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Abstract In tuberous sclerosis complex (TSC), overexpres-
sion of numerous genes associated with inflammation has
been observed. Among different proinflammatory cytokines,
interleukin-1β (IL-1β) has been shown to be significantly
involved in epileptogenesis and maintenance of seizures.
Recent evidence indicates that IL-1β gene expression can be
regulated by DNA methylation of its promoter. In the present
study, we hypothesized that hypomethylation in the promoter
region of the IL-1β gene may underlie its overexpression
observed in TSC brain tissue. Bisulfite sequencing was used
to study the methylation status of the promoter region of the
IL-1β gene in TSC and control samples. We identified hypo-
methylation in the promoter region of the IL-1β gene in TSC
samples. IL-1β is overexpressed in tubers, and gene expres-
sion is correlated with promoter hypomethylation at CpG and
non-CpG sites. Our results provide the first evidence of epi-
genetic modulation of the IL-1β signaling in TSC. Thus, strat-
egies that target epigenetic alterations could offer new

therapeutic avenues to control the persistent activation of
interleukin-1β-mediated inflammatory signaling in TSC
brain.
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Introduction

Tuberous sclerosis complex (TSC) is a multisystem genetic
disorder that results from a mutation in the TSC1 or TSC2
genes leading to constitutive activation of mammalian target
of rapamycin complex 1 (mTORC1) and is therefore highly
associated with intractable epilepsy (Curatolo et al. 2015).
Cortical tubers are believed to represent the neuropathological
substrate in TSC patients. However, a growing body of evi-
dence supports the existence of a more extensive epileptogenic
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network in TSC patients (Marcotte et al. 2012; Okanishi et al.
2014). Cortical tubers, but to a certain extent also the
perituberal cortex, are characterized by a complex activation
of pro-inflammatory signaling pathways, including, in particu-
lar, the IL-1β signaling pathway (Boer et al. 2010; Boer et al.
2008). Expression of both IL-1β and its receptor was observed
in astrocytes, cells of the microglia/macrophage lineage, dys-
morphic neurons, and giant cells displaying mTOR activation
(Boer et al. 2008). Evaluation of fetal TSC cases demonstrated
an activation of the IL-1 receptor (R)/Toll-like receptor (TLR)
pathway also in developing TSC brain lesions (Prabowo et al.
2013), suggesting that the induction of this pathway could be
intrinsic to the developmental lesion and linked to the deregu-
lation of the mTOR pathway.

Recent evidence suggests that pro-inflammatory cytokines,
including IL-1β, can be epigenetically regulated through
DNA methylation at their promoters (Aoi et al. 2011;
Hashimoto et al. 2013; Kirchner et al. 2014; Tekpli et al.
2013). In particular, a recent study shows that, in mice and
humans, hypomethylation of IL-1β at specific CpG sites is
associated with elevated IL-1β transcription. Hence, this epi-
genetic mechanism may contribute to cognitive deficits in
aging and neurodegenerative diseases (Cho et al. 2015). The
influence of epigenetic regulation of IL-1β in TSC brain re-
mains as yet unclear. We hypothesized therefore that hypome-
thylation in the promoter region of the IL-1β gene may un-
derlie its overexpression observed in tubers.

Patients and Methods

Patient Cohort

The cases included in this study were obtained from the ar-
chives of the departments of neuropathology of the Academic
Medical Center (AMC, University of Amsterdam), University
Medical Center in Utrecht (UMCU), Motol University
Hospital (Prague, Czech Republic), and Medical University
Vienna (Vienna, Austria). We evaluated five tubers (three sur-
gical and two autopsy specimens; mean age, 15.8 years; male/
female, 2/3; localization, frontal/temporal/parietal, 3/1/1;
TSC1/TSC2, 1/4). Four cases (two autopsy/two surgical;
male/female, 1/3; mean age: 18.4 years; TSC1/TSC2:1/3)
contained sufficient amount of perituberal tissue, defined by
the absence of dysmorphic neurons and giant cells. The age-
and localization-matched control group consisted of six autop-
sy cases (male/female, 2/4; mean age, 13.5 years; frontal/tem-
poral/parietal, 4/1/1). None of these patients had a history of
seizures or other neurological diseases.

Tissues were obtained and used in accordance with the
Declaration of Helsinki and the AMC Research Code provid-
ed by the Medical Ethics Committee. The local ethical

committees of all participating centers gave permission to un-
dertake the study.

