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1 Introduction

Multilevel autoregressive models are statistical models that can be applied to inten-
sive longitudinal data in order to model processes that occur within individuals over
time, for many individuals at once. The aim of this dissertation is to further investi-
gate, explicate, and if possible remedy certain difficulties in fitting and interpreting
multilevel autoregressive models in the context of psychological science.

These two sentences however probably raise more questions than they answer.
Some questions that may come to mind are: What exactly is intensive longitudinal
data, and why should one care to collect such data? What kind of psychological
processes are we talking about, and why should we care that they occur within in-
dividuals over time? Why model these processes for many individuals at the same
time and how does that work? Where exactly do the ‘autoregressive’ part, and the
‘multilevel’ part come in and what do they both mean? And what are these difficul-
ties that were mentioned and why should we care about them? In order to provide
some context for the following chapters, I will try to provide brief answers to these
questions. First, I will give examples of psychological processes, and discuss why
it is important to measure and model such processes within individuals over time.
This topic has gotten increasing attention in psychology, and the interested reader
will find more elaborate and comprehensive works on the importance of studying the
dynamics of individuals in the references of this chapter. Second, I will discuss why
the autoregressive model is of interest for modeling psychological processes, and some
limitations of this model. Third, I will briefly introduce the ‘multilevel’ extension
of the autoregressive model. Finally, I will outline what is to come in the following
chapters, and why the content of those chapters is relevant for people that want to
use autoregressive models to study psychological processes.

1.1 Intensive Longitudinal Data for Studying Psychological Processes
Psychological processes are of interest in all areas of psychology, and all such pro-
cesses occur at a within-subject level over time (where the subject may be a person,
a dyad, or group of persons, and so on). Some examples of psychological processes
are the regulation of affect throughout the day, the development of the mathematical
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1. Introduction

abilities of a child, the effects of therapy on someone diagnosed with a psychological
disorder, the regulation of cortisol levels in relation to stress, the effects of a person’s
job motivation on his or her performance and vice versa, and social interactions be-
tween a parent and child.

Given that psychological processes happen within a subject over time, it makes
sense that in order to study them, one needs to measure the variables for these pro-
cesses over time. The more frequent these measurements are taken, and the longer
the measurement period, the more the process will unfold itself to the researcher. If
the goal is to generalize conclusions about these processes to a larger population, it
is also desirable to take such repeated measures for many people sampled from that
population. The type of data that is then obtained, consisting of many repeated
measures for many individuals, is referred to as intensive longitudinal data (Walls &
Schafer, 2005). By modeling such data over time using dynamic modeling techniques,
we aim to capture the underlying psychological processes.

In psychological research practice, however, cross-sectional studies that are based
on measurements of many individuals at one measurement occasion, or panel data
based on a few repeated measurements (e.g., 2 to 5) of many individuals, are often
used to make inferences about psychological processes. One reason for this may be
that collecting intensive longitudinal data is relatively difficult, time intensive, and
expensive compared to collecting one or a few measurements for many individuals.
Another reason may be that the techniques that can be used to analyze them are still
not well known.

However, the usage of cross-sectional or panel data for studying psychological
processes is problematic, for mainly two reasons: Firstly, the way psychological vari-
ables are distributed within persons, is not necessarily the same as the way they
are distributed across different persons (Adolf, Schuurman, Borkenau, Borsboom, &
Dolan, 2014; Borsboom, Mellenbergh, & van Heerden, 2003; Hamaker, 2012; Kievit
et al., 2011; Molenaar, 2004; Nezlek & Gable, 2001). Secondly, how a variable is dis-
tributed within persons, may be different from person to person (Adolf et al., 2014;
Hamaker, 2012; Molenaar, 2004; Nesselroade, 2007). Many cross-sectional and panel
study methods disregard these issues to varying degrees. I discuss both issues in more
detail in the following.

