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Abstract: Bulky iron complexes are described that catalyze the
site-selective oxidation of alkyl C¢H bonds with hydrogen
peroxide under mild conditions. Steric bulk at the iron center is
introduced by appending trialkylsilyl groups at the meta-
position of the pyridines in tetradentate aminopyridine ligands,
and this effect translates into high product yields, an enhanced
preferential oxidation of secondary over tertiary C¢H bonds,
and the ability to perform site-selective oxidation of methylenic
sites in terpenoid and steroidal substrates. Unprecedented site
selective oxidation at C6 and C12 methylenic sites in steroidal
substrates is shown to be governed by the chirality of the
catalysts.

Selective alkyl C¢H functionalization is envisioned as a very
powerful reaction in organic synthesis.[1] Regioselectivity
exhibited by most oxidizing reagents is governed by the
innate reactivity of C¢H groups, and advances in under-
standing the factors that determine their relative reactivity
have introduced some degree of predictability in the site
selectivity of alkane oxidation reactions with non-enzymatic
reagents.[2] However, in enzymatic oxidations a combination
of directing elements can diverge site selectivity towards less-
reactive C¢H bonds. Contributions towards producing selec-
tive oxidations not governed by the innate reactivity of C¢H
bonds have started to appear, but are mainly restricted to
enzymes. For example, directed evolution of P450s can be
exploited to produce mutants that favor specific site selectiv-
ities.[3] Other recent approaches involve derivatization of
substrates with elements that can be precisely recognized by
enzymatic active sites, governing substrate positioning, so
specific C¢H bonds are directed towards the reactive site.[4]

Synthetic reagents and catalysts are highly desirable for
practical reasons but in the absence of the elaborate
structures of enzymes, their ability to tune C¢H site selectivity
is still modest. Sterically bulky oxidants and iron catalysts

with aminopyridine ligands have been recently shown to
promote preferential oxidation of 288 over 388 C¢H bonds
because the 388 C¢H bonds are sterically more encumbered.[5]

However, reagents that can override intrinsic relative reac-
tivities among not-activated methylene sites are very rare.[5c,6]

This remains a very relevant and challenging problem because
these strong and inert bonds are the most abundant C¢H sites
in organic molecules.

In the quest for iron catalysts that could regulate
regioselectivity, and that are synthetically accessible in
a straightforward manner, we considered installing bulky
trialkylsilyl moieties to tetradentate chiral aminopyridine
ligands. We envisioned that the bulky nature of the catalysts
will modulate their regioselectivity, and may also enhance
stereoselectivity in C¢H oxidation reactions. Furthermore,
from a practical point of view, the silyl derivatization offers
a simple synthetic strategy to obtain modular scaffolds
suitable for systematic tuning. Following these ideas, we
herein show chiral iron catalysts with sterically bulky centers
that mediate regioselective oxidation of alkane moieties. The
catalysts oxidize preferentially 288 over 388 C¢H bonds but most
remarkably, their chirality endows them with the ability to
determine site selectivity among distinct methylene sites in
the oxidation of complex molecules, as shown for steroids.

Chiral tetradentate ligands (L = tipsMCP and tipsPDP,
Scheme 1, giving the iron complexes 1 and 2, respectively)
in which the two pyridines are substituted with bulky tris-
(isopropyl)silyl (tips) moieties at the 5-position were targeted.
Silyl-substituted picolyl aldehyde precursors were obtained in
multigram scale in a one pot sequence of reactions (See
Supporting Information for details). The product yield and
simplicity of the procedure compare very favorably with
regard to methods required for preparing building blocks for
other bulky catalysts.[5a, 7] Standard procedures served to
assemble the corresponding tetradentate ligands, which
were then used to prepare the corresponding iron complexes
of general formula (D or L)-[Fe(CF3SO3)2((R,R’ or S,S’)-L)],
L = tipsMCP or tipsPDP, (L = (S,S’)-MCP, L-tips1; L = (R,R’)-
MCP, D-tips1; L = (S,S’)- tipsPDP, L-tips2 ; L = (R,R’)-PDP, D-
tips2). For illustrative purposes, a schematic diagram of the
structure of the complexes is shown in Scheme 1, top.
Complexes are chiral at the metal (L or D), which in turn is
determined by the chirality of the diamine backbone (S,S’ and
R,R’, respectively). Space-filling diagrams corresponding to
(R,R’)-[Fe(CF3SO3)2(MCP)] (D-1),[8] [Fe(CF3SO3)2(PDP)]
(D-2),[9] L-tips1 and D-tips2 are also shown in Scheme 1,
bottom. Comparison of the silylated catalysts with that of
the parent 1[8] and 2,[9] indicates only minor differences
between their respective structural parameters of the first
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coordination sphere. Most interestingly, complexes L-tips1 and
L-tips2 exhibit a well-defined and constrained envelope
(Scheme 1, bottom) around the cis labile position of the
iron center, where the putative reactive Fe=O unit forms
upon reaction with H2O2.