Tissue Preparation

Brain tissues from control autopsy patients and TSC patients
were snap frozen in liquid nitrogen and stored at −80 °C until
further use. Formalin-fixed paraffin-embedded tissues were
sectioned at 6 μm, mounted on pre-coated glass slides (Star
Frost, Waldemar Knittel GmbH, Braunschweig, Germany).
Immunohistochemistry for IL-1β (polyclonal goat antibody;
sc-1250, Santa Cruz Bio., CA, USA; 1:70) was carried out on
paraffin-embedded tissue as previously described (Boer et al.
2008; Ravizza et al. 2006). Sections were deparaffinated in
xylene, rinsed in ethanol (100, 95, and 70 %), and incubated
for 20 min in 0.3 % hydrogen peroxide diluted in methanol.
Antigen retrieval was performed using a pressure cooker in
0.1 M citrate buffer pH 6.0 at 120 °C for 10 min. Slides were
washed with phosphate-buffered saline (PBS; 0.1 M, pH 7.4)
and incubated overnight with the primary antibody in PBS at
4 °C. After washing in PBS, sections were incubated with
rabbit anti-goat IgG (hum absorb, SBA 6164–01, 1:2000,
15 min), subsequently with polymer goat anti-rabbit IgG/
HRP (BrightVision, DPVM-15HRP, undiluted, 30 min) and
stained using 3,3′-diaminobenzidine tetrahydrochloride as
chromogen. Sections were counterstained with hematoxylin,
dehydrated in alcohol and xylene, and coverslipped. The spec-
ificity of the antibody was tested by pre-incubating the anti-
body with a 100-fold excess of the antigenic peptides (Santa
Cruz Bio. and R&D Systems). Sections incubated without the
primary Ab or with the primary Ab and an excess of the
antigenic peptide were essentially blank (Ravizza et al.
2006). Paraffin-embedded human specimens of gliomas
(Giometto et al. 1996; Sasaki et al. 1998), multiple sclerosis
(Huitinga et al. 2000), and viral encephalitis (herpes simplex
encephalitis and rabies encephalitis) were used as positive
controls for immunocytochemical staining. For double-
labeling studies, sections were incubated with the primary
antibodies (anti-IL-1β and anti-GFAP; monoclonal mouse,
Sigma, St. Louis, Mo, USA; 1:4000) and were incubated for
2 h at RTwithAlexa Fluor® 568-conjugated anti-goat IgG and
Alexa Fluor® 488 anti-mouse, IgG (1:200, Molecular Probes,
The Netherlands). Sections were then analyzed by means of a
laser scanning confocal microscope (Leica TCS Sp2, Wetzlar,
Germany).

DNA Methylation Analysis by Bisulfite Modification
and Genomic Sequencing

DNAwas extracted from frozen tissue material of controls and
TSC patients using the QIAamp DNAMini Kit (Qiagen, Venlo,
The Netherlands). DNA methylation analysis was carried out as
previously described (Fuso et al. 2015). Briefly, bisulfite analysis
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of IL-1β promoter methylation was performed using the EpiTect
Bisulfite kit; PCR products obtained after bisulfite treatment
were cloned using the PCR Plus Cloning Kit (both from
Qiagen). At least ten clones were analyzed per experimental
condition using M13 primers for sequencing performed by
Primm (Milan, Italy). The primers used for the amplification of
the bisulfite-modified DNA were designed on the GenBank
AY137079.1 sequence, considering the 5′-flanking region
(Fig. 1a) of the messenger RNA (mRNA) (TSS at the base n.
1 3 0 6 ) . T h e s e p r i m e r s ( H S I L 1 B B I S L , 5 ′ -
AAAGAAGTGAATGAAGAAAAGTATGTG-3 ′ ;
HSIL1BBISR, 5 ′ -AATACCTRATTTCACAATCA
ARTTAAA-3′) amplified a 315-bp sequence (916–1230), con-
taining 64 cytosines including two CpG moieties (1006 and
1049). These primers are Bmethylation insensitive primers^
(MIPs) that can detect methylation in both CpG and in non-
CpGmoieties (Fuso et al. 2015) and allow assessingmethylation
status of plus (5′-3′) DNA strand.

As negative controls of bisulfite modifications, we used
unmethylated purified PCR product of IL-1β promoter obtain-
ed from genomic DNA by the same primers used for the
amplification of the bisulfite-treated DNA. The same purified
PCR product was methylated in vitro with SssI methylase
(New England Biolabs, EuroClone, Milan, Italy) and was
used as positive controls.

Modified cytosine residues were recognized through com-
parison with the original DNA sequence, and methylation
status of any single cytosine in each sequenced clone was
reported as 1/0 value in an Excel spreadsheet (methylated, 1;

unmethylated, 0). For each experimental sample, we obtained
the methylation percentage of each single cytosine by calcu-
lating the number of methylated cytosines divided by the
number of clones sequenced per 100 ([no. methylC/no. se-
quenced clones] × 100; (Fuso et al. 2015)).