10
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c
o
n
c
e
n
tr

a
ti
o
n
 p

ro
b
le

m
s

caffeine intake

+
+

+

+
+ +

+
+

+

+
+

+
+

+

+

Figure 1.1: Scatterplot of simulated intensive longitudinal data on caffeine intake and
concentration problems. The repeated measures for each person are indicated by a
specific color. The average concentration problems and caffeine intake per person is
indicated with the black plus signs. For each person there is a negative association
between concentration problems and caffeine intake: the more caffeine intake, the less
the concentration problems. Across persons however there is a positive association
between concentration problems and caffeine intake: people with a higher average
caffeine intake also tend to have higher average concentration problems.
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1. Introduction

Fluctuations Within Persons vs. Differences Between Persons
The fact that fluctuations in scores within persons over time are not necessarily dis-
tributed in the same way as differences in scores between persons is best illustrated
with an example. Consider the relationship between caffeine intake and concentra-
tion problems. Say we find that persons who on average consume a lot of caffeine per
week tend to have more trouble concentrating than persons who consume less caffeine
per week. However, we also find that within each person over time caffeine actually
improves concentration. An example of what the data would look like is presented in
the scatter plot in Figure 1.1. In this Figure, there is a negative association between
concentration problems and caffeine intake for each person (the data of each person
is shown in a separate color). However, there is a positive association between the
persons’ average caffeine intake and their average concentration problems (indicated
by the black plus signs). These results are not contradictory - they could be explained
by the fact that people who experience concentration problems may start taking in
caffeine to improve their concentration. On the other hand, people who do not have a
lot of concentration problems may not find the need to drink as much caffeine, because
they do not experience concentration problems. That is, the negative within-person
effect of caffeine on concentration problems eventually results in a positive between-
person association between caffeine and concentration problems.

In order to be able to generalize results about differences between persons to what
happens on a within-person level, a very strict assumption needs to hold: That the
distribution of a variable in a population of individuals, is the same as the distribution
of a variable within each individual in that population (Adolf et al., 2014; Hamaker,
2012; Molenaar, 2004). That is, it requires ergodicity, which means that the moments
for the variable in the population of individuals should be equal to those for each indi-
vidual. This, for instance, implies that the mean score over time for a certain variable
should be the same for each individual (and thus the same as the mean across the
entire group of individuals). This implication alone seems very unrealistic for most, if
not all, psychological variables that come to mind. For example, we generally would
not expect that the average level of concentration problems across a period of time
would the same for each person.

In practice, the observed variance in psychological data that consists of measures
of multiple individuals will not, in all likeliness, consist of only variance that is the
result of relatively stable differences between persons, or of only variance that is the
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1.1. Intensive Longitudinal Data for Studying Psychological Processes

result of temporal fluctuations within each person. Rather, it will consist of some
mix of both. For instance, it is likely that some people generally are better at concen-
trating than others; if we test the concentration ability of several persons, the stable
differences in their ability to concentrate will result in stable differences between those
persons’ test scores. However, there will also be variation present in the test scores
that is due to within-person fluctuations in their ability to concentrate: How well each
person performs typically varies from occasion to occasion. Both types of variance
will be present in our test scores.

In order to make meaningful inferences about psychological processes, these two
sources of variance need to be distinguished from each other - if not, the results
will represent a mix of the within-person and between-person effects, which may be
neither informative about the psychological within-person process, nor about stable
between-person differences (Cattell, 1967; Hamaker, 2012). This is a problem for cor-
relational cross-sectional studies, but also for longitudinal studies that fail to separate
stable between-person differences from within-person processes (Hamaker, Kuijper,
& Grasman, 2015). Still, results from correlational, cross-sectional studies are on a
fairly regular basis generalized to individuals in the psychological literature. Many
(heatedly debated) examples of such generalizations can be found for instance in the
context latent variable modeling in psychology (cf., Borsboom, 2015; Borsboom &
Dolan, 2006), and in many longitudinal studies, most of which rely on panel data,
stable between-person differences are not separated from within-person differences.

There are various ways to filter out stable between-person differences from within-
person fluctuations. One option is to model only one subject at a time: If there is only
one subject, there can be no between-subject differences (Cattell, Cattell, & Rhymer,
1947; Molenaar, 1985; Nesselroade, 2007). This is the approach taken when classical
n=1 autoregressive models and other time series models are used to model intensive
longitudinal data. Another option is to explicitly model the stable between person
differences (Hamaker, Nesselroade, & Molenaar, 2007; Heck & Thomas, 2000; Hert-
zog & Nesselroade, 1987; Hox, 2010), for instance by including a random intercept or
mean in the model. Examples of this approach can be found in growth curve mod-
eling (cf., Hox, 2010, p.325), and in the random intercept cross-lagged panel model
(Hamaker, Kuijper, & Grasman, 2015). It is also the approach taken in the multilevel
autoregressive model(s) presented in this dissertation.

13



1. Introduction

Within-Person Processes Differ Between Persons
Separating the variance that results from differences between persons from variance
that is a result of within-person fluctuations is not enough to be able to make meaning-
ful inferences about psychological processes. It is also important to take into account
that these processes may differ to some extent from person to person. For example,
for some persons how much external validation they receive may strongly affect how
they perform their job, while for others it makes relatively little difference. In order to
get an accurate picture of a psychological process, these differences between persons
in the within-person processes should be accounted for.

