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Abstract The geometrical algebra hypothesis was once the received interpretation of
Greek mathematics. In recent decades, however, it has become anathema to many.
I give a critical review of all arguments against it and offer a consistent rebuttal
case against the modern consensus. Consequently, I find that the geometrical algebra
interpretation should be reinstated as a viable historical hypothesis.

Certain parts of classical Greek mathematics have traditionally been interpreted as
“geometrical algebra”—meaning that although the surface form of expression is geo-
metric, nevertheless the underlying ideas are essentially algebraic. This was for a long
time a commonplace view amongmathematically inclined historians such as Zeuthen,
Tannery, Neugebauer, van derWaerden, etc. In the last generation or two, however, the
tide has turned very drastically. The geometrical algebra hypothesis is now forcefully
rejected and indeed seen as a symbol of the historiographical naiveté of these earlier
generations of mathematician–historians. Unguru (1975) was an early focal point of
this crusade, and although his critique initially drew replies from the old guard (Van
der Waerden 1975; Freudenthal 1977; Weil 1978), such opposition has since silenced.
In fact, “Unguru’s position could now be regarded as the accepted orthodoxy”, as
(Rowe 2012, p. 37) accurately reports. A recent survey of research on the history of
Greekmathematics reaches the same conclusion: “It is clear that the old historiography
has been overcome. . . . There are very few who still believe in such historiographical
artefacts as . . . geometric algebra” (Sidoli 2013, pp. 43, 25).
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This overwhelming consensus means that most of the arguments against geomet-
rical algebra have never been challenged. From this state of affairs one could easily
get the impression that the modern view simply had the stronger case and won by
the weight of the evidence. However, there is reason to be cautious before jumping
to such conclusions. Since geometrical algebra was always a symbol for a now anti-
quatedmode of historical scholarship, wemust be careful not to judge it by association
only. Modern advances in historiographical standards have much to commend them,
but specific historical hypotheses should be evaluated on the basis of the specific evi-
dence pertaining thereto, not on the basis of degree of congeniality with one’s general
ideology.

In this paper, therefore, I shall attempt to defend the traditional geometrical algebra
hypothesis against its modern attacks. My goal is to discuss, and attempt to refute, all
arguments against geometrical algebra that I have been able to find in the literature,
from general historiographical ones to specific internalist ones. My contention is that
none of these arguments are convincing, and that hence the modern consensus against
geometrical algebra is ill-founded.

1 Definition of geometrical algebra

I shall refer to the geometrical algebra hypothesis as GA for short, and I shall take it
to consist in the following two claims, both of which have constituted the essence of
the “geometrical algebra” hypothesis since at least as early as when Zeuthen (1885,
p. 7), coined the phrase in his study of Apollonius’s Conics.

GA1. The Greeks possessed a mode of reasoning analogous to our algebra, in the
sense of a standardised and abstract way of dealing with the kinds of relations
we would express using high school algebra. By and large, whenever we find
it natural to interpret Greek mathematics in algebraic terms, the Greeks were
capable of a functionally equivalent line of reasoning. If an algebraic inter-
pretation of a Greek mathematical work suggests to us certain connections,
strategies of proof, etc., then the Greeks could reach the same insights into a
similarly routine fashion. This was an abstract, quantitative-relational mode
of thought that was not confined to concrete geometrical configurations and
not dependent on geometrical visualisation or formulation; in particular, it was
obvious to the Greeks that the exact same kind of reasoning could just as well
be applied to numerical relations as geometrical ones.

GA2. The Greeks were well aware of methods for solving quadratic problems (such
as those exhibited in the Babylonian tradition). Books II andVI of theElements
contain propositions intended as a formalisation of the theoretical foundations
of such methods.

Note that I have taken care to define GA as a historical hypothesis whose content is
independent of whether you want to call it algebra or not. The GA debate is not (or
should not be) a matter of semantics. The appellation “geometrical algebra” could be
regarded as a shorthand only. GA, as defined above, is a concrete, factual hypothesis
and should be evaluated as such.
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In defence of geometrical algebra 327

2 The case for geometrical algebra

It is notmy aim in the present paper to argue for geometrical algebra, but rather to argue
against the arguments against it. It will be useful to indicate for reference, however,
the main basic arguments for GA.

One argument for GA1 is that the most advanced Greek treatises are so intricate
that it is very hard to imagine that they were conceived in this form. As Wallis (1685)
puts it:

It is to me a thing unquestionable, That the Ancients had somewhat of like nature
with ourAlgebra; fromwhencemanyof their prolix and intricateDemonstrations
were derived. (p. 3)

“And I find othermodernWriters of the same opinion therein”,Wallis adds, and indeed
this position was more or less taken for granted as a matter of common sense among
mathematicians from the seventeenth century into the twentieth century. Zeuthen
(1885, ch. 1, esp. p. 7), may be considered the culmination and mature expression
of this point of view.

Another basic argument is that GA1 and GA2 give purpose and sense to numerous
propositions in Euclid that are otherwise very difficult to imagine any motivation for.
As Van der Waerden (1975) puts it:

We were not able to find any interesting geometrical problem that would give
rise to theorems like II 1–4. On the other hand, we found that the explanation of
these theorems as arising from algebra worked well. Therefore we adopted the
latter explanation. (pp. 203–204)

This interpretation too is found in Zeuthen (1885), ch. 1. An accessible explication of
it is given by Heath (1908) in the commentary to his translation of Euclid’s Elements
(esp. Book II and Propositions 27–29 of Book VI). The case was further strengthened
when Neugebauer (1936), following great advances in the understanding of Baby-
lonian mathematics in the early twentieth century, noted that this view harmonises
well with the Babylonian tradition. An accessible overview taking this perspective
into account is found in Van der Waerden (1950, pp. 118–126).

3 The critiques

3.1 Szabó (1969)

Szabó (1969)was an early opponent ofGA.He offers no arguments against it, however.
He does offer assertions of the following type:

Although [II.5] is equivalent to ‘the solution of an algebraic equation’, it should
not be interpreted in this way. Such an interpretation is misleading because it
obscures the true geometric meaning of the proposition and suggests the false
historical idea that the Greeks actually operated with algebraic equations in pre-
Euclidean times. (p. 352)
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But this is a statement of an opinion, not an argument. And so are statements of the
following type, I would say:

No traces of genuine algebraic ideas have yet been discovered in the mathe-
matical tradition which culminated in Euclid’s Elements. . . . The claim that the
‘geometrical algebra . . .’ resulted from the Greeks either taking over or devel-
oping further an idea of the Babylonians has no basis in fact. No connection
has ever been established between this branch of mathematics and ‘Babylonian
science’. (p. 353)

Statements like these are very common among GA opponents. I find them unreason-
able. The fact that a large number of propositions in the Elements can be interpreted
in a coherent way as an algebraic theory surely constitutes at least some sort of evi-
dence that they were conceived in this way, and its many striking parallels with the
Babylonian tradition surely constitute at least some sort of evidence for a connection.
The evidence is far from conclusive, to be sure, but it is something. It needs to be
countered as such, not simply flatly denied.

Besides these kinds of assertions, the main point of Szabo’s discussion is proving
that “propositions which are usually regarded as part of ‘. . . geometrical algebra’ can
also be given a purely geometrical explanation” (p. 353). This, however, does nothing
to disprove GA. The fact that that some of these propositions serve a perfectly credible
geometrical purpose as well is perfectly compatible with GA, and indeed quite what
one would expect on this hypothesis. After all, the theorems are stated in geometrical
form and occur in a work written in a geometrical paradigm. Furthermore algebra and
geometry are closely related, so many algebraically important theorems are bound to
have geometrical relevance as well. The remarkable thing is not that some of them can
be motivated geometrically, but that not all of them can, at least not straightforwardly.
As we saw in Sect. 2, Van der Waerden (1975) cited II.1–4 as prototypical examples
of theorems from Euclid that are hard to motivate from a purely geometric point
of view. Szabo, meanwhile, bases his analysis on II.5 and also claims briefly that a
similar point holds for II.6 and II.10. This would be an argument against the claim
that all the propositions which GA proponents claim are algebraic lack any kind of
geometric motivation. But no GA proponents ever claimed this, nor is it what one
would expect if the GA hypothesis were true. The GA hypothesis is strengthened by
the fact that some of the algebraic propositions lack clear geometric motivation. To
refute this, therefore, one would need to prove that all the algebraic propositions have
a geometric motivation. Proving merely that some of the algebraic propositions have
such a motivation, which is what Szabo does, therefore does not impact the case for
GA, especially since no one had claimed that these particular propositions completely
lacked geometric motivation in the first place.

3.2 Unguru (1975)

The paper that set off the modern firestorm against GA is Unguru (1975). Unguru’s
claim s that it is “impossible” to think in one way and write in another, which would
indeed mean that the GA hypothesis was misguided:
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In defence of geometrical algebra 329

Different ways of thinking imply different ways of expression. It is, therefore,
impossible for a system of mathematical thought (like Greek mathematics) to
display such a discrepancy between its alleged underlying algebraic character
and its purely geometric mode of expression (p. 80).

However, such a discrepancy is obviously not “impossible”—if anything it is
commonplace. For example in calculus we often use infinitesimal reasoning as a
behind-the-scenes heuristic and then write up our findings in the completely different
language of epsilon-delta formalism.

But even if this is admitted, Unguru argues, GAproponents still need to explainwhy
Greek mathematicians, if they really could think algebraically, nevertheless restricted
themselves to their rather awkward geometrical mode of expression:

[The geometrical algebra hypothesis] fails to answer the most stringent and
manifest question, viz., why did Greek mathematics stick throughout its
development to the ‘cumbersome’, ‘awkward’, ‘highly difficult’ method of
‘geometric algebra’ with its application of areas, transformation of propor-
tions by means of geometrical figures, etc.? This question gains even more
in acuity when one keeps in mind that the perpetrators of the view embod-
ied in the concept of ‘geometric algebra’ presume without any qualms (and
rest assured) that there has been an underlying algebraic edifice to Greek
geometry throughout its development. Why, then, did this algebraic frame-
work remain all the time in the background, hidden, camouflaged, concealed?
. . . So the question remains unanswered: If thinking algebraically simplifies
things, as everybody would agree, and if the great Greek mathematical geniuses
were algebraists at heart, then why did they put their relatively simple alge-
braic reasonings in the clumsy and unwieldy molds of geometrical form?
(p. 75)

If [the Greeks] thought algebraically, . . . then why did they systematically
fail to use any algebraic symbolism whatever in their writings? How can one
reasonably explain such a failure? Is the unwarranted assumption of such mathe-
matical schizophrenia accountable in any convincing historico-rational manner?
(pp. 75–76)

One reply to this is that ancient mathematicians did indeed purposefully obscure
their published arguments. Reasons for this seem to have included a desire to claim
the title of master of the field for oneself rather than giving away one’s tricks for
free. See Sect. 3.11 for further discussion of this point. In addition, there were also
compelling philosophical reasons for insisting on expressing everything geometrically,
as this gave all of mathematics a uniform ontology grounded in reality. Indeed, the
rise of the analytic-algebraic conception of mathematics in the seventeenth century
was vigorously resisted along precisely these lines, and the need was felt, still in the
late seventeenth century, to validate algebra from within a geometrical paradigm (see,
e.g. Bos 2001).

