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ABSTRACT
In observational studies, treatment assignment is a nonrandom pro-
cess and treatment groups may not be comparable in their baseline
characteristics, a phenomenon known as confounding. Propensity
score (PS) methods can be used to achieve comparability of treated
and nontreated groups in terms of their observed covariates and, as
such, control for confounding in estimating treatment effects. In
this article, we provide a step-by-step guidance on how to use
PS methods. For illustrative purposes, we used simulated data
based on an observational study of the relation between oral nutri-
tional supplementation and hospital length of stay. We focused on
the key aspects of PS analysis, including covariate selection,
PS estimation, covariate balance assessment, treatment effect esti-
mation, and reporting. PS matching, stratification, covariate adjust-
ment, and weighting are discussed. R codes and example data are
provided to show the different steps in a PS analysis. Am J
Clin Nutr 2016;104:247–58.

Keywords: propensity score, confounding, balance, matching, model
selection

INTRODUCTION

Randomized controlled trials (RCTs)7 are considered the
gold-standard approach for estimating the effects of treatments
on outcomes. By design, the random assignment of patients to
treatment groups ensures that the groups are comparable in both
measured and unmeasured baseline characteristics; hence, the
association between treatment and outcome is not biased (1–3).
As a result, the effect of treatment on outcomes can be estimated
by direct comparison of outcomes between treated and untreated
groups (3). When RCTs are not feasible for reasons such as cost,
time, and ethical issues, the effect of a particular treatment on
a certain outcome could be investigated by using a nonexperi-
mental (i.e., nonrandomized) study design. However, in obser-
vational studies, treatment selection is influenced by patient baseline
characteristics. In the absence of random treatment assignment,
systematic differences in baseline characteristics between treat-
ment groups may exist, leading to noncomparability between the
groups, which is known as confounding bias. For example, in an
observational study of the impact of oral nutritional supplemen-
tation (ONS) on hospital length of stay (LOS) (4), patients who

received ONS differed from patients who did not receive ONS
in their baseline characteristics. Notably, ONS was more
often administered to individuals who were less healthy, and
hence ONS use could be spuriously associated with increased
LOS unless these differences are controlled for. In their
seminal article in 1983, Rosenbaum and Rubin (5) introduced
propensity score (PS) methods and showed that they can be
used to design observational studies and thereby controlling
for confounding.

Although PS analysis is a powerful approach and is increasingly
being used in observational research (6, 7), errors in the design,
analysis, interpretation, and reporting are unfortunately all too
common (8). This seems to be in part due to investigators’
misunderstanding of the key aspects of the PS methods when
conducting and communicating PS analysis (7–9). This article
aims to introduce PS analysis, discuss its strengths and limi-
tations, and highlight important steps in the design, analysis,
and reporting of PS-based studies. Throughout this article, the
different stages of PS analysis are shown by using a hypothet-
ical study based on the observational study on the impact of
ONS on LOS (4).

1 ThePROTECT project has received support from the Innovative Medicine

Initiative Joint Undertaking (IMI JU; www.imi.europa.eu) under grant

115004, the resources of which are composed of financial contribution from

the European Union’s Seventh Framework Programme (FP7/2007-2013) and

European Federation of Pharmaceutical Industries and Association (EFPIA)

companies’ in-kind contributions. In the context of the IMI JU, the Division

of Pharmacoepidemiology and Clinical Pharmacology, Utrecht University,

also received a direct financial contribution from Pfizer.
2 The research leading to these results was conducted as part of the PROTECT

consortium (Pharmacoepidemiological Research on Outcomes of Therapeutics

by a European ConsorTium), which is a public-private partnership coordinated

by the European Medicines Agency.
3 SupplementalMaterial is available from the “Online Supporting Material”

link in the online posting of the article and from the same link in the online

table of contents at http://ajcn.nutrition.org.

*Towhom correspondence should be addressed. E-mail: o.h.klungel@uu.nl.
7 Abbreviations used: ATE, average treatment effect; ATT, average treat-

ment effect in the treated; IPTW, inverse probability of treatment weighting;

LOS, hospital length of stay; ONS, oral nutritional supplementation; PS,

propensity score: RCT, randomized controlled trial.

ReceivedNovember 4, 2015. Accepted for publication May 26, 2016.

First published online July 13, 2016; doi: 10.3945/ajcn.115.125914.

Am J Clin Nutr 2016;104:247–58. Printed in USA. � 2016 American Society for Nutrition 247

 at U
N

IV
E

R
S

IT
Y

 LIB
R

A
R

Y
 U

T
R

E
C

H
T

 on O
ctober 12, 2016

ajcn.nutrition.org
D

ow
nloaded from

 

25914.DCSupplemental.html 
http://ajcn.nutrition.org/content/suppl/2016/07/13/ajcn.115.1
Supplemental Material can be found at:

http://ajcn.nutrition.org/
http://ajcn.nutrition.org/content/suppl/2016/07/13/ajcn.115.125914.DCSupplemental.html 
http://ajcn.nutrition.org/content/suppl/2016/07/13/ajcn.115.125914.DCSupplemental.html 


EXAMPLE DATA SET

To show the different stages of PS analysis, a hypothetical data
set was created on the basis of a study on the impact of ONS on
hospital outcomes (4). This data set is available in the Supple-
mental Material.

