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Abstract

According to musicological studies on oral transmission,
repeated patterns are considered important for determining
musical similarity in folk songs. In this paper, we study the
relevance of repeated patterns for modelling similarity and
compression in a retrieval setting. Using a dataset of 360
Dutch folk songs, we compare the classification accuracy of
both humanly annotated patterns and automatically retrieved
patterns by means of a pattern discovery algorithm. A frame-
work is proposed to use these patterns for compression and
classification in tune families. The annotated patterns allow
us to compress the songs by 60% at the expense of a 3 per-
centage points decrease in classification accuracy. However,
none of the automatic pattern discovery algorithms is able to
reach a similar combination of compression ratio and retrieval
accuracy. We conclude that repeated patterns are relevant for
similarity estimation and compression, but that the state of the
art in automatic pattern discovery cannot compete with expert
annotations in this retrieval setting.

Keywords: melodic similarity, repeated patterns, compres-
sion, folk songs, tune families

1. Introduction

This paper investigates the role of repeated patterns for
establishing similarity between related folk songs. Similarity
is a fundamental concept in the area of Music Information
Retrieval (MIR), which researches methods to organize dig-
itized music collections using music similarity, in order to
facilitate the retrieval of musical pieces from a large collection
that are similar to a given query. Similarity is also a central
concept in Cognitive Science, which has introduced several
formalized models for the human assessment of similarity
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(Goldstone & Son, 2005). However, there exists no com-
prehensive approach to similarity in the domain of music,
which poses serious challenges for the modelling of music
similarity in MIR. Musicological and cognitive studies sug-
gest that repeated musical patterns that are transformed up to a
certain extent, yet not beyond recognition, are essential for the
human assessment of music similarity (Volk, De Haas, & Van
Kranenburg, 2012). Folk music provides a specifically inter-
esting case study of the relationship between musical patterns
and similarity. Since this music evolved through oral trans-
mission (Karpeles, 1968), variation to the musical material is
introduced in this process. In ethnomusicology, folk songs that
are supposed to have a common ‘ancestor’ in the line of oral
transmission are grouped into a tune family (Bayard, 1950),
which contains similar songs. Cowdery (1984) considers the
detection of shared musical patterns between songs as an
important criterion for determining tune families.

We study the relation between folk song similarity and the
existence of shared musical patterns in songs belonging to the
same tune family in a computational manner. More specifi-
cally, we focus on similarity relations in a collection of Dutch
folk songs of the Meertens Tune Collections.1 The songs in
this collection have been classified by musicological experts
into tune families. Since the historical origin of the songs is
not known from documentary evidence, the experts relied in
the classification process on the perceived musical similarity
of the songs, taking a holistic and intuitive approach to assess
the similarity between songs. If the similarity between songs
was considered high enough to assume a genetic relationship,
these songs were placed into the same tune family. No sys-
tematic approach has been developed regarding what musical
dimensions contribute to this perceived musical similarity

1http://www.liederenbank.nl/mtc, accessed 14 October 2015.
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(Volk & Van Kranenburg, 2012). For understanding these
underlying dimensions, Volk and Van Kranenburg (2012) car-
ried out an annotation study with the experts, revealing that
melodic contour, rhythm, lyrics and motifs are important
ingredients for the similarity between the songs. From a
numerical evaluation of 360 songs, it appeared that motifs
were the most decisive factor for the establishment of similar-
ity between these songs. The experts were asked subsequently
to annotate the motifs they considered important for the tune
family classification. This process resulted in two datasets, the
first being a collection of 360 songs divided into 26 tune fam-
ilies as previously used by Volk and Van Kranenburg (2012).
This set is called the Annotated Corpus (MTC-ANN, Volk &
Van Kranenburg, 2012; Van Kranenburg, de Bruin, Grijp, &
Wiering, 2014). The second dataset contains the characteristic
motifs for these 360 songs as annotated by the musicological
experts, called the Annotated Motifs. An example of two such
motifs can be seen in Figure 1. The motifs have been annotated
in a post hoc manner, hence after the classification of the songs
into tune families, in order to elucidate the underlying similar-
ity relations of songs belonging to the same tune family. We
therefore want to computationally verify the intuition of the
musicologists that the annotated motifs from MTC-ANN are
characteristic enough to successfully group these folk songs
into tune families.

The musicologists defined a motif as a short fragment of a
song that also occurs in other songs of the same tune family.
Hence, a motif is characteristic of a particular tune family
such that it serves as a basic cue to detect the relation between
the melodies (Volk & Van Kranenburg, 2012). As Figure 1
illustrates, the corresponding repetitions in the motifs are pri-
marily located in the melodic and rhythmic dimensions, while
slight variations between the occurrences are possible. The
average length of a motif in the set of Annotated Motifs is
four notes. In this context, a motif is defined by its repeating
character, hence we can generalize a motif to a pattern that
repeats. The only difference between a motif and a pattern is
that a motif is characteristic of a particular tune family, which
is not necessarily the case for a pattern. From a computational
point of view, the experts’ annotation approach is therefore
related to the process of automatically finding characteris-
tic repeated patterns between songs. Over the past decades,
many pattern discovery algorithms have been developed that
aim to find perceptually important patterns: repetitions that
are noticeable by a human listener and therefore considered

important, mainly in the dimensions of melody and rhythm.
Based on the insights provided by Cowdery (1984) and Volk
and Van Kranenburg (2012) that motifs or repeated patterns
are important for tune family classification, we also study
the effect of automatically discovered patterns as a means
to classify folk songs.

Sequential alignment algorithms have been proven
successful for the classification of folk songs into tune
families (Hillewaere, Manderick, Conklin, & Ehu, 2012; Van
Kranenburg, Volk, & Wiering, 2013). Despite the fact that
motifs tend to play a major role in the human assessment
of folk song similarity, the use of these patterns in compu-
tational settings for tune family classification has not been
studied extensively. Therefore, we use annotated or automat-
ically discovered patterns for the classification. Because of
the considered importance of these motifs by musicological
experts, we assume that repeated patterns are more stable in
the light of oral transmission than non-repeating parts. We
therefore expect that these stable segments contain enough
characteristic information to successfully classify songs into
the right tune families.

By removing all non-distinctive parts from a song, we con-
struct a sparse melody of that song, which contains only those
notes that are contained in a repeated pattern. The sparse
melody is therefore a compressed representation of the orig-
inal song and is constructed from the discovered repeated
patterns. To test whether these patterns contain enough dis-
tinctive information with respect to the original tune family,
we use the compressed songs in a retrieval setting. This way,
the quality of the repeated patterns can be measured by the
retrieval accuracy of the tune family classification of folk
songs. We assume that the compressed representations contain
enough information for a successful classification. Therefore,
we test whether the retrieval accuracy for the MTC-ANN
folk song dataset is not influenced to a great extent when we
use compressed songs instead of the original songs for the
classification task. In a research field where more and more
data becomes available, compression becomes increasingly
important for processing large music collections without com-
putational and retrieval performance loss. Repeated patterns
can be useful to reduce the amount of information needed for
retrieval in a preprocessing step. Hence, we classify folk songs
based on their compressed representation to study the rele-
vance of repeated patterns for modelling similarity between
folk songs.