Many (if not most) analysis techniques used in psychology however return results
that concern average effects across subjects. This is the case for cross-sectional stud-
ies, but also for many longitudinal studies that are based on only a few repeated
measurements. Average results are, however, not necessarily informative about spe-
cific individuals. For example, consider an experiment in which people are randomly
assigned to a control group or an experimental group, in order to study the effective-
ness of a certain therapy. The persons in the control group did not improve, while
half of the persons in the experimental group improved, and the rest declined. Using
standard analysis techniques we obtain an average result that indicates no evidence
for a difference between the two groups. This average result of course does not reflect
the effectiveness of the therapy for specific individuals, not even those that partic-
ipated in the study. Although this example may be somewhat extreme, it should
make clear that average results cannot simply be generalized to all, most, or even any
specific individual.

By using intensive longitudinal data, it is possible to take into account that the
within-person processes may differ from individual to individual. One option is to in-
clude relevant moderator and predictor variables that account for differences between
person in the processes. However, this method is unlikely to account for all differences
in the model parameters across subjects. Another option is to model the process for
each person separately, potentially even specifically tailoring a model to each individ-
ual (Cattell et al., 1947; Madhyastha, Hamaker, & Gottman, 2011; Molenaar, 1985;
Nesselroade, 2007; Snippe et al., 2015). A third option is to model all individuals at
the same time, but to allow some or all model parameters to vary across individuals,
which is the case in multilevel models, such as growth curve models for instance, and
the multilevel autoregressive model(s) discussed in this dissertation (cf., Bringmann
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1.2. Autoregressive Modeling

et al., 2013; De Haan-Rietdijk, Gottman, Bergeman, & Hamaker, 2014; Kuppens,
Allen, & Sheeber, 2010; Lodewyckx, Tuerlinckx, Kuppens, Allen, & Sheeber, 2011;
Moberly & Watkins, 2008; Nezlek & Allen, 2006; Nezlek & Gable, 2001; Rovine &
Walls, 2005; Wang, Hamaker, & Bergeman, 2012).

In sum, in order to study psychological processes that happen at a within-person
level, we need to study these processes at the level of individuals. This can be done
by obtaining many repeated measures per person, and using dynamic models to sep-
arate stable between-person differences from within-person processes, while taking
into account that there may be between-person differences in those processes. The
(multilevel) autoregressive model is one example of such a dynamic model. In the
following section, I will start by discussing the n=1 autoregressive model, which is a
building block for the multilevel autoregressive model that I will discuss after that.

1.2 Autoregressive Modeling
There are many approaches for modeling intensive longitudinal data, even though
these approaches are not yet popularized in psychology. The list of potential mod-
els includes linear and non-linear ones, models for continuous dependent variables or
discrete variables, and models with and without latent variables (Hamaker, Ceule-
mans, Grasman, & Tuerlinckx, 2015; Walls & Schafer, 2005). Which option to choose
depends on the research question and data at hand. The autoregressive model (the
AR model) may however be of particular interest for many psychological research,
because of the interpretation of the model’s regression parameters.

The n=1 AR Model
The n=1 AR model is a time series model, and is fitted for a single individual, for
which many repeated measures are available. The approach of the AR model, and
extensions of this model, is summarized well by a popular saying in folk psychology:
“The best predictor of future behavior is past behavior”. The basic univariate AR
model is a linear model for a continuous outcome variable, with as a predictor the
past observations of the outcome variable (hence autoregression). An AR model of
‘order p’ uses predictors for a number of p ‘lags’, where lags indicate the distance
in time between two measurement occasions. For example, an AR(2) model for an
outcome variable that is observed every day includes two predictors: The scores of
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1. Introduction

the previous day (lag 1) and the scores of two days ago (lag 2). Throughout this
dissertation however, the focus will be on AR(1) models that only use the previous
measurement occasions as a predictors for the current ones.