Data sets of 44,000 individuals were created. In line with the
motivating example, these data consisted of 11 covariates (X1–X11),
of which 8 were binary covariates (representing sex, congestive
heart failure, myocardial infarction, admitted previous 6 mo, ad-
mitted from emergency department, diabetes with complications,
cancer, and renal disease), 2 were continuous covariates (repre-
senting a normally distributed covariate age and a g distributed
covariate the Charlson comorbidity index score), and 1 was
a categorical variable [representing race (black, Hispanic, and
white)] (4). A binary treatment variable [representing ONS (yes or
no)] was then generated by using a logistic regression model, in
which treatment status depended on the covariates (X1–X11), and
the coefficients for the covariates for the model were derived from
the baseline table in the motivating study (4). We assumed that
1.6% of the simulated patient population received ONS, as in the
motivating example (4) and a linear regression model was used to
generate outcome data (LOS), conditional on the binary treatment
status and the 11 covariates. In the motivating study (4), ONS use
was associated with a 2.32-d decrease in LOS (mean difference:
22.3 d). Therefore, we assumed that the mean LOS was 8.42
d for ONS use compared with 10.31 d for non-ONS use. Table 1
shows the characteristics of the simulated population and the
absolute standardized difference in means (proportions) of the
characteristics between treatment groups (ONS use compared
with non-ONS use).

WHAT IS A PS?

The PS exists in both RCTs and observational studies. In
RCTs, the PS is defined by the study design and is known (2). For
example, in a simple randomized experiment in which patients
are assigned to a treatment or a control group by flipping a coin
(assuming equal sample sizes in both groups), the PS for a subject
is the probability of being assigned to the treatment group, which

is 0.5. In contrast, treatment selection in observational studies is
determined by baseline characteristics of the patient and hence
the true PS is unknown (2, 5), although it can be estimated by
using data on the baseline characteristics of the patient.

Let Z be an indicator variable, denoting the treatment received
(ONS episode = 1 and non-ONS episode = 0) and Xi denotes
a vector of baseline characteristics (X1, X2, X3, X4, X5, X6, X7,

X8, X9, X10, and X11). The PS for patient i (ei) is the conditional
probability (between 0 and 1) of receiving the treatment (ONS =
1 compared with ONS = 0) given the baseline characteristics
(X1–X11): ei = Pr (Zi = 1|Xi) (5). Intuitively, the PS is a measure
of the likelihood that a patient received the treatment (ONS)
conditional on his or her covariate values. Hence, it is the
summary of all of the covariates included in the PS model and,
as such, it has 3 important features. First, it is a balancing score,
meaning that at each value of the PS the distribution of the
covariates (X1–X11) defining the PS is expected to be similar in
the treated (ONS episode) and untreated groups (non-ONS ep-
isode) (5, 10). Second, if treatment assignment is independent of
potential outcomes, given the observed covariates (X1–X11),
treatment assignment is also independent of the potential out-
comes given the PS (5, 10). Third, the PS needs to be estimated
for each patient by using the data, even if the actual treatment
status (ONS compared with non-ONS episode) is known (11).
Even if the mechanism of treatment assignment is fully known
(as in an RCT), the estimated PS performs better than the true
PS. This is due to the fact that an estimated PS removes random
imbalances in covariates between treatment groups in addition
to observed systematic imbalances, whereas the true PS removes
only systematic imbalances (12).

The PS should be estimated from the data—for instance, by
using logistic regression of the binary treatment (ONS episode
compared with non-ONS episode) on the measured covariates
(X1–X11). Applied researchers who have not used PS methods
before may question why one should estimate the probability
that a patient receives a certain treatment (ONS) although the
data clearly show whether a patient has received the treatment
(ONS episode). A brief answer to this question is as follows: to
create a quasi-randomized experiment by using the patient’s

TABLE 1

Baseline characteristics of the hypothetical data1

Characteristics

ONS episodes

(n = 675)

Non-ONS episodes

(n = 43,325)