RNA Isolation and Real-Time Quantitative PCR Analysis

For RNA isolation, frozenmaterial was homogenized in Qiazol
Lysis Reagent (Qiagen Benelux, Venlo, the Netherlands). Total
RNA was isolated using the miRNeasy Mini kit (Qiagen
Benelux, Venlo, the Netherlands). The concentration and purity
of RNAwere determined using a Nanodrop 2000 spectropho-
tometer (Thermo Scientific, Wilmington, DE, USA). To eval-
uate the expression of IL-1β mRNA in control and TSC tis-
sues, 5 μg of total RNAwas reverse-transcribed into comple-
mentary (cDNA) using oligo dT primers. Specific primers were
designed using the Universal ProbeLibrary Assay Design
Center of Roche (https://www.roche-applied-science.com) on
the basis of the reported mRNA sequences. The following
primers were used: IL-1β (forward: gcatccagctacgaatctcc re-
verse: gaaccagcatcttcctcagc, product size 99 nt); elongation
factor 1-alpha (EF1α; forward: atccacctttgggtcgcttt; reverse:
ccgcaactgtctgtctcatatcac, product size 51 nt). Qualitative real-
time PCR (qRT-PCR) and quantification was performed as
previously described (Prabowo et al. 2015). Briefly, for 1 μl
cDNA, a master mix was prepared containing 2X SensiFAST™

SYBR No-ROX (Bioline, Taunton, MA, USA) forward and
reverse primers in a total volume of 5 μl. The samples were

Fig. 1 Methylation pattern of IL-1β promoter in controls and TSC brain
tissue. a Schematic representation of the 5′-flanking region on the IL-1β
gene, reporting the position of primers used in the bisulfite analysis and
the position of the transcription start site (TSS) and the start site of the
coding sequence (CDS). b CpG and non-CpG site-specific methylation

pattern expressed as percent methylation for each cytosine in the
investigated region of the human IL-1β promoter. Cytosine position in
the reference sequence is indicated below the x-axis. White columns
represent control samples, gray columns represent tuber samples, and
black columns represent perituberal tissue samples
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run in triplicate in a 384-well plate in the LightCycler® 480
Real-Time PCR System (Roche Applied Sciences) under the
following conditions: a 2-min denaturing step at 95 °C follow-
ed by a total of 45 amplification cycles consisting of 5 s of
denaturing at 95 °C, 10 s of annealing at 65 °C, and 15 s of
extension at 72 °C. Fluorescent product was measured by a
single acquisition mode at 72 °C after each cycle.
Quantification of data was performed using the computer pro-
gram LinRegPCR in which linear regression on the Log
(fluorescence) per cycle number data is applied to determine
the amplification efficiency per sample as described (Ramakers
et al. 2003; Ruijter et al. 2009). The starting concentration of
each specific product was divided by the starting concentration
of reference gene (elongation factor 1-alpha (EF1)), and this
ratio was compared between groups. The results were
expressed as fold change with respect to control values.

Statistical Analysis

Statistical analyses were performed using the GraphPad
Prism® software (GraphPad software Inc., La Jolla, CA,
USA). The non-parametric Kruskal-Wallis test followed by
pairwise comparison was used to analyze DNA methylation
differences and the expression of IL-1β between multiple
groups. The correlation between DNA methylation and IL-
1β gene expression was analyzed by Spearman’s rank corre-
lation analysis.

Results

All the five tubers displayed similar histopathological features
with astrogliosis, loss of lamination, giant cells, and dysmor-
phic neurons.

Significant overall hypomethylation of the IL-1β promoter
was observed between the groups [Kruskal-Wallis

H[2] = 10.485, p < 0.01]. However, pairwise comparison re-
vealed significant differences in methylation read counts in
tubers and control tissue (p < 0.01) while a trend towards
hypomethylation was seen in perituberal tissue compared to
controls. The hypomethylation was particularly evident for
non-CpG moieties (p < 0.001, tubers and perituberal tissues
vs. control tissues) although the two CpG moieties (cytosines
1006 and 1049, p < 0.01) also showed significant hypomethy-
lation compared to control tissues (Fig. 1b).

Increased expression of IL-1β mRNAwas observed in tu-
bers (p < 0.01), whereas a trend to increased expression was
observed in the perituberal cortex as compared to controls
(Fig. 2b) by qRT-PCR. A significant inverse correlation was
observed between the extent of DNA methylation and gene
expression (Fig. 2c; r = −0.7929, p < 0.001) by Spearman’s
rank correlation analysis.

In agreement with previous reports (Boer et al. 2008;
Ravizza et al. 2006), increased IL-1β expression was detected
in TSC tubers as compared to control tissue; expression of IL-
1βwas observed in glial and neuronal cells, as well as in giant
cells within the tuber (Fig. 3a, b).

