = 0.23

Figure 4.5: Fitted GAMs for arousal and valence annotations (annotations shown as a
scatterplot).

There are significant differences between groups for arousal according to Kruskal–
Wallis test (χ2(2) = 121.03, p-value = 2.2× 10−16) and Dunnett–Tukey–Kramer test
shows that the differences are significant between year 2015 and other groups on
a 1% significance level. For valence, the outcome is the same: differences exist
(χ2(2) = 134.37, p-value = 2.2× 10−16), and only year’s 2015 annotations are sig-
nificantly different from the other groups.

According to both consistency measures, in 2015 we could achieve better consis-
tency, which can be attributed to employing lab workers, choosing complete songs
over excerpts and introducing preliminary listening.

Despite all attempts, the consistency of the annotations is worse than what could
be achieved for static (per song) annotations. In Chapter 2, we achieved a Cronbach’s
α of more than 0.7 for most emotional categories. The possible reasons for this will
be discussed in the next chapter.

4.4.2 Influence of music familiarity, liking and other factors on
the annotations

The Creative Commons music that we selected was largely unfamiliar to the partici-
pants (only in 1% of the listening sessions the participant reported having heard the
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Year 2013 2014 2015

Total length 9 h 18 min 12 h 30 min 3 h 46 min
Cronbach’s α for arousal .27± .28 .31± .30 .66± .26
GAM’s R2 for arousal .13± .10 .14± .11 .44± .19
Cronbach’s α for valence .27± .28 .20± .24 .51± .35
GAM’s R2 for valence .13± .10 .10± .08 .37± .21

Table 4.3: Annotation consistency. Cronbach’s α and GAM’s coefficient of determi-
nation (mean and standard deviation) per year.

(a) Confidence in ratings of valence – liking.
Spearman’s ρ = 0.37, p-value = 2.2 ·10−16

(b) Confidence in ratings of arousal – liking.
Spearman’s ρ = 0.29, p-value = 2.2 ·10−16

Figure 4.6: Liking of the music and confidence in rating. The darker the color, the
more measurements fall inside the square on a heatmap.

piece before). There was not enough data to derive any patterns regarding the famil-
iarity of the music.

We found that liking influenced self evaluation of the confidence in rating. Fig-
ure 4.6 shows the 2D histogram for self-reported confidence in rating and liking the
music. The confidence in rating is on average very high (the workers never reported
being completely uncertain), which is, probably, caused by the fact that the data was
collected from paid workers who did not want to be suspected of incompetence. Liking
the music influenced perceived self-reported confidence. A similar effect was found
in (Aljanaki, Wiering, & Veltkamp, 2016), when there was a positive dependency be-
tween liking the music and annotation consistency. We could not find any effect of
averaged music liking on actual (and not self-reported) rating consistency.
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4.4.3 Convergence of annotations
It is a known issue that the annotators need some initial orientation time (IOT), before
their continuous annotations become meaningful and consistent. In (Schubert, 2013),
median IOT was found to be 8 seconds for valence and 12 seconds for arousal. Also,
afterglow effects — large outliers in the spread of scores just after the end of a piece
— were identified. In (Bachorik et al., 2009), participants required on average 8.31
seconds to begin giving emotional judgements on music on a two-dimensional plane.
The length of the delay was influenced by familiarity, genre and tempo of music.

To measure the IOT of the annotators in the beginning of the song, we calculate
the average Krippendorff’s α for every sample of the corresponding second for the
whole dataset of year 2015. The Krippendorff’s α is calculated as follows:

α = 1− Do

De
, (4.3)

where Do is the observed disagreement, and De is the disagreement expected by
chance. We calculate Do and De using the following formulas.

Do =
1
n

�

c∈R

�

k∈R
(c− k)2

�

u∈U
mu

ncku

P(mu,2)
, (4.4)

where n is the total number of elements (annotations by a single rater in our case), R
is the set of acceptable ratings, mu is the number of items in a unit (annotations by all
raters of the same timestamp), ncku number of (c,k) pairs in unit u, U represents items
in a unit, and P is the permutation function.

De =
1

P(n,2)

�

c∈R

�

k∈R
(c− k)2Pck, (4.5)

where Pck is the number of ways the pair (c,k) can be made.
The songs in the dataset had different length. Figure 4.7 shows that the annotations

start to converge around the 13th second. A similar result was obtained in the 2013th

annotations. So, despite preliminary listening stage, the IOT did not diminish.
We remove the first 15 seconds of the annotation from the benchmark data.

4.5 Benchmark history and design
The benchmark for music emotion recognition algorithms was organized in the years
2013–2015 as part of the MediaEval Benchmarking Initiative for Multimedia Evalua-
tion7. MediaEval is a community-driven endeavour dedicated to evaluating algorithms
for multimedia access and retrieval that has been organized annually since year 2008
(as VideoClef, in the years 2008 and 2009). The list of tasks offered at the benchmark
is renewed every year based on interest and feedback from the multimedia retrieval
community. Alongside the Emotion in Music task, 10–11 other tasks related to speech,
music, image and video processing were held at MediaEval in the years 2013–2015.

7multimediaeval.org
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Figure 4.7: Krippendorff’s α of dynamic annotations in the year 2015, averaged over
all dynamic samples.

We followed the MediaEval benchmarking tradition by developing a separate devel-
opment and evaluation set for each year. Every year, the data collected the previous
year was publicly released.

4.5.1 Task description 2013

In 2013, the task was first proposed and organized by Mohammad Soleymani, Yi-
Hsuan Yang and Erik Schmidt (Soleymani, Caro, Schmidt, & Yang, 2013). The task
consisted of two subtasks: dynamic and static emotion characterization. In dynamic
emotion characterization, the participating algorithms predicted emotion (arousal and
valence) of the music dynamically per-second. In the static task, the arousal and va-
lence of the complete music clip (45 seconds) were predicted. The training dataset
consisted of 700 excerpts of 45 seconds, which were labelled both with dynamic an-
notations (1 Hz) and the static annotations, where static ratings were not derived from
the dynamic ones, but were given separately. 300 clips were left out for the evaluation
set. The music came from the Free Music Archive. Later, duplicates (excerpts sampled
from the same song) were discovered and removed from these data, leaving 744 clips
out of a 1000.

4.5.2 Task description 2014

In 2014, the static emotion characterization task was removed and a new subtask —
feature design — was added instead (Aljanaki, Soleymani, & Yang, 2014). In the
feature design task, new features, which had not been developed before, were proposed
and applied to the arousal and valence prediction task. The feature design task was
not popular and only one team submitted to it (Kumar et al., 2014). The training set
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consisted of 744 clips from the previous year and 1000 new clips, all from the Free
Music Archive. The time resolution for the dynamic task was changed to 2 Hz.

4.5.3 Task description 2015
In 2015, the feature design subtask was removed, leaving only the dynamic emotion
characterization task. The training set consisted of 431 clips, which were selected out
of 1744 clips from the previous years based on consistency measures:

1. We deleted the annotations for which Pearson’s correlation with the averaged
annotations for the same song is below 0.1. If fewer than 5 annotators remain
after the deletion, we discarded the song.

2. For the remaining songs and remaining annotations, we calculated the Cron-
bach’s α. If it was bigger than 0.6, the song was retained.

3. The mean (bias) of every dynamic annotation was changed to match the aver-
aged static annotation for the same song (see Formula 4.1.

The evaluation set consisted of 58 full length songs, one half from the medleyDB
dataset (Bittner et al., 2014) of royalty-free multitrack recordings and another half
from the jamendo.commusic website, which provides music under Creative Commons
license. The songs were ≈ 4 minutes (234±107 s) long on average. The time resolution
for the annotations was 2 Hz. The participants had to submit:

• Features that were used in their approach. These features we used to train a base-
line regression method (SVR with a linear kernel) to estimate dynamic affect.
Any features automatically extracted from the audio or the metadata provided
by the organizers were allowed.

• Results using baseline features.

• Any combination of the features and machine learning methods.

4.5.4 Evaluation metrics
We used two evaluation metrics to compare the performance of different methods:
Pearson’s correlation coefficient between the ground truth and predicted values for
each song, averaged across songs, and root mean square error (RMSE), averaged the
same way. In 2013 and 2014, we used the correlation coefficient as the main metric
and RMSE as an auxiliary metric to break the ties. The tie is a situation where the
difference between two methods adjacent in the ranking is not significant based on the
one sided Wilcoxon test (p < 0.05). In 2015, we used RMSE as our primary metric.
The RMSE metric measures how far is the prediction of the emotion from the anno-
tated emotion of the song, and correlation measures whether the direction of change is
predicted correctly. We will also report concordance correlation coefficient (ρc) as an
evaluation metric. This metric was proposed by Lin (L. I.-K. Lin, 1989) in 1989 and
is defined as follows:

ρc =
2sxy

s2
x + s2

y + (x+ y)
, (4.6)
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where x and y are the vectors of numbers to compare, s2
x is the variance of x, sxy is

the covariance of x and y, and x is the mean of vector x. Concordance correlation
coefficient takes into account both components — RMSE and r. Bigger ρc indicates
better performance.

4.6 Analysis of the proposed systems

In this section we will analyse the best systems suggested over the three years of the
benchmark. In the last edition of the benchmark (year 2015) we asked the participants
to provide their feature sets, and to run their algorithms on the baseline feature set.
In this way we can conduct a systematic evaluation of the algorithms and feature sets
separately.

4.6.1 Task participation
Three teams participated in the task in the year 2013 and the results were analyzed in
(Soleymani, Aljanaki, et al., 2014). In 2014, there were six teams and in 2015, twelve
teams. Every team wrote a working notes paper, and all the papers are available in
the proceedings of the corresponding year’s MediaEval benchmark. The last edition
of the benchmark had most participating teams, and most of the algorithms from the
previous years featured in the last edition. Here we will mostly analyse the results of
the benchmark held in the year 2015.

4.6.2 Performance in the challenge over the years
Tables 4.4, 4.5 and 4.6 show the results of the benchmark in 2013, 2014 and 2015.
The results are sorted by RMSE of arousal ascending (best solutions on top). The
column “Method” shows the abbreviation of the machine learning algorithm used by
a particular team, and a reference to the working notes paper that was published in the
proceedings, where the details of the approach are explained. All the methods beat the
baseline, shown on the bottom row. The baseline method is multi-linear regression.

In 2013 and 2015, LSTM-RNN based solutions were the best both for arousal and
valence, in the year 2014 LSTM-based solution was second best for arousal, but best
for valence.

In 2013, all the teams used different feature sets. The results are analyzed in detail
in (Soleymani, Aljanaki, et al., 2014).

In 2014, solutions (Imbrasaite et al., 2014) and (Coutinho, Weninger, Schuller, &
Scherer, 2014) used openSMILE feature sets. The rest of the teams used other fea-
tures. The combination that produced the best result for arousal (but worse than base-
line result for valence), was a combination of a Kalman filter and low-level features:
MFCCs, zero-crossing rate, spectral flux, centroid, rolloff, and spectral crest factor.

Table 4.6 shows the 10 best solutions for year 2015 (each of the 12 teams submitted
3 runs, which produced more than 30 different solutions, and we will only show the
ones that performed best). All of the solutions listed use the baseline openSMILE
feature set, but it is usually transformed in some way (feature selection, dimensionality
reduction, deep learning), or more features are added.
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Method Arousal Valence
RMSE ρ RMSE ρ

BLSTM-RNN Weninger et al. (2013) .08± .05 .31± .37 .08± .04 .19± .43
GPR Markov et al. (2013) .10± .05 .11± .36 .09± .05 .06± .28
SVR Aljanaki et al. (2013) .10± .06 .14± .28 .12± .07 −.01± .27
Baseline .25± .11 .16± .36 .23± .10 .06± .30

Table 4.4: Performance of the algorithms for arousal and valence in 2013. BLSTM-
RNN — Bi-directional Long-Short Term Memory Recurrent Neural Networks. GPR
— Gaussian Processes Regression. SVR — Support Vector Regression.