Absolute standardized

difference, %

X1 = Female, % 53.78 61.45 15.37

X2 = Congestive heart failure, % 25.33 14.01 26.02

X3 = Myocardial infarction, % 12.15 8.10 12.37

X4 = Admitted previous 6 mo, % 41.78 25.74 32.50

X5 = Admitted from ED, % 58.07 47.36 21.71

X6 = Diabetes with complications, % 4.44 3.60 4.09

X7 = Cancer, % 6.96 3.31 14.32

X8 = Renal disease, % 12.44 8.26 12.66

X9 = Age, y 65.73 58.82 107.13

X10 = Mean Charlson comorbidity index score2 3.81 2.30 41.16

X11 = Race, %

Black 17.19 15.64 4.17

Hispanic 6.37 7.34 3.96

White 76.44 77.02 1.36

1ED, emergency department; ONS, oral nutritional supplementation.
2Charlson comorbidity index score was assumed to have a g distribution with shape parameter 1 and scale parameter 0.5.
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probability of receiving the treatment (i.e., the PS) as a summary
score of all measured potential confounders (X1–X11) and to
enable appropriate adjustment of the estimate of the treatment
effect (13). This explains one of the key properties of the PS
mentioned earlier: if we find 2 patients with the same PS, one in
the treated group and one in the untreated group, we can imagine
that these 2 patients are more or less “randomly assigned” to one
of the treatment groups in the sense of being equally likely to be
treated or not. Note that although randomization ensures balance
of both measured and unmeasured covariates, PS balances only
measured covariates included in the PS model (5, 13, 14). Once
the PS is estimated, the PS can be used in 4 different ways to
control for confounding; we will come back to that later.

IMPORTANT STEPS IN DESIGNING PS-BASED STUDIES

In the next paragraphs, we outline a step-by-step procedure on
how to conduct a PS-based study. Proper PS analysis involves the
following steps in sequence: selection of covariates for the PS
model, estimation of the PS, choosing one of the PS methods
[matching, stratification, covariate adjustment, and inverse
probability of treatment weighting (IPTW) using the PS], as-
sessment of covariate balance by using balance metrics, esti-
mation of the treatment effect by using the chosen PS method,
and reporting the results. The R code for each step is provided in
the Supplemental Material.

COVARIATE SELECTION FOR THE PS MODEL

In many practical settings, investigators encounter high-
dimensional data (i.e., large numbers of covariates) with a common
exposure and relatively few outcome events. In an attempt to
estimate an unbiased causal treatment effect, the selection of
important covariates should bemade before or during model fitting
to avoid problems such as overfitting, particularly when conven-
tional regression methods are being used (15, 16). In such settings,
PS methods are invaluable tools for reducing the number of
covariates by summarizing the covariate information into a single
covariate, the PS.

The selection of covariates can be based on previous knowl-
edge on the relations underlying the data at hand. Different types
of variables can be distinguished on the basis of their relation with
the treatment (A), outcome (Y), and other variables: confounding
variables [variables that determine treatment status and are also
related to the outcome (“X” in Figure 1A)], instrumental vari-
ables [variables that are strongly related to treatment status but are
not related to the outcome, other than through their relation with
the treatment (“IV” in Figure 1B); in the motivating example, the
fraction of episodes involving any ONS use in a given hospital in
a given quarter is used as an instrumental variable], risk factors
[variables that are related to the outcome but may not related to
treatment status (“R” in Figure 1C)], intermediate variables
[posttreatment variables that are influenced by the treatment
and lie in the causal pathway from the treatment to the outcome
(“I” in Figure 1D)], and colliders [variables that are common
effects of 2 causes (“C” in Figure 1E)].

In general, confounding variables and risk factors of the out-
come should be included in the PS or regression model to reduce
confounding and improve precision of causal effect estimates (17–
23). However, adjustment for other types of variables (intermediates,

colliders, and instrumental variables) is unnecessary and may even
induce bias (17, 20, 23–26).

Despite the popularity of the PS methods, there are no well-
developed tools for variable selection in PS models and, as
a consequence, applied researchers often use methods that were
developed for conventional regression models, such as goodness-
of-fit tests (8, 18). However, previous studies showed that such
techniques failed to detect variables that should not be adjusted
for, such as colliders, intermediate variables, and instrumental
variables.

In our example data, we generated all of the covariates in such
a way that they are related to both the treatment and the outcome
on the basis of the empirical study (4). We did not have in-
strumental variables, intermediates, and colliders; hence, all of
the covariates were selected for inclusion in the PS model.

PS ESTIMATION

Once variables are selected for the PS model, the PS can be
estimated by using ordinary logistic regression (although several
data-mining techniques, such as neural networks, classification
trees, meta-classifiers, and support vector machines, have also
been suggested) (13, 27–29). Logistic regression has several
advantages. It is a familiar and well-understood statistical tool
for investigators and is easy to implement by using standard
statistical software packages (29). The inclusion of carefully
chosen interactions and square terms in the logistic regression
models may improve the balance of covariates in the PS model
and reduce the bias in the estimated treatment effect (16, 17).

In the example, we included all of the covariates (X1–X11), age-
squared, and an interaction between age and Charlson comorbidity
index score in the PS model (although our data-generating model
did not include any interactions or higher-order terms). Hence,
a logistic regression model with ONS as the dependent variable
and covariates X1–X11 and square and interaction terms as in-
dependent variables was fitted to the data. Age-squared and the
interaction between age and Charlson comorbidity index score
were included in the PS model to improve the balance on age. The
predicted probabilities from the model represent the PSs for the
patients. The means (ranges) of the PS were 0.071 (0.0014, 0.623)
for ONS episodes and 0.014 (0.00003, 0.625) for non-ONS epi-
sodes. Logically, the mean probability of receiving ONS (i.e., the
mean PS) is larger for ONS episodes than for non-ONS episodes.