The autoregression parameters reflect the effect of each outcome variable at the
previous occasion on itself at the current occasion. Say for example, that we measured
the level of depression repeatedly for a certain individual. A positive autoregression
coefficient for depression indicates that if this person’s feelings of depression were
high yesterday, they are likely to also be high today, and if they were low yesterday
they are likely to also be low today. As a result of the autoregressive effect, the feel-
ings of depression may linger above or below the person’s baseline (average) level of
depression across multiple measurement occasions, and will only slowly come back to
that baseline level. This can be seen from the top row in Figure 1.2, in which a time
series is plotted with a positive autoregressive effect. The stronger the autoregressive
effect, the longer it will take for the feelings of depression to come back to baseline.
On the other hand, if the autoregression parameter for depression is equal to zero
for a certain person, this indicates that depression on the previous measurement does
not influence the depression at the current occasion: Every day is a ‘new day’ for
this person. As a result, their depression can vary freely around the baseline without
lingering above or below it for a long amount of time, as can be seen from the time
series plotted in the second row in Figure 1.2. This person therefore also can ‘recover’
relatively quickly after an increase in depression. A negative autoregressive effect in-
dicates that if the observed score is high today, it is likely to be low the next day, as
is illustrated in the third row of Figure 1.2. This may not seem very intuitive in the
context of depression, but such negative autoregression effects may well be expected
in other areas of psychology, especially those that concern intake. For instance, people
that ate or drank a lot yesterday, may be likely to eat or drink less today, and more
again tomorrow, and so on. The stronger this effect, the longer it will take for the
process to come back to baseline levels after a relatively high (or low) score. In sum,
the autoregression parameter is indicative of inertia: The stronger the autoregressive
effect, the more ‘resistant’ the process is to change. Inertia is considered an impor-
tant factor for many kinds of psychological processes, ranging from the regulation of
affect (Kuppens et al., 2010; Suls, Green, & Hillis, 1998), to mood disorders (Koval,
Kuppens, Allen, & Sheeber, 2012; Kuppens et al., 2010), and attention (Kirkham,
Cruess, & Diamond, 2003).

AR models that include multiple outcome variables are referred to in the literature
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1.2. Autoregressive Modeling

as vector AR models (VAR models). In VAR models, the outcome variables are not
only predicted by their own previous values, but also by the previous values of the
other outcome variables, which is referred to as ‘cross-lagged regression’. I provide an
example of this in the bottom row of Figure 1.2, which shows a time series plot of two
variables, one in blue and one in red. Both variables have a positive autoregression
coefficient. The red variable has a cross-lagged effect on the blue variable, but the
blue variable does not affect the red variable: This can be seen from the time series
plot where a peak in the red process is often followed by a peak in the blue process
one measurement occasion later, and a valley by a valley.

The cross-lagged parameters from VAR models can be used for investigating po-
tential reciprocal effects between psychological variables. For instance, to investigate
whether stress affects depression, whether depression affects stress, or if both affect
each other, over a specific time interval. For many areas in psychology such recip-
rocal relationships are of interest for determining which associations or variables are
‘causally dominant’, or ‘the strongest driving force’ in the dynamic process, which
may be useful for guiding interventions. Determining (the strength of) such effects
is for instance central to network theories of psychology (Borsboom & Cramer, 2013;
Schmittmann et al., 2013), and also has gotten a lot of attention in the context of
cross-lagged panel modeling (e.g., Christens, Peterson, & Speer, 2011; de Jonge et
al., 2001; de Lange, Taris, Kompier, Houtman, & Bongers, 2004; Kinnunen, Feldt,
Kinnunen, & Pulkkinen, 2008; Talbot et al., 2012).

The classical AR model has a number of limitations. One limitation of the n=1
AR model is that the model is fitted for one individual at a time, which makes it
difficult to generalize results to a population of individuals, which is usually the aim
in psychological science. A solution to this problem is to extend the VAR model to a
multilevel model, which is discussed in more detail in the following.

Multilevel AR Modeling
The classical AR model is fitted for one individual at a time. Because each individual
may have his or her own model, the AR model takes into account that individuals
may differ from each other in meaningful ways. However, it also disregards that the
processes of individuals may be similar in certain ways. For instance, we may expect
that overall there is a stronger positive autoregressive effect for day-to-day anxiety
for adults diagnosed with generalized anxiety disorder, than for healthy adults. Or,
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Figure 1.2: Time series plots of simulated autoregressive processes. The first panel
shows an AR(1) process with a positive autoregression parameter equal to .8. The
second panel shows an AR(1) process with the autoregression parameter equal to
0. The third panel shows an AR(1) process with a negative autoregression param-
eter equal to -.7. The last panel shows a VAR(1) process for two variables, with
autoregression coefficients of .3 and .6 for the red and blue variable respectively, a
cross-lagged effect of .4 of the red variable on the blue variable, and no cross-lagged
effect of the blue variable on the red variable.18



1.3. Outline of this Dissertation

we may expect that for the large majority of individuals, the autoregressive effects for
minute-to-minute affect are positive rather than negative. By fitting models for each
individual separately this information is not taken into account, and it also makes it
difficult to draw more general conclusions about a population of individuals.