Method Arousal Valence
RMSE ρ RMSE ρ

KF Markov et al. (2014) .08± .05 .21± .57 .14± .07 .17± .5
LSTM Coutinho et al. (2014) .10± .05 .35± .45 .08± .05 .20± .49
CCRF Yang et al. (2014) .12± .05 .23± .56 .09± .05 .12± .55
CCNF Imbrasaite et al. (2014) .12± .07 .18± .60 .10± .06 .07± .29
MR Fan et al. (2014) .12± .05 .17± .41 .09± .05 .10± .37
PLSR Kumar et al. (2014) .13± .07 .28± .50 .10± .06 .15± .5
Baseline .14± .06 .18± .36 .10± .06 .11± .34

Table 4.5: Performance of the algorithms for arousal and valence in 2014. KF —
Kalman Filter. LSTM — Long-Short Term Memory Recurrent Neural Network.
CCRF — Continuous Conditional Random Fields. CCNF — Continuous Conditional
Neural Fields. MR — Multi-level regression. PLSR — Partial Least Squares Regres-
sion.

Method Arousal Valence
RMSE ρ RMSE ρ

BLSTM-RNN Xu et al. (2015) .12± .06 .66± .25 .17± .09 .12± .54
BLSTM-ELM Xu et al. (2015) .12± .05 .63± .27 .15± .08 .15± .47
LSTM-RNN Coutinho et al. (2015) .12± .06 .61± .28 .19± .10 .03± .50
LSTM-RNN Coutinho et al. (2015) .12± .06 .60± .29 .19± .10 .02± .49
LS Gupta et al. (2015) .12± .05 .65± .22 .17± .09 .01± .50
LSB Gupta et al. (2015) .12± .05 .59± .23 .17± .09 .05± .43
SVR Liu et al. (2015) .12± .05 .56± .27 .19± .10 −.02± .45
SVR+CCRF Cai et al. (2015) .12± .05 .54± .27 .17± .09 .02± .43
AE-HE-BLSTM Xu et al. (2015) .12± .06 .52± .37 .17± .09 .02± .51
LSTM-RNN Coutinho et al. (2015) .12± .06 .61± .25 .19± .10 .00± .50
Baseline .14± .06 .37± .26 .18± .09 −.01± .38

Table 4.6: Performance of the algorithms for arousal and valence in 2015. BLSTM-
ELM — BLSTM-based multi-scale regression fusion with Extreme Learning Ma-
chine. AE-HE-BLSTM — BLSTM + features created through deep learning. LS —
Linear regression + Smoothing. LSB — Least Squares Boosting + Smoothing. SVR
+ CCRF — SVR + Continuous Conditional Random Fields.
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Figure 4.8: The distribution of the annotations on the Valence–Arousal plane. a) de-
velopment set 2015, b) test set 2015.

4.7 Evaluation of the algorithms

In this section we describe an evaluation of the algorithms that use the same feature
set. The baseline features were extracted using the openSMILE toolbox (Eyben et
al., 2013). We obtained 260 low-level features (mean and standard deviation of 65
low-level acoustic descriptors, and their first-order derivatives) from non-overlapping
segments of 500 ms, with a frame size of 60 ms with a 10 ms step.

Table 4.7 shows the evaluation of 10 algorithms participating in the year 2015
challenge on this feature set. The 10 best approaches are shown. The performance in
terms of RMSE for arousal is the same for all the solutions (though the correlation
coefficient is different), indicating that the algorithms might have reached some sort
of ceiling in performance with this combination of annotations and features.

The algorithms are sorted by their performance according to RMSE on arousal
ascending (RMSE increases and performance decreases). The algorithms show very
good performance on arousal and completely unsatisfactory performance on valence.
It is a known issue that valence is much more difficult to model than arousal, but not
to the extent that we observe.

In 2013 and 2014, arousal and valence annotations were highly positively corre-
lated. In 2015, they were not. We hypothesize that because of the high correlation the
algorithms did not train to recognize valence-specific cues and could not perform well
on the test set. Figure 4.8 shows the scatter plots of all the annotations (every second
of every song for every annotator) along with regression lines.

Almost all the solutions listed in Table 4.7 (best solutions from 2015) are either
based on LSTM-RNN networks or SVR. Solutions suggested by the team SAILUSC
(Gupta & Narayanan, 2015) are exceptions from this rule. Their solutions are based
on linear regression with smoothing, or least squares boosting. LSTN-RNN networks
are capable of incorporating local context in their predictions. A smoothing step also
incorporates the context, though it can not learn the dependencies in time-series. To
sum up, the approaches that only use a context of 500 ms loose to the approaches that
use bigger contexts. This problem is also discussed in the next chapter.
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Method Arousal Valence
RMSE ρ ρc RMSE ρ ρc

BLSTM-RNN Xu et al. (2015) .12± .06 .66± .25 .30± .24 .15± .08 .15± .47 .06± .17
BLSTM-ELM Xu et al. (2015) .12± .05 .63± .27 .25± .22 .15± .08 .15± .47 .06± .17
LR+S Gupta et al. (2015) .12± .05 .65± .22 .32± .23 .17± .09 .01± .50 .01± .19
LSB Gupta et al. (2015) .12± .05 .59± .23 .30± .24 .17± .09 .05± .43 .01± .18
LSTM-RNN Coutinho et al. (2015) .12± .06 .61± .25 .31± .26 .19± .10 .00± .50 .01± .20
Combo Gupta et al. (2015) .12± .05 .64± .23 .28± .22 .17± .09 .00± .48 .01± .19
SVR Liu et al. (2015) .12± .05 .56± .27 .31± .25 .19± .10 −.02± .45 .00± .18
SVR+CCRF Cai et al. (2015) .12± .05 .52± .30 .22± .22 .17± .10 .00± .43 .00± .13
LSTM-RNN Pellegrini et al. (2015) .12± .06 .59± .24 .30± .23 .18± .09 .03± .48 .00± .20
SVR Xu et al. (2015) .12± .07 .56± .24 .08± .08 .15± .09 .01± .40 .00± .04

Table 4.7: Performance of the different algorithms for arousal and valence, using the
baseline feature set. Combo — An unweighted combination of LS, LSB and Boosted
ensemble of single feature filters.

4.8 Evaluation of the feature sets

In this section we will analyze the features proposed by the teams in 2015 by building
a system using one machine learning algorithm, but different feature sets. We chose
the best performing algorithm of the previous years — LSTM-RNN.

The network has three hidden layers with 250, 150 and 50 nodes (the architecture
used by the ICL team). We used the parameters of the network which were optimised
for our data by the ICL team (Coutinho et al., 2015), i.e., the number of memory blocks
in each hidden layer, the learning rate (LR), and the standard deviation of the Gaussian
noise applied to the input activations. Every layer was pretrained (in a supervised way)
before the next layer was added and the network was trained again. We used 20-fold
cross validation.

4.8.1 Proposed features
A variety of software for audio signal processing and feature extraction was used
by participants: Marsyas, MIRToolbox for Matlab, PsySound, openSMILE, Essentia,
jAudio. Mostly, participants used the features that are known to be important for emo-
tion recognition, such as MFCC, tempo, loudness, low level spectral features related
to timbre. Few novel features were proposed. Kumar et al. (2014) proposed two new
types of features: compressibility features, which describe how much the audio can be
compressed, median spectral band energy, which describes the spectral bandwidth of
the audio. The compressibility of audio was strongly positively correlated with static
arousal ratings (Pearson’s r = 0.656). Cai et al. (2015) proposed edge orientation his-
tograms on mel-frequency spectrogram.

4.8.2 Results on development and test set cross-validation
Table 4.8 shows the evaluation of the feature sets on Valence, ordered by Concordance
Correlation Coefficient of the results on evaluation set, in descending order. The best
performing feature set for valence (by JUNLP team) is a baseline feature set, with fea-
ture selection applied to it to select the features optimized for valence recognition. The
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Method Evaluation set Development set
RMSE ρ ρc RMSE ρ ρc

JUNLP (2) Patra et al. (2015) .27± .13 .19± .35 .08± .15 .26± .15 .22± .51 .09± .24
PKUAIPL Cai et al. (2015) .27± .14 .16± .35 .07± .20 .22± .13 .33± .50 .16± .27
HKPOLYU Liu et al. (2015) .28± .14 .19± .36 .06± .17 .21± .13 .41± .53 .20± .28
JUNLP (3) Patra et al. (2015) .28± .13 .17± .33 .06± .14 .26± .15 .23± .53 .09± .24
UNIZA (1) Chmulik et al. (2015) .29± .14 .14± .37 .06± .14 .22± .14 .32± .50 .16± .27
ICL Coutinho et al. (2015) .30± .14 .12± .40 .06± .16 .22± .13 .30± .50 .15± .27
JUNLP (1) Patra et al. (2015) .28± .13 .12± .39 .05± .15 .22± .14 .32± .50 .15± .27
UNIZA (2) Chmulik et al. (2015) .29± .16 .09± .40 .05± .17 .23± .14 .31± .49 .15± .26
IRIT-SAMOVA Pellegrini et al. (2015) .29± .15 .08± .41 .05± .16 .23± .14 .33± .50 .16± .27
MIRUtrecht Aljanaki et al. (2015) .29± .14 .11± .43 .04± .15 .24± .15 .30± .49 .13± .23

Table 4.8: Performance of the different feature sets on Valence, development and eval-
uation sets of year 2015, 20 fold cross-validation.

second best feature set, suggested by PKUAIPL team, consisted of the baseline feature
set with an addition of three types of features: MFCC and ΔMFCCs, edge-orientation
histograms and standard low-level spectral features. In addition, team PKUAIPL ap-
plied auto-regressive and moving average filters to the features to account for the tem-
poral changes in music, and added the output as new features to the feature vector.
Team HKPOLYU suggested a supervised transformation on the baseline feature set
(Arousal–Valence similarity preserving embedding). This transformation maps high-
dimensional feature vectors to a lower-dimensional space so that for similar songs (in
terms of Valence or Arousal) the feature vectors are also closer in this low-dimensional
space.

Table 4.9 shows the evaluation of the feature sets on Arousal, ordered by Con-
cordance Correlation Coefficient of the results of development set, descending. Teams
HKPOLYU, THU-HCSIL and IRIT-SAMOVA suggested the best features for arousal.
The features by the team HKPOLYU were already described above. Team THU-
HCSIL applied Deep Belief Networks to a set of features extracted with the openS-
MILE and MIRToolbox, in order to learn the higher representation for each group of
features independently, which were then fused by a special Autoencoder with a mod-
ified cost function considering sparse and heterogeneous entropy, to produce the final
features at a rate of 2 Hz for the succeeding regression. Team IRIT-SAMOVA could
achieve a very good performance with a very simple feature set consisting of 6 mea-
surements on bands of a Bark scale for spectral valley, and spectral flatness on ERB
and Bark scale, for a total of only 8 features. Spectral flatness provides a way to quan-
tify how noise-like a sound is. Spectral valley is a feature derived from the so-called
spectral contrast feature, which represents the relative spectral distribution.

The general conclusions are that it was important to do feature selection or trans-
formation for valence or arousal dimensions separately. Also, for arousal, very simple
low-level spectral features worked quite well.

4.9 Discussions and perspectives
In this chapter we released the MediaEval Database for Emotional Analysis in Music
(DEAM), the biggest available dataset of dynamic annotations (valence and arousal
annotations for 1802 songs and song excerpts licensed under Creative Commons with
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Method Development set Evaluation set
RMSE ρ ρc RMSE ρ ρc

HKPOLYU Liu et al. (2015) .20± .12 .48± .47 .23± .28 .22± .12 .39± .41 .24± .26
THU-HCSIL Xu et al. (2015) .21± .13 .46± .42 .22± .26 .27± .12 .33± .40 .16± .22
IRIT-SAMOVA (3) (2015) .21± .13 .49± .43 .21± .27 .24± .13 .52± .37 .25± .25
IRIT-SAMOVA Pellegrini et al. (2015) .21± .12 .45± .44 .21± .27 .24± .12 .43± .30 .22± .22
JUNLP (1) Patra et al. (2015) .21± .12 .45± .43 .19± .26 .24± .12 .52± .31 .26± .24
UNIZA (2) Chmulik et al. (2015) .22± .12 .41± .44 .19± .25 .24± .12 .48± .32 .26± .24
PKU-AIPL Cai et al. (2015) .21± .12 .40± .44 .19± .26 .23± .10 .52± .30 .32± .27
UNIZA (1) Chmulik et al. (2015) .22± .12 .40± .44 .19± .25 .25± .13 .49± .30 .27± .23
JKU-Tinnitus (2) Weber et al. (2015) .22± .13 .39± .45 .19± .26 .30± .14 .06± .38 .04± .17
JKU-Tinnitus (1) Weber et al. (2015) .22± .12 .38± .43 .19± .26 .29± .14 .09± .39 .05± .15

Table 4.9: Performance of the different feature sets on Arousal, development and eval-
uation sets of year 2015, 20 fold cross-validation.

