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Abstract Food decisions determine energy intake. Since
overconsumption is the main driver of obesity, the effects of
weight status on food decision-making are of increasing inter-
est. An additional factor of interest is age, given the rise in
childhood obesity, weight gain with aging, and the increased
chance of type 2 diabetes in the elderly. The effects of weight
status and age on food preference, food cue sensitivity, and
self-control are discussed, as these are important components
of food decision-making. Furthermore, the neural correlates of
food anticipation and choice and how these are affected by
weight status and age are discussed. Behavioral studies show
that in particular, poor self-control may have an adverse effect
on food choice in children and adults with overweight and
obesity. Neuroimaging studies show that overweight and
obese individuals have altered neural responses to food in
brain areas related to reward, self-control, and interoception.
Longitudinal studies across the lifespan will be invaluable to
unravel the causal factors driving (changes in) food choice,
overconsumption, and weight gain.
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Introduction

People make over 200 food decisions per day [1]. Food
decisions are the choices made concerning what, when,
and how much to eat. Together, they determine energy
and nutrient intake. When more energy is consumed than
is expended, e.g., by eating energy-dense fast foods, over-
consumption occurs. Since overconsumption causes a
positive energy balance, which leads to weight gain, it is
considered to be a main cause of obesity [2]. Rates of
childhood obesity are rising at an alarming rate [3], and
the chance that an obese child develops into an obese
adult is much higher than that of a normal-weight child.
Moreover, once people have become overweight or obese,
it is quite challenging for them to revert to a stable
healthy weight. Thus, prevention of overconsumption is
crucial [4], and this requires knowledge on the drivers of
food decision-making and how these are affected by
weight status. Furthermore, since the prevalence of over-
weight, obesity, and type 2 diabetes increases with age,
determinants of food decisions in older adults are of vital
importance as well. Although food choices are affected by
many factors, such as availability, cultural, economic, and
ethical considerations, this review focuses on the effects
of weight status and age, as two key characteristics. To
give a comprehensive overview of how weight status and
age influence food decision-making, both behavioral and
neuroscience studies will be discussed (Fig. 1). We aim to
provide an understanding of the causes of maladaptive
food decisions and identify knowledge gaps and new av-
enues for possible interventions.
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Fig. 1 Schematic overview of the factors affecting food decision-making
which are discussed in this review. Note that external factors are outside
the scope. The effects of weight status and age on factors examined in
behavioral studies (food preference, food cue sensitivity, and self-control
capacity) and factors examined in neuroimaging studies (food
anticipation and food choice) are shown in the order in which they are
discussed in the text

Food Choice Behavior

There are many models of food choice, ranging from socio-
psychological and cultural models to economic models. Food
choice behavior has been studied with many research meth-
odologies, such as qualitative measures, food frequency ques-
tionnaires, food choice tasks, intake measurements, eye-track-
ing, and measurements of purchase. We grouped the literature
into three topics that are relevant for understanding the role of
weight status and age in food choice behavior: food prefer-
ence, food cue sensitivity, and self-control capacity (Fig. 1,
Table 1).

Food Preference

Nutrient and energy rich foods appear to be naturally attractive
to all humans [5]. Food preferences are largely learned by
experience; only sweet taste preference is inborn [6]. It has
been hypothesized that an innate preference for energy-dense
foods leads to higher consumption of these foods and thus

Table 1 Key influencers of food decision-making and the strength of
evidence for effects of weight status and age

Weight status Age
Food preference + +
Food cue sensitivity + +
Self-control capacity + +

+ denotes factor has been shown to have an effect. + denotes evidence for
this factor having an effect is conditional or inconclusive
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obesity [7]. However, overweight and obese individuals do
not give higher preference ratings when tasting food (both
high and low energy) than normal-weight individuals [8].
Furthermore, in both children and adults, there is no clear
evidence for a relationship between taste sensitivity or prefer-
ence for sweet, salty, sour or bitter tastes, and weight status
[9¢] (review in which studies that use taste sensitivity, taste
preference, and hedonic preference measures were included).
There is some evidence for a higher preference for fatty foods
in overweight and obese individuals and higher preference for
salty foods in overweight and obese children [9¢]. Taken to-
gether, it is more likely that obesity is related to problems in
dealing with food cues and the motivation to eat, than with
heightened pleasure derived from eating or a stronger prefer-
ence for energy-dense foods [7, 9¢].