Fig. 1. Two excerpts of folk songs from MTC-ANN, both from the tune family ‘Daar was een koopman rijk en machtig’. Two annotated
repetitions from the Annotated Motifs are visualized.
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1.1 Contribution

In this paper, we study the relevance of repeated patterns
in folk songs for similarity estimation and compression in
a retrieval setting. We compare patterns extracted by
musicological experts to patterns extracted from a symbolic
encoding of the folk songs employing six state-of-the-art pat-
tern discovery algorithms, by using them as a means to com-
press a song. We show that annotated patterns allow one to
compress the songs by 60% at the expense of a 3 percentage
points decrease in tune family classification accuracy. How-
ever, none of the automatic pattern discovery algorithms is
able to reach a similar combination of compression ratio and
retrieval accuracy. These results are placed into context by
discussing biases towards the selected discovery algorithms,
sparse melody construction, datasets, similarity calculation,
and naive retrieval baselines. We conclude that repeated pat-
terns are relevant for similarity estimation and compression,
but that the state of the art in automatic pattern discovery
cannot compete with expert annotations in this retrieval
setting.

The remainder of this paper is structured as follows:
Section 2 contains the relevant related work. In Section 3, the
notation used in the subsequent sections is discussed. Section 4
describes the framework we developed for using patterns for
compression and classification. In Section 5, the experiments
and results are explained. The results are discussed in Section
6 and in Section 7 our conclusions are given.

2. Related work

The role of repeated patterns for establishing music simi-
larity has been studied elaborately in music cognition and
computational research. According to cognitive studies about
the assessment of similarity in music that contains repeated
patterns, both novice and expert listeners appeared to be able
to cluster these patterns into groups (Mélen & Wachsmann,
2001; Ziv & Eitan, 2007). This outcome confirms the rel-
evance of repeated patterns from the cognitive perspective.
For the specific case of capturing the variations introduced
through oral transmission, both theoretical studies and com-
putational approaches have investigated the role of repeated
patterns (Bayard, 1950; Conklin & Anagnostopoulou, 2001;
Cowdery, 1984; Van Kranenburg et al., 2013; Wiora, 1941).
Moreover, automatically discovered patterns have been used
for the classification of songs in musical genres (Karydis,
Nanopoulos, & Manolopoulos, 2006; Lin, Liu, Wu, & Chen,
2004), geographic origin (Conklin, 2009) and tune families
(Van Kranenburg, Volk, & Wiering, 2012).

Most pattern discovery algorithms to date aim to find per-
ceptually meaningful repetitions in either a single song or
across multiple songs. For the remainder of this paper, we call
finding repetitions in a single song Song Pattern Discovery
and finding repetitions across multiple songs Tune Family

Pattern Discovery.2 We refer the reader to Janssen et al. (2013)
for a recent overview of pattern discovery algorithms. Since
2014, the yearly MIREX task on the Discovery of Repeated
Themes and Sections helps in evaluating the output of such
algorithms and makes it possible to compare them. The output
is evaluated against a ground truth consisting of pattern anno-
tations from five (classical) pieces (Collins, 2014a). Metrics
are introduced to evaluate the output, which are extensions of
the default precision, recall and F1 score metrics (Manning,
Raghavan, & Schütze, 2009).

The use of repeated patterns for compression allows us to
evaluate the output of a pattern discovery algorithm differ-
ently, namely by measuring how well the discovered patterns
are suitable for the classification of folk songs into tune fam-
ilies using compression. By doing so, we test the relevance
of the discovered patterns within a specific task, instead of
comparing the patterns to an annotated ground truth. This
approach has also been suggested by Meredith (2015), propos-
ing a classification method that combines pattern discovery
and compression. Different point-set compression algorithms
(pattern discovery algorithms that treat a musical piece as a
set of points in a multidimensional space) are compared in
the context of folk song classification. The similarity between
the folk songs is determined by calculating the Normalized
Compression Distance (Li, Chen, Li, Ma, & Vitanyi, 2004)
between each pair of songs. These pattern discovery algo-
rithms, which are also compression algorithms by design, per-
form reasonably well on classification. However, the resulting
accuracy is not as good as aligning and comparing folk songs at
the note-to-note level. With the 360 songs of MTC-ANN, Van
Kranenburg et al. (2013) achieved a classification accuracy of
99% using Note to Note Alignment.

Where Meredith (2015) solely uses pattern discovery to
calculate the compression distance, our approach uses melodic
information of the compressed songs to determine the similar-
ity between the songs. Moreover, we search for repeated pat-
terns between all songs belonging to one tune family instead of
between all pairs of songs. On top of that, this study focuses on
the comparison between annotated patterns and automatically
retrieved patterns from a wide range of algorithms, whereas
the work of Meredith (2015) specifically aims at comparing
the performance of point-set compression algorithms.

3. Preliminaries

Let D = {s1, s2, ..., sN } be a folk song dataset, consisting of
N songs. A function T (s) : s → t returns the tune family of
a song s. The set F represents the collection of tune families
present in D, such that ∀s ∈ D : T (s) ∈ F . The set Ft = {s |
s ∈ D ∧ T (s) = t} contains all songs s that are all labelled
with tune family t .

Two songs u and v belong to the same family if T (u) =
T (v). The length of a song (i.e. the number of notes) is

2In most literature, these two discovery approaches are referred to
as intra opus and inter opus pattern discovery.
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denoted by |s|, whereas the size of the dataset is written as |D|.
Analogous, |F | represents the total number of tune families
in the dataset.

A pattern discovery algorithm returns a set of patterns P ,
given either a single song or a set of songs. This can be written
as a function Psong : s → P that extracts a set of patterns Ps

from a single song s and a function P f amily : {s ∈ D} → P
that returns a set of patterns Ps found in a set of songs. In the
case of Tune Family Pattern Discovery, the latter function can
be defined as P f amily : Ft → P for a particular tune family t .
Here, P contains patterns that occur in songs of the same tune
family. Each pattern p ∈ P consists of a set of occurrences,
denoted by Op.

4. Method

We assess the relevance of repeated patterns by measuring the
classification accuracy on the compressed songs. For this, we
extract patterns from a song, compress them based on these
patterns, calculate the similarity between the pieces in the
dataset and perform the classification. If repeated patterns are
indeed important for the classification of folk songs into tune
families, the classification of these compressed songs will give
comparable results, compared to the classification accuracy on
the uncompressed songs. Our testing framework is outlined
in Figure 2 and needs a dataset of folk songs as input, as
described in Section 4.1. Then, four steps are performed:

Pattern Discovery This incorporates the extraction of
repeated patterns from each song in the dataset, either
by Song Pattern Discovery or Tune Family Pattern
Discovery. The output of this step contains either the
motif annotations by the musicologists or automati-
cally discovered patterns using the output of a pattern
discovery algorithm. The implemented algorithms for
this stage are detailed in Section 4.2.