2 Hz time resolution). Using DEAM, we organized the ‘Emotion in Music’ task at
MediaEval Multimedia Evaluation Campaign from year 2013 to 2015. The benchmark
attracted in total 21 teams to participate in the challenge.

During the three years, changes were introduced to the data collection routine,
which led to the improvement of the quality of the annotations. In the first two years
of the benchmark, the size of the segment was chosen in such a way that both static
and dynamic ratings were possible. This resulted in a compromise: we selected the
window of 45 seconds. This window appears to be too short to capture a lot of emo-
tional variation, and too long to make estimating the static emotion unambiguous. In
2015, we opted for full-length songs. In combination with preliminary listening and
more careful selection of workers, the quality of the annotations was improved. How-
ever, full-length songs might also not be the optimal solution because the annotation
procedure is very demanding and requires a lot of concentration, and there is a dan-
ger that full-length song annotation stretches the limits of what human annotators are
capable of. This question requires more investigation. Also, in 2015 we employed a
MEVD method and manual filtering to select songs with more emotional variation, in
particular songs in the upper left and lower right quadrants of the V–A space. This led
to a different distribution of labels, which made it possible to identify problems with
valence recognition.

Estimating the absolute value of an emotion in real time is difficult for the anno-
tators, and often, though the direction of change is indicated correctly, the magnitude
is not. We proposed to alleviate this problem by resampling the annotations into the
same range using the overall emotion of the song (annotated separately).

Since the first edition of the Emotion in Music task in 2013 we have opted for
characterizing the per-second emotion of music as numerical values in two dimensions
— valence (positive or negative emotions expressed in music) and arousal (energy
of the music) (V–A) (Russell, 1980; Thayer, 1989), making it easier to depict the
temporal dynamics of emotion variation. The V–A model has been widely adopted in
affective computing (Kim et al., 2010; Huq, Bello, & Rowe, 2010; Eerola, 2014; Y.-
H. Yang & Chen, 2012; Barthet et al., 2012; J.-C. Wang, Yang, et al., 2015; Koelstra et
al., 2012; Soleymani, Larson, Pun, & Hanjalic, 2014; S. Wang & Ji, 2015). However,
the model is not free of criticisms and some other alternatives may be considered in the
future. For example, the V–A model has been criticized for being too reductionist and
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that other dimensions such as dominance should be added (Collier, 2007). Moreover,
the terms ‘valence’ and ‘arousal’ may be sometimes too abstract for people to have a
common understanding of its meaning. Such drawbacks of the V–A model can further
harm the inter-annotator agreement of the annotations for an annotation task which is
already inherently fairly subjective.

In the benchmark, we resampled the annotations to either 1 Hz or 2 Hz. This led
to benchmark participants using 1 or 0.5 second windows as the main unit of emotion
prediction. As far as musical emotion is usually created on bigger time scales, the
best algorithms for MEVD prediction were the ones that could incorporate the bigger
context, either through algorithm design (LSTM-RNN) or through smoothing step
applied at a later stage.

The best feature sets that were suggested for the task treated predicting valence and
arousal separately, and suggested separate feature selection or dimensionality reduc-
tion steps for each emotional dimension. Again, it was shown that though arousal can
be successfully modelled just with simple timbral features (spectral valley and spec-
tral flatness), modeling valence is much more complex, and satisfactory performance
was not achieved by any of the algorithms.

The benchmark was not continued in 2016. In all the three years, the same algo-
rithm (LSTM-RNN) was winning, and the features suggested for the task were still
rudimentary. Also, the problem with data consistency was not solved completely. In
the next chapter we will discuss how the MEVD task could be continued further with
a different approach.





Part III

Emotion based segmentation





CHAPTER 5

Emotion-based segmentation — problem statement

5.1 Introduction

The previous chapter described a benchmark for music emotion variation detection
(MEVD) systems that track changes in musical emotion on the Valence–Arousal
plane. Both data annotators and MEVD systems’ designers faced certain challenges,
which, as we will argue in this chapter, are intrinsically connected to the way in which
the musical emotion was represented by means of a series of continuous measure-
ments.

The benchmark involved collecting a new dataset each year to be provided to the
participants to train and evaluate upon. As we have already emphasized in this thesis,
collecting good quality ground truth data and reducing the internal ambiguity in the
data are the crucial steps towards the solution of the automatic MER challenge. How-
ever, it has been very difficult to collect a ground truth for MEVD with a reasonable
inter-annotator agreement. We argue in this chapter that the reason may lie in the fact
that it is difficult and unnatural for the listeners to evaluate their emotional response to
music in a continuous way.

During the three years of organizing the benchmark we made continuous efforts
to improve the efficiency of our data collection and data cleaning procedures. How-
ever, the method of data annotation for MEVD (continuous real-time annotation with
a slider) introduces obstacles to good quality data, which we will describe later in
this chapter. The problems that emerged could only partially be alleviated by the tech-
niques and post-processing steps that we suggested in the previous chapter.

A typical MEVD system tracks emotion of a piece of music over time using a
short sliding window with a width of one second or smaller. The per-second MEVD
approach actually does not make an unreasonable assumption that emotion in music
should change every second. However, as we have seen in the previous chapter, when
confronted with a task of tracking changes in emotion on a very short time scale,
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the MEVD methods usually address very short audio excerpts as the target of the
emotion prediction. Music needs time to unfold and create emotional meaning, and
this meaning is normally communicated during bigger time spans than one second
(surprise based on startle stimuli being the exception). From the results of the bench-
mark we saw that MEVD systems could predict changes in arousal expressed through
variations in loudness and timbre with reasonable accuracy, but predicting changes
in valence was much more difficult. Valence is more dependent on cues such as har-
mony, melody and rhythm, which only emerge on a bigger time scale than is possible
to consider with short MEVD tracking windows. Therefore, though MEVD systems
do detect important changes in dynamics and timbre, they are definitely missing a lot
of musically meaningful cues because they tackle music in a way that is far from how
music is perceived by human listeners.

Also, though it might still be interesting and important to track musical change
over time with such a high time resolution, the question should be raised whether
these changes are actually an expression of musical emotion or the means of creat-
ing emotional expression on a higher level. For example, a set of dynamic changes
in loudness and tempo (i.e., crescendo, diminuendo, sforzando, rallentando) are the
standard means in the repertoire of musical expressiveness. These expressive means
can be related to the concept of “vitality affects” introduced by Daniel Stern in 1985
(Stern, 1985):

... many qualities of feeling that occur do not fit into our existing lex-
icon or taxonomy of affects. These elusive qualities are better captured
by dynamic, kinetic terms, such as “surging”, “fading away”, “fleeting”,
“explosive”, “crescendo”, “decrescendo”, “bursting”, “drawn out”, and
so on.

...

The expressiveness of vitality affects can be likened to that of a puppet
show. The puppets have little or no capacity to express categories of affect
by way of facial signals, and their repertoire of conventionalized gestu-
ral or postural affect signals is usually impoverished. It is from the way
they move in general that we infer the different vitality affects from the
activation contours they trace. Most often, the characters of different pup-
pets are largely defined in terms of particular vitality affects; one may be
lethargic, with drooping limbs and hanging head, another forceful, and
still another jaunty.

What Daniel Stern says about puppet shows can be largely applied to music’s
expressiveness. In the same way, dynamic and temporal contours can be a way of
communicating character and emotion, and, probably, should be analysed in a larger
temporal context.

In addition to the shortness of the sliding window, the excerpts of music used as the
ground truth for continuous annotation are usually also short. In the work of Schmidt
et al. 15 second excerpts were used (Kim et al., 2008; Schmidt, Turnbull, & Kim,
2010; Schmidt & Kim, 2011), and in the first two years of the MediaEval Emotion
in Music benchmark the excerpts were 45 seconds long (Soleymani et al., 2013; Al-
janaki, Soleymani, & Yang, 2014). Ironically, the excerpts that are normally used for
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song level MER and assume stability of emotion within the excerpt are usually about
the same size (15 seconds to 1 minute). This conflict of assumptions happens because
researchers try to annotate as much different music as possible, while reducing the an-
notation burden. Both assumptions can theoretically be met — some music has very
little emotional variability over 1 minute, some music goes through a lot of transitions
over 15 seconds.

To establish the typical length of emotionally stable segment for classical music,
Liu et al. made an educated guess that emotion is stable over a duration of standard
musical period of 16 bars, and hence the shortest emotionally stable segment should
be 16 seconds (for very fast music) (D. Liu, Lu, & Zhang, 2003). Another attempt to
establish the typical emotionally stable unit was made by Xiao et al., who classified
excerpts of different lengths by emotion and found that excerpts of 8 or 16 seconds
have a better classification accuracy than excerpts of 4 or 32 seconds (Xiao, Dellan-
drea, Dou, & Chen, 2008). Of course, the longer the excerpt, the better the chance for
encountering some emotional variation, but there are drawbacks to lengthening the
excerpts. Continuous emotion annotation in real time is straining for the annotators’
concentration capability and abusing that capability may degrade the quality of the an-
notations. Also, collecting the annotations becomes very costly when the excerpts are
long. However, the short excerpts (e.g., 15 seconds) usually have no serious musical
development.

Due to all these issues, here we suggest that a continuous stream of per-second
measurements is not a suitable representation of musical emotion for ground truth
collection purposes. Therefore we propose a different approach to tracking emotion
over time. In our approach we assume that music consists of a series of emotionally
stable segments (which are normally much longer than 1 second), and transitions be-
tween them (unstable segments). An assumption that music consists mostly of long
stretches of stable emotion, is the one employed by static (song-level) MER meth-
ods. It is natural for listeners to describe musical content by applying emotional la-
bels to musical excerpts or complete pieces. This kind of labels are used by most
music services to categorize their data. But in order for the MER method to work cor-
rectly, a classified excerpt must contain a single emotion. This problem is usually just
neglected by static MER methods, which often use ground-truth excerpts picked by
randomly sampling the audio and filtering out the excerpts that receive contradictory
ratings from the experts. Also, sometimes the problem is circumvented by picking the
most representative part of the song for classification (e.g., a chorus), assuming that
emotion does not change during the chorus. In (Y.-H. Yang et al., 2008), 25-second
segments that expressed a single dominant emotion were selected manually. In (Lu,
Liu, & Zhang, 2006), 20-second segments representative of the song were selected by
the experts. With bigger datasets, manual filtering of the excerpts might not work. In
(Hu et al., 2008), with the dataset consisting of 1250 tracks, a heuristic was used —
“the clips were extracted from the middle of the tracks which are assumed to be more
representative than other parts”.

The problem of music segmentation by emotion has received very little attention.
There are still many questions to answer. What is a typical length of an emotionally
stable fragment in music? Is emotional segmentation explained by structural segmen-
tation? Which segmentation methods and features work best when applied to emo-
tional boundary detection?
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In this chapter we are going to deal with these questions. For this purpose we
assemble a dataset of 52 triple-annotated pieces from the RWC music database (Goto,
Hashiguchi, Nishimura, & Oka, 2002), which also were structurally annotated (these
pieces are also in the SALAMI dataset (Smith, Burgoyne, Fujinaga, Roure, & Downie,
2011)). We obtain a little under 2000 annotated emotional boundaries (around 640
from each of the annotators). We compare emotional and structural segmentation of
music, analyze the inter-annotator agreement and the average stable segment length.
Then we apply four segmentation algorithms to emotional segmentation problem and
benchmark them on our dataset.