PS METHODS TO CONTROL FOR CONFOUNDING

Once the PS is estimated, the next 2 critical steps are to assess
the quality of the PS model (see the next section for details how to
check this) and to use the PS to actually control for confounding
by 1) creating a matched sample of treated and untreated pa-
tients with similar PSs, 2) stratifying patients on their PSs and
estimating treatment effects within the PS strata, 3) covariate
adjustment by using the PS as a covariate, or 4) IPTW by using
the PS (5, 30, 31). These methods are discussed in detail in the
section “Estimation and Interpretation of Treatment Effects.” At
this stage, it might seem puzzling why choosing the type of PS
method to be used preceded the assessment of covariate balance.
The reason is that the choice of the PS method, which depends
on the research question in mind (i.e., the inferential goal of
the research), determines how balance of covariates or correct
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specification of the PS model should be evaluated (8, 9, 32). It
also dictates the estimation and interpretation of the treatment
effect (we will come back to this later) (8, 9, 32).

Here, we considered PS matching, because it is one of the most
commonly applied PS methods in the clinical literature. It is also
the PS method used in the motivating example. We matched
treated and untreated patients using a caliper width of 0.25 on the
logit of the PS, meaning that patients were deemed similar if their
PS was within a range of 0.25 (on the logit scale) of the PS. The
0.25 caliper width on the logit of the PS is a commonly used
caliper in the medical literature (6–8), although the choice of
caliper depends on the data at hand and involves a trade-off
between precision and bias in the treatment effect estimate.
Matching was performed without replacement, although this
may increase the bias when a substantial number of untreated
subjects are excluded from the analysis (33). In a sensitivity
analysis, we used matching with replacement by using a caliper
width of 0.25 and matching without replacement by using
a caliper width of 0.10; the results were compared with matching
by using a caliper width of 0.25 without replacement (Supple-
mental Material). For matching, we used the MatchIt package in
R (33, 34).

ASSESSMENT OF BALANCE ACHIEVED BY THE PS
MODEL

The aim of a PS method is to control for confounding by
balancing covariates between treatment groups. Therefore, the PS
model should be assessed on the basis of its performance in
creating balance on covariates and not on how well the PS model
discriminates between treated and untreated patients—that is,
whether the treatment process is correctly modeled (15) or
whether the eventual treatment effect estimates are larger or
smaller than expected (10, 15, 35, 36). PS model fitting can be
an iterative process where the PS model is updated by including
different covariates, interactions, or higher-order terms until an
acceptable balance on covariates is achieved (10).

In the literature, different balance measures have been pro-
posed. The absolute standardized difference is more robust in
terms of covariate distributions and sample size requirements
than are other balance metrics, such as overlapping coefficients
(8, 17, 37). It is also a well-understood and easy to calculate

statistical tool and is therefore recommended for checking and
reporting covariate balances in PS methods (8, 17, 37–40).
However, the absolute standardized difference has to be calcu-
lated for each covariate, square, or interaction term separately,
and there is no consensus on how to pool the covariate-specific
standardized differences. Nonetheless, the absolute standardized
difference averaged over covariates or square or interaction
terms performed better in terms of achieving covariate balance
(8, 17, 37, 41). The covariate-specific absolute standardized
difference helps to identify the variable that is still imbalanced
and to modify the PS model with square and interaction terms of
the variable to improve its balance. Alternatively, the absolute
standardized difference can be used in combination with a post-
matching c-statistic to evaluate balance on all covariates simul-
taneously (8, 41). Although there exists no universal threshold
below which the level of imbalance is always acceptable (42), the
use of arbitrary cut-offs for balance diagnostics (e.g., ,10% for
the absolute standardized difference) is prevalent in the medical
literature (8).

The use of graphical methods, such as quintile-quintile
plots, side-by-side (weighted) box plots, plots of standardized
differences of means, and empirical density plots for com-
paring the distribution of continuous baseline covariates, can
provide a quick overview of whether balance has improved for
individual covariates (39, 40). Importantly, examining the
distribution of PS by using histograms or density plots fa-
cilitates subjective judgment on whether there is sufficient
overlap between the 2 PS distributions, commonly called “the
common support.” It can also guide the choice of matching
algorithms in PS matching (43). For example, when the
overlap in the PS is not substantial, meaning that treated and
untreated patients are somewhat different, matching with
replacement can be a better option because it will be difficult
to find sufficient numbers of untreated matches for the treated
patients. When the overlap is too limited, investigators should
be aware that the data set, no matter how large, could not
support any causal conclusion about the effect of the treat-
ment (1, 42, 44).