Sparse Melody Construction This step constructs a sparse
melody for each song in the dataset, based on the pat-
terns retrieved in the previous step. Notes that are not
contained in a discovered pattern will be removed and
therefore not be present in the sparse melody. We can
define the process of compression as the combination
of the pattern discovery step and the sparse melody
construction step. We test for different construction
techniques that are discussed in Section 4.3.

Similarity Calculation The similarity between each pair of
constructed melodies is calculated, in order to classify
the songs into tune families in the next step. Two
different sequence alignment algorithms are used for
this, which are explained in Section 4.4.

Classification In the final step, the actual classification is
performed. Since we know the correct class label
(tune family) of each song, the classification accuracy
can be calculated. The details of the classification
method can be found in Section 4.5.

In the first three steps, different approaches are implemented
in the framework. For example, six different pattern discov-
ery algorithms are compared. This way, we can measure the
impact of a certain choice in each step. We therefore test for
various configurations of methods and corresponding
parameter values. The performance of such configuration is
expressed by two different values: the coverage and accuracy.
The coverage value expresses the measure of compression
of the folk songs after the sparse melody construction step.
The classification accuracy expresses the ratio of correctly
classified songs. In the preceding of this section, each step of
the framework is explained in more detail.

4.1 Dataset

The dataset we used in this research is MTC-ANN, a set of 360
Dutch folk songs divided into 26 tune families. MTC-ANN
stems from the Meertens Tune Collections (Van Kranenburg
et al., 2014) that contains a total number of 4830 Dutch folk
songs in the symbolic Humdrum**kerndata format (Huron,
1997). Of the 360 songs in this dataset, 354 of them have one
or more annotated motifs that were in retrospect important for
the tune family classification. According to the maintainers
of the dataset, the experts who were in charge of the anno-
tation process did not find any motif in the remaining six
songs. On average, there are 3.4 repeated patterns annotated
for each song. We refer to this set of motifs as the Annotated
Motifs. For this study, we use an updated set with annotated
motifs that will be released in version 2.0 of MTC-ANN
(Van Kranenburg, Janssen, & Volk, forthcoming) where some
repetitions are added that had been missed in the original
annotation study. In Figure 1, two excerpts of songs from
MTC-ANN are visualized, together with two annotated repe-
titions.

Fig. 2. Schematic overview of the proposed framework.
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4.2 Pattern discovery

A pattern discovery algorithm returns for each discovered
pattern P a set of pattern occurrences Op. Each occurrence
is described by a set of (onset, pitch) pairs. The algorithms
we test are specifically designed for either the discovery of
patterns within a single song (Song Pattern Discovery) or
pattern discovery across multiple pieces (Tune Family Pattern
Discovery). Apart from the pattern discovery algorithms, the
manual annotation process of characteristic motifs in Volk and
Van Kranenburg (2012) can also be seen as a pattern discovery
method, namely as a Tune Family Pattern Discovery. We
compare six state-of-the-art pattern discovery algorithms:

• SIATEC (Meredith, Lemström, & Wiggins, 2002)
• COSIATEC (Meredith et al., 2002)
• SIARCT-CFP (Collins, Arzt, Flossmann, & Widmer,

2013)
• PatMinr (Lartillot, 2014a)
• MotivesExtractor (Nieto & Farbood, 2014a, 2014b)
• MGDP (Conklin, 2010)

These algorithms differ from each other in underlying music
representation (sequential or symbolic), search domain (Song
or Tune Family Pattern Discovery) and discovery approach.
For all algorithms except MGDP, the original implementation
of the authors was used with slight modifications to support
short musical pieces.

SIATEC (Structural InductionAlgorithm with Translational
Equivalence Classes, Meredith et al., 2002), is a geometric
pattern discovery algorithm that treats a melody as a set of
points in a multidimensional space. It is developed to ret-
urn pairs of repetitions within a single song. These pairs are
grouped into Translational Equivalence Classes, of which pat-
terns are translational equivalent to each other. A drawback of
SIATEC, and also of many other pattern discovery algorithms,
is that they yield a large number of patterns. To limit the
output, Meredith et al. (2002) proposed a compressed variant
of SIATEC, COSIATEC. Based on a number of heuristics, only
the best discovered pattern in the musical piece is selected.
Then, all occurrences of this pattern are removed from the
piece. This process is repeated until no more pattern can be
found. This way, a musical piece can be described by only one
occurrence of each pattern, plus all vectors that translate this
first occurrence to every other occurrence. Due to the removal
step, each note is part of at most one pattern.

Another attempt to limit the output of a pattern discov-
ery algorithm to only relevant patterns was the addition of
a compactness trawler (Collins, Thurlow, Laney, Willis, &
Garthwaite, 2010) to the aforementioned algorithms. This res-
ulted in SIACTTEC and COSIACTTEC. The compactness
trawler rejects patterns that are very sparse (i.e. patterns with
many gaps) and tries to find better patterns inside the patterns
returned by SIATEC or COSIATEC. Another limitation of
these algorithms is that they can only handle exact repeti-
tions of a pattern; small variations would not be detected.

Collins et al. (2013) presented a solution for this with the
algorithm SIARCT-CFP, where a fingerprinting method was
used to categorize inexact pattern occurrences into a single
pattern.

Besides these geometric approaches of finding repeated
patterns, many pattern discovery algorithms use an underlying
sequential representation of music. Here, a musical piece is
described as a sequence of notes rather than a set of mul-
tidimensional vectors. One of such algorithms is PatMinr
(Lartillot, 2014a), which aims at discovering only patterns that
are not subsets of any earlier discovered pattern. On top of that,
Lartillot (2014a) proposes a method to prevent the discovery
of many nearly identical patterns forced by cyclic structures
in the music by explicitly modelling these pattern cyclicities.
PatMinr has participated in the Discovery of Repeated Themes
and Sections MIREX task (Lartillot, 2014b) in 2014.

The MotivesExtractor algorithm by Nieto and Farbood
(2014a) was initially developed for finding patterns in audio
data, but was adapted for symbolic music to participate in the
Discovery of Repeated Themes and Sections MIREX task. The
algorithm makes use of a key invariant self-similarity matrix,
where pattern occurrences will become visual by
diagonal lines in the similarity matrix. By tuning the strict-
ness of the diagonal tracing, this algorithm can also discover
inexact pattern occurrences.