Multilevel modeling allows for fitting the AR model at once for multiple individu-
als, while allowing the model parameters to be different across individuals. The model
parameters for the different individuals are assumed to come from the same probabil-
ity distribution, that is, it is assumed that they come from the same population. This
assumption implies that the model parameters for one individual are informative for
other individuals from the same population, and in this sense the model takes into
account that people are to some extent similar to each other.

By evaluating the characteristics of the probability distribution for the individ-
uals’ model parameters, we can obtain information about the group of individuals,
which we in turn may use to make inferences about the population. For instance, we
can look at the variance of the distribution to see how much the model parameters
of the individuals differ from the average parameter on average. We could use this
information to infer what range of parameter values we may expect to see in the
population. It is also possible to add predictors for the individual parameters to the
multilevel model. For example, we may explain differences among the average levels
of stress of individuals using their gender or occupation. In sum, with the multilevel
model we can model the autoregressive processes per individual, while simultaneously
modeling the differences in these processes across the individuals.

1.3 Outline of this Dissertation
This dissertation consists of four papers in which my co-authors and I investigate
a number issues in fitting and interpreting multilevel AR models, in the context of
psychological science. Throughout this dissertation, we fit the multilevel AR model
using Bayesian modeling techniques. Although there are some frequentist techniques
available for fitting multilevel AR models (Bringmann et al., 2013), there are prac-
tical reasons to opt for a Bayesian approach (next to any potential philosophical
inclinations), which will be discussed throughout this dissertation. However, dur-
ing preliminary simulations and modeling efforts of myself and other colleagues, we
found unsettling biases in the estimates of the variances of the random autoregression
and cross-lagged parameters, as a result of the prior specification for the covariance

19



1. Introduction

matrix of the individual model parameters. In Chapter 2 the basis of this problem
is described, and suggestions for the specification of the Inverse-Wishart prior dis-
tribution from the literature to remedy this problem are evaluated by means of a
simulation study. Chapter 2 also contains an empirical example on the cross-lagged
associations between worrying and positive affect, in which we find that for persons
who worry relatively little, worrying seems to be beneficial to their positive affect,
while for persons who worry a lot, it seems to be detrimental to their positive affect.
This example provides an illustration of the potential of the multilevel VAR model.

Chapter 3 is about comparing the strength of cross-lagged effects for the multilevel
VAR model, by making use of standardized cross-lagged regression coefficients. As
mentioned previously in Section 1.2, the cross-lagged relationships between variables
are often of interest to psychological researchers for determining which associations
or variables are ‘causally dominant’, or ‘the strongest driving force’ in the dynamic
process. Standardized cross-lagged regression coefficients can be used to determine
which cross-lagged associations explain the most unique variance. However, stan-
dardization in multilevel models can be done in multiple ways. In Chapter 3, these
different ways are discussed, and one of them is argued to be superior. Chapter 3
contains an empirical example on the reciprocal relationship between feeling com-
petent and exhausted for persons diagnosed with burnout. This empirical example
illustrates that average results can prove misleading, because they do not necessarily
generalize to all individuals, as discussed previously in Section 1.1.

The last two chapters of this dissertation are concerned with the consequences of
disregarding measurement errors, and how to account for them in the AR model. In
Chapter 4 we discuss different ways of incorporating measurement errors in the clas-
sical n=1, univariate, AR model, and we compare these different options by means of
a simulation study. This chapter includes an empirical application in which we model
the mood of eight women, and we find that about 30% to 50% of the variance in the
data (depending on the participant) is the result of measurement errors.

The results from Chapter 4 function as a stepping stone for the work described
in Chapter 5, in which we discuss how to account for measurement errors in the mul-
tilevel VAR model, and how we can use that model to obtain estimates of the relia-
bility of the repeated measurements for each person. Furthermore, the consequences
of disregarding measurement error for the estimated cross-lagged and autoregression
parameters in a multivariate model are discussed. Chapter 5 provides an empirical
example of a bivariate multilevel VAR model, for which we relax the assumption that
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the covariance matrix of the residuals is fixed across persons. In this example, we
find that on average, the positive affect people feel about their romantic relationship
affects their general positive affect the next day, but we find no evidence for the re-
verse.