In our example, there seems to be sufficient overlap, also
known as “common support,” in the densities of the PSs (Figure 2),
which indicates that we can proceed with PS analysis to estimate

FIGURE 1 Causal diagrams (A–E) depicting different associations between treatment (“A”), outcome (“Y”), confounding variables (“X”), risk factors of
the outcome (“R”), instrumental variables (“IV”), intermediate variables (“I”), and common effects that are also called colliders (“C”).
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treatment effect. Note that sufficient overlap in the PS distri-
butions does not mean sufficient balance on individual co-
variates. The PS density plots before and after matching are
plotted in Figure 3. The PS density plots are more similar be-
tween the treated and the untreated groups after matching than
before matching.

Table 2 shows the balance of covariates after matching on
the PS. There is substantial improvement in the balance of co-
variates in terms of the absolute standardized difference, which
is 13.29% at most. The commonly used cut-off for the absolute
standardized difference to indicate acceptable balance is 10%
(i.e., a standardized difference ,10% is considered a good
balance) (8, 35). Figure 4 shows the percentage change in the
absolute standardized difference before and after matching
graphically.

Hypothesis-testing statistics, goodness-of-fit tests (e.g.,
Hosmer-Lemeshow goodness-of-fit test), as well as discrim-
ination tests of a model (c-statistics or the area under the
receiver operating characteristics curve of the PS model)
should not be used to decide whether the PS model is correctly
specified (44, 46). Nevertheless, these are commonly reported
in PS-based articles (6–8). Hypothesis tests, such as t tests, are
functions of both balance and power (i.e., sample size) and,
unlike the absolute standardized difference, such tests are not
property of a particular sample but they refer to a hypotheti-
cal “super-population.” Hence, they should not be used as
stopping rules for maximizing balance (42). In PS matching,
for example, nonsignificant P value in a matched sample
compared with the original unmatched population might be

considered as an indicator of “improved balance.” However,
the nonsignificant P value could be due to a reduced power
(sample size) as a result of excluding unmatched subjects,
whereas the actual balance may improve, remain the same, or
even get worse (39, 42). Similarly, goodness-of-fit tests and
discrimination tests of the model neither give an indication of
whether an important confounding variable has been omitted
from the PS model (45, 46) nor are they related to the degree
of covariate balance after conditioning on the PS (1). For
example, one can improve the c-statistic of a model by in-
cluding instrumental variables that might, on the other hand,
result in amplification of residual bias due to unmeasured
confounding (i.e., exacerbating the imbalance of unmeasured
confounders) and reduce the overlap in PS distributions,
thereby decreasing the precision of the treatment effect estimate
(20, 23, 39, 40).

All balance metrics should be calculated in a way that is
similar to how the outcome analysis will be conducted: be-
tween matched groups when using PS matching, within strata
of the PS when using stratification on the PS, and between
treated and untreated patients in the weighted population
when using IPTW. When regression adjustment using the PS
is used, balance could be assessed by using the standard-
ized difference on the logit of the PS or variance ratios of
the residuals of the covariate after adjusting for the logit of
the PS (47).

Decisions on whether a PS model has improved covariate
balance should be made only on the basis of an examination of
patient characteristicsmeasured before any consideration of outcome

FIGURE 2 Propensity score density plots in treated and untreated patients.
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measures (47). Balance metrics evaluate the balance of measured
covariates only; they do not indicate the balance of unmeasured

covariates. The only way to assess whether unmeasured character-

istics are balanced is to collect data on as many characteristics as

possible by including “proxies” for unmeasured factors and to ex-

amine the balance on measured covariates to which they are related.

ESTIMATION AND INTERPRETATION OF TREATMENT
EFFECTS

Different treatment effects can be identified, but the average
treatment effect (ATE) in the population and the average treatment
effect in the treated subjects (ATT) are of primary interest. ATE
refers to the treatment effect if everyone is treated compared with if

TABLE 2

Baseline characteristics of the hypothetical data after matching on the propensity score without replacement1

Characteristics

ONS episodes

(n = 672)

Non-ONS episodes

(n = 672)

Absolute standardized

difference, %

Improvement in

balance, %

X1 = Female, % 53.87 52.23 3.29 78.66

X2 = Congestive heart failure, % 25.30 24.26 2.39 90.80

X3 = Myocardial infarction, % 12.20 12.80 1.82 85.28

X4 = Admitted previous 6 mo, % 41.52 42.86 2.71 91.65

X5 = Admitted from ED, % 58.04 54.32 7.53 65.29

X6 = Diabetes with complications, % 4.32 4.61 1.44 64.72

X7 = Cancer, % 6.99 8.04 4.09 71.45

X8 = Renal disease, % 12.50 12.65 0.45 96.44

X9 = Age, y 65.66 64.56 13.29 87.59

X10 = Mean Charlson comorbidity index score2 3.78 3.74 1.31 96.82

X11 = Race, %

Black 17.11 14.58 6.93 266.19

Hispanic 6.40 8.04 6.70 269.24

White 76.49 75.45 2.45 280.20

1ED, emergency department; ONS, oral nutritional supplementation.
2Charlson comorbidity index score was assumed to have a g distribution with shape parameter 1 and scale parameter 0.5.