5.1.1 Organization

The rest of the chapter is organized as follows. In section 5.2 we describe related re-
search. In section 5.4 we describe the annotations of emotional boundaries and analyze
them to answer some of the questions asked above. In section 5.5 we compare different
segmentation methods when applied to a problem of detecting emotional boundaries
in music. Section 5.6 concludes the chapter.

5.2 Background

In this section we will review the research related to reliability of continuous music
emotion measurement, and the approaches that were suggested for emotional bound-
ary detection or can be applied to this task.

5.2.1 Reliability of continuous music emotion measurement

We have already described the various interfaces that are used for collecting con-
tinuous responses to music in Chapter 3. All of these interfaces originate from the
Continuous Response Digital Interface (CRDI), first introduced by Robinson (1988).
This interface initially had a form of 256 degree dial that could be turned, or a lever
which could be pulled up and down. The interface was used to measure a wide variety
of phenomena related to sound, video and music, such as tension, aesthetic response,
conductor evaluation, mood, intensity, preference, instrument family prominence, fo-
cus of attention etc. The various uses of the instrument, its validity and reliability are
reviewed in (Geringer, Madsen, & Gregory, 2004), where it is also mentioned that the
viability of using the CRDI for such complex multi-dimensional phenomena as musi-
cal emotion should still be studied. A study to measure such a viability was conducted
by Schubert (1999). Four complete music pieces (from the romantic period of classi-
cal music) were annotated by 67 annotators using a two-dimensional Valence–Arousal
plane. The annotations were analyzed, showing that they indeed reflect the emotion of
the music (for instance, the annotators kept the cursor in the correct quadrant most
of the time) and annotators react to changes. Also, a test-retest experiment was con-
ducted, showing that the annotators are consistent with themselves 6 month earlier. A
possible problem was detected with the “scaling” of responses: ”on the whole, peo-
ple do not like to use large regions of the emotion-space during continuous response.
They prefer to keep something ‘up their sleeve’ in case a more extreme episode is
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expressed”. Also, the strong positive correlation on the test-retest experiment does not
exclude the possibility that there could be systematic biases in the annotations.

5.2.2 Segmentation by emotion
Liu et al. suggested the first method for emotional boundary detection (D. Liu et al.,
2003). A sliding window of 16 seconds was used to extract features from the audio of
a song. Then, feature distributions were compared on both sides of each timestamp,
a novelty curve formed and peaks detected (suggesting a presence of a boundary).
There was no systematic evaluation of the method (for the lack of data on emotional
segmentation). We will benchmark this method along with other methods in section
5.5. A similar method (computing difference features using a sliding window) was
suggested by Turnbull and Lanckriet for structural music segmentation (Turnbull &
Lanckriet, 2007). Both unsupervised (based on peak picking) and supervised versions
were tested, with a supervised version showing superior performance. In (Lu et al.,
2006), the method described in (D. Liu et al., 2003) was modified to include loudness
contours as a preprocessing step to detect potential boundaries. Also, an evaluation on
9 musical pieces (with 63 boundaries in them) showed 84.1% recall.

In (Wu, Zhong, Horner, & Yang, 2014) songs were segmented using aligned lyrics
annotations on an assumption that most often emotion is stable within one sentence.
Then, a hierarchical Bayesian model was built for multi-label classification. This
method only would work for vocal music, and though it is plausible that emotion
is stable within a sentence, this is definitely not guaranteed. Due to the absence of
ground-truth on emotional boundaries in (Wu et al., 2014), it is unclear how well the
sentences in the lyrics actually correspond to the emotional structure of the musical
piece.

In (Deng & Leung, 2015), dynamic texture models were trained corresponding
to the quadrants of resonance-arousal-valence model and applied to predict musical
emotion continuously. A transition from one quadrant to another signified an emo-
tional boundary. This approach can only detect very coarse changes in emotion due to
lack of resolution in the emotional space.

Structural segmentation of music is a much more developed area of research than
emotional segmentation. It is not yet clear how related they are, actually, but in this
chapter we use concepts, evaluation methodology and methods of structural segmen-
tation, for need of a place to start. For more information on structural segmentation
aims and methodology, we refer the reader to (Paulus, Müller, & Klapuri, 2010) and
a more recent source — a chapter in a MIR textbook dedicated to segmentaion of
musical audio by Müller (2015).

5.3 Challenges of continuous emotion annotation
Dynamic MER relies on human ground-truth in the form of continuous emotional
annotations, which are typically recorded by an annotator continuously moving their
cursor in a one or two-dimensional space (see Chapters 3 for a review of interfaces).
It seems that this task is extremely difficult for humans, which is, in particular, indi-
cated by a low inter-annotator agreement as compared to static annotations (where,
due to task subjectivity, it is also not very high). We will calculate Kendall’s W for the
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two public datasets. Kendall’s W is a non-parametric statistical test that outputs values
from 0 (no agreement) to 1 (total agreement). Kendall’s W is computed on ranks and
is linearly related to another non-parametric test on ranks, Spearman’s correlation co-
efficient (but it is capable of correlating multiple pairs of ratings). For the MediaEval
dataset (Aljanaki, Soleymani, & Yang, 2014), the average Kendall’s W is 0.23±0.16
for arousal and 0.28±0.21 for valence, and for the MoodSwings Lite dataset (Speck et
al., 2011) the mean Kendall’s W is 0.21±0.14 for arousal and 0.23±0.17 for valence.
All these numbers indicate weak agreement. As we showed in the previous chap-
ter, through training of the annotators and investing extra effort, such as preliminary
listening, it is possible to achieve satisfying results. Also, careful selection of mu-
sic pieces with obvious emotional content might be a factor (Coutinho & Cangelosi,
2011). Chapter 3 gives more information on the agreement for continuous annotation.
There are several typical problems arising when annotating music continuously:

1. A dimensional annotation interface has an absolute scale. Giving absolute rat-
ings is easier when evaluating music statically (comparing a piece to all existing
music). When comparing a piece with itself over time, humans tend to think of
occurring changes relatively. This leads to a difference in position and magni-
tude, though the direction of change can be indicated uniformly (e.g., see Figure
5.1). This demand to annotate on an absolute scale also creates a “scaling” prob-
lem discovered in (Schubert, 1999) and described in Section 5.2.

2. Though it is not explicitly requested from the annotators to move their cursor at
all times, the task demands (necessity to track and respond continuously, short
music excerpts) lead to some of the annotators evaluating every single musical
event (e.g., see Figure 5.1). This results in annotations on widely different ‘zoom
level’ (sections, phrases and even individual notes or drum beats).

3. There is a variable time lag in the annotation. The problem of initial orientation
time (the annotators need time to understand the mood of the music and start
annotating) can be solved by clipping the beginning of the annotation. But with
every change in emotion, annotators again react with a time lag, which often
depends on how sudden the change was (whether there was a startle response).
A similar effect was reported in (Schubert & Dunsmuir, 1999), where it was
described that listeners react instantly to sudden bursts of loudness, whereas
more gradual changes in loudness can delay the response by 2 to 4 seconds.

4. Short excerpts usually do not contain enough emotional variation. Long ex-
cerpts strain annotators’ concentration capability.

Due to all these problems we argue that continuous annotation is so difficult be-
cause it is unnatural for humans to evaluate their emotional response on a per-second
basis and on absolute scale.

5.4 Analysis of emotional boundaries
Here we will describe the dataset we collected to study the emotional boundaries and
start looking for approaches to emotional segmentation. This is the first dataset for this
kind of task.
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Figure 5.1: Dynamic annotation of 45 seconds of audio from the MediaEval 2014
dataset (Aljanaki, Soleymani, & Yang, 2014). Three of the annotators react to every
beat of slow music by a peak in arousal. Also, these annotators agree on the direction
of change, but not on the magnitude or absolute position.

5.4.1 Data

The dataset consists of 52 complete pieces from Pop, Jazz and Genre (the latter con-
tains rock, soul, world etc. music) collections of RWC music database (Goto et al.,
2002). We picked pieces that already had SALAMI (Smith et al., 2011) annotations
in order to be able to compare structural and emotional segmentation. The SALAMI
annotations for these pieces are single-keyed, our annotations are triple-keyed in order
to enable measuring agreement.

The three annotators received instructions to mark a boundary when emotion of
the piece changes. There were no explicit instructions as to what could be interpreted
as an emotional boundary. They were also instructed to mark the transitions between
stable emotional states as separate sections, in case those were long enough to be
perceived as ‘transition states’. In practice, this meant for instance marking a long
diminuendo (fade-out) at the end of a musical piece as a separate transitional section,
or any segment where emotion was not stable. In order to measure the prominence of
the boundary, the annotators were also indicating the valence and arousal value (per-
ceived, not induced emotion) on a scale from 1 to 10 for each of the sections (except
for the transitional sections, which were indicated as transitional). The annotators used
Sonic Visualizer to do the annotation.

In total, annotators marked 545, 676 and 702 emotional boundaries, respectively.
The dataset is available from osf.io/jpd5z.

The mean number of boundaries per piece was 12.3±5.11. The average segment
length was 18.92± 17.76 for emotionally stable segments, and 7.16± 7.79 for tran-
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Figure 5.2: Histogram of segment durations for emotionally stable and unstable seg-
ments.

sitional sections. Figure 5.2 shows the histograms of segment lengths from the three
annotators. We can see that the distribution is skewed to the right, 90% of the stable
intervals are shorter than 35 seconds. Stable segments are much longer than unstable
ones, on average.

5.4.2 Inter-annotator agreement on emotional segmentation
Segmentation tasks are not well-adapted to formal inter-annotator agreement calcu-
lation because of the alignment problem (boundary placement is usually imprecise).
The standard way to evaluate agreement, common in the literature (Smith et al., 2011),
is with the same procedure that is used to evaluate the result of a segmentation: by re-
trieving results with a certain tolerance window and then calculating F-measure like
so:

F1 = 2
precision · recall
precision+ recall

. (5.1)

Table 5.1 shows the F-measure with tolerance windows of 0.5 and 3 seconds for all
the pairs of annotators averaged, and for each pair separately. The agreement is lower
than for the structural segmentation. We cannot compute the agreement on structural
segmentation for the same 52 music pieces, because the structural annotations for
them are single-keyed. We will compare emotional segmentation agreement to the
agreement for other pieces in the SALAMI dataset (974 pairs of annotations). For
large-large structural segmentation, the F-measure at 3 s was 0.77, and F-measure at
0.5 s was 0.69. For our annotations, the F-measure at 0.5 s window is much lower. This
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is likely to be caused by the nature of the task. Though some emotional boundaries
are rather abrupt, others are smeared by a transitional musical process necessary for
an emotion to modulate from one state to another.

Evaluation metric Average A2→A1 A3→A2 A1→A3

Precision @ 0.5 .49 .47 .57 .44
Recall @ 0.5 .48 .45 .42 .57
F-measure @ 0.5 .46 .45 .46 .48

Precision @ 3 .76 .82 .62 .85
Recall @ 3 .76 .77 .84 .67
F-measure @ 3 .73 .78 .68 .73

Table 5.1: Inter-annotator boundary retrieval with the tolerance windows of 0.5 and 3
seconds.

Besides using retrieval with a tolerance window, we will also evaluate the agree-
ment on the boundary placement with a standard agreement measure — Fleiss’ kappa
(Fleiss, 1971). This measure was developed for assessing reliability of agreement on
categorical (in our case, binary) ratings on a number of items. In our case, the items
are the short segments of music (we chose beats for this purpose) with binary labels
whether a boundary is present within a beat or not. We used a beat-detection algorithm
from Essentia to detect each beat onset. We evaluate the annotations using 2 condi-
tions. The first condition is exact match (the boundary is indicated on the same beat by
all the annotators). For that condition, the Fleiss’ kappa is 0.25±0.11, which indicates
fair agreement. The second condition is using a window of three beats (a tolerance
of 1 beat off), and the Fleiss’ kappa for this condition is 0.64± 0.19, which indicates
substantial agreement.