In Chapter 6 the main findings of each chapter are summarized, and some limita-
tions of the multilevel AR modeling approach are discussed, as well as directions for
future research.
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2 A Comparison of Inverse-Wishart Prior
Specifications for Covariance Matrices in Multilevel
Autoregressive Models

by N.K. Schuurman, R.P.P.P. Grasman, and E.L. Hamaker

Psychological processes occur within individuals: stress affecting a person’s mood,
a mother’s self-esteem influencing her teenage daughter’s self-esteem, an individual’s
job satisfaction affecting job performance, and so on. It is likely that many of these
dynamical processes also differ across individuals (see for instance Adolf et al., 2014;
Hamaker, 2012; Lodewyckx et al., 2011; Molenaar, 2004; Rovine & Walls, 2005; Wang
et al., 2012). For instance, stressful situations may strongly affect the mood of one
individual, while they have little effect on the mood of another individual. Multilevel
autoregressive models are ideal for investigating these types of processes, because
they allow for modeling how variables affect themselves and each other over time.
Moreover, they allow for modeling these effects for each individual separately in the
form of random parameters, and for the individuals on average, as a result of the
inclusion of fixed effects.,

Multilevel autoregressive models are complex models that can prove difficult to
fit with software based on traditional maximum likelihood modeling, especially when
considering multivariate or latent variable extensions, or models that include random
residual variances. In contrast, with Bayesian modeling software, such as WinBUGS
or OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009; Lunn, Thomas, Best, &
Spiegelhalter, 2000), fitting these complex multilevel models is relatively trivial (see
for instance Song & Ferrer, 2012; Wang et al., 2012; or Lodewyckx et al., 2011, for
an implementation in R). Other benefits of Bayesian modeling are its flexibility in
handling missing data, and that it directly provides the researcher with the estimated

This chapter is based on: Schuurman, N.K., Grasman, R.P.P.P., & Hamaker, E.L. (2016). A
Comparison of Inverse-Wishart Prior Specifications for Covariance Matrices in Multilevel Autore-
gressive Models. Multivariate Behavioral Research.

Author contributions: Schuurman proposed the topic for the study, designed and performed
the simulation study, analyzed, processed and interpreted the results and the empirical dataset, and
wrote the paper. Grasman provided feedback on the study design and the written work. Hamaker
gave extensive feedback on the design of the study, and the written work.
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random parameters. To benefit from this flexibility of Bayesian modeling, it is neces-
sary to specify prior distributions for the parameters that are to be estimated. The
prior distributions may be specified based on a researcher’s prior knowledge about the
parameters in question, such as results from previous research. However, when there
is little or no prior information available, or when the researcher wishes to take a more
objective approach, it may be desirable to specify uninformative prior distributions,
prior distributions that have a negligible influence on the estimated parameters.

In certain cases it can be difficult to specify uninformative prior distributions. One
of these cases is specifying priors for variances or for covariance matrices when the
variances are small (close to zero). Typical prior distributions chosen for variances
and covariance matrices are Inverse-Gamma (IG) distributions and Inverse-Wishart
(IW) distributions respectively (e.g., Gelman & Hill, 2007). These prior distributions,
which are usually uninformative with certain hyperparameters, are quite informative
when variances are small, resulting in a strong effect of the prior distribution on the
parameter estimates (Gelman, 2006; see also Song & Ferrer, 2012, for an example).
Gelman (2006) and Browne and Draper (2006) show that when a single variance is
modeled, choosing a uniform distribution for the standard deviation or variance in-
stead of the IG distribution results in parameter estimates that are negligibly affected
by the prior distribution. However, the problem is harder to solve in the case of spec-
ifying a prior for a covariance matrix.

The issue is particularly relevant when considering multilevel models, because
multilevel models are prone to having small variances in the covariance matrix of the
random parameters. Small variances for the random parameters will result when the
interindividual differences in the parameters are not very large, that is, the individu-
als have similar parameter estimates. However, it is important to note that the size
of the variances also depends on the scale of the random parameters. For example,
small variances for the random parameters may result as an artifact when the ran-
dom parameters are restricted in range, which also restricts the size of their variance.
For example, this may be the case when the random parameters are proportions, or
probabilities. In the case of multilevel autoregressive modeling, the regression param-
eters are restricted in range as a result of the stationarity of the model (Hamilton,
1994). For instance, in a lag 1 autoregressive model (AR(1) model), where a variable
is regressed only on itself at the preceding time point, the autoregression coefficient
lies in the range from âĹŠ1 to 1, which necessarily results in a small variance for this
coefficient across individuals. As a result, it is difficult to specify uninformative priors
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for the covariance matrix of the random effects in multilevel autoregressive models
(cf., Song & Ferrer, 2012).