But even these points aside Unguru’s argument is misguided in that it equates, it
seems, algebraic thought with algebraic symbolism. In reality neither GA1 nor GA2
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requires algebraic symbolism as such, nor was the existence of a secret algebraic
symbolism ever a contention of any GA advocate. As GA advocates have always
maintained, algebra is algebra whether the variable is called x , “the width”, “the
thing”, “the root” or whatever. Consequently GA does not imply any “assumption of
schizophrenia”.

Unguru’s emphasis on mode of expression also leads him to stress emphatically
that Greek and Babylonian mathematics are “two alien cultures” (p. 73), since, he
maintains, “the reasoning [in Babylonian mathematics] is largely that of elemen-
tary arithmetic or based on empirically paradigmatic rules derived from successful
trials taken as a prototype” (p. 78), which is supposedly worlds apart from the
geometry of the Greeks. In addition to our points above that one should not attach
too much importance to surface form, one could argue that this characterisation of
Babylonian mathematics doesn’t even get the surface form right. Recent scholar-
ship on Babylonian mathematics has shown that, far from being mere “empirical
arithmetic”, Babylonian techniques for solving quadratic problems had a strong
geometrical component that was in many ways closely analogous to the type of geo-
metrical treatment of such relations found in Book II of the Elements. See Høyrup
(2002).

As another point of historical context Unguru also makes the following charge:

The fact is that . . . there has never been an algebra in the pre-Christian era.
Consequently, there could not have been any ‘geometric algebra’ either. (p. 78)

Insofar as this is meant as an argument against GA, it clearly assumes what is to be
proved. To GA proponents, of course, there was a kind of algebra in the pre-Christian
era. This hypothesis cannot be disproved simply by asserting its opposite to be a “fact”.

Unguru also mistakenly believes that certain algebraic insights are somehow built
into the notation itself. Consider for example this proposition from the Elements:

IX.8. If as many numbers as we please beginning from a unit are in contin-
ued proportion, then the third from the unit is square as are also those which
successively leave out one . . .

That is to say, in the geometric sequence 1, a, a2, a3, a4, a5, a6, . . ., the terms a2, a4,
a6, etc. are squares. According to Unguru, “if we use modern algebraic symbolism,
this ceases altogether to be a proposition and its truthfulness is an immediate and
trivial application of the definition of a geometric progression”; in other words the
proposition “becomes a trivial commonplace, which is an immediate outgrowth, a
trite after-effect of our symbolic notation” (p. 99). But this is not so. The fact that, for
example, a4 is a square is not by any means implied by the symbolic notation itself.
The fact that axy = (ax )y is a contingent fact, a result that needs proving. It is not at
all obvious from the very notation itself, as anyone who has taught an algebra class
knows. If axy = (ax )y is an “after-effect of our symbolic notation”, then why isn’t the
rule

a

b
+ c

d
= a + c

b + d
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for adding fractions, or the rule ( f g)′ = f ′g′ for differentiating a product? As (Weil
1978, p. 92) observes, “one who thinks that the rules governing the use of the expo-
nential notation are trivial must be lacking, not only in mathematical understanding,
but also in historical sense”.

Unguru commits the same fallacy again in dismissing the algebraic interpretation
of a lemma to X.22:

Compare the aboveproofwith the algebraic content of the lemma,which says that
a/b = a2/ab. In its algebraic form, the triviality of the entire enterprise becomes
striking. The lemma becomes nothing but an inane, vapid, banal illustration of
the simplification of fractions! (p. 102)

Again, the correct rules for manipulating fractions are not “trivial, inane, vapid,
banal”—they are serious insights that require proof. Anyone who doubts this just
has to stick his head into any algebra classroom where he will find students constantly
confused about what is and what is not allowed when working with fractions.

Furthermore, if this shows that Euclid did not know algebra, then neither did, say,
Viète. In Viète one may read such things as for example: “Theorem. The sum of
two magnitudes plus their difference is equal to twice the greater magnitude”. (Viète
2006, p. 37) By Unguru’s logic this would “show beyond any reasonable doubt that
what [Viète] is doing is not algebra” (p. 105; I have replaced Euclid by Viète in
this quotation but the logic remains the same), for in its algebraic form A + B +
(A − B) = 2A the theorem is “inane, vapid, banal” and “ceases altogether to be a
proposition”.

Unguru also offers an argument based on the following propositions from the Ele-
ments.

X.112. The square on a rational straight line applied to the binomial straight line
produces as breadth an apotome the terms of which are commensurable with the
terms of the binomial straight line and moreover in the same ratio; and further
the apotome so arising has the same order as the binomial straight line.

X.113. The square on a rational straight line, if applied to an apotome, produces
as breadth the binomial straight line the terms of which are commensurable with
the terms of the apotome and in the same ratio; and further the binomial so
arising has the same order as the apotome.

In algebraic terms, these propositions say the following. A binomial means an expres-
sion of the form a+√

b (or
√
a+√

b, but we can leave this aside for ease of writing),
where a and b are rational and b non-square; an apotome is the same thingwith aminus
in place of the plus. X.112 says, then, that the square R2 of a rational number divided by
a+√

b gives a result of the form k(a−√
b); X.113 says that the square R2 of a rational

number divided by a − √
b gives a result of the form k(a + √

b), where k is rational.
Unguru’s argument is as follows:

If Euclid’s lines were general algebraic symbols (which they are not), which
could be manipulated like such symbols, then the essence of X.112 could be
expressed as follows:
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If R2= B · A, where R is a rational line and B is a binomial, then A is a

corresponding apotome.

Under such circumstances, X.113 would follow immediately and trivially from
X.112, as a consequence of the unicity of algebraic operations and the commu-
tativity of multiplication, since X.113 states only that

If R2 = A · B, where R is rational and A an apotome, then B is a corresponding

binomial.

In such a setting, all of Euclid’s efforts to prove X.113 would have been in vain,
and therefore incomprehensible. Indeed, under such circumstances, no proof at
all of X.113 would have been necessary and X.113 would have become, at best,
a Porism and not an independent proposition. But this is certainly not the case in
the Elements, and this is, I believe, a beautiful substantiation and corroboration
of my view: Greek geometry is geometry! (p. 108)

The rhetoric (“incomprehensible”) aside, insofar as these propositions are alge-
braically equivalent, they are so also geometrically. The first proposition puts the
area R2 in the form of a rectangle where one side is a given binomial and find that the
other side is k times the corresponding apotome. If this side is cut into k pieces, and the
pieces of the area are stacked on top of each other, then we have rearranged the area
R2 in the form of a rectangle with the given apotome as base.We also see that the other
side will be k times the corresponding binomial. And this is precisely the statement
of the second proposition. Clearly, then, the equivalence of these propositions is very
evident already geometrically, not something that magically emerges only when one
grasps “the commutativity of multiplication”, as Unguru’s argument assumes.

3.3 Unguru (1979)

When discussing number theory, Euclid states and proves various theorems which
are, from a GA point of view, essentially just a reduction to the special case of whole-
number quantities of theorems already proved elsewhere for quantities in general.
Unguru (1979) takes this to be a blow against GA:

As Freudenthal would have it, Elements V is ‘algebra and nothing else’; it is,
moreover, ‘a general theory of magnitude . . . independent of dimension or any
characteristic of specific magnitudes’. The problem with such a characterization
is the existence of Elements VII, in which many of the things dealt with in Book
V are repeated and applied specifically to numbers (integers). In the presence of
a general theory of magnitude, such a procedure would not have been just rep-
etitious and superfluous but outright senseless. Numbers, after all, are specific
instances of magnitude, and what is true of magnitudes in general is also true of
numbers. (p. 559)
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We must keep in mind, however, that GA1 is a hypothesis about Greek thought, not its
formal exposition. It is obviously true that Euclidwrote things up in a highly formalised
fashion that does not support GA1 by its surface form. But the whole point is whether
this was due to cognitive limitations or not. Euclid’s reasons for his chosen mode of
writing could easily have been due to expository and foundational considerations, and
thus the formal exposition cannot be taken as indicative of cognitive limitations in the
manner Unguru’s argument assumes. Indeed, who honestly believes that Euclid did
not see the analogies between the theorems of Books V and VII in question? Surely
the most likely interpretation by far is that he understood perfectly well that some of
the number theory propositions could be seen as parallel to those for magnitudes, but
that he nevertheless preferred a separate exposition perhaps for the sake of following
tradition or giving a self-contained exposition not assuming more advanced material
than needed. The reason for the separate expositions being non-cognitive, then, it says
nothing about GA1.

3.4 Unguru and Rowe (1981)

In his reply toUnguru, vanderWaerden (1975, p. 201) gave an example of aBabylonian
solution of a quadratic problem and pointed out that the solution given is “the same
method of solution we learn at school” today. Unguru and Rowe (1981) deny that
this is so. Instead, they say, “the mere knowledge of how ‘to complete the square’ is
enough to understand fully, step by step, the scribe’s procedure” (p. 6), whereas van der
Waerden’s account allegedly “assumes, against the textual evidence, the availability
of the quadratic formula to the Babylonian scribe” (p. 7). This argument assumes that
a meaningful distinction can be drawn between completing the square and using the
quadratic formula. But this is a very dubious assumption. Completing the square is the
method we learn at school today. And this is how the “quadratic formula” is always
derived. The latter is nothing but a kind of recipe shorthand for the former. The two
are computationally equivalent.