5.4.3 Boundary strength
For each of the segments we asked the annotators to estimate the segment’s Valence
and Arousal (if the segment was stable). We use these data to calculate how strong the
boundary is (if the change in valence and arousal is big, the boundary is strong). The
strength of the boundary is calculated by the formula:

strength = |ai+1−ai|+ |vi+1− vi| , (5.2)

where ai+1 and vi+1 are Arousal and Valence after the boundary, and ai and vi are
arousal and valence before the boundary. Valence and Arousal were annotated on a
scale from 0 to 10, which means that boundary strength varies from 0 to 20. Average
boundary strength is 2.17±3.02. For the unanimous boundaries, the average strength
is 3.74±3.32, and for the non-unanimous ones 2.99±2.95.

The intra-class correlation coefficient (ICC) on the boundary strengths is 0.21,
which indicates poor agreement. There are two causes why this could have happened:
for a subjective task such as annotating Valence and Arousal only three annotators
is clearly not enough, and the scaling problem that affected the dynamic annotations
might still affect the per-segment ones.



100 5.4. Analysis of emotional boundaries

5.4.4 Averaging the annotations

Evaluation metric Valence→Arousal

Precision @ 0.5 .83
Recall @ 0.5 .74
F-measure @ 0.5 .76

Precision @ 3 .89
Recall @ 3 .80
F-measure @ 3 .83

Table 5.2: Retrieving arousal boundaries from valence boundaries with the tolerance
windows of 0.5 and 3 seconds.

To create a ground truth from our annotations, we average the annotations using a 3
second window. We discard the boundaries that were marked only by one of the anno-
tators and leave the boundaries which were marked by either two or three annotators,
obtaining 533 boundaries. Of these boundaries, 475 indicate a change in arousal, and
405 indicate a change in valence. Table 5.2 shows how often the boundaries related to
arousal and to valence coincide (how often valence changes when arousal changes).
A decrease in F-measure with narrowing of the retrieval window shows that often the
boundaries are situated close to each other (change in arousal is closely followed by a
change in valence or vice versa).

5.4.5 Structural segmentation explaining emotional segmentation
In this section we investigate to what extent emotional segmentation can be explained
by the structural segmentation. We compare the emotional boundary annotations to
structural boundaries in the SALAMI dataset (version 1.2) for the same pieces. The
SALAMI dataset contains hierarchical annotations on multiple levels — musical func-
tion (verse, chorus, etc.), lead instrument, and musical similarity on large and small
scale. The function and large scale similarity annotations are 99% identical to each
other for the 52 pieces we have in our dataset. Therefore, we will only include func-
tions, small-scale and lead instrument change annotations in the comparison.

Table 5.3 shows the precision, recall and F-measure obtained when predicting
emotional segmentation from structure. From the table we can see that only 66% of
the emotional boundaries coincide with large section boundaries (functions). Small-
scale similarity retrieval results in 90% recall and very low precision. This annotation
contains too many boundaries (dissimilarly from emotional segmentation), and in any
case these numbers are not very informative, because the segment sizes for small-scale
segmentation are on average 4.78±2.42, which, combined with a 3 second tolerance
windows, allows to retrieve almost all the boundaries just by chance. A bit less than a
half of the boundaries coincide with the lead instrument change.

From these results we can see that the emotional segmentation does not completely
coincide with the structural. However, there is subjectivity both in emotional and struc-
tural annotations and we can not know whether the imperfect overlap happened be-
cause it actually exists or because of the subjectivity. When emotional segmentation is
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retrieved from structural, the F-measure is on average 0.63, for emotional boundaries
retrieved from each other the average F-measure is higher — 0.73, which leads us to
conclude that some percentage of emotional boundaries is actually not explained by
the structural boundaries.

Explanation of emotional segmentation

We asked one of the annotators to look through all the emotional boundaries in his
annotations that did not coincide either with large scale nor small scale structural
boundaries, and explain the reasons why the boundary was placed. Here is a list of all
the reasons:

1. Modulation to another tonality.

2. Change in harmony/chords.

3. Change of vocal timbre or instrumental timbre.

4. End of emotionally stable section (e.g., start of crescendo towards the end of the
structural segment).

5. Change in a non-lead instrument (drums, guitar).

The reasons listed are all related to some discontinuity, and none to repetition.

5.5 Evaluation of structural segmentation methods
adapted to emotional segmentation

In this section we are going to evaluate methods that were proposed for structural and
emotional segmentation, namely Convex NMF (Nieto & Jehan, 2013), Mood Tracking
(Lu et al., 2006), the classic method by Foote (Foote, 2000) and Structural Features
(Serra, Müller, Grosche, & Arcos, 2014). We implemented the Mood Tracking method
as described in (D. Liu et al., 2003), and used an implementation1 of the rest of the
methods for our purposes, with parameters tuned for emotional segmentation as we
describe below.

All of the methods are unsupervised and take as an input the time-series of features
extracted from the audio. To compare the methods, we extract standard MFCC and

Evaluation metric Functions Small-scale Instruments

A1 A2 A3 A1 A2 A3 A1 A2 A3

Precision @ 3 .70 .73 .56 .29 .31 .22 .48 .49 .39
Recall @ 3 .67 .66 .67 .90 .91 .87 .47 .44 .49
F-measure @ 3 .66 .67 .58 .41 .44 .33 .44 .44 .41

Table 5.3: Retrieving emotional segmentation from structural segmentation

1github.com/urinieto/SegmenterMIREX2014
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5.5. Evaluation of structural segmentation methods adapted to emotional

segmentation

HPCP beat-synchronized audio features using Essentia (Bogdanov et al., 2013). The
music in our dataset is quite rhythmic, as the dataset consists mostly of rock, jazz and
popular music. Beats are determined using the Essentia BeatTracker algorithm. All
the music files have 44 100 Hz sampling rate and are converted to mono. To extract
these low-level timbral and harmonic features we use a half-overlapping window of
100 ms. The features are smoothed with a median sliding window, normalized, and
resampled according to detected beats (see Figure 5.3a). We use the same feature set
to evaluate all the algorithms.

5.5.1 Summary of the evaluated methods

Foote

Foote’s method (Foote, 2000) computes self-similarity matrix (SSM) using pairwise
sample comparisons. Then, a short-time Gaussian checkerboard-shaped kernel is slid
over the diagonal of the matrix, resulting in a novelty curve. The boundaries are de-
tected by picking the peaks on the novelty curve. We experimented with different dis-
tance measures to compute the SSM and found that standardized euclidean distance
gave the best results, which is computed between two vectors u and v as follows:

�
� (ui− vi)2

V[xi]
, (5.3)

where V is the variance vector; V[xi] is the variance computed over all the i’th com-
ponents of the points. We set the size of the checkerboard kernel to the size of the
average emotionally stable segment — 20 seconds.

Convex NMF

The Convex Non-Negative Matrix Factorization method (Nieto & Jehan, 2013) (C-
NMF) uses a convex variant of non-negative matrix factorization (NMF) in order to
find clusters in the SSM. This algorithm focuses both on finding segments and group-
ing them by similarity. Here, we are only interested in the segmentation part. If an
NMF of an input SSM matrix X is F, Convex NMF adds a constraint to the columns
of the matrix F = (f1, f2, ..., fn) that the columns should become convex combinations
of the features of X:

f j = x1w1 j+ ...+xpwp j = Xwj, j ∈ [1 : r], (5.4)

where xi is a column of matrix X, r is a rank of decomposition, and wi j ≥ 0,
�

i wi j = 1.
This makes columns f j interpretable as cluster centroids. We set the rank of decompo-
sition to 4.

Mood Tracking

A method by Lu et al. (Lu et al., 2006) finds boundaries by comparing the audio fea-
tures extracted from the two consecutive windows of 16 seconds and computing a
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difference between them. A novelty curve is formed using an obtained difference fea-
ture, from which peaks are picked. The difference between the consecutive windows
is computed using Divergence Shape:

Di | i+1 =
1
2

Tr
�
(Ci−Ci+1)

�
C−1

i+1−C−1
i

��
, (5.5)

where Ci and Ci+1 are the covariance matrices of features of windows i and i+1. Then,
confidence of the boundary is computed:

Confi | i+1 = exp



���Di | i+1−Dmean
���

Dvar

 , (5.6)

where Dmean and Dvar are respectively the mean and variance of all divergence shapes
for this song. From a list of boundary confidences the boundaries are retrieved by sat-
isfying conditions of being a local maximum and exceeding a local adaptive threshold.

We implemented the method as it was described in (Lu et al., 2006), but it didn’t
work well in its original form on our data. The constraint of 16 seconds was too con-
servative and the adaptive threshold window was too narrow, which resulted in a low
precision and F-measure. We describe an optimized version below. The optimized
version performs on average about 10% better than the original method, and we only
show the performance of the optimized version in Table 5.4.

Modified Mood Tracking method

The best results with Lu et al. method were obtained using a window of 4 seconds to
compute the divergence shape measure. We smoothed the boundary confidence vector
with a median filter before peak picking. To pick the peaks, we select a maximum in a
neighbourhood of 10 beats in case it exceeds both of the two thresholds — a moving
average and half of the global average.

The performance of the method improved a bit with these modifications (precision
increased from 0.30 to 0.39), but the method still performed worse than other methods
in our evaluation.

Structural Features

The Structural Features (SF) method (Serra et al., 2014) is both homogeneity and
repetition based. It uses a variant of lag matrix to obtain structural features. The SF
are differentiated to obtain a novelty curve, on which peak picking is performed. SF
method calculates self-similarity between samples i and j as follows:

S i, j = Θ
�
εi, j− ||xi− x j||

�
, (5.7)

where Θ(z) is a Heaviside step function, xi is a feature time series transformed using
delay coordinates, ||z|| is a Euclidean norm, and ε is a threshold, which is set adaptively
for each cell of matrix S . From matrix S structural features are then obtained using a
lag-matrix, and computing the difference between successive structural features yields
a novelty curve.
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5.5.2 Evaluation results

C-NMF SF MoodTrack Foote

P@3 .53 .56 .39 .54
R@3 .65 .67 .55 .62
F@3 .56 .60 .44 .56

Table 5.4: Performance of C-NMF, Structural Features, MoodTracking and Foote’s
methods on emotional segmentation task.

Table 5.4 shows the results obtained in the evaluation. We use a tolerance window
of 3 seconds for the evaluation. From the table we can see that the SF method consis-
tently shows the best results in terms of F-measure. The method proposed in (Lu et
al., 2006) consistently shows the worst results.

Segmentation methods are traditionally categorized into homogeneity, novelty and
similarity based methods (Paulus et al., 2010). An emotional boundary is usually char-
acterised by changes in loudness, timbre, harmony, instrumentation, etc. There is no
straightforward connection between repetition and emotion. However, as far as most
emotional boundaries are explained through structural segmentation, the same cues
that are important for the structural segmentation must be important for emotional seg-
mentation as well, including repetition. Structural Features method is the only method
of the four that incorporates repetition-based cues, the rest of the methods are based
on novelty and homogeneity-based cues.

We also tried to retrieve boundaries related to changes in valence and boundaries
related to changes in arousal. The arousal-related boundaries were slightly easier to
retrieve (F-measure of 0.56 as compared to 0.53 for valence).

5.6 Discussion

In this chapter we discussed the problems associated with dynamic MER and argued
that these problems originate from the unnaturally low time resolutions that dynamic
MER is usually dealing with. While static MER methods cannot deal with emotionally
non-homogeneous music, dynamic MER methods approach this problem by taking the
fragmentation to the extreme (the typical resolution of a dynamic MER method is 1
second). The output (per-second emotion prediction) produced by a dynamic MER
method is not easily interpretable and useful.

We proposed to move to bigger time resolutions by representing music as a se-
quence of emotionally stable and unstable segments, and tracking these segments over
time. We call this problem emotion-based segmentation.

We collected data on emotional segmentation of music; in total about 2000 emo-
tional boundaries were annotated. In general, the annotators could agree rather well
when identifying stable emotional segments, the inter-annotator F-measure was com-
parable to the one obtained for, supposedly less ambiguous, structural segmentation
task, except at the very high precision level (0.5 s). In terms of F-measure emotional
annotations are more similar to each other than to any of the structural segmentation
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levels. That means that there exist some robust and important emotional boundaries
which are not explained by structural segmentation. Approximately one third of the
emotional boundaries did not coincide with the structural boundaries. According to
some preliminary data, emotional change can occur within a structural section due to
a modulation to a different tonality, start of emotionally unstable section, or change of
harmony or timbre.