Proper estimation of the covariance matrix of random parameters is essential for
psychological research, in order to get an accurate impression of the magnitude of
interindividual differences in the dynamics of individuals, and proper estimations of
the covariances are necessary for getting an accurate impression of the associations
among these interindividual differences. Therefore, the aim of this study is to com-
pare the performance of several prior specifications for covariance matrices suggested
in the literature, when one or more of the variances in the covariance matrix are close
to zero. Specifically, we compare three IW prior specifications: a) a prior specifica-
tion that is based on an identity matrix, and is often used as an uninformative prior
in practice; b) a data-based prior that uses input from maximum likelihood estima-
tions; and c) the default conjugate prior proposed by Kass and Natarajan (2006).
Although we are especially interested in the Bayesian estimation of multivariate au-
toregressive models, in the simulation study we use univariate autoregressive models
with one outcome variable and a time varying predictor variable for practical reasons
(explained further in the following section). We illustrate a full multivariate model
in an empirical example on repeated measures of positive affect and worrying for 129
participants.

The remainder of this article is organized as follows. We start by discussing the
multilevel autoregressive model in more detail, followed by a section on the IW dis-
tribution and the three prior specifications for the covariance matrix of the random
parameters. After that we present our simulation studies and their results, and we
present an empirical application in which we compare the effects of the different prior
specifications for a multivariate model. We end with our main conclusions and a
discussion.

2.1 Multilevel Autoregressive Model
In autoregressive models variables are regressed on themselves and each other on
a previous time point. In such a model, the autoregression coefficient reflects the
influence the previous state of a variable has on its current state, and crossregres-
sion coefficients reflect the influence of the previous value of another variable has on
the current state of this variable (Hamilton, 1994; Kim & Nelson, 1999). Multilevel
extensions of these models allow for modeling these dynamic processes for multiple
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persons, and to model the average intraindividual effects over the multiple subjects,
which helps generalize the results to a larger population.

Although our main interest is in specifying uninformative priors for full mul-
tivariate multilevel autoregressive models with multiple outcome variables, for the
simulation study we focus on a univariate multilevel autoregressive model with one
outcome variable and a lagged predictor variable instead, for practical reasons: A
bivariate multilevel autoregressive model contains six random effects (i.e., two au-
toregression parameters, two crossregression parameters, and two means), such that
the covariance matrix of the random effects contains six variances and 15 covariances.
Estimating such a model using WinBUGS is time intensive and computationally de-
manding, which would make a simulation study based on such a model challenging.
Instead, we focus on a univariate multilevel autoregressive model with a lagged pre-
dictor, which contains only three random effects, such that the covariance matrix of
the random effects contains three variances and three covariances. However, we em-
phasize that the model can be generalized to include more than one outcome variable.
We illustrate such a multivariate model in the empirical example, for which we fit a
bivariate model (this took approximately 24 hours with three chains, without paral-
lel computing for the three chains). For a graphical representation of the univariate
model with a lagged predictor, see Figure 2.1.

In the univariate multilevel AR(1) model with timevarying predictor, ytj is a score
on outcome variable y for person j at time point t. The scores ytj are split in individ-
ual means µj , and a residual score ztj . The autoregression and crossregression effects
are modeled using residual scores ztj : ztj is regressed on zt−1j , the residual score for
outcome variable yt−1j for person j at previous time point t − 1, and on xt−1j , the
score on a time-varying predictor variable x for person j at time point t− 1. Model-
ing the autoregression effects on ztj rather than on ytj directly allows us to estimate
the means µj directly rather than the intercepts. The means represent the baseline
score for an individual, which is more intuitive than the intercept, which represents
the score of an individual when the predictor variables are zero. The autoregression
coefficients φj represent the association between the outcome variable y at time t
with itself at time t− 1. The larger the absolute autoregression coefficient, the better
future values of y can be predicted by the previous value of y. Positive autoregression
coefficients are also interpreted as a measure of inertia — the larger the autoregression
coefficient, the slower it will take for y to return to its baseline µ after a perturbation
of the system (Suls et al., 1998). The crossregression coefficients βj indicate how well
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a past value of a predictor x predicts the future value of y. In multivariate models the
crossregression coefficients can be used in investigate the reciprocality of the effects
between multiple variables (Moberly & Watkins, 2008; Nezlek & Allen, 2006; Nezlek
& Gable, 2001). Innovation etj represents anything that is not directly measured that
may influence the system. These innovations are assumed to be normally distributed
with a mean of zero and variance σ2. In other words, at level 1 the multilevel model
can be specified as:

ytj = µj + ztj

ztj = φjzt−1j + βjxt−1j + etj
(2.1)

etj ∼ N(0, σ2). (2.2)