Whether the Babylonians knew “the quadratic formula” or not is not a very mean-
ingful question. Certainly no one has ever claimed that the Babylonians ever had it
written down in the form of a literal formula, with symbolic placeholders for the vari-
ous numbers needed, as in a modern algebra textbook. On the other hand it is beyond
dispute that they understood the method of completing the square very well and were
able to use it to solve quadratic problems in a systematic fashion which was so heavily
standardised that it could be carried out mechanically even by someone who did not
have any deep conceptual understanding of the method of completing the square. Thus
the Babylonian method is identical to that of modern school algebra in its numerical
steps, in its theoretical foundation in the method of completing the square and in its
being useable as a mechanical recipe without much understanding. In all these senses
van der Waerden’s claim is obviously correct. He did not say, as Unguru and Rowe
allege, that the Babylonians had “the quadratic formula” and even if he had said that,
what would that even mean? The unequivocal points just enumerated amount to a
functional knowledge of the quadratic formula for almost all intents and purposes;
all that is lacking is a literal, typographical formula, and of course no one have ever
claimed that the Babylonians had that.
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More generally Unguru and Rowe maintain that:

Under any suitable, historically reasonable definition of algebra, ancient Baby-
lonian and classical Greek mathematical texts are not algebraic in character. In
the Babylonian case they are arithmetical, while in the Greek they are geomet-
rical. (p. 4)

We have already seen above that the claim that Babylonian mathematics was exclu-
sively “arithmetical” is untenable. But that aside, what is the “historically reasonable
definition of algebra” that Unguru and Rowe have in mind? They do not give a defini-
tion in so many words, but they often speak of “symbolic manipulations” as “the very
hallmark of an algebraic system” (p. 17). Thus:

There are important distinctions between algebra and the concrete arithmetical
relationships appearing in Babylonian and some Greek materials. For there is a
vast mathematical gap involved between having a general knowledge of concrete
number facts on the one hand, and being able to abstract that knowledge and
manipulate it symbolically without any reference to the concrete, on the other.
(pp. 11–12)

It is precisely the inability of theBabylonianmathematician ‘to describe relations
and solving procedures, and the techniques involved in a general way’ that
warrants his disqualification as algebraist. What the Babylonian mathematician
lacks is precisely the ability to dispense with specific, definite numbers, and it
is this deficiency that dictates the particular form of his approach. What he can
produce is recipes, not general formulas. (Unguru 1979, p. 561)

In my opinion it is not all “historically reasonable” to define algebra along such lines.
We may ask ourselves the question: What would an abstract, symbolic formulation
have added to the Babylonian method of solving quadratic problems? Arguably noth-
ing. They already mastered the solutions of such problems using a general, systematic
method. This method is very clearly expressed in their texts: they use numerical exam-
ples, it is true, but it is not difficult to see in them the general method, as was clearly the
intention. What purpose would it serve, then, to express the matter in purely symbolic
notation? Arguably it would accomplish nothing except making the matter more pre-
tentious and abstruse. We can still observe this phenomenon in modern classrooms,
where students often stare blankly at abstract formulas but grasp their general meaning
perfectly well from one or two worked numerical examples.

I maintain, therefore, that Unguru’s insistence on symbolic formulations is histor-
ically unreasonable. The modes of thought and expression of the Babylonians were
perfectly adequate for the goals they set themselves. Their mastery of quadratic prob-
lems is general and thorough and not in any way hampered by a lack of symbolism.
The introduction of abstract symbolism would not have resolved any problem they
were concerned with. Suppose they had made up arbitrary symbols and written down
a formulation of their methods in terms of them. This would have been a huge con-
ceptual leap according to Unguru’s standards, but it is unlikely to have led, in and of
itself, to any changes in the remainder of their mathematical corpus, just as todaymany
students gloss past the gibberish abstract formulas in their textbooks and instead infer
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their content from specific examples. It is unreasonable, therefore, to use the presence
or absence of abstract symbolismas the sine quanonof algebraic thought, since it could
easily have been included or excluded at various stages in history without altering the
actual mathematical substance at hand. Of course the abstract, symbolic formulations
serve a purpose in later stages of the development of mathematical thought, but it
would be an anachronism of the kind Unguru castigates to insist that it is essential also
for a complete “algebraic” understanding of the earlier stages such as the solutions of
quadratic problems.

We proceed to the Greeks. Regarding Greek “geometrical arithmetic”, Unguru and
Rowe (1981) maintain that:

Although addition and subtraction are employed for general magnitudes in the
Euclidean tradition, the dependence of these operations on a geometric formu-
lation imposes a limitation that makes these operations qualitatively different
from their modern counterparts. The modern notion of real number transcends
this limitation, making it possible to equate and compare figures of differing
dimensions, equating these in turn with angles or anything whatsoever capable
of being measured. When number reigns supreme, everything can be related
numerically to everything else. This the Greeks could not do. (p. 17)

Throughout classical Greekmathematics, there is a strict adherence to the princi-
ple that only magnitudes of like species can be added or subtracted. In particular,
this means that there was no generalized concept of number underlying Greek
magnitude, and, hence, no idea of combining magnitudes of different dimen-
sions. (p. 24)

Unguru is here violating his own dictum not to infer anything that is not supported by
the sources. The sources do not show that the Greeks could not add any magnitudes,
but that they did not do so. Only the former, unsupported reading helps Unguru’s
thesis. But why should we believe this as opposed to the latter, supported reading?
Unguru doesn’t tell us; he simply asserts the former reading as if it were historical fact.

In reality it makes perfect sense that the Greeks would not add any magnitudes
simply because they had no reason to do so. Adding magnitudes of different types
is very often nonsensical and useless. A person could know very well that 10 dollars
plus 3 apples is in some sense 13, and yet choose never to carry out a calculation of
this sort, not because of some conceptual obstacle but simply because it is pointless.
Likewise I would suggest that the Greeks consciously decided that they had no interest
in adding magnitudes of different kinds and that they therefore chose to set up their
formal theory in this manner. In other words, I would suggest that the fact that the
formal Greek theory of magnitudes does not allow for inhomogenous magnitudes to
be added did not preclude them from doing so; rather it was the consequence of their
conscious desire not to do so.

Unguru and Rowe go on to give the following variant formulation of their dimen-
sionality thesis:

The operations of rectangle formation and ordinary multiplication, as explicitly
performed throughout the Elements, are in fact incompatible with one another,
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i.e., rectangle formation cannot be ‘generalised multiplication’ without produc-
ing inconsistency in the system of operations that we know the Greeks utilized.
(p. 24)

Their argument for this thesis is as follows:

Addition, subtraction, and multiplication (viewed as repeated addition) all pre-
serve dimension, and it is absolutely essential that they do so. For, as we have
seen, addition, subtraction and ratio formation all require that the dimensions
of the magnitudes involved be equal. It follows that the introduction by Heath
and others of the operation of rectangle formation as generalized multiplication
represents a radical break with the intrinsic principles underlying the operations
explicitly performed in the Elements. The representation of products via rectan-
gle formation, which is the very cornerstone of ‘geometric arithmetic’, overlooks
precisely the fundamental tenet of homogeneity that governs the entire Greek
treatment of magnitude. (p. 30)

This argument assumes what it is trying to prove, namely that rectangle formation is
not part of “the entire Greek treatment of magnitude”. It is true that seeing rectangle
formation as multiplication is inconsistent with some other ways of thinking about
multiplication, but whether those other ways constitute “the entire Greek treatment of
magnitude”, as Unguru and Rowe assert, is precisely the issue at hand. A proponent
of geometrical algebra would obviously dispute this assertion and point out that there
is no problem in having several different theoretical representations of the concept of
multiplication to answer to different purposes, just as in modern mathematics we may
define real numbers by Dedekind cuts for foundational purposes while also assuming
that real numbers correspond to physical lengths, time intervals, etc. when dealingwith
physical applications. This does notmean that our notion of real numbers is impossibly
“inconsistent”, but rather that it is flexible and that different representations of it are
useful in different contexts.

3.5 Unguru and Rowe (1982)

Unguru and Rowe (1982) continue their argument by turning to “the real litmus test
for the historical efficacy of the ‘geometric algebra’ concept”, namely whether “the
Greeks solved quadratic equations by utilizing geometry” (p. 1). Their contention here
is that “the attempt to understand Greek mathematics as algebraically motivated leads
to paradoxical conclusions that make nonsense out of what we find in the Greek texts
themselves” (p. 2). To prove this, then, they assume the GA perspective and attempt
to deduce a contradiction from it, as it were.

Their attack begins with a peculiar argument regarding Elements II.11. They argue
that, assuming GA thinking, this proposition can be construed as a solution to the
quadratic equation x2 + ax = c2. They then declare that the desired contradiction has
been reached:

Of course, this is pure fantasy, and neither Heath nor anyone else would blunder
so badly as tomistake this for aGreek solution to a quadratic equation. The point,
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however, is (and it is a point worth emphasis) that such a solution is perfectly
plausible oncewe take the assumptions of ‘geometrical algebra’ seriously. (p. 20)

Here Unguru and Rowe are mistaken about what GA advocates maintain. II.11 is the
equivalent of solving this quadratic equation. This is the standard GA view. Zeuthen
(1885, pp. 15–18) explains this very clearly and explicitly. Unguru and Rowe have
simply reproduced a standardGAargument and followed it with the completely unsub-
stantiated allegation that it is “of course” a “blunder”. Clearly this does not amount to
an argument against GA in any way.

Unguru and Rowe also give various arguments as to how a general quadratic equa-
tion can be solved by simpler means than those employed by Euclid in VI.28–29. One
such argument concludes triumphantly that

We have thus “solved” the general quadratic by using nothing more than Book
II-style techniques, i.e., bypassing altogether Greek proportion theory. Now that
is geometric algebra! (p. 21)

Another has it that

it is absolutely child’s play to produce a solution for the general quadratic, a
solution which the Greeks could not have missed, had they been doing “3-D
geometrical algebra” . . .! (p. 40)

On the basis of these alternative approaches to quadratic equations Unguru and Rowe
conclude:

These arguments, we believe, conclusively show that the claim that propositions
like VI.28, 29 were motivated by the desire to obtain a solution to the general
quadratic equation is a historically empty claim. . . . Willingness to use just a
few light assumptions drawn from “geometric arithmetic” suffices to produce
relatively simple solutions to quadratics that allow one to bypass entirely the
proportion theory of Book VI. (p. 42)

The logic of this argument is confused. The point that it would have been easy for the
Greeks to solve quadratic equations is precisely what GA says. After all, the Babylo-
nians did it 1500 years before Euclid, and of course they did so with “Book II-style
techniques” and without Greek proportion theory. Far from being arguments against
the GA hypothesis, this is precisely what GA proponents maintain. The only way these
facts would constitute counter-evidence to GA would be if GA involved the premiss
that solving quadratics was a very complicated business that required a sophisticated
proportion theory. But no GA proponent has ever maintained such a thing. Zeuthen
(1885, p. 22), for instance, is perfectly clear that Euclid postpones his full treatment
of quadratics to Book VI only because he wants to employ certain generalisations and
formal niceties, which, however, are not necessary for solving quadratic equations as
such. Indeed, since solution methods for quadratics had long been known, it is perhaps
not surprising that Euclid is eager to pursue a more sophisticated take on the theory.

Thus, once again, Unguru and Rowe’s argument that quadratics can be solved by
simpler means is by no means an argument against GA, as they imagine it to be, but
rather a simple fact that GA proponents have always agreed with.
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Fig. 1 Simplified case of the
figure for Elements VI.29 with
algebraic significations added
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Unguru and Rowe also present an argument regarding VI.29 itself. We must first
give a short account of this proposition. The Euclidean formulation is very general
and in terms of parallelograms, but all of the relevant aspects for our discussion are
present already in the special case of the quadratic x2 + ax = c2 solved in II.11 when
all parallelograms are taken to be rectangles.