However, most of the emotional boundaries coincide with the structural bound-
aries, and the same methods are hence applicable to both tasks. About half of the
emotional boundaries were accompanied by a lead instrument change.

We found that the average length of a stable emotional segment is approximately
20 seconds. This finding could be used to calculate a suitable length of musical ex-
cerpts to be employed for MEVD algorithms development and evaluation. Namely,
such excerpts should be several times bigger than 20 seconds.

We evaluated different unsupervised segmentation algorithms on the task of emo-
tional segmentation and found that local context based Mood Tracking method was
least useful. This method only uses a very narrow local context to find the discontinu-
ities in a feature matrix. The SF method performed best. This segmentation method is
different from other methods by incorporation of repetition-based criteria along with
homogeneity-based ones.
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Figure 5.3: An illustration of the boundary detection process on the Radetzky March
by J. Strauss Sr. a) Beat-synchronized features. b) Annotations. c) Novelty curves and
detected boundaries for all the 4 evaluated methods.



CHAPTER 6

Supervised emotion-based segmentation

In this chapter we continue our work on emotion-based segmentation. We argue that
for emotion-related tasks supervised approaches are more practical and propose an ap-
proach that uses two types of annotated ground truth information: emotional boundary
locations and music excerpts annotated with Valence and Arousal. The approach con-
sists of two steps: first, retrieval of the boundary candidates using a Convolutional
Neural Network (CNN) and next, filtering the boundaries by calculating emotional
boundary strength. This approach improves average emotion boundary retrieval pre-
cision from 0.67 to 0.69 and recall from 0.56 to 0.58, as compared to the best unsu-
pervised approach (Structure Features method (Serra et al., 2014)).

6.1 Introduction

In Chapter 5 we defined the problem of emotion-based segmentation and showed that
though emotional boundaries do not fully coincide with music structure, many of the
boundaries do coincide and the same unsupervised approaches that work for structural
segmentation can be applied to emotion-based segmentation as well. However, these
approaches do not contain any emotion detection component, which limits their pos-
sibilities. Unsupervised segmentation methods detect discontinuity and repetitions in
the feature matrix, where features describe the low-level timbral and harmonic proper-
ties of the sound. The start of a new structural segment is often marked by the start of
a repetition, or timbral and harmonic discontinuity. The criteria that cause a listener to
perceive a change in emotion are less well understood. A supervised approach would
allow the algorithm to learn these criteria directly from the data.

The MIR field has relied on manually engineered features and algorithms for most
of its history. When designing audio features, such as MFCC or chroma, or psychoa-
coustic loudness and roughness features, engineers rely on the knowledge of human
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auditory system and harmonic sound organization. For instance, the knowledge about
the logarithmic perception of the frequencies and loudness, and presence of harmonics
in musical sound is incorporated into the algorithm.

Many MIR algorithms also rely on expert knowledge. For instance, the Structure
Features approach to music segmentation exploits the knowledge about the repetitive
structure of the music (Serra et al., 2014). Such unsupervised approaches have many
advantages:

1. The operating principle of the algorithm is well understood, and it is easy to
predict where the algorithm will succeed or fail.

2. No training data is required, the necessary knowledge has already been accumu-
lated and analyzed by the experts of the field, and can be manually incorporated
into the algorithm.

3. The algorithm designer has direct control of the parameters (such as sensitivity
parameters).

However, there are also many drawbacks:

1. The phenomenon that we want to detect or classify may not be well understood
(hence, there is not enough expert knowledge to translate into the algorithm).
This is very often the case with emotion-related phenomena.

2. A manually engineered algorithm may not be sufficiently flexible. For instance,
when applied to a different music culture or style, which operates on other prin-
ciples, the algorithm has to be substantially adapted, or a new algorithm must
be designed.

3. Depending on the complexity of the task, designing the algorithm may be more
time and resource consuming than collecting the training data.

These drawbacks are eliminated by the supervised methods. Emotional segmenta-
tion task can benefit a lot from a machine learning approach, because the criteria for
emotional boundary placement are not well understood yet, and these criteria might
well differ per musical style and culture (and, perhaps, even per song, depending on
its emotional variability).

For some of the MIR tasks the training data is ample: most of the available mu-
sic has genre, composer and performer (artist) information from the record label or
folksonomy tags. For some of the tasks, enough (for training a neural network) data
has been accumulated through expert annotation (onset detection (Schlüter & Böck,
2014), chord recognition (Humphrey & Bello, 2012)). For emotion-based segmen-
tation task, there is only one dataset, which we introduced in Chapter 5. The dataset
consists of 52 songs with 533 boundaries (positive examples of boundaries). However,
considering the number of the negative examples (sound excerpts where annotators did
not find any boundaries), there is enough data to train a neural network. The boundary
annotations do not contain information on the strength of the boundary (such data is
actually available in the dataset, but there was not enough agreement in these data for
it to be useful for training). This might compromise the performance of the network.
Therefore, the next step that we propose is to use additional emotional annotations to
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detect the strength of the boundary and filter the weak boundary candidates suggested
by the CNN. This step improves the F-measure from 0.53 to 0.61.

This chapter is organized as follows. In section 6.2 we describe related research,
mostly on Neural Networks in MIR. In section 6.3 we describe the feature extraction
for training the NN (mel-spectrograms). In section 6.4 we describe the boundary re-
trieval with NN. In section 6.5 we describe a boundary filtering method using Valence
and Arousal detection. Section 6.6 concludes the chapter.

6.2 Background

Music data is intricately organized both temporally and structurally. Extracting mean-
ingful features that can describe the organization that is implicit in the signal is the
main effort in MIR, and it is probably the most important obstacle that separates us
from developing better MER systems, as we argued in chapter 3.

Currently, most of the audio features used in MIR are hand engineered. However,
learning features directly from audio is a very attractive new area of research. Below
we will describe the attempts in this regard.

The first approach to extract meaningful features from musical audio signal au-
tomatically was proposed by Pachet and Zils (2004) who built feature extractors us-
ing compositions of basic mathematical and signal processing functions, which were
stacked together using genetic programming. Recently, neural networks were used for
feature learning from video, speech and music. Neural networks can disentangle in-
teracting factors and create meaningful high-level representations from large amounts
of data. A variety of MIR problems were tackled with neural networks. A deep belief
network (DBN) consisting of 6 layers of RBMs (Restricted Bolzman Machine) was
applied to the chord detection problem (Zhou & Lerch, 2015). A combination of DBN
for feature learning and SVM for classification was applied to the genre detection
problem (Hamel & Eck, 2010). A convolutional neural network was used to learn a
common representation for audio and MIDI features in Hamming space to match huge
datasets (Raffel & Ellis, 2015). In (Lee, Largman, Pham, & Ng, 2009), (Wülfing &
Riedmiller, 2012), (Nam, Herrera, Slaney, & Smith, 2012), (Dieleman & Schrauwen,
2013), (Yeh, Su, & Yang, 2013), (Sigtia & Dixon, 2014) unsupervised feature learn-
ing with deep neural nets has improved performance in phoneme detection, genre
classification, auto-tagging and other audio-related tasks. In (Schmidt, Scott, & Kim,
2012), DBN was used to learn features explaining Valence and Arousal dimensions of
emotion better than MFCCs. It is rather difficult to interpret the learned features. In-
directly, the relevance can be assessed by interpreting visualizations, or mapping the
features to semantic tags. But though a neural network with its layered hierarchical
representations of data is much more difficult to analyze, it has undoubtedly pushed
the state-of-the-art results further in many fields.

Ullrich, Schlüter, and Grill (2014) and Grill and Schlüter (2015) applied Convo-
lutional Neural network (CNN) to the structural segmentation problem. In (Ullrich
et al., 2014), the CNN was trained using mel-spectrograms and structural boundary
annotations, advancing the state-of-the-art performance (on the SALAMI dataset) in
structural segmentation from 0.33 to 0.46 for tolerances of 0.5 seconds, and from 0.52
to 0.62 for tolerances of 3 seconds. In (Grill & Schlüter, 2015), self-similarity matrices
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were added to the CNN training data. The CNN described in this chapter is based on
approaches described in (Ullrich et al., 2014), (Grill & Schlüter, 2015) and (Schlüter
& Böck, 2014) because our training data is very similar.

6.3 Feature extraction

The most attractive property of the CNN when applied to music is that it removes
the necessity to extract audio features. However, though it is theoretically possible to
apply it to a raw audio signal, it is normally impractical, and CNNs are applied to a
processed form of audio — spectrograms or mel-spectrograms.

We train the network on mel-spectrograms, a perceptually meaningful representa-
tion of audio. Mel-scale is a perceptual scale of pitches judged by listeners to be equal
in distance from one another. The extraction pipeline is as follows:

1. The magnitude spectrogram is extracted with a window of 2048 samples (this
is equivalent to 46 ms for 44.1 kHz sampling rate) using a half overlapping
window. The size of the window determines the frequency resolution (the bigger
the window, the better the resolution). Better frequency resolution means less
noise. With increasing the window size, we are losing the time resolution, but
in our case this is not the problem, firstly because our window size is rather
small, and secondly we are going to subsample the mel-spectrogram in the time
dimension anyway.

2. We apply 50 mel-frequency filters logarithmically spaced from 80 Hz to 5 kHz.
We limited the range of frequencies to the lower part of the spectrum, where the
fundamental frequencies and first harmonics of most instruments and voice are
situated. In this way we lose some timbral information in the upper harmonics,
but reduce the size of the spectrogram.

3. The result is scaled logarithmically and each frequency band normalized to zero
mean and unit variance. This is done to make it easier for the neural network to
process.

4. We reduce the amount of data by subsampling the spectrogram with a window
of 12 samples (we take the maximum from each 12 samples), resulting in ≈ 3.5
frames per second.

5. The spectrogram is padded with 16 seconds of pink noise near the beginning and
the end of the audio file to allow predicting the boundaries near the beginning
and the end. This is done because we are going to predict whether the boundary
is exactly in the middle of the segment.

6. The spectrogram of the complete audio file is sliced into 22 second slices. This
is a bit larger than the size of the average emotionally stable segment. In this
way we are likely to obtain few emotional boundaries per segment.

7. We obtain 45 621 spectrograms (7647 positive examples).
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We also tried to extract the spectrograms in a way that worked best for structural
segmentation in (Ullrich et al., 2014). There, the mel-spectrograms were extracted
in a similar way, but range of frequencies was 9 kHz larger (from 80 Hz to 16 kHz),
there were 80 mel filters and the time context was 32 seconds. This setting worked best
for boundary retrieval with a tolerance of 3 seconds. However, the mel-spectrograms
with bigger resolution did not work for our data. For a small dataset such as ours,
big resolution spectrograms probably contain too much information (and noise). For
the structural segmentation task, the ground truth datasets are much bigger. Ullrich et
al. (2014) used 733 songs for training and 487 for testing. We only have 52 songs in
our dataset, this is why we decided to reduce the number of mel filters and only use
frequencies in melodic range. We also tried training the network on the features that
were used by unsupervised methods in the previous chapter (MFCCs and HPCPs), but
it gave worse result than training on mel-spectrograms.

Figure 6.1 shows two different resolutions for the same timestamp of a song.

6.4 Boundary detection with the CNN

6.4.1 Annotations

We use the averaged annotations described in the previous chapter (533 emotional
boundaries) as the ground truth. At least two of the three annotators agreed on each
boundary, and the average time stamp was adopted as the ground truth boundary. The
annotations are less precise than annotations for structural segmentation. Following
(Ullrich et al., 2014) and (Grill & Schlüter, 2015), we use a window of 6 seconds to
indicate the boundary. Everything 3 seconds to the right and to the left of the ground
truth timestamp is considered a boundary. Frames to the right and to the left of the
boundary receive partial weight, which is distributed using a Gaussian window (from
0 to 1). Figure 6.1 shows the input mel spectrograms with ground truth annotations
(distributed using Gaussian window) on top of the boundary. The negative examples
(the mel-spectrograms that do not have a boundary in the middle or in the 6 second
neighbourhood from the middle) are annotated with a zero.