Children’s food preferences are highly determined by their
experiences with the food and the preferences of their parents
[10]. Repeatedly exposing children to foods, for example
green vegetable soup, increases preference and consumption
[11]. Unfortunately, children are often exposed to advertise-
ments for unhealthy snack foods, e.g. on television, which
increases their preference for foods high in fat, sugar, and salt
[12]. Children’s initial preferences last throughout adoles-
cence, but may change as they eat more meals outside their
home [13]. Elderly people experience loss of appetite associ-
ated with aging and a functional decline of taste and smell that
may lead to decreases in food palatability [14] and may
change their food choices towards more intense flavors [15].
In conclusion, higher preference for fat may be linked to over-
weight, but evidence for this is marginal. Although food pref-
erences change over the lifespan, there are no studies showing
that this leads to a changed risk of overconsumption.

Food Cue Sensitivity

Food cues are relevant for everyone from a biological perspec-
tive. In line with this, hungry normal-weight individuals have
an attentional bias towards food cues (using a dot probe task
[16] with food-related words), since these are then more rele-
vant [17]. When sated, normal-weight subjects have a dimin-
ished attentional bias towards food cues, while overweight
women have been found to exhibit greater attention for food
compared to non-food cues when satiated, as measured with
eye-tracking during visual probe tasks (based on [16] but
using pictures instead of words) [18, 19]. A similar study
did not find such differences between hungry and satiated
women or weight groups in a viewing task showing pictures
of objects compared with pictures of high energy foods. In a
dot probe task done in the same individuals however, over-
weight and obese individuals did automatically direct their
attention to food-related stimuli to a greater extent than
normal-weight individuals, in particular when hungry [5].
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Although overweight children may have a higher food cue
sensitivity than normal-weight children (as shown by their
performance on a Stroop task [20] using food-related words
[21]), it may be the case that all children have an attentional
bias towards palatable foods when measured with an imbed-
ded word test [22] and a visual probe task [23, 24]. When
comparing children to adults, adults are initially strongly
attracted by unhealthy foods, but they shift their attention from
the unhealthy to the healthy foods, suggesting a self-
regulation process of avoidance when measured in with natu-
ralistic viewing paradigm [25]. Children, on the contrary, at-
tend more strongly to unhealthy foods and do not shift their
attention away [26]. In older adults and elderly, food cue sen-
sitivity has not been studied. In summary, overweight individ-
uals may be more sensitive to food cues, and hunger status
likely plays a role in the differences in study outcomes.
Children may have a bias towards (palatable) unhealthy food
and find it hard to direct their attention away from it.

Self-Control Capacity

The ability to regulate behavior effectively is relevant in many
aspects of daily life, such as the consumption of healthy food,
purchase decisions, or sexual behavior. Self-control refers to
the ability to withhold a response with an immediately reward-
ing outcome in favor of a response with an outcome that is
more advantageous in the long run. Thus, self-control is an
important part of healthy food choice, as a lack of it may result
in unhealthy food choices and overconsumption. In line with
this, self-control capacity has been shown to be negatively
related with body weight [27, 28].

In adults, obesity is associated with impaired response in-
hibition capacity, greater delay discounting, and reduced ex-
ecutive function in general [28-30]. Response inhibition re-
fers to suppression of actions that are inappropriate in a given
context and that interfere with goal-driven behavior [31].
Response inhibition is most often measured with go/no-go
and stop-signal tasks (e.g., [32, 33]). Delay discounting refers
to the tendency for more remote outcomes to have less value
[34]. This is often measured with a delay discounting task, in
which a choice has to be made between an amount of money
available immediately or a larger amount of money available
later. In children, delay of gratification has been measured
with tasks in which they are asked to resist a small reward
(e.g., amarshmallow) for 15 min in favor of multiple or great-
er rewards later [35]. Executive functioning is an umbrella
term that includes cognitive control, the ability to sustain or
flexibly redirect attention, the inhibition of inappropriate be-
havioral responses, initiation and execution of strategies, and
the ability to flexibly switch among strategies [36]. All of
these constructs contribute to self-control ability. In children,
self-control improves as they grow older. Accordingly, chil-
dren and adolescents are more impulsive than adults, as is

apparent from both response inhibition tasks and choice im-
pulsivity tasks (such as delay of gratification and delay
discounting) [37+¢]. However, the relative level of self-
control at a given age is a stable personality trait. In accor-
dance with findings in adults, there is a consistent relationship
between self-control and weight status in children.
Overweight and obese children and adolescents exhibit re-
duced executive function [38, 39], and less cognitive flexibil-
ity as measured with the Wisconsin Card Sorting Test
(WCST) [40]. In line with this, a delay of gratification task
at preschool age even predicts BMI 30 years later [41]. As
adults age, self-control may improve as they become less im-
pulsive and delay discounting tendencies decline [42]. To con-
clude, weight status and age are both related to self-control;
and because of its stability over time and predictive value for
weight status, further research on self-control mechanisms in
food choice and how to increase self-regulatory success.