Restricted to this case, Euclid’s VI.29 construction goes as follows (see Fig. 1).
Given are the line segment a = AB and the area c2. Sought is a line segment x such
that x2 + ax = c2. Find the midpoint E of the segment AB and erect the square
BEFL . This square will have area a2

4 . Now construct the square FMON in such a

way that its area is a2
4 + c2. Such a construction is given in proposition VI.25. The

side FM of this square is
√

a2
4 + c2. Let x be the amount by which this side length

exceeds that of the small square, a
2 . Then the L-shaped figure EBLMPOQNE has

area x2 + ax . But by construction this area is also equal to c2. Thus the constructed
segment BP = x satisfies the desired property x2 +ax = c2 and we have constructed
the (positive) solution to the equation.

The solution corresponds to the modern algebraic one in terms of completing the
square.With thismethod, to solve x2+ax = c2 wewould first add a2

4 to both sides, just
as Euclid starts by constructing a square with this area. This makes the left-hand side a
square and gives (x+ a

2 )2 = c2+ a2
4 . The right-hand side here corresponds to Euclid’s

big square FMON . Next we take the square root of both sides: x + a
2 =

√
c2 + a2

4 .
In terms of Euclid’s construction this corresponds to finding the side FM . Finally, to
isolate x , we subtract a

2 from both sides, just as Euclid subtracts EB from EP to get
BP = x .

Unguru and Rowe, however, deny such a correspondence:

In algebra, the technique of completing the square has a definite object, namely
to factor the equation in the form (x + a)2 = b, whereupon taking square roots
of both sides, a solution is obtained. Thus completing the square . . . has as its
only raison d’être, the possibility of extracting square roots as the next step in
the procedure. What we find in the proof of VI.29, needless to say, is nothing of
the kind! . . . The whole idea behind completing the square is totally foreign to
the method of proof found in Euclid. (p. 27)

Perhaps the best way tomake our point is to give an illustration ofwhat “complet-
ing the square” really looks like geometrically. In doing so, another interesting
question arises, namely, why is there nothing comparable to the following simple
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Fig. 2 “Completing the square”
figure as in Unguru and Rowe
(1982, p. 28)

b/2x

x

b/2

b/2

b/2

solution of a quadratic equation in Greekmathematics, if, as claimed, the Greeks
solved equations geometrically?

To solve x2 + bx = C , first apply II.14 to get d2 = C . Next “complete the square” as
follows: x2 + bx = x2 + 2( b2 x) = d2, hence, by II.4, adding ( b2 )

2 = b2
2 to both sides

produces a perfect square, i.e., x2+2( b2 x)+ b2
4 = (x+ b

2 )
2 = d2+ b2

2 . Geometrically
this amounts to completing the diagram (of Fig. 2). Using I.47, we can find s such
that d2 + ( b2 )

2 = s2 simply by constructing a right triangle with d and b/2 as sides.
It follows that (x + b

2 )
2 = s2, hence x + b

2 = s, and x = s − b
2 . (p. 28)

Completing the square in this sense is indeed “totally foreign to the method of proof
found in Euclid”, but not because it is algebraic but because it is analytic rather than
synthetic. That is to say, it assumes that what is sought is already known, namely
the line segment x . Completing the square in the sense of Fig. 2 starts with the line
segment x whereas Euclid’s construction endswith it. Euclid is, here as ever, adhering
to a strictly constructivist paradigm: he uses nothing he has not first constructed. That
is why in his solution of the quadratic equation x2 + ax = c2 he starts with the given
a and c2 and constructs x from them.

Thus the argument byUnguru andRowe doesn’t show, as they claim, that Euclid did
not use themethod of completing the square. It shows only that he used the constructive
version of it rather than the analytic one. In every other way his method is the same.
In terms of Fig. 1, if one used an analytic approach like Unguru and Rowe do, one
would start with the rectangle AO = ax + x2, then break the ax part in half and
place it on top of the square x2 to get the L-shaped figure EBLMPOQNE . Then
one would complete the square by adding the square FLBE = a2

4 . This is exactly
what is shown in Fig. 2, which Unguru and Rowe claim is so fundamentally different
from anything in Euclid. In reality it is simply Euclid’s construction read backwards.
Reading constructions both forwards and backwards in this fashion was of course par
for the course in Greek times. Typically one works analytically—that is, one assumes
what is sought and reasons towards what is known—in a discovery phase, and then one
reverses the steps for the synthesis, i.e. the formal presentation from what is known to
what is sought.

So the answer to Unguru and Rowe’s question—why is nothing like this found in
Greek mathematics?—is that something exactly like that is found, except, of course,
translated into a constructivist paradigm.

3.6 Fried and Unguru (2001)

Fried and Unguru (2001) continue Unguru’s case against GAwith the following accu-
sation that GA is “incoherent”:
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Why does algebra need the geometrical garb? This is not at all clear and the
various attempts at an answer strike us as incoherent on various levels. They
amount to the view that, of the discovery of the ‘irrational’ by the Pythagoreans,
algebra could appear only in geometric apparel, for the sake of rigor. We are
not told where Greek algebra was before that fateful discovery, nor is the secret
divulged to the curious student underwhat attire, if any, it was hiding then. (p. 19)

This is a puzzling argument. A key tenet of the geometrical algebra hypothesis is
that the Babylonian tradition provides a model of where Greek algebra was before
its Euclid-style geometrisation. So, far from being some far-fetched and insufficiently
specified fantasy, this pre-geometrical state of algebra is thoroughly documented in
ample historical sources, which “the curious student” is free to consult.

The authors do not explainwhat the alleged “incoherence” is supposed to be exactly,
but in any case their caricature of the opposing view is misleadingly simplistic. The
matter of irrationality is just one of the many good reasons for Euclid to place all
mathematics on a geometrical basis. Additional reasons include the fact that geometry
provided a unified framework for virtually all known mathematics at the time and that
geometry endows algebraic concepts with a concrete meaning and ontology.

Furthermore, what the authors allege to be “incoherent” is unequivocally what hap-
pened soon thereafter. That is to say, geometrical propositions like those of Euclidwere
used with the explicit purpose of providing the theoretical foundations for algebraic
algorithms like those of the Babylonians.

The authors themselves admit that Khwarizmi’s treatment of quadratics does con-
stitute “geometrical algebra”, since one finds there

a metrical geometrical argument . . . advanced specifically for the sake of jus-
tifying the mechanical, recipe-like solution of an algebraic equation. . . . It is
not geometry for its own sake that we face, but rather geometry for the sake of
algebra. And it is impure geometry at that, since, unlike Greek geometry, met-
rical considerations have crept in, for ulterior motives, so to speak, namely, to
vindicate a purely algebraic procedure for solving quadratics of a certain type.
. . . This can, then, rightly be seen as a certain brand of geometrical algebra and
be designated as such, unlike those parts of Greek geometry . . . wrongly bap-
tized with the same name, which they carry illegitimately, since they embody
geometrical truths for their own sake. (p. 24)

This conception, legitimizing, perhaps, talk of an Islamic geometrical algebra,
is, needless to say, foreign to the Greek mathematician. (p. 26)

Again, this is not argument but assertion. The claim that Euclid’s propositions “embody
geometrical truths for their own sake” is precisely what is at issue; it is something one
needs to provide evidence for, not merely assert as the authors do.

And why would it be “incoherent” to think that Euclid intended the propositions
in question for the same purpose as Khwarizmi, rather than that he had completely
different motivations but nevertheless happened to supply exactly the theorems needed
forKhwarizmi’s purpose? Themain difference between them is that Euclid omitted the
trifling numerical applications of these techniques, which are perfectly understandable
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since those had already been known for a long time and the Elements is a theoretical,
foundational work, not a handbook of practical calculation.

3.7 Mueller (1981)

Mueller (1981) is opposed to GA: “the geometric interpretation is, at least prima facie,
sufficiently plausible to render the interpretation of algebra unnecessary” (p. 44),
he writes. Of course this is not an argument against GA as such since no one ever
claimed that a geometrical interpretation is impossible or claimed that the algebraic
interpretation was strictly “necessary”, but let us put that aside and consider Mueller’s
arguments for his interpretation.

Mueller sometimes speaks as if the GA question hinges on abstract methodological
principles. Thus he writes:

The point of view adopted here is that, if there are no independent grounds for
choosing between an algebraic and a geometric interpretation in connection with
the Elements, the latter is preferable because it does not use concepts which are
not explicitly in the work. (p. 168)

This may sound like a principled and reasonable stance, but in reality it amounts
to nothing as far as the GA debate is concerned. No GA proponent would disagree
with this principle, I’m sure. It cannot be used as a deciding principle in any of these
debates since both sides would happily accept it. The crux of the matter is whether
there are “independent grounds” or not for deciding between the two interpretations.
GA proponents do not take their view because they think it is unproblematic to go
beyond what is explicitly in the work, but precisely because they find that there are
sufficient “independent grounds” for doing so.

It is necessary, therefore, to turn to the internalist arguments. In terms of Euclid’s
Book II, Mueller argues that the proofs of the first few propositions suggest Euclid’s
ignorance of algebra. The first two propositions may be expressed thus in algebraic
terms, as Mueller notes:

II.1. If there are two straight lines, and one of them is cut into any number of
segments whatever, then the rectangle contained by the two straight lines equals
the sum of the rectangles contained by the uncut straight line and each of the
segments.

xy1 + xy2 + · · · + xyn = x(y1 + y2 + · · · + yn) (II,1a)

II.2. If a straight line is cut at random, then the sum of the rectangles contained
by the whole and each of the segments equals the square on the whole.

(x + y)x + (x + y)y = (x + y)2 (II,2a)

Mueller notes that II,2a can easily be derived from II,1a:

(x + y)2 = (x + y)(x + y) = [by II,1a] (x + y)x + (x + y)y
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But Euclid does not prove II.2 in thismanner (he instead proves it from scratch, without
reference to II.1). According to Mueller:

The fact that he does not do so is an indication that he does not perceive the
relation between these propositions in the way in which a modern algebraist
would. For Euclid each of II,1–3 states an independent geometric fact. (p. 46)

On the basis of this and similar examples Mueller generalises thus:

However one wishes to describe the results proved in book II, the proofs them-
selves show no sense of the connection between the propositions involved. This
fact suggests strongly that Euclid is approaching his subject by looking at the
geometrical properties of particular spatial configurations and not by considering
abstract relations between quantities or formal relations between expressions.
(p. 52)

In my opinion there is no basis for such a conclusion. Mueller’s argument rests on
the implicit assumption that an algebraic treatment would invoke “the connection
between the propositions involved”, whereas a geometric treatment would not. But
this assumption is not a reasonable one. The fact that the proofs are independent is
just as conspicuous on either interpretation. II.2 is obviously the special case of II.1
where the “any number of segments whatever” is taken to be two segments, and “the
uncut straight line” is taken to be equal to “the whole” line segment that we started
with. This is obvious already geometrically. There is surely no way Euclid could have
failed to see this and thus been aware of the possibility of proving II.2 from II.1, no
matter whether he thought algebraically or not.

Thus whereas Mueller’s argument seems to be:

Algebraically the propositions are connected; Euclid’s proofs show no sign of
being cognisant of this; therefore he did not think algebraically.

One could just as well argue, with equal justification, that:

Geometrically the propositions are connected; Euclid’s proofs show no sign of
being cognisant of this; therefore he did not think geometrically.