6.4.2 CNN

Convolutional Neural Network (CNN) is a powerful algorithm developed for image
classification. CNNs were inspired by the studies of visual cortex of cats (Hubel &
Wiesel, 1962) and monkeys (Hubel & Wiesel, 1968). This cortex contains a complex
layered arrangement of cells, sensitive to small sub-regions of the visual field. The
receptive fields of the cells are tiled to cover the entire visual field. These cells act as
local filters, and are well-suited to exploit the strong local spatial correlations present
in natural images. There are specific cell types to detect edge-like patterns, and another
type with a larger receptive field, locally invariant to the exact position of the pattern.

CNNs are a variation of feed-forward artificial neural network (ANN), trained with
back-propagation on the same principles as other ANNs. The key feature of the CNN
are its convolutional layers, which contain convolution filters designed similarly to the
biological neurons in the visual cortex, described above. The CNN network typically
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Figure 6.1: Input to the neural network: a frame centered on a boundary (red line)
in a song RWC-MDB-G-2001-M08-03 (ID format of the RWC dataset (Goto et al.,
2002)). a) Mel-spectrograms with 22 second time resolution (the one that gave a better
result). b) Mel-spectrogram of 32 seconds.

consists of one or several convolutional and subsampling layers followed by one or
several dense layers.

The input to a convolutional layer is a m× n× r matrix (image), where m is the
height, n is the width and r is the number of channels. In an RGB image, typically,
r = 3. For magnitude spectrograms, there is only one channel (magnitude of a certain
mel-frequency range at a certain time). The convolutional layer has k filters, the size
of the filters is normally several times smaller than the width and height of the input
image, and the depth can be the same or smaller than the number of channels. The filter
is convolved with the image to produce feature maps, which are then subsampled over
n× k regions. Then, an activation function (nonlinearity) is applied to each feature
map. We use ReLU (Rectified Linear Unit) activation function.

The key property of the CNN is that it allows to process large data inputs (images)
with few trainable parameters, and CNN allows to preserve the spatial layout of the
input.

The architecture of our neural network is similar to (Ullrich et al., 2014) and is
sketched on Figure 6.2. The first convolutional layer has 32 8× 6 kernels, followed
by a subsampling layer with max-pooling (3×6). The next convolutional layer has 64
6×3 layers, followed by another max-pooling layer. We add weight regularization in
the convolutional layers and a dropout after the last max-pooling layer. The amount of
regularization is set experimentally, we increase the regularization until the network
does not overfit to the training set anymore. We use L2 regularization in both con-
volutional layers. This form of regularization penalizes the squared magnitude of all
parameters directly in the objective. For each weight w we add a term 1

2λw
2 to the

objective, where λ is regularization strength (0.01 in our case). The L2 regularization
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Figure 6.2: CNN architecture.

penalizes peaky weight vectors and makes network prefer diffuse weight vectors. This
encourages the network to use all of its inputs instead of using some a lot. Lastly, the
network has a dense 128 neuron layer and a 1 neuron output.

6.4.3 Peak picking
For each input sample, the network outputs a real number between 0 and 1: a score
indicating the likelihood of the boundary being present in the sample. To find the peaks
in this curve, we pick a maximum inside a moving window of 8 seconds, and mark
it as a boundary if it is higher than a moving threshold. The threshold is necessary to
filter the local peaks which are actually very low, but happen to be higher than their
local context. The threshold is computed with the following formula:

Ti = xi+
2
3

x, (6.1)

where Ti is a threshold for sample i, xi is the output of the 10 second wide median
filter, and x is the average of all the annotations.

Figure 6.3 shows the probability curve for the boundary shown on Figure 6.1 and
some neighbourhood around that boundary.

6.4.4 Results
We achieved the best results on mel-spectrograms of size 50×80 with melodic range
mel-filters which are described in section 6.3. The 80× 108 spectrograms gave al-
most random level performance. This probably happened due to network not training
because of high levels of noise-to-data ratio.

We don’t have enough data to have a separate test set and therefore we use 10-
fold cross validation. We divide our data into three sets — training, validation and
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Figure 6.3: Peak picking.

test. A network is trained on the samples from 47 songs, the validation set is 10% of
these data. After training the network predicts on the leave-out test set (5 songs). The
process is repeated for the next 5 songs.

The network is trained using stochastic gradient descent with Mean Squared Error
as a loss metric, in batches of 64 samples, for up to 100 epochs (early stopping is used,
if the loss metric is not decreasing for 15 epochs on the validation set). The network
is implemented in Theano1.

We trained the network on the annotations where at least 2 annotators agreed on
each boundary. Table 6.1 shows the evaluation on these annotations and also on all
available annotations (including also those where the boundary was indicated only
by 1 annotator). There are 31% more boundaries in the second case, on average 6.8
more boundaries per song. We also compare the predictions of the neural network with
a random baseline, where we generate segment lengths with a Gaussian distribution
centered on the average segment size (19 seconds).

The CNN can recall 73% of the boundaries, but the precision is unsatisfactory.
When we evaluate on all the annotations, the F-measure does not increase, which
means that the errors that the CNN makes (finding too many boundaries) are not ex-
plained by the weak boundaries that were indicated only by one of the annotators. The
predictions are much better than random. The number of the retrieved boundaries (and
the trade-off between precision and recall) can be changed by changing the parameters
of the peak picking function. F-measure, however, is already at its highest.

6.5 Emotion change strength detection
The boundary predictions from CNN suffer from low precision: only half of the re-
trieved boundaries are actually relevant. A small percentage (5% more) can be ex-
plained by a presence of weak emotional boundary indicated only by one of the an-

1deeplearning.net/software/theano
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notators, but 45% of the boundaries are excessive. This could be because the neu-
ral network learned to recognize some structures that often coincide with emotional
boundary but do not indicate a change in emotion. The annotations that we use as the
ground truth for training a neural network do not contain any information about the na-
ture or the strength of the emotional boundaries. The network thus cannot know which
emotion changed, and by how much. By supplementing this information, it could be
possible to filter the boundary candidates suggested by the network and improve pre-
cision. In order to do that, we are going to apply a MER algorithm on the excerpts
before and after every boundary, to detect whether there is a measurable change in
emotion.

We will use a dataset of the song excerpts annotated with Valence and Arousal
assembled by Witteveen (2015) from three sources (MediaEval Database for Emo-
tional Analysis in Music, Soundtrack dataset and Saari dataset), as the training data.
In total, there are 2700 sound excerpts in various music genres from 15 to 45 seconds
long. The details about these data are in Table 6.2. The DEAM was already exten-
sively described in Chapter 4. We use only the small 45 second excerpts and the static
(per song) annotations. Of course, this dataset is controversial when applied to static
emotion detection, because this music was supposed to contain emotional variation,
but removing these data from the training set degraded the performance of the sys-
tem, so we decided to retain the complete dataset. The Saari dataset was assembled
by Saari and Eerola (2013) and consists of 596 music pieces in various popular mu-
sic genres with social tags from last.fm and separately collected Valence and Arousal
annotations. The Soundtrack dataset is described in (Eerola & Vuoskoski, 2011).

6.5.1 Features
We extract both low (MFCC, chroma, energy, dissonance and other spectral features)
and high-level (scale, tempo, tonal stability) audio features using Essentia (Bogdanov
et al., 2013). All the music files are converted to mono. To extract low-level timbral
features we use a half-overlapping window of 100 ms, and a window of 3 seconds for
high level features. The features are normalized to zero mean and unit variance.

6.5.2 MER training and evaluation
We train Support Vector Regression with Radial Basis Function kernel and grid-search
optimized parameters (C and γ). Using 10-fold cross-validation on the training set (the
three datasets described in Table 6.2), we obtain R2 = 0.61, RMSE = 0.94 (the range

Algorithm Annotations Precision @ 3 Recall @ 3 F-measure @ 3

CNN agreement of 2 .50 .73 .56
all annotations .55 .55 .53

Random agreement of 2 .37 .40 .37
all annotations .41 .31 .35

Table 6.1: Performance of the CNN and a random baseline on emotional segmentation.
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Dataset Number of songs Clip length Number of annotators per song

DEAM 1744 45 s 10
Saari 596 15–30 s 29
Soundtrack 360 10–30 s 12

Table 6.2: Datasets used for MER.

Figure 6.4: Predicting emotion of the segments.

of the annotations is between 0 and 10), Concordance Correlation Coefficient (CCC)
= 0.77 for arousal and R2 = 0.29, RMSE = 1.06, CCC = 0.44 for valence.

We evaluate the model on the Valence and Arousal annotations that accompany
the emotional segmentation. Table 6.3 shows the averaged results of such evaluation
for each annotator separately. We use the segment boundary annotations and predict
Arousal and Valence values for each segment. We ignore that some of the segments’
emotion is not stable and predict a stable emotion for those segments as well. Tran-
sitional segments are usually quite short, and few, so this should not influence the
estimation of performance of the system anyhow significantly. Figure 6.4 illustrates
this for one of the songs.

Metric Emotion A1 A2 A3

R2 arousal 0.36 0.26 0.35
valence 0.05 0.04 0.05

RMSE arousal 2.02 1.26 2.29
valence 1.92 0.98 2.03

CCC arousal 0.16 0.22 0.14
valence 0.03 0.02 0.03

Table 6.3: Evaluation on the 52 songs. Ai — annotator i.

The results of prediction on the test data are satisfactory for arousal, but still need a
lot of improvement for valence. However, here we are not interested in absolute values
of valence and arousal, or in the direction of change from one segment to another. We



Supervised emotion-based segmentation 117

are only interested in a system to estimate the magnitude of that change. We can not
evaluate whether the system estimates this magnitude correctly, because ground truth
annotations of the magnitude have unsatisfactory consistency, as we saw in Section
5.4.3 of Chapter 5. However, indirectly we will evaluate the magnitude estimation by
evaluating the method in the next section.

6.5.3 Boundary strength
To filter the boundaries predicted by the CNN, we need to predict how strong is the dif-
ference between Valence and Arousal before and after the boundary. However, CNN
did not find 27% of the ground truth boundaries, which means we cannot be sure that
no boundary occurs within any given predicted segment. Therefore we are going to
predict Valence and Arousal in the near neighbourhood of the boundary and not in
the segments before and after. Experimentally we set this neighbourhood to 8 sec-
onds (or smaller if a boundary is predicted closer). The trained SVR model predicts
Valence and Arousal for this local neighbourhood, and we retain a boundary if the
difference in Valence or Arousal is bigger than a threshold (which is set to 0.4). The
threshold is small, because the predictions display a strong regression to the mean.
The retrieval results after filtering are as follows: Precision @ 3 = 0.69, Recall @ 3
= 0.58 and F-measure @ 3 = 0.61. The F-measure is therefore improved from 0.53
to 0.61. Applying the method to Structure Features segmentation actually degrades
the performance. Random segmentation benefits slightly from increase in precision
obtained by removal of extra boundaries, but of course still it is the worst method
because the recall is still as low as it was.

6.6 Conclusion
In this chapter we proposed a doubly-informed system to predict emotional bound-
aries, achieving a slight improvement over the best unsupervised approach. The dif-
ference was not statistically significant. A Convolutional Neural Network was trained
on only 52 songs with 533 annotated boundaries. The size of the mel-spectrograms
had to be kept small for the network to be able to train, probably due to a small
size of the dataset. Mel-spectrograms of such size contain very reduced amount of
information, mostly changes in loudness in different mel bands, which indicate tim-
bral changes. There is very limited harmonic information. Probably, the cues that the
network was using for emotional boundary detection were very similar to the hand
engineered discontinuity detection in unsupervised methods. However, the CNN ap-
proach has potential to learn more complicated dependencies, should more data be
available for training. Then, more complex cues could be used by the network.