FIGURE 3 Histograms of propensity scores in treated groups before (A) and after (B) matching and in the untreated group before (C) and after (D) matching.
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everyone is untreated, and ATT refers to the average gain from
treatment of those who were actually treated (32).

Matching by using the PS

Once PS matching creates an acceptable balance on important
covariates and interactions or square terms by design, causal
treatment effects can be estimated by direct comparison of
outcomes between matched groups by using differences in means
or proportions without the need to rely on parametric models (3,
47). In this case, the analysis is similar to that of an RCT.

PS matching often focuses on estimating the ATT (32), not the
ATE, because the closest untreated matches are selected for
treated patients, and unmatched patients are often excluded from
the analysis. When there is limited overlap in the PS distribution
between treatment groups, treated and untreated patients in the
extremes of the PS distributions (i.e., the nonoverlapping regions)
should be excluded because one cannot infer treatment effects in
this region without extensive extrapolation. It is important to note
that the exclusion of unmatched patients from the analysis not
only affects the precision of the effect estimate but also could
have consequences for the generalizability of the findings, even
for the ATT. For example, the exclusion of untreated subjects due
to a lack of close matches changes the estimate from ATT to the
ATE in the treated patients for whom we can find untreated
matches (32). One can also estimate the ATE in the sample with
modifications of the matching algorithms. For example, full
matching, which uses all patients for analysis, can estimate either
the ATT or the ATE (35, 36). Although matching, in general,
discards some data (i.e., unmatched patients), it can actually
increase the efficiency of treatment effect estimates (48, 49).

In our example data, we used 1:1 nearest-neighbor matching
without replacement; the matched data comprised treated patients
for whom untreated matches were found and their untreated

matches. Among a patient population of 44,000 (non-ONS use =
43,325, ONS use = 675), 672 of the treated patients were matched
to 672 untreated patients. For 3 of the treated patients, there were
no untreated matches; hence, the treatment effect we estimated
was the ATT for whom we found untreated matches. The un-
adjusted analysis resulted in a mean difference of 21.89 d (95%
CI: 21.97, 21.80 d), which was biased compared with the PS-
matched analysis, and ONS use lowered the LOS by 2.38 d (95%
CI: 22.50, 22.26 d) (Table 3).

Stratification using the PS

Within the strata formed by the PS, measured covariates are
assumed to be balanced between treatment groups; hence, the
treatment effect can be estimated by direct comparison of out-
comes between treated and untreated patients (2, 14). The
stratum-specific treatment effects can then be aggregated across
subclasses to obtain an overall measure of treatment effect (2).
It can estimate either the stratum-specific or overall ATT or
ATE depending on how the subclass estimates are weighted.
Weighting stratum-specific estimates by the proportion of treated
subjects in each stratum provides ATT, whereas weighting by the
total number of subjects in each stratum yields the ATE (50).
Similarly, pooling stratum-specific variances provides pooled es-
timates of the variance for the pooled ATT or ATE estimate.
Pooling the stratum-specific treatment effect is straightforward
when there is a homogeneous treatment effect among the PS strata.
When there is heterogeneity of treatment effect among the PS
strata, pooling the stratum-specific treatment effect complicates
the interpretation of the treatment effect. Alternatively, the quin-
tiles and deciles of the PS can be used as a categorical variable in a
model-based adjustment to estimate treatment effects (10). Similar
to PS matching, stratification using the PS relies less on parametric
models. By using model-based adjustment on the quintiles and

FIGURE 4 Absolute standardized difference plot before matching (all data) and after matching (matched data) for the covariates listed on the y axis. The
dotted vertical line indicates a commonly used cutoff for absolute standardized difference (10%), which means that a covariate balance ,10% in absolute
standardized difference is considered acceptable. Adm.ED, admitted from emergency department; Adm.6Mon, admitted previous 6 mo; Charl.CIS, Charlson
comorbidity index score; CHF, congestive heart failure; Diabetes, diabetes with complications; MI, myocardial infarction; Race.Hisp, Hispanic; Renal.Dis,
renal disease.
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deciles of the PS (i.e., using the quintiles and deciles of the PS as
a categorical variable) in the regression model, ONS use lowered
the LOS by 2.29 d (95% CI:22.37,22.21d) and 2.34 d (95% CI:
22.42, 22.26 d), respectively.

Regression adjustment using the PS

To control for confounding, one can also include the PS, in
addition to the treatment variable, as a covariate in a regression
model (i.e., the outcome variable is regressed on the treatment
variable and the estimated PS). Although covariate adjustment
using the PS is easy to apply, it is considered to be a suboptimal
application of the PS for $3 reasons. First, treatment effect
estimation is highly model-dependent because it mixes the study
design and data analysis steps, hence it requires correct speci-
fication of the PS model (15, 16). Second, it makes additional
assumptions unique to regression adjustment, namely that the
relation between the outcome and the estimated PS must be
linear and that there should be no interaction between treatment
and the PS (2, 5, 47). Third, although it generally allows esti-
mation of the ATE, the interpretation is complicated in the case
of noncontinuous outcomes where the estimate of interest is
noncollapsible. Noncollapsibility refers to a phenomenon in
which, in the presence of a non-null treatment effect, the
(overall) marginal treatment effect estimate is different from the
(stratum-specific) conditional treatment effect estimate, even in
the absence of confounding (e.g., OR or HR) (9, 24, 25).