A series of standard substrates were chosen as test
platforms to estimate the ability of the catalysts to differ-
entiate among 288 and 388 C¢H bonds (288/388), and also among
different methylenic sites differing in their relative steric
hindrance (K3/K2; Table 1 and Supporting Information).[10]

Reactions were performed at 088C under air, by delivering
aqueous H2O2 (2 equiv) via syringe pump (30 min) to an
acetonitrile solution of the catalyst (3 mol%), the substrate,
and 150 mol% of acetic acid (AcOH). Irrespective of the
catalyst, oxidation of 388 C¢H bonds provides the correspond-
ing tertiary alcohol (3-OH), while oxidation of methylenic
sites yields the corresponding ketone products, resulting from
oxidation of the secondary alcohol that forms after initial C¢
H oxidation at these sites. Of note is that the hydroxylation of
the tertiary site occurs with stereoretention. A perusal of
Table 1 and Table S1 shows that L-tips1 and L-tips2 systemati-
cally provide improved product yields compared to the parent
catalysts L-1 and L-2.

Most substantial is the systematic increase in selectivity
towards the oxidation of 288 over 388 sites responding to the
steric bulk of the catalysts. For example, the 288/388 ratios
change from 3 (with S1) and 24 (with S2) using L-1 to 13 and
96 when using L-tips1. Moreover, discrimination between
methylenic sites is also enhanced when L-tips1 is employed as

catalyst; in the oxidation of S1 and S2, the K3/K2 ratio
(3.0 and 1.9, entries 1 and 5) denotes a preferential
oxidation at the sterically more exposed methylene site to
produce ketone K3. As previously noticed for catalysts
L-1 and L-2,[5c,h] comparison between L-tips1 and L-tips2
shows that the nature of the backbone systematically has
a contributing role in enhancing selectivity towards the
less sterically hindered C¢H bond (compare entries 1 vs.
2, and 5 vs. 6). In conclusion, L-tips1 and L-tips2 discrim-
inate C¢H oxidations among 388 and 288 alkyl C¢H bonds
on the basis of steric effects, with L-tips1 being particularly
selective.

The ability of tips1 and tips2 to catalyze site-selective
oxidations in complex organic molecules was tested for
terpenoids and steroidal substrates, as representative
cases. As these substrates are chiral, the two enantio-
meric forms of the catalysts (L and D) were tested.
Menthol derivatives have been studied as test substrates
for C¢H oxidation with iron and manganese catalysts,
and also with P450 enzymes.[2b, 4a, 5b,c,11] Unlike menthyl
and isomenthyl esters, where oxidation at the tertiary C1
is strongly favored because of intrinsic stereoelectronic
factors, for (++)-neomenthyl esters a preferred site is
absent. Consistently, (++)-neomenthyl pivalate (S3) was
oxidized to a roughly 1:1 mixture of tertiary alcohol S3 a
and ketone S3 b with unbiased catalysts L-1, D-1, L-2 and
D-2.[5c] Reactions also exhibit poor mass balance (see
Supporting Information). Instead, reaction catalyzed by
L-tips2 showed improved product yields, and mass bal-

ance, with ketone S3 b being the major product. Instead D-tips2
delivered poorer yields and mass balance, highlighting a key
role of chirality in determining the regioselectivity of the
reaction. When performed in preparative scale, oxidation of

Scheme 1. Top: Schematic diagram of the series of iron catalysts employed.
Bottom: Space-filling diagrams of the FeL fragments corresponding to D-1,[8]

D-2,[9] L-tips1 and D-tips2 (CCDC 1456927–1456928). Triflate and water ligands
in the X-ray structures have been removed for clarity. White H, gray C,
blue N, yellow Si, orange Fe.

Table 1: Catalytic reactivity.