To supplement the missing information on emotional changes, we applied a MER
method in a local neighbourhood of the boundary. The MER method we developed
suffered from a typical problem of inability to reliably predict valence. Also, the per-
formance on the test data (52 songs) was much worse than cross validated performance
estimation on the train data. The test data excerpts were shorter, but mostly in pop and
rock music style, which is the same as one of the training datasets (Saari). The prob-
lem with transferability of the models trained on one dataset and tested on different
data was also described by (Witteveen, 2015). This problem can be caused both by
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differences in music (signal processing and features problem) and differences in un-
derstanding of the Valence and Arousal dimensions by the annotators. Despite these
problems, we could improve the F-measure from 0.53 to 0.61.



CHAPTER 7

Conclusion

Affective content analysis and emotion recognition are new, but rapidly growing fields,
as can be seen by the proliferation of research and books published on these topics.
On Figure 7.1 we see a search in Google Ngram Viewer on the keywords related to
affective research. Google Ngram Viewer only has a corpus that extends until 2008,
but the topic has probably become even more relevant since then, continuing the trend.

Figure 7.1: Frequencies of occurrence in online text corpora (5.2 million books) of
terms related to this thesis, as displayed by Google Ngram Viewer.

In this thesis we dealt with a variety of tasks that were directed towards developing
better Music Emotion Recognition algorithms. We handled three topics — modeling
emotion induced by music, benchmarking MEVD (music emotion variation detec-
tion) algorithms, and emotion-based music segmentation. Each of the topics involved
collecting a dataset (in total, as a result three public datasets were released):
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1. The Emotify dataset is the first publicly available dataset of music annotated
with induced emotion. Also, this is the biggest public dataset annotated using
GEMS model.

2. The DEAM dataset has the largest number of continuous emotion annotations.

3. The Emotional segmentation dataset is unique in a sense that this is the first
dataset for emotional segmentation task.

In the following we will summarize some general findings of this thesis, and sug-
gest directions for future work.

Representations of musical emotion
Every MIR task — genre recognition, chord detection, structural segmentation — de-
pends on human annotated data, and has to deal with the problem of subjectivity and
cue application inconsistency in such data. But for music emotion recognition the sit-
uation is particularly bad. In fact, it is so bad that statistical measurement devices reg-
ularly “give up” on measuring agreement on emotional annotations. In this thesis we
witnessed this two times, in Chapter 3, when 33 out of 400 songs had “out of bounds”
negative Fleiss’ kappa on GEMS ratings, and in Chapter 4 with a similar situation with
negative Cronbach’s α on continuous emotional annotations. However, the situation is
definitely not hopeless. It is possible to obtain sufficiently consistent annotations of
musical emotion given the right representation and sensible task demands.

From the data collected using the Emotify game we learned that:

1. Certain emotions are more universally understood in relation to music. Exam-
ples are joyful activation, calmness and power. Certain other emotions have
much more variability in their interpretation. Examples are amazement, sad-
ness, nostalgia.

2. The consistency of the annotations is influenced by whether music is liked or
not.

3. The mood of the listener is an important factor in emotional response, other
factors being his musical taste, and, to a much smaller extent, age.

From the data collected for the Emotion in Music MediaEval Benchmark we
learned that:

1. Asking for the continuous ratings of musical emotion puts unreasonable task
demands on the annotators, such as the necessity to rate on absolute scale, to
evaluate response very frequently, and to react to changes fast.

2. Annotators require an initial orientation time of around 13 seconds.

3. Annotators tend to choose an arbitrary “zoom level” (sections, phrases, single
notes).

From the dataset collected for emotional segmentation we learned that:
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1. Listeners can agree on placement of emotional boundaries very well.

2. They cannot, however, agree on the magnitude of the change of emotion before
and after the boundary with the same consistency.

MUSIC 
STIMULUS

EMOTION-
RELATED 

WORD
OR 

CONCEPT

   C
OGNITIVE PROCESSING

Figure 7.2: Cognitive processing of emotional stimulus. Illustration: human head is
based on a drawing by F.E. Bilz (1894).

In the Introduction we said that the methodological basis of computational MER is
similar to the Brunswick’s lens model (that describes how listener matches templates
with parameters β to identify emotion in music). We would like to introduce two more
steps to this model, one step before/during template matching, and one step after that.
First, if we are interested in induced emotion, factors related to listener’s personality
and situational factors are also important. Figure 7.2 shows how musical stimuli are
processed with our additions. Music with parameters λ is heard by the listener. The
listener has a transformation matrixΘ of parameters related to his cultural background,
personality and current mood. This transformation matrix is applied to change both the
influence of objective parameters λ, and also the emotion templates. For instance, if the
listener tends to focus on beat more than on other aspects, the importance of beat will
be increased. The next important addition is that the subjective emotional experience
has to be translated to words (for instance, to submit a query to a MER system, or to
annotate a song). During this verbalization stage the emotional experience is assessed
in some way and the output is averaged to the nearest known emotional label. Both
steps have some inconsistency of cue application.

Making personalized music predictions is therefore not only learning which tem-
plates the listener is using for certain emotions, but also taking into account the per-
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sonality and mood-related factors that influence emotion induction. In the last stage of
our music cognition process listeners map their internal sensations to words. Probably,
some people are much better at it than others, and the internal sensations that different
people call ‘tranquility’ or ‘tenderness’ can be quite different. It is important to realize
that another source of inconsistency lies in these distinctions.

Audio features

In Chapter 3 we investigated which musical properties we need to account for to be
able to predict induced emotion, and found that some of the strongest predictors are
melodiousness, articulation, tonaleness and other descriptors based on human percep-
tion of tonality, harmony, rhythm. Extracting these sort of properties from musical
signal is going to be very non-trivial. We proposed some interval and chord features,
which could improve the performance of our comprehensive feature set. However,
there still remained a big gap in performance between spectral features we are cur-
rently able to extract, and perceptual features which we would like to aim for. In
terms of r, this gap was on average 0.15. With perceptual features, despite subjectivity
(which is especially strong for induced emotion) it was still possible to achieve good
predictions using meaningful perceptual features.

There is much less attention paid to predicting induced emotion than it deserves.
Induced music emotion recognition system is probably more useful for the majority of
music listeners than the one that can predict perceived emotion. Hopefully, the dataset
that we released and findings from this thesis will help future research in this area.

In Chapter 4 we evaluated feature sets and algorithms for MEVD through bench-
marking. Taking larger temporal context into account proved to be very important.

Music emotion variation detection

Through benchmarking MEVD methods we gradually arrived at a conclusion that
current mainstream approach to tracking emotion over time takes both annotation and
features to unreasonably high time resolution (less than a second) (though this is not
what was meant by design). This results in predicting dynamic changes in loudness
and timbre, which might be actually means of expressing emotion on a higher level
rather than emotion changes themselves. We propose to approach MEVD by segment-
ing music into segments of stable and unstable emotion. Then, we propose the first
supervised method for emotional boundary detection.

Song-level MER methods normally need to make sure that the excerpts for which
they are predicting an emotion are emotionally homogeneous, at least at the ground
truth collection stage. Emotional boundary detection method that we suggested would
help to do this.

Future work

To improve induced emotion modeling, we suggest that using physiological signals,
EEG or brain imaging techniques to augment self-assessment could give an additional
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verification step to ground truth collection, and should be used more in MIR research.
This will complement the emotion self-assessment stage (last stage in our music pro-
cessing model on Figure 7.2), which is difficult for many people and can lead to more
inconsistency.

An emotional segmentation task has been introduced in this thesis. This task is
very novel and needs more research. The data used in Chapters 5 and 6 only contained
popular music. This genre usually has a fixed repetitive structure. We don’t know
how would emotional segmentation work on through-composed pieces. Also, we only
addressed emotionally stable excerpts and not emotionally unstable ones. Probably,
the methods for detecting short-time dynamic changes such as described in Chapter 4
could find application there.

Another obvious direction for future work is cognitively motivated audio feature
development. Most of the audio features so far developed by the MIR community are
computed from very short parts of the spectrum, and do not take into account human
cognitive music processing, musical expectation, structure. This approach is of course
inadequate and can not yield satisfactory results. Wiggins (2009) stresses this point in
his work where he maintains that any MIR research not based on human cognition is
pointless:

...any system that deals with Music effectively is de facto a cognitive
model (even if a “black box”), because Music is fundamentally cogni-
tive; and by the same token, only cognitive models are likely to succeed
in processing Music in a human-like way. To treat Music in a way which
is not human-like is meaningless, because Music is defined by humans.

When designing new features manually, development of these cognitive audio fea-
tures is a very complicated task. However, with the emergence of such powerful mod-
els capable of learning the temporal context as LSTM-RNN (Long–Short Term Mem-
ory Recurrent Neural Networks) or CNN (convolutional neural network) that can learn
spatial organization of sound as presented on spectrogram, or perhaps a combination
of the two, and with more training data becoming available, we can hope that process-
ing music in a more meaningful way will be feasible. In fact, this is the direction of
research that the author of this thesis is going to pursue.

MER field is still very young and there are many open questions left, and, hope-
fully, results, datasets and findings from this thesis will help to advance the field fur-
ther.
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Juslin, P. N., & Västfjäll, D. (2008). Emotional responses to music: The need to
consider underlying mechanisms. Behavioral and Brain Sciences, 31, 559–575.

Kaelen, M., Barrett, F., Roseman, L., Lorenz, R., Family, N., Bolstridge, M., et al.
(2015). LSD enhances the emotional response to music. Psychopharmacology,
232(19), 3607–3614.

Kim, Y. E., Schmidt, E., & Emelle, L. (2008). Moodswings: A collaborative game
for music mood label collection. In Proceedings of the 9th International Society
for Music Information Retrieval Conference (pp. 231–236).

Kim, Y. E., Schmidt, E. M., Migneco, R., Morton, B. G., Richardson, P., Scott, J., et al.
(2010). Music Emotion Recognition: A State of the Art Review. In Proceedings
of the 11th International Society for Music Information Retrieval Conference.

Kivy, P. (1990). Music alone: Reflections on a purely musical experience. Cornell
University Press.

Kivy, P. (1993). The Fine Art of Repetition: Essays in the Philosophy of Music.
Cambridge University Press.

Kleinen, G. (1968). Experimentelle Studien zum musikalischen Ausdruck [Experi-
mental studies on musical expression] (Doctoral dissertation, Universität Ham-
burg). Hamburg, Germany.
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Samenvatting in het Nederlands

Het beschrijven van audiomuziek door middel van emoties is een subjectieve taak,
zodat we afhankelijk zijn van gegevens van menselijke beoordelaars. De kwaliteit
daarvan is cruciaal voor het trainen van computerprogrammas. Het benoemen van
muziekemotie op een natuurlijke manier is belangrijk voor de kwaliteit van trainings-
gegevens en voor het ontwikkelen van intutieve aanbevelings-systemen voor muziek.
Dit onderzoek draagt daar op drie manieren aan bij.

Ten eerste modelleren we welke muziekaspecten emotie opwekt. Daarvoor is
de game Emotify ontwikkeld die gegevens verzamelt over de emotie van de spel-
ers bij afgespeelde muziek. Met die game zijn trainingsgegevens verzameld van
hoge kwaliteit. Op basis daarvan hebben we een computerprogramma ontwikkeld dat
emotie relateert aan kenmerken van de muziek. Het blijkt dat het beter werkt om
nieuwe kenmerken mee te nemen dan om al gebruikte kenmerken slimmer te ver-
weken. De harmonie in de muziek is daar een goede kandidaat voor.

Vervolgens maken we een standaardtest voor Muziek Emotie Variatie Detectie
computerprogrammas. We voeren een systematische evaluatie uit van computerpro-
grammas en de muziekkenmerken. Wat het beste werkt is om aparte kenmerken te
nemen voor de twee dimensies waardering en opwinding, die in de psychologie veel
gebruikt worden.

Daarop voortbouwend ontwikkelen we een nieuwe manier van Muziek Emotie
Variatie Detectie door de muziek als een opeenvolging van emotioneel stabiele seg-
menten en onstabiele overgangs-segmenten.

Een beter begrip van hoe muziek emotie opwekt heeft de potentie om bij te dra-
gen aan muziekspelers met betere aanbevelingsfunctie, en kan een rol spelen in het
monitoren van mentaal welzijn.
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