Because of this symmetry I am of the opinion that the independence of these proofs
provides no evidence one way or the other regarding GA.

Another of Mueller’s arguments concerns the fact that a number of “geometrical
algebra” propositions in theElements are stated in terms of parallelograms even though
only rectangles are of interest from the algebraic point of view. Mueller discusses for
example:

I.45. To construct a parallelogram equal to a given rectilinear figure in a given
rectilinear angle.

As Mueller notes, this proposition “is on the algebraic interpretation the solution of
ax = b, or the division of a by b” (p. 45). But for this purpose only the special case
of a rectangle in place of a parallelogram is needed. Thus Mueller argues:
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On the algebraic interpretation the use of the parallelogram must be read as
a pointless geometric generalization, and the failure to prove the algebraically
most interesting form of I,45 as the leaving out of a trivial consequence despite
its fundamental importance. (p. 45)

Euclid has indeed generalised beyond the case of primary interest, as mathematicians
often do. Mueller tries to construe this as a blow to GA:

Since Euclid often bothers to prove trivial consequences whether or not they are
fundamental, the more reasonable conclusion would seem to be that his primary,
if not exclusive, motivation is geometric . . . (p. 45)

Mueller does not provide any further indication of what other special cases he is
thinking of, or why they would be comparable to the one at hand. In particular the
latter seems far from obvious: surely mathematicians typically point out special cases
not because they have a generic blanket policy to always note special cases, but rather
for reasons specific to the matter at hand and its intended use. Without supporting
evidence and explication, therefore, I do not see how the claim that Euclid would have
noted the special case if he had intended the theorem algebraically can be considered
anything more than an unsubstantiated assertion.

Another of Mueller’s arguments against GA concerns the compounding of ratios,
which algebraically speaking corresponds to the multiplication of fractions. In the
Elements this notion occurs only in two propositions: VI.23 and its arithmetical coun-
terpart VIII.5, the former of which reads:

VI.23. Equiangular parallelograms have to one another the ratio compounded of
the ratios of their sides.

The notion of a compounded ratio is not used elsewhere in the Elements, and in fact
is not even defined. Consequently the interpretation of the compounding of ratios
as multiplication of fractions has never been central to any GA reading of Euclid.
Nevertheless it is quite reasonable to infer that if Euclid was a skilled algebraist as
GA advocates maintain then he ought also to have seen the algebraic aspects of the
compounding of ratios.

But Mueller maintains that Euclid shows no awareness of its algebraic aspects and
uses this to argue against GA as follows:

In general, the geometric books confirm the impression gained from the arith-
metic ones that Euclid does not construe compounding as multiplication. VI,23
itself is, in a sense, evidence of this fact, since the product of the lengths of two
sides of a parallelogram does not produce a value of any mathematical signifi-
cance. (p. 154)

I disagree. The proposition shows that this value does indeed have a clearmathematical
significance, namely that it is proportional to the area of the parallelogram. As far as
proportionality of areas of similar or closely related figures is concerned, which is
all Euclid discusses, it is just as good as the absolute area itself. So it makes perfect
sense for Euclid to use it in place of the absolute area, since this alleviates the need
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to introduce an auxiliary quantity (the height) and thereby enables the presentation to
be cleaner and more streamlined.

Mueller also notes that this proposition could have been used to prove:

VI.14. In equal and equiangular parallelograms the sides about the equal angles
are reciprocally proportional; and equiangular parallelograms in which the sides
about the equal angles are reciprocally proportional are equal.

Thus Mueller argues:

[VI.]14 itself is a direct consequence of VI,23 and VJ [a proposition discussed
by Mueller which does not occur in the Elements; algebraically: if z

w
· u

v
= 1

then z
w

= v
u ], which, as I pointed out, is obvious on the fractional interpretation

of ratios. Euclid seems totally unaware of the connection between 23 and 14.
(p. 161)

Euclid’s failure to reduce VI,14 to 23 is one piece of evidence that he does not
view compounding of ratios as a kind of multiplication. (p. 162)

I disagree that such a conclusion follows. As we have noted, the notion of the com-
pounding of ratios clearly plays a very marginal role in the Elements to say the least.
It can certainly be considered inessential for following the work. It would clearly be
a radical change of course, therefore, for Euclid to start basing other propositions on
this notion, as Mueller suggests he would have done had he realised the connection.

So Euclid’s motivation for not proving VI.14 from VI.23 could simply be that he
did not want to introduce another abstract notion needlessly when VI.14 can be proved
straightforwardly already without it. Teachers of mathematics are often faced with the
choice of explaining something, on the one hand, in a concrete way that uses only
what the student already knows, or, on the other hand, with the aid of more abstract
concepts which may make the connections clearer and reduce the need for brute-force
work while also demanding a greater conceptual penetration on the part of the student.
Faced with such a choice, many teachers will chose the former option, even though
they understand the latter perfectly well. Euclid’s reasons for not deriving VI.14 from
VI.23 could very well be of this kind.

On this interpretation, it is still reasonable that Euclid would want to include VI.23
as a nod to those in the know. The use of compounding here is in any case a rather
harmless matter of formulating the theorem and thus not as conceptually demanding
as the rewriting of the Elements envisioned by Mueller. In particular, Mueller’s VJ
mentioned above would be far from “obvious” to a reader who did not have a good
conceptual understanding of such manipulations already. By avoiding relying on such
concepts, Euclid frees himself from the burden of having to explicate it from scratch—
this, however,would no longer be the case if he followed the path suggested byMueller.

In the quotation above we saw Mueller claiming that his interpretations in these
instances “confirm the impression gained from the arithmetic ones”. However, this is
not an indication that I have omitted one of the Mueller’s key arguments against GA.
On the contrary, in his discussion of the arithmetic booksMueller explicitly postpones
all discussion of this point:
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The serious question for interpretation is whether compounding should be
viewed as a representation of multiplying, i.e., as a device for representing the
multiplication of fractions in the language of proportionality. I shall be argu-
ing that compounding should not be viewed in this way, but shall postpone this
argument until later chapters covering propositions in which Euclid employs the
notion of compounding. (p. 88)

The arithmetical side of the matter is instead discussed in connection with Book VIII,
where Euclid proves the arithmetical analog of the above proposition:

VIII.5. Plane numbers have to one another the ratio compounded of the ratios of
their sides.

The relevant definition is:

VII. Definition 16. And, when two numbers having multiplied one another make
some number, the number so produced be called plane, and its sides are the
numbers which have multiplied one another.

The following proposition is obviously a special case, even though Euclid proves it
separately:

VIII.11. Between two square numbers . . . the square has to the square the dupli-
cate ratio of that which the side has to the side.

VII. Definition 18. A square number is equal multiplied by equal, or a number
which is contained by two equal numbers.

Mueller sees the fact that Euclid makes no connection between VIII.5 and VIII.11 as
evidence against GA:

[Euclid’s] failure to exploit VIII,5 [in his proof of VIII.11] is a good indication
that he does not construe compounding as a representation ofmultiplying. (p. 92)

It is not clear to me what the argument is supposed to be here exactly. Are we to
believe that Euclid did not realise that VIII.11 is a special case of VIII.5? Surely it is
utterly inconceivable that Euclid would have failed to see this. The fact that VIII.11 is
a special case of VIII.5 is blatantly obvious on any interpretation of these propositions,
not just the algebraic one. And if we agree to this, then how could Euclid’s decision to
prove VIII.11 from scratch possibly serve as an indicator of whether he adopted one
point of view rather than the other?

We have now discussed the only uses of compounded ratios in the Elements. But
Mueller also counts its absence in the later books as further evidence against GA:

Euclid . . . does not even use the notion of compounding in the solid books.
His failure to do so is perhaps the strongest evidence that he does not construe
compounding ratios as multiplication. (p. 221)

The reason why this constitutes such “strong evidence”, according to Mueller, is that
the theory could have been greatly simplified if the method of compounding ratios had
been used in a full-fledged fashion. But this argument works only if we assume that
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Euclid must have preferred such a presentation if he had realised that it was possible.
Only then does his choice not to do so say anything about his understanding of the
algebraic aspect of compounding ratios. But this seems to me to be a very dubious
assumption. As we all know, it is a common-place state of affairs in mathematics that a
certain theory can be presented in twoways: either very concretely, which often means
relying on long computations and brute-force methods, or very abstractly, which often
means much more sleek proofs but much greater conceptual sophistication. It would
be much too simplistic to say that the latter is obviously superior. Each method has
its advantages. The former is often more accessible in principle to a less sophisticated
reader; it has a certain methodological purity by staying close to the source and not
introducing concepts far removed from the immediate matter at hand; it raises fewer
ontological questions by working on a more tangible level of concreteness; etc. It is
perfectly plausible that Euclid avoided the method of compounding ratios for reasons
such as these. Therefore his choice not to use this method says nothing about whether
or not he understood this method algebraically.

This point of view seems to agree with Mueller’s own conclusion:

The general situation might perhaps be summarized by saying that Euclid will
use the theory of proportion in an elementary way to avoid a complex solid-
geometrical argument, but he will not use it in an abstract computational way to
substitute for geometrical argument. (p. 226)

This is just what one would expect on the hypothesis that Euclid desires to use themost
concretemethods in his proofs. ThoughEuclid uses the language of compounded ratios
on a few isolated occasions, he does so only in the most elementary way; it is a basic
shorthand expression rather than a method of reasoning. This is perfectly consistent
with the hypothesis that he is fully aware of the algebraic power of compounding
ratios but has decided to keep his presentation as concrete as possible, just as many
mathematicians today write books for a certain audience in a concrete form even when
they know a more abstract and streamlined theory.

It would have been different if Euclid had used the method of compounded ratios
in his proofs, but used it in a clumsy way. Then his presentation could be faulted on
its own terms—not on the basis that it could favourably be replaced by a different
approach altogether but on the basis that the very method he choses could have been
carried out far more perfectly by someone who had greater understanding of those
very methods. That would have been evidence that he did not fully understand the
method of compounded ratios in an algebraic manner. But that is not what we find in
the Elements.

3.8 Saito (1985)

Zeuthen formulated the GA1 hypothesis in his work on Apollonius’s Conics. The
theory of conics is of course replete with quadratic relations at every turn and therefore
relies on the kind of relations found it Book II of the Elements. Zeuthen found that
something likeGA1was the best way to characterise the role these propositions played
in the Conics. But Saito (1985) argues that, on the contrary, “Apollonius’s thought
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can be better understood if we assume that crucial steps of his argument depend on
geometric intuitions” (p. 32) rather than algebraic reasoning. This leads him to view
the role played by the results of Book II of the Elements in a different light. The
basis for Saito’s new interpretation is that “the process of visualization is a necessary
element in the reliance on geometric intuition”, and that “the propositions in Elem. II
play an important role in this process [of visualization]” (p. 42). Thus those results

are not methods of treating the lines and areas as general quantities in a way
similar to modern algebra, but they are the means for transformation between
‘visible’ and ‘invisible’ forms of areas. The former is indispensable because it
makes geometric intuition available, while the latter is adapted to the formal
statement of results as propositions . . . (p. 43)

The main feature of this formal expression is the ‘invisibility’ of the figures
involved, such as ‘the square of the ordinate’ and ‘the rectangle contained by
two line segments which lie in a line’. (p. 46)

Thus, in Saito’s view, propositions are most efficiently stated in terms of “invisible”
areas, as this allows for certain abstraction and generality. At the beginning of each
proof, however, these abstractions must be “unpacked”, as it were, into visible areas.
This is done using results from Book II of the Elements, which express “invisible”
squares and rectangles as a combination of other figures, which may be visually rep-
resented.