For a summary of the behavioral results see Table 1. In the
field of food decision-making, older adults and elderly have
not been the subject of many studies. Thus, it remains unclear
which factors influence food choices later in life.

Neural Correlates of Food Decision-Making

Food choices are made in the brain, integrating a multi-
tude of neural and hormonal signals reflecting internal
state and the environment [43]. The brain does not reach
full maturity until 21 years of age. Furthermore, not all
brain arecas mature at the same rate; relatively greater
changes have been reported in the prefrontal cortex
(PFC) compared with the other brain regions between
the age of 8 and the early 20s for synaptogenesis [44],
gray matter reduction [45], myelination increase [46], and
resting level metabolism [47]. Areas in the PFC, such as
its lateral areas, mediate the capacity to voluntarily inhibit
desire for a short-term reward in favor of a (larger) long-
term reward [48] and are thus important for self-control.
As people grow old, there are gradual structural changes
such as decreases in gray matter density and synaptic
pruning and cell shrinkage [49].

How the brain reacts to food is often measured by
functional magnetic resonance imaging (fMRI). The most
widely used fMRI technique is blood-oxygen level-depen-
dent (BOLD) fMRI. This form of fMRI exploits the fact
that at a site of increased neuronal firing (brain activa-
tion), changes in blood oxygenation occur which lead to
a small increase in the fMRI signal (~1 %). Neuroimaging
studies that have examined processes underlying food
decision-making can be divided into two categories: an-
ticipation to food upon cue exposure and food choice. In
Table 2, an overview is given of the brain regions most
commonly implicated in food anticipation and choice.
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Table 2 Brain areas most

Function

consistently implicated in studies Area
on food anticipation and food
choice Ventromedial prefrontal cortex (vmPFC)/OFC

Dorsolateral prefrontal cortex (dIPFC)

Anterior cingulate cortex (ACC)
Amygdala
Hippocampus

Striatum

Insula

Lateral occipital complex/occipital gyrus
Primary motor cortex/precentral gyrus

Posterior parietal cortex

Incentive/subjective value of food

Self-control, anticipation of reward, monitoring
of behavioral consequences

Conflict monitoring, self-control
Emotion, assigns value to sensory stimuli (valence)

Episodic memory and learning aspects of food-related
behaviors such as dietary learning

Reward processing, motivated behaviors, and
incentive learning

Interoception, encoding of multimodal sensory
features of foods

Visual attention, object recognition
Motor coordination and planning, motivation
Subjective value, decision-making

Neural Correlates of Anticipation to Food

The process of food choice starts with the anticipation phase,
when food or food-related cues are perceived or thought of.
Upon perception of a food cue, multiple processes occur in the
brain such as preparation for food ingestion and food evalua-
tion [43, 50]. Examining brain responses to food cue exposure
helps to elucidate the mechanisms underlying eating behavior.
This is supported by studies showing that brain reactivity to
food cues predicts things like future weight gain in adolescent
girls [51] and women [52], food choice [53, 54], snack con-
sumption [55], weight status [56], and outcome in a weight-
loss program [57]. When normal-weight individuals look at
food pictures compared with non-food pictures, areas in the
appetitive brain network become active. This network centers
around four interconnected brain regions: (1) the amygdala
and hippocampus, (2) the orbitofrontal cortex (OFC) and ven-
tromedial prefrontal cortex (vmPFC), (3) the striatum, and (4)
the insula [50, 58]. Furthermore, brain areas involved in atten-
tion and visual processing (lateral occipital complex) are con-
sistently more active in response to food compared with non-
food pictures [50].