The last algorithm we discuss is the Maximally General and
Distinctive Pattern (MGDP) algorithm by Conklin (2010).
All algorithms mentioned earlier were developed for Song
Pattern Discovery, whereas the MGDP algorithm is specif-
ically designed to find patterns repeating in a collection of
songs. It limits the output size by only returning patterns that
are general in the sense that no other discovered pattern is a
subset of another returned pattern and distinctive with respect
to a second collection of songs, the anti-corpus. By choosing
the anti-corpus as a set of songs that are distinct from the
corpus, only patterns that are characteristic for the corpus will
be returned.

Besides the MGDP algorithm, the number of known pattern
discovery algorithms that find patterns in multiple songs is
very low. To overcome this limitation, we propose a method to
adapt any Song Pattern Discovery algorithm into a Tune Fam-
ily Pattern Discovery algorithm without internal modifications
to the algorithms. To achieve this, all songs of a tune family
are concatenated right before the pattern discovery step in
the framework visualized in Figure 2. Then, the concatenated
song is used as input for the pattern discovery algorithm,
which treats the concatenated piece as a single song. After
the discovery, the songs are split into individual pieces again
and the pattern occurrences are assigned to the right piece.
Pattern occurrences that lie on the boundary of two adjacent
songs in the concatenated piece are discarded. This process is
shown in Figure 3.

This approach allows us to use all five Song Pattern Dis-
covery algorithms also for Tune Family Pattern Discovery.
Due to computational limitations, we discard SIARCT-CFP
for this task. Hence, together with the MGDP algorithm, there
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Fig. 3. Visualization of the procedure for Tune Family Pattern Discovery using algorithms only designed for Song Pattern Discovery, two
patterns are highlighted. All songs in each tune class are concatenated and used as input to the discovery algorithms. After the pattern discovery,
all overlapping patterns (in this example the second and fourth filled pattern) are removed and the concatenated tunes are split into the original
pieces again.

are still five algorithms that can be used to find patterns across
multiple songs. For the Song Pattern Discovery task, MGDP
is the only algorithm that cannot be used. This brings the
number of Song Pattern Discovery algorithms also to five.
The number of times an algorithm runs in each experiment
depends on the discovery task. For Song Pattern Discovery,
the algorithm needs to run |D| times, whereas for the Tune
Family Pattern Discovery task, the algorithm runs |F | times.

4.3 Sparse melody construction

After the pattern discovery step, a set of discovered patterns
is acquired for each song in the dataset. In the sparse melody
construction step, for each song s ∈ D a sparse melody is
constructed in such a way that only notes that are part of a
pattern in Ps will also be part of the constructed melody. This
way, each song is compressed in a lossy way.

Let σ(s) : s → s′ be a general sparse melody construction
function that generates a sparse melody s′ of a song s based on
the set of repeated patterns Ps . In the following, we introduce
three different sparse melody construction approaches used
in the framework. Recall that only one of these methods is
used in each experimental run of the framework. By varying
the construction method, the effect of (high) compression and
gaps in the resulting songs can be made clear. These methods
are also visualized in Figure 4:

Onset Preserved Construction In this construction
method, all notes not belonging to any pattern are
replaced by a rest of the same duration. This way, the
onset of all notes is preserved in the sparse represen-
tation. More formally, the function that constructs the
sparse melody using the patterns of a song s to this
set of notes can be written as σopr (s) = {n | n ∈
s ∧ ∃p ∈ P(∃o ∈ Op(n ∈ o))}.

Gapless Construction Instead of leaving gaps in parts of
the pieces where notes are removed, the notes are
shifted in such a way that the notes will follow each
other directly without any rest in the constructed

melodies. This way, all notes that are present in a
pattern are stitched together without any gaps caused
by the note removal. The same notes are selected as in
the Onset Preserved Construction method. The con-
struction function is also the same as in the previous
method.

First Pattern Occurrence Construction Some pattern dis-
covery algorithms return a massive amount of pat-
terns, eventually causing the two previous strategies
to give less meaningful results. When this is the case,
nearly all notes will be present in one of the returned
patterns, causing the sparse melody to be nearly the
same as the original song. To prevent this, the First
Pattern Occurrence Construction method only uses
the first occurrence of each repeated pattern for the
sparse melody construction, instead of all
occurrences. For the note removal, the same strategy
is used as the Gapless Construction method, omitting
any gaps caused by the note removal. This function
can be written as σ f or (s) = {n | n ∈ s, ∃p ∈ Ps(n ∈
o1, o1 ∈ Op)}, where o1 is the first occurrence of the
set of occurrences Op for a particular pattern p.

As in the previous step, one of these construction methods
can be chosen in an experiment to compress the folk songs
based on the discovered patterns. From the original dataset
D, a set of sparse melodies D′ is created where

D′ = {σ(s) | s ∈ D ∧ |s| > 0} (1)

As a result, D′ only contains the songs from D that are at least
one note long after the sparse melody construction. To describe
the measure of compression after this step, the coverage of a
compressed song is introduced as:

Coverage(s) = |σ(s)|
|s| (2)

In other words, the coverage is defined as the ratio of notes
in the original song that are covered by the generated sparse
melody. Since the compression ratio can be defined in the
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Fig. 4. The resulting pieces after the sparse melody construction procedure from the first piece of (a). From this figure we can see that the
original song length is 22 notes, so the coverage after the construction step is 11/22 = 0.5 for (b) and (c) and 7/22 ≈ 0.32 for (d).

same way as the coverage in Equation 2, the terms coverage
and compression ratio can be used interchangeably. For the
complete dataset, the coverage can be defined as:

Coverage(D, D′) = 1

|D′| ·
⎛
⎝ ∑

{s|s∈D∧σ(s)∈D′}
Coverage(s)

⎞
⎠
(3)

which is the average of the coverage values for all songs in
D′. The songs of which no sparse melody can be constructed
(i.e. |σ(s)| = 0) are not taken into account in the final coverage
value since these songs cannot be correctly classified any
more. This prevents the coverage to be very low in cases where
|D′| is small. The coverage value of the entire dataset is one
of the output values from the framework, as can be seen in
Figure 2.

4.4 Similarity calculation

For the set of sparse melodies D′ we need a measure to deter-
mine how similar two songs are. A distance function d(u, v)

is defined that represents the distance between the songs u
and v. A small distance means a high similarity between the
songs, where a large distance corresponds to two non-similar
musical pieces.

For each pair of songs in D′, this similarity distance
is calculated using a sequence alignment algorithm
(Van Kranenburg, 2010). This method originates from com-
putational biology to find (partial) matches in protein strings.
In the musical domain, musical pieces are transformed into
a sequential representation (e.g. a sequence of pitch values,
intervals, note durations). Then, sequences of two songs are
aligned in such a way that the matching score is maximized.
Pairs of notes that match according to a predefined scor-
ing function result in a positive score, where gaps and mis-
matches will lead to a penalty. The distance between two

songs is then determined by the score of the optimal alignment
configuration.