However, it would be easy to construct the square on the ordinate or to raise one of
the two sides of a “flat” rectangle in a direction perpendicular to the other. In this way
one could easily make Saito’s “invisible” areas visible with only the simplest of tools.
Book II of the Elements would not at all be needed to do this, which speaks heavily
against Saito’s interpretation of the purpose of Book II. In fact, it seems much more
natural to interpret the “invisibility” of these figures as an indication that they express
relations thought of abstractly, just as GA1 says.

Saito also goes on to interpret Euclid’sElements in terms of the notion of “invisible”
areas. Consider

II.1. If there be two straight lines, and one of them be cut into any number of
segments whatever, the rectangle contained by the two straight lines is equal to
the rectangles contained by the uncut straight line and each of the segments.

which is the geometrical equivalent of

x(a + b + c + · · · ) = ax + bx + cx + · · ·

This proposition at first “appears quite strange” and “seems to be a tautology” (p. 54),
since the proof simply points out the very evident fact that a rectangle cut into so
many pieces has the same area as the sum of the pieces. This seems too trivial to even
admit of a “proof” in any meaningful sense, and in fact, as Saito notes (p. 55), Euclid
himself seems to have used this theorem implicitly already earlier in his proof of the
Pythagorean theorem I.47 (where the square on the hypothenuse is decomposed into
two rectangles corresponding to the squares on the legs). To resolve this puzzling state
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of affairs “the notion of ‘visible’ and ‘invisible’ figures seems to be useful”, according
to Saito. II.1, from this point of view, is in itself is a statement about “invisible” fig-
ures, since it speaks in abstract terms without any reference to a specific geometrical
configurations. The proof, then, which does little more than merely restate the propo-
sition in terms of a specific, lettered figure, does from this point of view accomplish
something:

What Euclid has done is to reduce the equality between ‘invisible’ figures to
that of ‘visible’ ones. The latter equality is evident by geometric intuition and
it can be safely conjectured that Euclid thought it a sound basis for the proof of
the former. As a result, I claim that II 1 is by no means trivial, for it extends the
‘visible’ equality to the ‘invisible’. (p. 55)

This also explains why Euclid has committed no fallacy in his proof of 1.47: there
he uses only the “visible” form of the theorem, which is self-evident. An example
of a converse type occurs in XIII.10, “the sole explicit example of the use of II 1–3
in the Elements” (p. 55). There Euclid applies II.2 in the abstract, without having
the geometrical configuration of that theorem visually represented in the figure, thus
suggesting once again that the essence of the propositions of Book II is their abstract
formulation.

But again none of this is an argument against the geometrical algebra hypothesis.
On the contrary, the GA hypothesis seems to account for the above in a natural way
without the need for a recourse to the rather contrived notion of “invisible figures”. The
essence of abstraction in the formulations of the propositions in Book II, their saying
something more abstract than the obvious geometrical facts on which their proofs are
based, their being applied in abstract rather than visual form—all these things are in
perfect accord with the geometrical algebra hypothesis. Saito replies to this as follows:

A criticism might be raised that the invisible figures and their sides are sub-
stantially the same as quantities in general, and thus that my interpretation is at
bottom algebraic. But it is a mistake to interpret invisible figures in this way.
They retain their geometric properties, since depending on the arrangement of
the figures, one of the pair of twin-propositions is necessary. Elem. II contains
the propositions concerning the ‘invisible’ figures for the solution of geometric
problems, and these propositions are usually stated in pairs, the two propositions
being used in mutually complementary way [sic] to solve a problem. And this
mutually complementary use of a pair of propositions is evidence that Euclid
did not regard geometric magnitudes (areas and lengths of lines) as general
quantities. (p. 56)

For example, both II 5 and II 6 can be expressed by the equality (a+b)(a−b) =
a2 − b2 and some other pairs of propositions can likewise be represented by a
single algebraic equality. (p. 47)

Saito’s argument here assumes that such double formswould not occur if the treatment
was intended algebraically. I do not find this a reasonable assumption. For example,
a modern algebra book may include both (a + b)2 = a2 + 2ab + b2 and (a − b)2 =
a2−2ab+b2 when a single formula would have been enough if a and bwere intended
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as general magnitudes, which in fact they are. Of course modern algebra books include
both of these formulas because it is convenient in practice to have both forms for easy
reference, even though of course they are ultimately equivalent.

Furthermore, Saito’s algebraic formulation of II.5–6 is extremely liberal. van der
Waerden (1950, p. 120) also uses this liberal formulation, though he has his own
hypothesis as to how the two theorems differ. Using a more literal interpretation one
would obtain (as Zeuthen 1885, p. 12 does) the following algebraic meanings:

II.5. If a straight line [a] is cut into equal [ 12a + 1
2a] and unequal [(a − b) + b]

segments, then the rectangle contained by the unequal segments of the whole
[(a − b)b] together with the square on the straight line between the points of
section [( 12a − b)2] equals the square on the half [( 12a)2].

(a − b)b + ( 1
2a − b

)2 = ( 1
2a

)2

II.6. If a straight line [a] is bisected and a straight line [b] is added to it in a
straight line, then the rectangle contained by the whole with the added straight
line and the added straight line [(a + b)b] together with the square on the half
[( 12a)2] equals the square on the straight line made up of the half and the added
straight line [( 12a + b)2].

(a + b)b + ( 1
2a

)2 = ( 1
2a + b

)2

Thus it is highlymisleading to claim that these propositions are algebraically the same.
They are no more the same algebraically than they are geometrically, so it makes no
sense to use the existence of both as evidence that Euclid did not think algebraically.
According to Saito:

The double form i.e. the existence of twin-propositions, can be explained in the
context of their application to the geometric arguments. They are used inmutually
complementary ways according to the arrangements of points and lines in the
problems and theorems to which they are applied. (p. 59)

This is of course true, but it proves nothing unless one makes the tacit assumption that
this cannot be explained equally well algebraically. And Saito has given no argument
for this assumption, except the mere assertion that the propositions are algebraically
identical. But to Zeuthen they are far from identical, and to van der Waerden, who
does see them as in a way corresponding to the same formula, there is nevertheless
an algebraic distinction between them in terms of the problems they are designed to
solve. Altogether, then, Saito’s argument about the “twin” propositions II.5–6 con-
sists in showing that they are geometrically differentiable and assuming that they
are algebraically indistinguishable. But since there is no reason to believe the latter
assumption, the former proves absolutely nothing one way or the other as far as GA
is concerned.
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3.9 Saito (1986)

Like Mueller, Saito (1986) argues against GA1 on the basis of the ways in which the
Greeks handled compounded ratios. According to Saito, Greek works betray a lack
of understanding of the basic algebraic structure of such operations. If the Greeks
had truly understood these things in an abstract, algebraic fashion, he argues, they
could, and presumably would, have streamlined their works considerably. This argu-
ment concerns the “behind the scenes” reasoning, as it were: obviously the Greeks
insisted, for one reason or another, that their finished treatisesmust proceed in a strictly
synthetic-geometric fashion; the question is whether they mastered algebraic thought
and only wrote up their results in this form for the sake of formal presentation, or
whether their thought itself was limited along with their mode of expression. Saito
maintains the latter. His evidence for this is the manner in which the Greeks dealt with
rules such as (the equivalent in the language of compounded ratios of)

a

b
= c

d
· e

f
⇒ c

d
= a

b
· f

e
(F)

According to Saito,

though it is self-evident to us that [(F)], it was not so toEuclid, nor forApollonius.
Later Pappus took the trouble to prove it. We will find other examples of their
ignorance of or indifference to the multiplicational implication of compounding.
(p. 31)

There are several things to object to here. First of all (F) is not “self-evident” to us
either. It is a well-known fact, to be sure, and one that we have used so often that it
has become second nature to us. But that doesn’t make it “self-evident”.

But even this caveat aside, the fact that Pappus proved (F) does not mean that it was
not considered self-evident. Saito apparently thinks so since he goes on to promise
“other” evidence, apparently implying that this is one piece of evidence. But in reality,
of course, mathematics is full of proofs of self-evident theorems. To take but one
example, the triangle inequality, proved by Euclid (I.20), is “evident even to an ass”,
as a famous phrase reported by Proclus has it.

What, then, is Saito’s further evidence for his claim? First he considers the role of
compounded ratios in Euclid. As noted above, this notion occurs in only proposition
VI.23 and its arithmetical counterpart VIII.5. If we write P for the area and l, k for
the sides of a parallelogram then VI.23 says, algebraically speaking, that

P1
P2

= l1
l2

· k1
k2

In Euclid’s Data a very similar result occurs as proposition 68:

If two equiangular parallelograms have a given ratio to each other, and if one
side also has a given ratio to one side, the remaining side will have a given ratio
to the remaining side.

123



In defence of geometrical algebra 351

Algebraically, this amounts to the variant

l1
l2

= P1
P2

· k2
k1

obtained fromElementsVI.23 by applying (F). Indeed Euclid could easily have proved
the theorem in this way, and as Saito notes: “this proof would not only simplify the
proof in the text of the Data, but would also bring about a radical change in the style
and object of the argument” (p. 38). Thus this might seem to suggest that Euclid did
not grasp the underlying algebraic nature of these results and methods.

In my opinion this is an unconvincing argument. Saito interprets the fact that Euclid
didn’t prove Data 68 from Elements VI.23 as an indication that he didn’t see the
algebraic bridge between these results, which would have made the proof very easy.
That is to say, Euclid did not have enough algebraic knowledge to take this step.
It seems to me more likely that precisely to opposite is true: Euclid had too much
algebraic knowledge to take this step, for he saw that the results are really one and
the same. From this point of view, it would not make sense to “prove” Data 68 from
Elements VI.23 since it is not really a separate theorem but simply a reformulation of
the latter in a form more appropriate to the Data. Indeed, as Saito himself reports, the
extant text of the Data also comes with an alternative proof of proposition 68, which
has more in common with the algebraic proof although “the algebraic character is not
so conspicuous in this alternative because it repeats the procedure in VI, 23, rather
than use its conclusion” (p. 39). This, of course, is exactly what one would expect
if Data 68 was thought of as a reformulation of Elements VI.23 to be proved in a
self-contained manner, as I proposed.