Entry Cat. Conv
[%][a]

Yield
[%][a]

388 OH/K2/K3[b] K3/K2 288/388

1 L-tips1 83 61 7/23/70 3.0 13
2 L-tips2 87 55 20/26/54 2.1 4
3 L-1 84 41 24/26/50 1.9 3
4 L-2 65 37 48/22/30 1.3 1

5 L-tips1 68 58 1/34/65 1.9 96
6 L-tips2 83 58 3/36/61 1.7 31
7 L-1 83 53 4/37/59 1.6 24
8 L-2 88 48 15/38/46 1.2 5.6

[a] Conversion and yields determined from crude reaction mixtures by
GC. Values are the average of at least three reactions. [b] Normalized
ratios.
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S3 with L-tips2 proceeds with excellent mass balance and
provides ketone S3 b as the major product in 51 % yield
(Scheme 2, 87% total yield of oxidized products, 98 % mass
balance). For comparison, the best yield of S3 b described so
far in the literature is 33 %[5b] and in that reaction the total
product yield was 48% and mass balance was 50%.

Steroidal substrates are particularly interesting because of
their molecular complexity, containing multiple 388 and 288 C¢
H sites, and because of their biological importance. Oxidation
patterns in steroids are very diverse and it has been argued
that they regulate their physical and biological properties.[12]

Seminal examples of regio and diastereoselective hydroxyl-
ation of steroidal substrates at C6 and C12 methylenic sites
have been described by Breslow (Scheme 3a)[13] and Schçn-
ecker (Scheme 3b),[14] and both rely on elegant positioning of
the reactive metal fragment in close proximity to the target
C¢H bond by either employing supramolecular or covalent
interactions. Oxidation at C12 is particularly challenging. The
Schçnecker method remains as the only viable path for
oxidation at this position, and has found use in total syn-
thesis.[15]

Most interestingly, when trans-androsterone acetate was
subjected to oxidation with L-tips1, D-tips1, L-tips2, and D-tips2
site selectivity was shown to be dictated by the chirality of the
catalysts (Table 2). Oxidation with L-tips1, and L-tips2 pro-
ceeded predominantly (72–82% selectivity) at C6 providing
the corresponding ketone S4b in 49–50% isolated yield.
Instead, when D-tips1 and D-tips2 were used, preferential site
selectivity was reversed towards C12, (S4c and S4 d) in
moderate (33%) and excellent (71 %) isolated yields with L-
tips2 and L-tips1, respectively. Mass balance are remarkably

high (72–95 %), highlighting the extraordinary selectivity
properties of the catalysts. In the absence of the bulky silyl
moieties site selectivity is lost, low product yields and poor
mass balance is obtained.[5h] Particularly unusual is the
selectivity exhibited in these reactions by D-tips1 and L-tips2
(entries 2 and 3); C6 oxidized ketone accounts for 82% of
oxidized products with L-tips2 , but only 11 % with D-tips1.
Likewise, C12 oxidized ketone represents 88 % of the
oxidized products with D-tips1 and only 3% with L- tips2.
Analogous selectivities were obtained when cis-androsterone
was employed as substrate (see Supporting Information).

In conclusion, the present work describes straightforward
accessible bulky iron catalysts for the oxidation of alkyl C¢H
bonds with remarkable regioselectivity, dictated by a combi-
nation of their bulky and chiral nature. To our knowledge, the
switch in methylene site selectivity oxidation of steroidal
substrates has only been previously documented for enzymes.
Thus, the current work constitutes the first case where this
effect has been demonstrated with synthetic catalysts, provid-
ing oxidized products in good yields. Future efforts will
address the study and development of the stereoselective
properties of these catalysts in challenging oxidation reac-
tions.
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Scheme 3. Representative examples of site selective oxidation of ster-
oidal substrates, illustrating the basis for site selectivity.

Table 2: Oxidation of trans-androsterone acetate (S4).

Entry Cat. Conv
[%][a]

Total Yield
(isol.yield)
[%][a]

C6[b]/C7/C12/C14

1 L-tips1 85 70(50) 72/5/23/–
2 D-tips1 86 80(71) 11/1/88/–
3 L-tips2 83 60(49) 82/12/3/3
4 D-tips2 50 48(33) 22/6/69/3

[a] Conversion, total yield, and relative selectivities determined by GC of
crude reaction mixtures. In parenthesis the isolated yield of the major
ketone product. [b] Regioselectivity according to C¢H oxidized site.
Traces amounts of corresponding 288 alcohols are also observed in the GC
but could not be isolated.

Scheme 2. Selective oxidation of (++)-neomenthyl pivalate. rsm= recov-
ered starting material.
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