The reason to use this kind of similarity modelling is that
sequence alignment has been proven to be an effective
similarity measure for monophonic (folk) music (Hillewaere
et al., 2012). Two of such alignment methods are implemented
in the framework, the first one being Note to Note Alignment.
Van Kranenburg et al. (2013) have shown that alignment at
a note to note level is a good similarity measure for tune
family classification of MTC-ANN. They use the Needleman–
Wunsch–Gotoh alignment algorithm (Gotoh,
1982; Needleman & Wunsch, 1970) for calculating the opti-
mal alignment. Van Kranenburg et al. (2013) achieved a clas-
sification accuracy of 0.99 using a sequential representation
of songs with a scoring function that takes into account pitch
band, metric weight (a measure of how important a note is for
the rhythm) and phrase position (the position of a note in the
musical phrase). To reduce the chance of overfitting and to
make the effect of the compression more visible, we use Note
to Note Alignment on pitch intervals only.

As an alternative to Note to Note Alignment, we also eval-
uate melodic similarity using higher level information about
the musical pieces, such as the melodic shape. This approach
has the advantage over Note to Note Alignment that small
variations between tunes are not penalized strongly when the
melodic contour is roughly the same. This concept is used
by Urbano (2013), who developed a global sequence align-
ment algorithm using B-Splines (De Boor, 1972) to model
the melodic shape of a song. This Melodic Shape Alignment
method has been the best-performing approach for the Sym-
bolic Melodic Similarity MIREX task3 over five years (2010–
2014). More specifically, the ShapeH alignment algorithm is
used that treats each pair of three consecutive pitch values as a

3http://www.music-ir.org/mirex/wiki/2015:Symbolic_Melodic_
Similarity, accessed 14 October 2015.

http://www.music-ir.org/mirex/wiki/2015:Symbolic_Melodic_Similarity
http://www.music-ir.org/mirex/wiki/2015:Symbolic_Melodic_Similarity
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curve. The actual alignment is done by matching the directions
(upwards or downwards) of the begin- and endpoints of the
curves.

4.5 Classification

Based on the distances returned by one of the alignment
algorithms described in the previous step, all tunes in D′
are piecewise compared using one of the sequence alignment
methods outlined in the previous section. In the classification
step, each song will be assigned to a tune family based on
these calculated similarity distances. For this, the k-Nearest-
Neighbour classifier (Cover & Hart, 1967) is used. The set
of sparse melodies D′ is divided into two sets: a test set (of
which we want to determine the class labels) and a training
set (of which we know the true class labels). For each piece
in the test set, the distances to all other pieces in the training
set are ranked in such a way that the top k results contain
the k closest (most similar) pieces. Since the class labels of
all songs are known beforehand, each musical piece will be
assigned to the majority class of its k nearest neighbours. We
use leave-one-out cross-validation, which means that in each
run of the classifier the test set contains only one song and
the training set contains all other songs. The cross-validation
process consists of |D| rounds, such that each song in D is
part of the test set once. In our implementation, k = 1, hence
it is sufficient to only look at the closest neighbour NN(s) for
each song s ∈ D′:

NN(s) =
{

u | u ∈ D′ ∧ d(u, s) = min
v∈D′,v 	=s

d(v, s)

}
. (4)

It is possible that there exists more than one closest neigh-
bour when multiple tunes are at an equal minimum distance
from the queried song (i.e. |NN(s)| > 1). In this case, the
majority class of the closest neighbours wins. In the event of
a tie, the class of a randomly selected closest neighbour is
assigned. Since the correct class label of s is known from the
original dataset, it can be immediately checked whether the
classification is correct (i.e. it is a true positive (TP)) or not:

tp(s) =
{

1 if T (s) = T (NN(s))

0 otherwise
(5)

This procedure is repeated for all songs in D′. For each
cross-validation run, another song s ∈ D′ is selected. The
classification accuracy of the constructed dataset D′ can be
calculated as follows:

Accuracy(D, D′) =
∑

s∈D′ TP(s)

|D| (6)

Hence, the classification accuracy is the ratio of songs that is
correctly classified. To prevent an overly optimistic accuracy
score, the number of true positives is divided by |D| instead
of |D′|. This means that all songs s ∈ (D \ D′) (i.e. all songs
in which no pattern is found) are treated as wrongly classified.

After this step, both the coverage and classification accu-
racy are known for the chosen pattern discovery algorithm,
sparse melody construction method and similarity calculation
algorithm.

5. Experiments and results

The framework outlined in the previous section can be used
to extract repeated patterns from a set of songs, compress
these songs based on the discovered patterns, classify the
compressed representations and calculate the classification
accuracy. In this section, we describe a number of experi-
ments to thoroughly understand the role of (automatically)
discovered patterns for the classification of folk songs into
tune families. First, the classification accuracy on the uncom-
pressed songs is retrieved in Section 5.1. This will give us a
baseline of how well the implemented alignment algorithms
perform on the complete songs. In Section 5.2, we introduce a
number of naive compression approaches that are used in the
compression step. These naive methods replace the compres-
sion process using the discovered repeated patterns. This way,
the results of these experiments act as a baseline for the com-
pression using repeated patterns. We call these experiments
the reference experiments. Then, we describe the experiments
where the Annotated Patterns are used for compression and
classification (Section 5.3) and in Section 5.4, the experiments
and results using automatically discovered patterns are put
apart.

5.1 Classification accuracy on uncompressed songs

In this first experiment, we calculate the classification accu-
racy without pattern discovery or sparse melody construction.
To achieve this, both the pattern discovery and the sparse
melody construction step in the framework are skipped. This
results in a coverage of 1.0 since no notes are removed and
hence nothing is compressed. This experiment is run for both
similarity calculation algorithms (Note to NoteAlignment and
Melodic Shape Alignment).

A classification accuracy of 0.93 is achieved using Note to
Note Alignment and 0.87 for Melodic Shape Alignment. Con-
sequently, both alignment algorithms lead to a high classifica-
tion accuracy.Although the differences are small, Note to Note
Alignment performs better than Melodic Shape Alignment.
The classification performance of Note to Note Alignment
is in correspondence with the findings of (Van Kranenburg
et al., 2013) using this alignment approach on pitch interval
sequences.

5.2 Naive compression methods

The compression strategies that are proposed in the sparse
melody construction step all make use of the set of discovered
patterns: notes that do not belong to a pattern are removed
such that a smaller, compressed song is formed. To test the
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stability of repeated patterns after compression, a number of
naive compression methods are proposed as a baseline. As a
result, the sparse melody construction step of the framework is
replaced by one of the naive compression methods explained
below.