Saito next turns to Apollonius’s Conics. Apollonius makes extensive use of com-
pounded ratios throughout. Saito decides to focus on propositions 41 and 43 from the
first book, though, as he admits (esp. p. 54), this is a rather arbitrary sample. These
propositions involve compounded ratios, but, according to Saito, “only superficially,
as ameans of compact enunciation of the propositions and shorter representation of the
argument, not as a method of analysis” (p. 41). “This fact seems to suggest that [Apol-
lonius] was not even aware of the possibility of the use of compounding [in the manner
of algebraic analysis], which would have greatly simplified the argument” (p. 53).

This sounds compelling enough until one pursues the details. It then transpires that
this alleged “great simplification” is not all that great; in fact, arguably, it is hardly
even a simplification. Saito himself gives a reconstruction of the combined analysis
behind the two propositions in question on pp. 47–48. This analysis consists of 24
steps. He then proceeds to give “a simpler analysis” (pp. 49–50), which utilises (F).
This “simpler” analysis picks up at step 11 of the original analysis, adds four steps
and one application of (F), and then coincides again with the original analysis in its
last four steps. Let us, for the sake of argument, be charitable and say that the use of
(F) is a single step, even though it is arguably the outsourcing of multiple steps to a
lemma. With this concession, then, the “simpler” analysis consists of 20 steps, 15 of
which are identical to the original 24-step analysis. Saito gives no further argument
as to why the second analysis is “simpler”, and yet he considers this grounds enough
for a very ambitious conclusion:
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This analysis would have greatly simplified the synthesis of the propositions I,
41, 43. The complexity of the extant text testifies that this line of thought never
occurred to Apollonius, though he has made use of the compounding of ratios
in the same propositions. How can we explain this apparent contradiction? . . .

It must have been the case that the compounding of ratios had not yet been
sufficiently developed . . . (p. 50)

Such is the extent of Saito’s argument that Apollonius did not master the algebra of the
compounding of ratios. Tome it seems dubious to draw suchwide-ranging conclusions
on the basis of the possibility of making very slight simplifications in the proofs of
two cherry-picked propositions.

3.10 Grattan-Guinness (1996)

Grattan-Guinness (1996) purports to “examine the credentials and verisimilitude of
geometric algebra as an interpretation of the Elements” and “find[s] in favor of the
critics” (p. 357). To this end he gives a summary of “the principal criticisms” of GA
(pp. 359–360), which I shall now quote and reply to in order.

2.1. The algebra is simply the wrong style: there are no equations, or letters used
in an algebraic way, in the Elements.

The Elements contains many propositions about things being equal to other things. To
say that these are not “equations” is to say that they are not written in the form of a
symbolic equation in the modern sense. But that does not mean it is not algebra. If you
take a modern algebra textbook and translate all equations into words, and all x’s into
“the root”, then it does not cease to be algebra. This change in surface form does not
alter the underlying content and line of thought of the work. Therefore the absence of
typographical equations does not prove that GA is “wrong”.

2.2. Had Euclid been thinking algebraically, he would have presented construc-
tions corresponding to easy manipulations of [(a + b)2 = a2 + 2ab + b2] (for
example) which, in fact, are absent from the Elements.

I find it dubious to argue this way, as if there is only one way to write a book if you
know algebra. Authors’ choices whether to include or exclude particular materials
in their works are complex decisions that take into account a myriad factors and
considerations. Merely knowing algebra is not sufficient to dictate these choices in a
deterministic manner, as this argument assumes.

Furthermore, I would argue (as would many GA advocates, I believe) that Euclid’s
purpose is to incorporate a certain body of algebraic knowledge within a geometrical
paradigm, not give a self-contained introduction to algebra for its own sake. And
his account is sufficient for this purpose. So why would he include more algebraic
material? No detailed account of why exactly Euclid would have been obligated to do
this has ever been given.

2.3. Information is lost when the algebra is introduced, in particular concerning
shapes of regions. Thus, using “p+q” to denote adding, say, two rectangles does
not distinguish between their being adjoined at the top, bottom, left, or right . . .
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What is the problem with this exactly? Why would the algebraic interpretation need
to be 100% information-preserving? Indeed, this geometrical information is often
incidental. For instance, in the proof of the Pythagorean Theorem (I.47) the “arms”
of the “windmill” could just as well be flipped inwards. The figure would be messier
but the proof would be the same. Thus it is far from clear that discarding information
about these kinds of incidental aspects of the concrete representation does any real
harm to a faithful representation of the underlying ideas of the work.

Again, theorems about parallelograms are often (mis-)written in terms of corre-
sponding theorems about rectangles. . .

Indeed, some theorems in theElements are expressed in terms of parallelogramswhere
the rectangular cases are the interesting ones from an algebraic point of view. Con-
sequently GA proponents generally focus their discussions on the latter special case.
But focussing on the most interesting case is not the same thing as “miswriting” the
theorem, so what’s the problem?

2.4. Common algebra is associated with analysis in the sense of reasoning from
a given result to principles already accepted. Euclidean geometry goes in the
reverse, synthetic, direction. Hence, proofs may well be warped.

Like the preceding arguments, this is not an argument against GA. It seems to be
an argument against the claim that algebra constitutes a perfect translation of all the
contents of theElements, preserving every conceivable aspect of the original. Of course
no GA proponent has ever been committed to anything near such a stance, so these
kinds of arguments are red herrings that have nothing to do with the serious historical
question at hand.

2.5. Euclid never measures a geometrical magnitude of any kind. For example,
there is nothing in theElements directly pertaining toπ , in any of its four roles for
circles and spheres; apparently such mathematics was not Element-ary for him.
Hence the association with algebra leads to an emphasis on arithmetic which
cannot be justified.

Whether Euclid measures anything is a matter of interpretation. Theorems about the
equalities of various areas can be certainly construed as having to do with measuring
those areas, or even with measuring underlying lengths, as in, say, I.47, XIII.10 or
XIII.12. But be that as it may, Grattan-Guinness’s argument still has no bearing on
GA. Again it is not an argument that has to do with historical hypotheses and the
evidence for them, but rather an argument that an emphasis of algebra could lead to
misunderstandings, such as the notion that Euclid was concerned with the number π .
The credibility of GA as a historical hypothesis cannot be faulted on the grounds that
it allegedly “leads” by “association” to various misunderstandings of Euclid that it
neither entails nor endorses.

2.6. If the Greeks really possessed this algebraic root, why did they not bring
it to light in the later phases of their civilization? Why, one might add, did that
philosophically sophisticated culture not introduce a word to denote, even if
informally, this important notion?
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The Greeks may have done all this for all we know. Our sources are very limited. And
insofar as they didn’t it could have been because it was too basic. After all, the old
Babylonians knew how to do this kind of algebra already 1500 years before Euclid,
which suggests that the “sophisticated culture” of the Greeks would have found it
quite trivial (whether they learned it from the Babylonians or not). Also, the Greek
mathematical tradition is not notable for revealing its motivations in other cases either.
Why, for example, did they care about conic sections? Did they draw inspiration from
sundial astronomy or maybe the problem of the duplication of the cube? Apollonius
wrote a big treatise on conics without saying a word about it. The Greek mathematical
tradition is one of the refined formal treatises, not one prone to chitchatting about its
motivations and goals.

This point is strengthened by Klein’s real history of algebra from later Greek
figures (especially Diophantos) through the Arabs to the Renaissance and
early modern Europeans, for a gradual process in three stages is revealed:
(1) using and maybe abbreviating words to denote operations and known and
unknown quantities, (2) replacing these words by symbols or single letters,
and (3) allowing letters also to denote variables as well as unknowns and
extending notational systems for powers. The interpretation of Euclid as a geo-
metrical algebraist requires him to have passed all three stages; and while he
might have skated through them with greater ease than did his successors, the
total silence over his achievement among his compatriots is indeed surpris-
ing.

It is nonsense that the GA interpretation “requires” this of Euclid. These three steps
are not the notion of algebra that GA is based on. In any case, (1) is of course trivial
and obviously found in the Babylonian tradition, and (2) and the second part of (3) is
not more than notational conventions. The first part of (3) is unclear until the meaning
of “variable” has been specified, but one thing that is clear is that it has nothing to do
with either GA1 or GA2.

Grattan-Guinness also raises the following objection to GA:

3.1. Euclid never multiplies a magnitude by a magnitude . . . [For example,] in
Euclid’s geometry the square on the side is not the square of the side, or the side
squared; it is a planar region which has this size. (pp. 360–361)

In a later publication, Grattan-Guinness (2004) again reaffirms this view:

Common algebra is the wrong algebra anyway [for interpreting Euclid], for
Euclid never multiplied geometrical magnitudes together. (p. 300)

This question-begging argument is not really an argument at all for Grattan-Guinness’s
point of view but rather a mere assertion of it. According to the GA interpretation, of
course, the forming of rectangles in Book II is a kind of multiplication of magnitudes.
One cannot argue against it by asserting that Euclid did not multiply magnitudes, since
this amounts to nothing but assuming what is to be proved.

Of course it is true that Euclid speaks of squares, for example, as geometrical objects
and not their areas as the result of a numerical multiplication. But how is this supposed
to prove thatGA is “wrong”?Onemight aswell insist that vonNeumann’s set-theoretic

123



In defence of geometrical algebra 355

construction of the natural numbers actually has nothing to dowith numbers at all since
it is really only about sets. This may be technically true in a very narrow, dogmatic
sense, but of course few would insist that common arithmetic is the “wrong” way of
conceiving what von Neumann’s construction is about—far from being “wrong”, that
is precisely the sense in which it was always intended to be understood.

3.11 Netz (2004)

Netz (2004) studies the history of one particular problem first occurring in the work
of Archimedes. The problem amounts to a cubic equation, and Archimedes’s solution
in terms of a parabola and a hyperbola is readily interpreted in algebraic terms. For
example, where we would speak of the square or square root of a quantity, the Greeks
would instead speak in terms of the ordinates or abscissas of a parabola such as, in
modern terms, py = x2, which comes to the same thing. The question is whether
or to what extent Archimedes and other ancients thought of the problem in algebraic
or proto-algebraic terms, or whether their mode of thought was limited to the strict
geometrical concreteness they used to express their results.