Functional neuroimaging has provided a means to investi-
gate on a neural level whether overweight and obese individ-
uals are more sensitive to food cues (see, e.g., Schachter’s
externality hypothesis, which states that obese people are
more reactive to external food cues and less sensitive to inter-
nal hunger and satiety signals than normal-weight individuals
[59]) and may thus exhibit greater anticipatory brain activa-
tion upon food cue exposure. Indeed, overweight and obese
individuals have increased activation in response to food cues
in regions associated with cognitive evaluation of salient stim-
uli (OFC, dorsomedial prefrontal cortex; dmPFC, anterior cin-
gulate cortex; ACC), motor responses (precentral gyrus) and
explicit memory (parahippocampal gyrus), when compared
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with normal-weight individuals. Additionally, they have re-
duced activation in regions linked to cognitive control (dorso-
lateral prefrontal cortex; dIPFC) and interoceptive awareness
(insular cortex) compared to normal-weight individuals [60¢].
Furthermore, hunger state has a differential effect on obese
than on normal-weight individuals. When hungry, obese indi-
viduals show greater activation in areas involved in emotion
and memory (amygdala/hippocampus), and reduced activa-
tion in areas involved in interoception (insula) than those with
normal-weight. When satiated, obese individuals have greater
activation in reward areas (caudate body/striatum), areas asso-
ciated with cognitive evaluation of salient stimuli (dmPFC),
and attention (supramarginal gyrus) than normal-weight indi-
viduals [61]. Thus, overweight and obese individuals may
have a stronger anticipatory response to food in areas involved
in evaluation and memory and a lower response in areas im-
portant for cognitive control and interoception. Food-related
brain responses of overweight and obese people may be dif-
ferentially affected by satiation as they may have a higher
reward response than normal-weight people when satiated.
This may make them more likely to eat even when they are
not hungry.

In response to food cues, children most consistently acti-
vate the same areas as adults do, which are part of the appeti-
tive brain network [62¢]. There are some indications that chil-
dren may not activate areas important for cognitive control
(ventrolateral prefrontal cortex; vIPFC), but there are not
enough studies in children to properly establish this [62¢].
Only a handful of studies have looked at the difference in
brain activation in response to food cues between normal-
weight and overweight children. When comparing overweight
and obese with normal-weight children, the former show
higher activation during food anticipation in areas involved
in cognitive control (dIPFC, vIPFC), interoception (insula),
and cognitive evaluation of salient stimuli (OFC, ACC) [51,
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63-65]. Overweight and obese children deactivate areas in-
volved in visual attention (the middle occipital and fusiform
gyrus), memory (the hippocampus and parahippocampal gy-
rus), and reward (the caudate/striatum) compared with
normal-weight children [63]. In summary, children may have
less inhibitory activation during food anticipation. Few studies
have been done in overweight children and results appear to
contradict those in adults, as children with overweight have a
higher response in areas involved in cognitive control and
interoception when compared with normal-weight children
while the opposite is found in adults. Intriguing as this finding
may be, given the small number of studies and large age
ranges of children studied (818 years), future studies should
directly compare normal and overweight children and adults.
So far, no studies have addressed the neural correlates of food
anticipation in older adults or elderly.

Neural Correlates of Food Choice

To date, the neural correlates of food choice have been studied
relatively little. Various tasks and designs have been used to
investigate aspects of the brain processes behind food deci-
sions. These studies mostly use single or dual food choice
paradigms [53, 66-73], willingness to pay for different foods
[74-77], or auction paradigms [78]. However, tasks, types of
choices, stimuli, and participant characteristics vary greatly
between studies. In the decision-making process, the different
attributes of the stimuli (e.g., taste, healthiness, size, and pack-
aging) are valued, weighed, and integrated into a single stim-
ulus value [79, 80+¢]. Neuroimaging studies have consistently
shown that this stimulus value is encoded in the vmPFC, both
for food and non-food (e.g., monetary) items [70-77, 81]. For
a comprehensive review on the neurocomputational perspec-
tive of dietary choice see Rangel [80ee].

In the context of overconsumption, it is interesting to in-
vestigate how healthiness of food impacts the food choice
process. To elucidate what happens in the brains of people
motivated to make healthy choices, dieters can be examined.
When dieters successfully make healthy choices, the value
signal encoded in the vmPFC is increased by the healthiness
of the choice option. During healthy choice, vimPFC activa-
tion is modulated by the dIPFC when self-control is necessary
(e.g., when refusing an unhealthy, but tasty food) [72]. In
dieters that do not successfully exercise self-control, the value
signal in the vmPFC only reflects taste, while in successful
self-controllers it incorporates both taste and health.
Intriguingly, these neural mechanisms underlying successful
self-control can be activated by merely asking people to con-
sider the healthiness of the food. When considering healthi-
ness, the vmPFC value signal incorporates the health aspects
of the food even in individuals without an explicit health goal.
Furthermore, the vmPFC signal is again modulated by the
dIPFC, and they make healthier choices [73]. In everyday life,