5.2.1 Selecting a consecutive subsequence

The sparse melody construction modifies the internal structure
of the songs, which might make it more difficult for an align-
ment algorithm to successfully align the songs. To measure
this effect on the classification of long consecutive sequences,
we perform three different experiments where a predefined
number of consecutive notes are selected in the sparse melody
construction step. This method is based on the observations
of Xia, Huang, Ma, Dannenberg, and Faloutsos (2014), that
the first or last part of a song is already a good feature for
determining similarity. Here, the length n of this section is
variable (in their case, n was 200 for large songs). The three
different approaches are, for each piece in the corpus:

• select only the first n notes;
• select only the last n notes;
• select only the middle n notes.

Here, ‘selecting’ means that these notes are kept and all other
notes are removed.

5.2.2 Random notes selection

As an absolute baseline, we measure the compression and
classification performance of a random selection of notes. In
each piece, a number of notes are randomly selected until
a predefined coverage ratio is reached. All other notes are
removed from the song. The desired coverage ratio, as well
as the length l of each random selection, can be varied. If

one of these notes is already present in another selection, this
selection is rejected and a new random selection of length l
is tried. For each coverage value in the range [0.1, 0.9], we
average the classification accuracy using these notes over 20
samples. The coverage values are chosen with intervals of 0.1
and l = 3.

5.2.3 Random pattern selection

A downside of the previous method is that the note selection is
completely random and does not replicate the effect of patterns
repeating across multiple songs. To solve this, a bit mask is
generated with the length of the largest song in the dataset.
Then, the same random selection as described above is used
to populate the mask with ones, until a predefined coverage
ratio is reached. The mask is then used to select and remove
notes, depending on the values of the mask. This procedure is
the same for each song in the corpus, such that the position of
the selected notes is the same for all pieces. This experiment
is performed 200 times for random coverage values. Since the
coverage is chosen to be random in each run, the coverage
values are binned into intervals of 0.05. The values in each
bin are averaged to get one accuracy value for each coverage
bin.

5.2.4 Results

The results of these naive compression methods on MTC-
ANN and using Note to Note Alignment are presented in
Figure 5. For clarification purposes, the classification accuracy
of the uncompressed songs is represented by a line instead of
a single point. The coverage will be 1.0 for this experiment
since every note is kept in the sparse melody construction step.

The Random Notes selection leads to the lowest accuracy
for all compression methods. We suspect that this is caused
by the fact that this approach creates many small gaps in

Fig. 5. Results of the reference experiments using Note to Note Alignment.
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the songs, which affects the performance of the sequence
alignment algorithm. If these algorithms cannot calculate sen-
sible similarity distances between the songs, the resulting
classification accuracy will also be low. When random patterns
are selected (leading to larger sequences of notes selected),
the accuracy is already much better compared to the Random
Notes selection method.

The selection of the first, middle or last n notes as compres-
sion strategy leads to the highest accuracy. Unlike the Random
Note selection, the accuracy increases fast at low coverage
values. The selection of the last n notes even outperforms
the classification of the complete songs for high values of n,
although the differences are small.

5.3 Similarity using the annotated motifs

In contrast to the naive compression methods explained in
the previous section, we now use the Annotated Motifs as
the output of the pattern discovery step in the framework (see
Figure 2). The sparse melody construction is now driven by the
motifs that are annotated by the musicological experts. This
tests the assumption that these motifs can be used to classify
the folk songs of MTC-ANN into the right tune families and
that these motifs can be used as a means for compression.

The results of the tune classification using the Annotated
Motifs of MTC-ANN are presented in Table 1. The first thing
to notice is that the resulting classification accuracy using
Onset Preserved Construction/Gapless Construction and Note
to Note Alignment (0.89) is only slightly worse than the per-
formance of the uncompressed songs. However, on average
only 40% of the notes of the uncompressed songs are used
in the classification task. This shows that a high compression
ratio is possible at the expense of only a small decrease in
accuracy.

Like the results of Section 5.1, the use of Melodic Shape
Alignment leads to a slightly lower accuracy than the Note to
Note Alignment approach. Onset Preserved Construction and
Gapless Construction yield higher accuracy values than First
Pattern Occurrence Construction, although the difference is
only 0.03 for both alignment algorithms. Compared with the
naive compression methods explained in the previous section,
the Annotated Motifs work better for compression than any
of the naive methods.

The resulting coverage when using the First Pattern
Occurrence Construction method is lower than for the other
two construction techniques: 0.30. This can be explained by

the fact that only the first occurrence of each pattern is used
in the generation of a sparse melody. Although this construc-
tion method influences the classification accuracy negatively,
the decrease in coverage (9 percentage points) is larger than
the decrease in accuracy (3 percentage points) for both sim-
ilarity metrics. The coverage and accuracy for the Onset
Preserved Construction and Gapless Construction methods
are identical. This has to do with the fact that both align-
ment algorithms ignore gaps in the songs for the sequence
alignment.

To summarize, compared with the classification accuracy
on the uncompressed songs, the accuracy has only slightly
decreased using the Annotated Motifs for similarity and com-
pression with a coverage of only 40%. Using the First Pattern
Occurrence Construction, the sparse melodies even cover just
30% of the original songs at a cost of a slightly lower classi-
fication accuracy.

5.4 Similarity using pattern discovery algorithms

We now look at the accuracy and coverage of the classification
experiments based on the automatically discovered repeated
patterns for compression. Each pattern discovery algorithm
can be tuned by a number of parameters. We therefore run
each algorithm for a combination of parameters such that a
large part of the parameter space is explored. This results in
a point set of coverage and accuracy values for all parameter
configurations. First, the results of Song Pattern Discovery are
presented and then the results of using Tune Family Pattern
Discovery.

5.4.1 Song pattern discovery

The results for the Song Pattern Discovery task are shown in
Figure 6 using the Gapless Construction method and Note to
Note Alignment. The output of the reference experiments and
the results on the Annotated Motifs are also plotted.

It can be seen from both the algorithm output and the refer-
ence experiments that there exists a positive relation between
the coverage and classification accuracy. When the coverage
decreases, the amount of information (i.e. the number of notes)
to successfully calculate the similarity between the songs also
decreases. Since we want to study the effect of compression
by pattern discovery algorithms, we define a good performing
algorithm as one that results in a low coverage and in a high

Table 1. Classification accuracy and coverage of the compressed songs from MTC-ANN using the Annotated Motifs.

Accuracy
Sparse Melody Construction method Coverage Note to Note Melodic Shape

Onset Preserved Construction 0.397 0.89 0.81
Gapless Construction 0.397 0.89 0.81
First Occurrence Construction 0.304 0.86 0.78
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Fig. 6. Song Pattern Discovery using the Gapless Construction method and Note to Note Alignment. Each point in the plot represents a specific
Pattern Discovery configuration.

classification accuracy (the top-left part of the graphs). In con-
trast, algorithms that return too many patterns yield a coverage
of almost 1.0 and are therefore not suitable for compression.