Netz’s answer is ostensibly to “side with Unguru andKlein: there was a basic divide
separating ancient, from later mathematics, typically seen in the transformation from
a more geometrical approach to a more algebraic approach” (p. 190), but in reality he
explicitly comes down on the opposite side of the crucial question. For example, he
writes:

Quite naturally, we now find that the two approaches [i.e., geometrical and alge-
braic] could mix in the very same proposition. This in itself is meaningful: there
are no deep conceptual taboos involved (as authors such as Klein sometimes tend
to suggest). The Greeks could think of objects in terms of their configuration, or
in terms of their quantitative relations—and they could mix the two approaches.
In all probability, they never even stopped to distinguish between the two. (p.
53)

There does not seem to be a big conceptual divide, separating ancients from
moderns, so that a certain type of mathematical understanding was inaccessible
to the ancients. Greeks were perfectly capable of a quasi-algebraic treatment—
but, in practice, they happened to minimize it. (pp. 54–55)

So, on this view, the Greeks were very proficient in proto-algebraic ways of thinking
but chose to downplay this in their published works. The reasons for this were not
cognitive but stylistic and sociological. As Netz explains:

We should not think of the correspondence of Archimedes as a series of
publications—Archimedes communicating to the world his newest ideas.
Instead, a published work, of the kind we have extant today, is merely a stage in
an ongoing intellectual tournament. (p. 62)

For this reason Netz argues:
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The Greek authors do not aim to allow their solutions to fit some structure of
classification within which their work can be recognized. On the contrary: they
attempt to blur the outline of the problem, to hide their dependence upon differ-
ent approaches. Archimedes’ generalized statement [of the problem mentioned
above] is conjured out of nowhere, to surprise the reader (this is so that the reader
would not see the general form as amere technical tool, forced upon Archimedes
to simplify the terms of the problem). Dionysodorus hides the dependence of his
analysis on that of Archimedes—and precisely for this reason foregrounds the
geometrical setting of his problem. (p. 57)

These preferences for geometrical obfuscation ceased making sense when the “ongo-
ing intellectual tournament” was no longer ongoing. Medieval mathematicians
grappling with the Greek mathematical heritage faced a very different task, namely
that of absorbing and synthesising a vast body of mathematics. Thus they focussed on
systematisation and abstract classification, and this, rather than any cognitive break-
through, explains their more algebraic style, Netz argues:

Hellenistic Greekmathematical practice focused on the features of the individual
proof, trying to isolate it and endow it with a special aura. Thus the characteristic
object of Hellenistic Greek mathematics is the particular geometrical configu-
ration. Medieval mathematical practice focused on the features of systems of
results, trying to bring them into some kind of order and completion. Thus the
characteristic object of medieval mathematics is the second-order expression. In
a particular geometrical configuration, the mathematician foregrounds the local,
qualitative features of spatial figures. In a second-order expression, the mathe-
matician foregrounds the global, quantitative features of mathematical relations.
Thus,HellenisticGreekmathematics—themathematics of the aura—gave rise to
the problem; medieval mathematics—the mathematics of deuteronomy—gave
rise to the equation. (p. 187)

As Netz notes, the fact that no great cognitive leap was needed for this transition is
especially clear in the case of Eutocius:

No one can ascribe to Eutocius any deep originality as a thinker. To find in him,
already, the characteristic features ofmedieval mathematics, is therefore remark-
able. But oncewe see that those features arise not from conceptual developments,
but from changes in mathematical practice, Eutocius’ originality becomes clear.
Eutocius’ mathematics was already different, in terms of its practice, from that of
Hellenistic Greek mathematics. Archimedes looked for striking results standing
on their own; Eutocius looked for systematization. (p. 188)

This point about the implausibility of a second-rate mathematician like Eutocius mak-
ing great conceptual advances generalises well beyond this specific case. As Mueller
(1981) admits:

Scholia which interpret propositions in book II numerically . . . and other evi-
dence make it certain that the possibility of applying geometric algebra to
arithmetic problems was an established fact by the first century A.D. (p. 50)
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There are two basic ways of interpreting this fact: either this generationmade profound
conceptual advances beyondwhatEuclid had conceived, or else theymerely spelled out
what Euclid thought was too trivial to mention. Proponents of GA advocate the latter
and its opponents the former, i.e. that Euclid somehow failed to see what Babylonian
mathematicians had seen 1500 years before him, and what commentators, who on
all other counts were inferior and unoriginal as mathematicians, would see 300 years
after him.

Altogether Netz has provided, in my view, an excellent case against Unguru and
Klein, notwithstanding the fact that he claims to argue for them, in that he has shown
clearly that the Greeks were very much capable of thinking in an essentially algebraic
fashion. It happens that they chose to hide it, but they did so for reasons that have next
to nothing to do with the development of mathematical thought and everything to do
with rather pedestrian and extra-mathematical considerations regarding publication
conventions and tactics.

In order to maintain his opposition to GA despite the above, Netz also raises a few
specific arguments against an algebraic reading of Archimedes. These arguments are
defensive in nature, since on the face of it it seems clear that Archimedes is indeed
operating essentially algebraically, as Netz admits:

Archimedes’ text, very surprisingly, makes a deliberate choice to deal with
objects as if they were quantitative in nature. This choice, more than any other
feature of Archimedes’ text, points forwards towards a more algebraic under-
standing of the problem. (p. 98)

This concerns Archimedes’s “multiplication” of a figure by a line: Archimedes’s
expression is of the form “figure epi line”, which is quite clearly conceived as an
abstract quantity rather than anything like a concrete area or volume in the figure. As
Netz notes, “epi does not refer to the construction of a solid from an area and a line”;
“In fact we have a clear sense of what it might mean, and this is because it is often
used in calculations, in expressions of the form: number epi number” (p. 100), where
it means “multiplied by”.

To argue against the prima facie algebraic interpretation Netz maintains that the
operation in question is not truly algebraic after all since it lacks certain essential
algebraic properties. For example, it is not commutative: we never hear of “line epi
figure” (p. 104). I find this argument thoroughly unconvincing. The fact that we always
say “base times height” and never “height times base” when describing the area of a
rectangle does not prove that we fail to comprehend the commutative nature of the
operation. It is simply a stylistic choice to always used the preferred and standardised
version, though we understand perfectly well that they are equivalent.

4 Conclusion

The geometrical algebra hypothesis has, for the past few decades, been a kind of
scapegoat in a war of historiography. As the hallmark of a currently unpopular mode
of scholarship, this hypothesis has been condemned with zeal by a new generation of
historians. Because of its unfashionable association, the geometrical algebra hypoth-
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esis has seen objections of all sorts hurled its way. And with no one to defend it,
bystanders are likely to assume that it is justified. But the geometrical algebra hypoth-
esis deserves a fair trial. In this paper I have attempted to address every substantial
argument ever raised against the geometrical algebra hypothesis. I have argued that
none of them are at all compelling. I urge, therefore, that it is time to take a step back
from perfunctory opposition to geometrical algebra and to look at its case afresh with
an open mind.

References

Bos, Henk J.M. 2001. Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern
Concept of Construction. Berlin: Springer.

Freudenthal, Hans. 1977. What is algebra and what has it been in history? Archive for the History of Exact
Sciences 16(3): 189–200.

Fried, Michael N., and Sabetai Unguru. 2001. Apollonius of Perga’s conica: Text, context, subtext. Leiden:
Brill.

Grattan-Guinness, Ivor. 1996. Numbers, magnitudes, ratios, and proportions in Euclid’s elements: How did
he handle them? Historia Mathematica 23: 355–375.

Grattan-Guinness, Ivor. 2004. Decline, then recovery: An overview of activity in the history of mathematics
during the twentieth century. History of Science 42(3): 279–312.

Heath, T.L. 1908. The thirteen books of Euclid’s elements. Cambridge: Cambridge University Press.
Høyrup, Jens. 2002. Lengths, widths, surfaces: A portrait of old Babylonian algebra and its kin. Sources

and studies in the history of mathematics and physical sciences. Berlin: Springer.
Mueller, Ian. 1981. Philosophy of mathematics and deductive structure in Euclid’s elements. Cambridge:

MIT Press.
Netz, Reviel. 2004. The transformation of mathematics in the early Mediterranean world: From problems

to equations. Cambridge Classical Studies. Cambridge: Cambridge University Press.
Neugebauer, Otto. 1936. Zur geometrischen Algebra (Studien zur Geschichte der antiken Algebra III).

Quellen und Studien zur Geschichte der Mathematik, Astronomie und Physik, B 3: 245–259.
Rowe, David. 2012. Otto Neugebauer and Richard Courant: On exporting the Göttingen approach to the

history of mathematics. Mathematical Intelligencer 34(2): 29–37.
Saito, Ken. 1985. Book II of Euclid’s elements in the light of the theory of conic sections. Historia Scien-

tiarum 28: 31–60.
Saito, Ken. 1986. Compounded ratio in Euclid and Apollonius. Historia Scientiarum 31: 25–59.
Sidoli, Nathan. 2013. Research on ancient greek mathematical sciences, 1998–2012. In From Alexandria,

through Baghdad: Surveys and studies in the ancient Greek and medieval Islamic mathematical sci-
ences in honor of J.L. Berggren, ed. Nathan Sidoli, and Glen Van Brummelen, 25–50. Berlin: Springer.

Szabó, Árpád. 1969. The beginnings of Greek mathematics, Synthese historical library 17, Reidel, 1978.
Originally published as Anfänge griechischen Mathematik. Oldenbourg Wissenschaftsverlag.

Unguru, Sabetai. 1975. On the need to rewrite the history of Greek mathematics. Archive for the History of
Exact Sciences 15(1): 67–114.

Unguru, Sabetai. 1979. History of ancient mathematics: Some reflections of the state of the art. Isis 70(4):
555–565.

Unguru, Sabetai, and David E. Rowe. 1981. Does the quadratic equation have Greek roots? A study of
“geometrical algebra”, “application of areas”, and related problems. Libertas Mathematica 1: 1–49.

Unguru, Sabetai, and David E. Rowe. 1982. Does the quadratic equation have Greek roots? A study of
“geometrical algebra”, “application of areas”, and related problems (cont.). Libertas Mathematica 2:
1–62.

Van der Waerden, B.L. 1950. Science awakening, Noordhoff, Groningen, 1954. Originally published as
Ontwakende wetenschap. Noordhoff, Groningen

Van der Waerden, B.L. 1975. Defence of a “shocking” point of view. Archive for the History of Exact
Sciences 15(3): 199–210.

Viète, François. 2006. The analytic art. New York: Dover Publications.

123



In defence of geometrical algebra 359

Wallis, John. 1685. A treatise of algebra, both historical and practical: shewing the original, progress, and
advancement thereof, from time to time, and by what steps it hath attained to the height at which now
it is, London.

Weil, André. 1978. Who betrayed Euclid? Extract from a letter to the editor. Archive for History of Exact
Sciences 19(2): 91–93.

Zeuthen, H.G. 1885. Die Lehre von den Kegelschnitten im Altertum, A.F. Höst & Sohn, 1886. Originally
published as “Kegelsnitlaeren in Oltiden,”Kongelig Danske videnskaberens Selskabs Skrifter, 6th ser.,
1(3): 1–319

123


	In defence of geometrical algebra
	Abstract
	1 Definition of geometrical algebra
	2 The case for geometrical algebra
	3 The critiques
	3.1 Szabó (1969)
	3.2 Unguru (1975)
	3.3 Unguru (1979)
	3.4 Unguru and Rowe (1981)
	3.5 Unguru and Rowe (1982)
	3.6 Fried and Unguru (2001)
	3.7 Mueller (1981)
	3.8 Saito (1985)
	3.9 Saito (1986)
	3.10 Grattan-Guinness (1996)
	3.11 Netz (2004)

	4 Conclusion
	References