When the PS is used as a covariate in a regression model, the
ATE and ONS use was associated with a 2.40-d decrease in LOS
(95% CI: 22.49, 22.32 d). There was no significant interaction
between treatment and the PS.

IPTW by using the PS

IPTW, like PS matching and stratification, can be viewed as
a method involving pre-processing the data by using weights to
create an “artificial” population, called a “pseudo-population,”
in which treatment is independent of measured covariates (30,
31). As a consequence, one can estimate the treatment effect by
direct comparison of outcomes between treated and untreated

patients. Alternatively, the weights can be used in weighted re-
gression models to estimate the treatment effect. Although this
method focuses on estimating the average effect in the pop-
ulation (ATE), modification of the weights allows us to estimate
the ATT (51). Most important, the variance estimation should
take into account the weighted nature of the pseudo-population:
for example, by using the sample weights in robust variance
estimation (52), or bootstrapping. The downside of this approach
is that when some patients have probabilities receiving the treat-
ment close to 0 or 1, the weights for such patients become un-
stable. To address this problem, stabilizing the weights has been
proposed to “normalize” the range of the inverse probabilities
and to increase the efficiency of the analysis (30, 31, 53).

In IPTW, weights are assigned to treated or untreated patients
as the inverse of the probability of receiving their own treatment:
1/PS for treated patients and 1/(1 – PS) for untreated patients. In
the example data, the mean, median, and range of the weights
were 1.89, 1.01, and 1.0–706.3, respectively, without stabiliza-
tion. The IPTWs were stabilized by replacing the “1” in the
numerator of the weight by the proportion of ONS and non-ONS
episodes in the treated and untreated populations, respectively.
Accordingly, the mean, median, and range of the stabilized
weights were 1.0, 0.99, and 0.02–10.8, respectively. In this
particular example, the weight stabilization did not affect the
treatment effect. ONS was associated with a 2.37-d (95% CI:
22.50, 22.24 d) decrease in LOS by using both unstabilized
and stabilized IPTW.

All of the above PS methods have their own advantages and
limitations. Table 4 describes and compares the 4 different PS
methods in terms of their use at the design or analysis stage,
covariate balance assessment, model dependence, and the treat-
ment effect they can estimate and its interpretation.

REPORTING OF PS ANALYSIS

PS methods are invaluable tools in observational studies. How-
ever, like regression analysis, the quality of the results obtained
from PS analysis depends on appropriate conduct using the
consecutive steps. For a critical appraisal of a PS-based study,
the reader has to rely on the information provided. Despite
substantial developments and common applications of PS
methods, reporting of aspects of the PS analysis is generally
poor and inconsistent in the medical literature (7, 8, 54). This
could be, in part, due to a lack of standards for conduct as well as
reporting of PS methods in guidelines on the reporting of ob-
servational studies, such as the STROBE (Strengthening the
Reporting of Observational Studies in Epidemiology) statement
(55, 56). Details on important aspects of PS analysis that should
be reported are included in Figure 5 (8).

STRENGTHS AND LIMITATIONS OF PS METHODS

PS methods are primarily aimed balancing treatment groups
with respect to covariate distributions; when such balance is
achieved, it is relatively easy to detect and communicate (15) by
using simple statistics or plots. Similarly, PS methods, unlike
regression methods, can also warn investigators that, due to
inadequate overlap in covariate distributions (i.e., poor “common
support”) between treatment groups, a particular data set cannot
address the causal question without relying on untrustworthy

TABLE 3

Association between ONS use and hospital length of stay by using linear

regression and different PS methods1

Methods Mean difference (95% CI)2

Crude 21.89 (21.97, 21.80)

Conventional linear regression 22.41 (22.49, 22.33)

PS matching 22.38 (22.50, 22.26)

Stratification3

Quintiles of PS 22.29 (22.37, 22.21)

Deciles of PS 22.34 (22.42, 22.26)

Covariate adjustment using PS 22.40 (22.49, 22.32)

IPTW

Unstabilized 22.37 (22.50, 22.24)

Stabilized 22.37 (22.50, 22.24)

1True mean difference = 22.32. IPTW, inverse probability of treatment

weighting; ONS, oral nutritional supplementation; PS, propensity score.
2Mean difference is the difference in the hospital length of stay in days.
3Model-based adjustment by using quintiles and deciles of the PS as

a categorical variable.
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“model-dependent” extrapolations (15, 16, 43). The investigator
might opt for restricting the conclusion or the inference to the
group of patients sufficiently represented in both treatment groups
by using methods such as nearest-neighbor matching with caliper
widths that will result in excluding patients in the nonoverlapping
regions of the PS. In this case, the treatment effect estimate will
be the ATT for whom we found untreated matches.