Discussion

Previous studies have identified altered gene expression in
brain lesions typical for TSC, in particular, an enhanced ex-
pression of numerous genes associated with the immune and
inflammatory response (for review, see Aronica and Crino
(2014)). However, these studies have not provided insights
into the underlying mechanisms of transcriptional dysregula-
tion, such as aberrant epigenetic control through DNA hypo-
and/or hypermethylation. In this study, we focused on IL-1β,
a pro-inflammatory cytokine, strongly deregulated in TSC
human brain and known to play a key pathogenic role in
human epilepsy (Vezzani et al. 2013). Herein, we described

Fig. 2 IL-1β promoter hypomethylation correlates with gene expression.
a Overall sites of methylation (CpG and non-CpG) in the investigated
region of the human IL-1β promoter. b Quantitative real-time PCR of IL-
1β mRNA expression in TSC and control samples, expressed as fold
change with respect to controls; white columns represent control

samples, gray columns represent tuber samples, and black columns
represent perituberal tissue samples. c Correlation between IL-1β DNA
methylation (x-axis) and gene expression (y-axis). r = Spearman’s rank
correlation coefficient, **p < 0.01, ***p < 0.001
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for the first time evidence of significant IL-1β promoter hypo-
methylation in TSC brain specimens compared to controls.
Noteworthy, the hypomethylation was particularly evident in
non-CpG cytosine moieties. Our data clearly demonstrated
that the increased IL-1β expression in tuber and perituberal
TSC cortex correlated with the hypomethylation of the IL-1β
gene promoter. The implication that also perituberal tissues
maintain higher gene expression and lower promoter methyl-
ation than control tissues suggests that IL-1βmethylation-me-
diated overexpression may represent an intrinsic feature of
TSC brain, independent of tuber pathology visible on histol-
ogy. A similar observation was reported in recent studies,
using animal models, supporting the role of the TORC1 sig-
naling in epilepsy development, even in the absence of major
brain pathology (Abs et al. 2013), and demonstrating also
specific molecular abnormality independent of tubers
(Lozovaya et al. 2014). Moreover, a recent study shows
over-activation of IL-1β signaling pathway in astrocytes be-
fore epilepsy onset in a mouse model of TSC, pointing to the
role of mTOR-mediated inflammatory mechanisms in TSC
(Zhang et al. 2015).

Further research is, however, needed to fully understand
the mechanism of genomic hypomethylation (particularly
promoter specific DNA methylation) in the pathogenesis of
TSC and its contribution to the neurological manifestation
of TSC patients. For example, the study of Cho et al.
(2015) suggests that the glial levels of sirtuin 1 (SIRT1)
could play a key role in initiating epigenetic alterations
through hypomethylation of IL-1β, leading to its enhanced
expression and cognitive decline. The role of SIRT1 as
potential negative regulation of inflammation (Xie et al.
2013) has not yet been investigated in TSC. Moreover,
several alternative mechanisms may contribute to
IL-1β upregulation. There is increasing evidence of com-
plex processes of transcriptional and post-transcriptional

regulation of cytokines, including IL-1β (Auron and Webb
1994; Fenton 1992; Simi et al. 2007). IL-1β expression is
regulated by components of the complement cascade, several
cytokines (including and IL-1β itself; (Fenton 1992 Lucas,
2006 #33,912)), and damage-associated molecular pattern
molecules, which include high-mobility group box 1
(HMGB1; (Pedrazzi et al. 2007)). Interestingly, cortical
tubers are characterized by prominent activation of pro-
inflammatory signaling pathways, including in particular
the complement and Toll-like receptor pathways and
HMGB1 signaling (Boer et al. 2010; Boer et al. 2008;
Zurolo et al. 2011). Attention has been also recently
focused on binding proteins and microRNAs, which may
directly regulate the stability and/or translation of cytokine
mRNAs (Palanisamy et al. 2012) and interact with IL-1β
signaling pathway via complex positive and negative feed-
back loops. (He et al. 2014; O’Neill et al. 2011; Quinn and
O’Neill 2011; van Scheppingen et al. 2016). Finally, since
patients received several antiepileptic drugs, such as
valproic acid, a possible effect of drug treatment on DNA
methylation patterns (Ni et al. 2015), as well as on IL-1β
expression (Gomez et al. 2014; Verrotti et al. 2001), has to
be taken into consideration in the interpretation of the
expression data in TSC brain specimens.

In summary, the presented data demonstrated the potential
role of gene-specific DNA hypomethylation inducing aberrant
transcriptional control that may lead to the increased expres-
sion of IL-1β under pathological conditions. Thus, strategies
that target epigenetic alterations, combined with conventional
therapies, could offer new therapeutic avenues to control the
IL-1β-mediated signaling and to develop a more personalized
treatment in TSC patients.
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