a health cue might come in the form of a health label used in
marketing (such as “high in calories” or “low fat content”).
When labels like this are shown alongside food in a food
choice task, the healthiness of the foods is encoded in the
amygdala (emotion) [66]. Interestingly, there is a negative
coupling between amygdala and dIPFC when these health
labels are shown [66]. The difference between the neural re-
sponses to health considerations and health labels may be
caused by the fact that the health labels were shown more
implicitly compared with the explicit instruction to consider
healthiness. Alongside health labels, health information is
commonly encountered in the shape of nutritional value tables
on food packaging. However, a more graphic design, a traffic
light system, has been proposed as an alternative and is more
effective in promoting healthy choices [82]. When the neural
responses to this traffic light label are compared with text-
based nutritional information, red traffic light signaling (for
unhealthy foods) activates the dIPFC, and there is increased
coupling between dIPFC and vimPFC [83¢].This suggests that
explicitly asking to attend to healthiness or a graphic health
label leads to different neural processing than implicitly show-
ing a health label. This should however be further examined.

An interesting way to look at the effect of caloric content
and tastiness of foods is to make choice-pairs based on liking.
When people choose a high calorie product over a low calorie
product, while they are sated and they have rated the foods as
equally tasty, the superior temporal sulcus, a brain area in-
volved in processing biological relevant information is acti-
vated [69]. This suggests that even when motivation to eat is
low, the brain still tracks caloric value. Choice-pairs can fur-
thermore be made challenging by design, by pairing a liked
high calorie food with a less liked low calorie food. Weight-
concerned women, who are trying to limit their energy intake
but are generally unsuccessful in this, show lower activation in
the anterior cingulate cortex, an area involved in valuation and
conflict monitoring when making challenging choices, and
accordingly fail to choose in line with their dieting goal [67].

To our knowledge, the effects of weight status or age on the
neural correlates of food choice have not yet been examined.
However, since the dIPFC is among the last brain regions to
mature, the self-control system may be underdeveloped in
children, which would make healthy food decisions more
challenging for them. Furthermore, lower dIPFC activation
in overweight/obese adults during food anticipation suggests
that they may have poorer self-control.

In conclusion, there is a growing body of work on the
neural correlates of food choice. Valuation activity in the
vmPFC appears to be mostly related to tastiness in normal-
weight individuals. When considering the healthiness of the
food, or attending to graphic health labels, health value is
encoded in the dIPFC and positively modulates vimmPFC acti-
vation. More implicit health information is encoded in the
amygdala and negatively coupled with dIPFC activation.
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Even when satiated, the brain tracks caloric content during
choice, and the lack of conflict-related brain activation may
cause self-control to fail in weight-concerned women. Future
studies should expand this by exploring the role of weight
status and age on healthy decision-making.

Discussion

Although the obesity epidemic has caused increased attention
for food decision-making, there are still several underexplored
areas. Without longitudinal studies, it is impossible to estab-
lish the causality of any of the factors discussed that influence
food decision-making. For example, we cannot say whether
poor self-control causes weight gain or that the state of being
obese causes diminished self-control. Large population-based
cohorts can hopefully be used to collect valuable information
on how weight gain and weight loss impact food decision-
making. Furthermore, there is an overrepresentation of
college-aged adults in the literature, little work has been done
in children, and almost no work has been done in older adults
and elderly, while the latter two are very important groups to
target. Since an overweight child has a large chance to develop
into an overweight adult, prevention of overconsumption of
unhealthy foods and formation of healthy eating habits in
children is crucial. Moreover, many Western countries have
an increasing elderly population, and many health problems
experienced by the elderly such as type 2 diabetes, cognitive
decline, and cardiovascular disease have been associated with
overweight/obesity and specific dietary factors, such as satu-
rated fat intake and vitamin E and B12 deficiency [84]. Thus,
additional research into food choice in older adults could be
beneficial for multiple health outcomes. Lastly, the field
would greatly benefit from standardization of methods, both
in behavioral and neuroscience studies, to decrease between
study variability and foster meta-analyses and replication
studies.

Conclusions

Age and weight status both significantly influence the food
decision-making process; however, more work, especially in
children and elderly, is needed to better understand the drivers
of dietary decision-making. Behavioral studies show that in
particular poor self-control may have an adverse effect on
food choice in children and in those with overweight and
obesity. Neuroimaging studies show that overweight and
obese individuals have different neural responses to food in
the brain regions involved in reward, self-control, and
interoception. More research into the neural correlates of food
choice may provide better insight in the effects of age and
weight on the food decision-making process and provide

@ Springer

targets for healthy eating interventions, which may be tuned
to different subgroups like children or dieters. Longitudinal
studies including individuals differing in weight status will
be invaluable to unravel the causal factors that shape food
decisions.
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