Like randomized experiments, PS matching allows for de-
signing a study separate from the analysis part of the study (i.e.,
first, covariate balance can be achieved by using PS matching
without using the outcome variable, and then treatment effect is
estimated in the matched data without relying much on as-
sumptions underlying the outcome model, such as correct model
misspecification). Hence, causal inference can be made with
minimal model-dependence (5, 15, 16, 57). It is important to note
that if nonparametric preprocessing of the data using PSmatching
results in no reduction in model dependence, it is likely that the
data contain little information to reliably support the causal
inference by any other method. Obviously, this knowledge in
itself would still be useful information and the conclusion may be
correct (15, 57).

PSmethods also provide an efficient way to control for covariates
or potential confounding variables when the number of outcome
events is limited compared with the number of covariates, thereby
minimizing the “curse of high dimensionality” in the data because
the PS as a single covariate summarizes the covariates included
in the PS model (5, 10, 43, 57). In fact, previous studies sug-
gest that $10 outcome events are required for every covariate
included in a regression model (58–60). Hence, reducing
a large number of confounders into a single PS can be bene-
ficial in case of a limited number of observations available for
analysis.

Given the widespread applications of PS methods for
addressing causal questions using observational studies, it is
crucial to keep in mind that PS methods, like other regression
methods, can only control for measured confounding variables
and not for unmeasured ones (5, 10). As a result, PS analysis can
only be as good as the quality and the completeness of potential
confounding variables that are at the disposal of the researcher.
Only a rich set of covariates may convince a critical reader that
no unmeasured confounding variables were missed. Therefore,
it is important that investigators provide a detailed account of

TABLE 4

Comparison of the different PS methods and their advantages and disadvantages1

Method Description Advantages Disadvantages

PS matching Constructs treated and untreated

matched groups with similar PSs

Straightforward and easy to apply No consensus on variance estimations

Primarily estimates ATT, but ATE can

also be estimated with slight

modifications

Minimizes model dependence Interpretations can be complicated,

particularly when some observations are

excluded

Separates the study design and data

analysis stage of a study

Easy to check improvements on covariate

balance

PS stratification Constructs strata of treated and

untreated subjects with closer PSs

Straightforward and easy to apply Interpretations can be complicated,

particularly in the presence of treatment

effect modification by the PSCan estimate ATT or ATE

Separates the study design and data

analysis stage of a study

Residual confounding depending on the

number of strata used

Minimizes model dependence

Balance assessment can be laborious

compared with PS matching

Easy to check improvements on covariate

balance

Regression adjustment

using PS

PS is used as a single summary of all

covariates (included in PS model) in

regression model

Straightforward and easy to apply even

compared with all other PS methods

Checking improvements on covariate balance

is not straightforward

Estimates ATE

Requires correct specification of PS model

Mixes up the design and analysis stages of

a study and focuses more on the analysis

stage than the design stage

Relies on the assumption of linear relations

between the PS and outcome

Interpretations could be complicated when

noncollapsible effect measures such as

ORs are used

Extrapolates even when there is no positivity2

Inverse probability of

treatment weighting

using PS

PSs are used as weights to create

a pseudo-population in which exposure

becomes independent of measured

covariates included in the treatment

(PS) model

Easy to apply Focuses more on the analysis stage than the

design stage

Can estimate ATT or ATE

Extends to time-varying treatment and

confounding setting Requires correct specification of PS and

outcome model

Sensitive to observations with extreme

weights and nonpositivity

Slightly complicated compared with

stratification and regression adjustment

using PS

1ATE, average treatment effect; ATT, average treatment effect in the treated patients; PS, propensity score.
2Positivity requires that there be both treated and untreated patients at every combination of the values of the measured confounder or confounders in the

population under study.
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the variables collected and included in the PS model. Fur-
thermore, sensitivity analyses (5, 11, 48) are invaluable tools
to assess the plausibility of the assumptions underlying the
PS methods and how violations of them might affect the
conclusions (61).

An additional limitation of PS methods is that they work better in
large samples (43) because the distributional balance achieved on
measured covariates is an expected balance. As a result, in smaller
studies, an imbalance of covariates is inevitable even if the PSmodel
is correctly specified, whichever PS method is used. As a conse-
quence, investigators attempting to answer causal questions with the
use of observational studies should explore large data sets with
reasonable qualities.

CONCLUSIONS

In conclusion, PS methods are invaluable tools for estimating
treatment effects from observational data in a transparent way.
They should neither be regarded as a “panacea for the deficiencies

of observational studies nor as replacement for model-based ad-
justments, but as critical tools contributing to their initial designs”
(15), and they could be used in combination with model-based
adjustment methods to minimize model-dependence. Taking full
advantage of the methods requires, in addition to the initial study
design, the detailed specification of all statistical analyses to be
performed. In addition, adequate reporting of different aspects of
the PS analysis is as crucial as the analysis itself because readers
depend on the information reported to judge the quality of the
analysis and validity of the results, as do other investigators who
would want to replicate the study.
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