Almost every algorithm output performs better than the
Random Notes selection. The selection of the first, middle or
last n notes works better than any pattern discovery
algorithm. By keeping only the first 18 notes of each song
(corresponding to an average coverage of 0.41) more than
84% of the pieces are classified correctly. Only the Annotated
Motifs yield better results, with an accuracy of 0.89 (see Table
1). The Annotated Motifs also perform much better than any
of the pattern discovery algorithm output: for similar coverage
values, the pattern discovery algorithms only achieve a classi-
fication accuracy of around 0.5. The Random Pattern Selection
outperforms almost every pattern discovery algorithm output.
This means that selecting the same notes in each song works
better than selecting notes based on repetition within each
song.

These results show that patterns that repeat inside a song
are not sufficient for explaining to what tune family a song
belongs. There is a large gap in performance between the
algorithm output and theAnnotated Motifs.Areason for this is
that these motifs are annotated while keeping the tune families
in mind. Therefore, we investigate in the next section whether
repetition inside the entire tune family is better suitable.

5.4.2 Tune family pattern discovery

The results of the pattern discovery task within tune families
are presented in Figure 7. Here, the patterns that are discovered
occur in multiple songs of the same tune family. The results of
the reference experiments are the same as for the Song Pattern
Discovery task since they are not influenced by the discovery
task but only by the alignment method we choose.

Compared to the Song Pattern Discovery task, the resulting
coverage and accuracy values of the algorithm output are more

spread. The positive relation between coverage and accuracy
that we observed in the previous experiment, is also visible in
these results. Also, many algorithm configurations return very
few patterns, which results in a low coverage and accuracy.
For some parameter configurations of MotivesExtractor, the
classification accuracy and coverage is even 0. This means that
either no repeated patterns were found in the tune families, or
that each discovered pattern occurrence overlapped with least
two songs. The latter situation leads to the removal of these
occurrences in the splitting process (Section 4.3). Compared
to the Song Pattern Discovery task, the overall maximum
coverage is lower: around 0.9 against nearly 1.0 for the Song
Pattern Discovery task.

The patterns found with Tune Family Pattern Discovery are
more useful in a compression scenario than the patterns found
using Song Pattern Discovery. Many algorithm configurations
now lead to a higher accuracy than the Random Pattern ref-
erence experiment. The selection of the first n notes works
still better than any pattern discovery algorithm configura-
tion. For some parameter configurations, however, the MGDP
algorithm comes close to the performance of the selection of
the middle n and last n notes. This can be explained by the
fact that the MGDP algorithm only discovers patterns within
a tune family that are distinctive compared to the other tune
families.

Still, the Annotated Motifs perform better than any pattern
discovery algorithm output that is tested, although the differ-
ences are smaller when comparing these results with the Song
Pattern Discovery task. To conclude, the pattern discovery
results are overall better than for the Song Pattern Discovery
task with respect to the reference experiments, but the Anno-
tated Motifs and the selection of the first n notes are still supe-
rior in terms of classification accuracy. In the next section, we
attempt to explain the discrepancy between the performance
of the Annotated Motifs and the pattern discovery algorithm
output.
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Fig. 7. Tune Family Pattern Discovery using the Gapless Construction method and Note to Note Alignment. Each point in the plot represents a
specific Pattern Discovery configuration.

6. Discussion and methodological reflection

We have shown the results for a number of framework config-
urations in the previous section. In order to rule out possible
biases introduced by specific design choices in the framework,
we tested each step for different implementations and parame-
ters. In this section, we shortly discuss possible biases towards
the dataset, the alignment algorithms and the pattern discovery
algorithms. Moreover, we present the differences between the
Annotated Motifs and automatically discovered patterns. A
more detailed description of these findings can be found in
Boot (2015).

To rule out a potential bias of the Note to Note Alignment
algorithm towards MTC-ANN, we repeated the experiment
from Section 5.1 on another dataset. The reason for this is that
the Note to Note Alignment algorithm is specifically designed
for MTC-ANN (Van Kranenburg et al., 2013). We therefore
composed a set of Irish folk tunes in Boot (2015), similar in
size as MTC-ANN and also divided into different families
based on variation.

This study shows that both alignment algorithms also per-
form very well on this dataset, with a classification accuracy
of 0.96 and 0.92 for Note to Note alignment and Melodic
Shape Alignment, respectively. This confirms that Note to
NoteAlignment also works for other folk song datasets, which
is in correspondence with the observations by Van Kranenburg
(2010) and Hillewaere et al. (2012) that sequence alignment is
a good similarity measure for folk song classification. In this
domain, the Note to Note Alignment algorithm even outper-
forms the winning implementation of the Symbolic Melodic
Similarity MIREX task.4

From the results in Section 5.4, we see that Tune Family
Pattern Discovery performs better than Song Pattern Discov-

4The Note to Note Alignment algorithm never competed in this task.

ery. The reason for this is that in the Tune Family Pattern
Discovery task, we specifically search for patterns repeating
in an entire tune family, rather than in a single song.This makes
the classification easier, since there is a higher correspondence
between the compressed songs from the same family when
only repeated segments that occur within that family are used
for classification. We solved the lack of Tune Family Pattern
Discovery algorithms by concatenating all songs from the
same tune family and use these large songs as input for a
Song Pattern Discovery algorithm. This method is favourable
against pairwise pattern discovery (where patterns are dis-
covered between all pairs of songs in the dataset), because
many pattern discovery algorithms incorporate filtering steps
that are dependent on the total length of the song. Perform-
ing pairwise pattern discovery instead of pattern discovery
on the concatenated songs will therefore lead to inconsistent
pattern filtering behaviour between the pieces. A pitfall of the
concatenation method is that the complexity increases fast for
larger (concatenated) songs and therefore the running time
also increases.

The concatenation of complete tune families can lead to a
positively biased classification accuracy, due to the fact that
we already know the tune family assignments beforehand.
This way, the algorithms in the Tune Family Pattern Discov-
ery task will only return patterns that occur within the same
tune family. Possible patterns across songs of different tune
families will therefore never be discovered. This bias could
be solved by performing pattern discovery on the complete
dataset, where patterns will be discovered across all pieces in
the dataset irrespective of their original tune family. Another
approach is to sample from the dataset in order to reduce the
size. This is something that should be studied further in future
research. Collins (2014b) has already performed an analysis
of using SIARCT-CFP for Tune Family Pattern Discovery on
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Table 2. Average number of patterns discovered in a single song. For the Annotated Motifs, the average number of discovered patterns per song
is 3.40.

Average number of patterns per song
Algorithm/method Song Pattern Discovery Tune Family Pattern Discovery

COSIACTTEC 1.80 4.70
MGDP – 47.04
MotivesExtractor 2.53 39.28
PatMinr 2.95 50.64
SIARCT-CFP 19.60 –
SIACTTEC 16.41 313.24

Fig. 8. Position of the Annotated Motifs plotted for the tune family ‘En er waren eens twee zoeteliefjes’. In most songs three different motifs
are annotated, while the first one repeats within the songs.

Beethoven’s piano sonatas. However, in our case, the approach
of the Tune Family Pattern Discovery task is justified since
it mimics the pattern discovery procedure as followed by the
annotation experiment in Volk and Van Kranenburg (2012).
Here, the musicologists also knew the right tune families
before annotating the characteristic motifs.

To assess the differences between the automatically dis-
covered patterns and the Annotated Motifs, we carried out a
number of additional experiments in Boot (2015) to compare
the output of annotated and automatically discovered patterns.
Using the evaluation metrics that were defined for the Discov-
ery of Repeated Themes and Sections MIREX task, the output
of each tested configuration of a pattern discovery algorithm
was compared with the Annotated Motifs as ground truth. In
the best case, at most 70% of the discovered patterns could be
matched with at least one occurrence to one of the Annotated
Motifs for a configuration of SIACTTEC.

Besides this, the large performance gap between the
annotated and automatically discovered patterns can also be
explained by the discovery ‘strategy’of the musicologists and
the algorithms. Compared to classical music, which is mostly
used as input for pattern discovery algorithms, folk songs

are relatively short with an average length of only 48 notes.
Therefore, the annotated motifs are also short in length (four
notes on average). One can imagine that short patterns will
occur more often than longer patterns, and are more likely
to be unintentional repetitions. It is therefore crucial for both
humans and algorithms to be able to rate a short pattern as
being characteristic or non-characteristic in order to limit
the output size. In Table 2, the average number of discovered
patterns is shown for each algorithm. In the set of Annotated
Motifs, 3.4 motifs are annotated per song on average. In can be
seen that, except for COSIACTTEC (which limits the output
size very well due to its compression approach), all other algo-
rithms in the Tune Family Pattern Discovery task return much
more patterns per song on average. Apparently, these pattern
discovery algorithms lack a filtering heuristic that discards
non-characteristic short patterns.

Another factor that explains the difference between anno-
tated and discovered patterns is that the occurrences of the
Annotated Motifs vary in both melody and rhythm within a
single pattern as can be seen in Figure 1. We therefore expect
that these variations can also be a reason why pattern discovery
algorithms did not find the same pattern occurrences as those
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that are annotated, since many of the tested pattern discovery
algorithms cannot discover inexact repetitions. This explains
the difference in performance between COSIACTTEC and
the Annotated Motifs despite the low number of patterns that
are returned, since COSIACTTEC only discovers exact repe-
titions.

To better understand the characteristic property of theAnno-
tated Motifs, we examined the position of the patterns in Boot
(2015). We found that the position of a pattern in the song
is a good heuristic for finding pattern occurrences. Analysis
showed that the order of which patterns occur in a tune family
is very consistent between the songs in the same family. An
example of this is illustrated in Figure 8. This is in corre-
spondence with the observations of Van Kranenburg (2010),
who stated that phrase position (i.e. the position of a note
in a phrase) is a good feature for Note to Note Alignment.
Pattern occurrences that are annotated based on their position
are often inexact occurrences in terms of melodic and rhythmic
similarity because the location of a pattern is assumed more
important than the exact similarity of melody or rhythm. This
emphasizes the need for more pattern discovery algorithms
that are able to discover inexact pattern occurrences, or dis-
covering repetitions primarily based on their position. This is
supported by the results of Rodríguez-López and Volk (2015)
who have shown that positional information of repetitions is
also an important feature for melodic segmentation.

7. Conclusion and future work

In this paper, we studied the relevance of repeated patterns
for modelling similarity and compression in folk songs using
a computational approach. We developed a framework for
using pattern discovery algorithms as compression method to
determine the similarity between folk songs belonging to the
same tune family. To evaluate how we can leverage repeated
patterns for compression and tune classification, we used a
number of classification comparisons, namely classification
of uncompressed songs, classification of naive lossy compres-
sion approaches by selecting the first, middle or last n notes in
each song, and classification using random notes and random
patterns for compression.

The results for the classification of the songs using
uncompressed songs and naive compression methods reveal
the following. The classification of the entire songs yields an
accuracy between 0.87 and 0.96, showing that the classifica-
tion accuracy is high using the entire songs. Using a naive
lossy compression approach by selecting the first, middle or
last n notes in each song, leads to an accuracy that is still
high even for lower coverage values. The selection of random
patterns and notes as compression method performs worse.

The results for the classification of the songs using pat-
terns obtained by pattern discovery algorithms and using the
Annotated Motifs from the set of Dutch folk songs MTC-
ANN reveal the following. Using the Annotated Motifs, the
classification accuracy was 0.89 using Gapless Construction
and Note to Note Alignment, with only a coverage of 0.4. This

means that with only 40% of the notes left in each song on
average, the classification accuracy has dropped only a few
percentage points compared to the classification of the entire
songs. For the pattern discovery algorithms, we studied both
the effect on the classification accuracy using Song Pattern
Discovery and Tune Family Pattern Discovery. None of the
algorithms perform comparably to the Annotated Motifs in
any of these settings. Moreover, the selection of the first,
middle or last n notes was superior to most of the algorithm
runs.

Hence, we conclude regarding the relevance of repeated
patterns for modelling similarity and compression that the
Annotated Motifs performed better than anything else in terms
of coverage and compression ratio. Although the accuracy
is slightly worse than the classification performance of the
uncompressed songs, an almost similar result can be achieved
with only 40% of the notes. Moreover, the random selection
of notes has shown that these approaches do not lead to a
higher classification accuracy than the Annotated Motifs. We
can therefore conclude that repeated patterns do influence
the classification process in a positive way and that these
parts are sufficient to describe the tune families. This con-
firms our hypothesis that stable parts contain enough distinc-
tive information to successfully classify songs. This finding
also confirms the musicological hypothesis that patterns are
important for the similarity between folk songs belonging to
the same tune family as reported in Volk and Van Kranenburg
(2012).

Our results show that a selection of state-of-the-art pattern
discovery algorithms does not reach the same accuracy as the
Annotated Motives at the same coverage when we use these
patterns for retrieval. We have tested these algorithms with
a large amount of different parameter configurations in order
to ensure that the whole search domain was included. Our
study shows that there is an important difference between the
discovery of characteristic patterns of a tune family, and the
discovery of perceptually meaningful patterns. Current pattern
discovery algorithms focus mainly on the second use case,
which is different from our methodology. We can therefore
conclude that we need to modify these algorithms to better
support the discovery of characteristic patterns within tune
families and the discovery of stable parts in a song. A possible
starting point for this is incorporating the position of a pattern
into the algorithms, since we have seen that this is an important
property of the Annotated Motifs. The evaluation of repeated
patterns in the context of classification and compression there-
fore presents a crucial step towards bridging the gap between
manually and automatically discovered patterns.
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