In this model, three parameters are allowed to vary over individuals: µj , the mean
for person j; φj , the autoregression coefficient for person j; and βj , the crossregression
coefficient for person j. We will refer to these individual parameters as random
parameters, and assume that they are multivariate normally distributed, with means
γµ, γφ, and γβ , and 3×3 covariance matrix Ψ. The means describe the average effects
(i.e., fixed effects) for the group of individuals, and the covariance matrix describes
the variations around these means for the group of individuals. Hence, at level 2 we
have:  µj

φj

βj

 ∼MvN


 γµ

γφ

γβ

 ,
 ψ2

µ

ψµφ ψ2
φ

ψµβ ψφβ ψ2
β


 . (2.3)

We focus here on autoregressive processes that are stationary for each individual,
meaning that the mean and variance of the outcome variable are stable over time for
each individual. If the AR(1) process is stationary, the autoregression parameters φj
will lie within a range of −1 to 1 (Hamilton, 1994).1 When this holds for every indi-

1Note however because we assume that φ comes from a multivariate normal distribution, that
technically autoregressive parameters outside of this range can occur. In our simulation study we
chose the mean vectors and covariance matrices for the multivariate normal distribution so that
parameters not in line with the stationary assumption are extremely unlikely. We chose these
parameters to be in line with what we generally have encountered for autoregressive modeling in
psychological practice: stationary processes with autoregressive parameters in a range of about 0 to
.5. Note that encountering a non-stationary parameter value during estimation is not problematic for
the estimation procedure, so that using a multivariate normal distribution rather than, for instance, a
truncated multivariate normal distribution should not result in any technical (estimation) problems.
In practice, encountering such a non-stationary parameter value would simply imply that the process
is not stationary for that person. It may then be useful to consider different or extended models
that models non-stationarity in an informative way (c.f., Hamilton, 1994).
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Figure 2.1: Multilevel AR(1) model with time-varying predictor. At level 1, the
outcome variable y for individual j is regressed on itself at the previous time point
t−1, and on a time varying predictor x at the previous time point t−1. The mean of y,
µ, the autoregression coefficient φ, and the crossregression coefficient β, are allowed
to vary over individuals j (indicated by the black dots). At level 2, the random
coefficients are multivariate normally distributed, with the covariance structure as
indicated in the figure.
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vidual, the variance of the autoregression coefficients ψ2
φ will be small. For instance,

the mean of .4 and a variance of .04 for φj would result in a relatively large range of
possible values for φj , namely a 95% interval of [.008, .792], whereas a variance of .01
would still result in a relatively large 95% interval of [.204, .596]. Similar ranges are
found empirically, for instance by Wang et al. (2012): they studied daily measures of
negative affect, and found a γφ of .15 and a variance ψ2

φ of .04. The means µj and
crossregression coefficients βj are not restricted in range. Of course, the variances of
µj and the random crossregression coefficients βj may be small as well, due to the
scale of the variables resulting in a small coefficient,2 or simply due to minimal indi-
vidual differences in these coefficients. Given that the standard priors for covariance
matrices are very informative when variances are small, it will be difficult to specify
the prior distribution for the covariance matrix of the random parameters Ψ such
that it has a negligible influence on the results. In the next section we will go into
more detail about the priors for covariance matrices, and why they are informative
when variances are small.

2.2 Priors for the Covariance Matrix of the Random Parameters
For Bayesian estimation of the multilevel autoregressive model, prior distributions
have to be specified for the random parameters (i.e., µj , φj , βj for j = 1, ..., n), for
the fixed effects (i.e., γµ, γφ, γβ), for the innovation variance (i.e., σ2), and for the
covariance matrix of the random parameters (i.e., Ψ). When an influence of the
prior distributions on the results is undesirable, for instance when no relevant prior
information is available, it is desirable to specify uninformative prior distributions
that have a negligible influence on the end results. However, prior specifications that
are uninformative in specific circumstances, may become informative under different
circumstances. Our main interest here is in how to specify an uninformative prior
distribution for Ψ, so that the influence of the prior specification on the estimates

2Note that it is possible to increase the means µj and their variance, by transforming the relevant
outcome variable (e.g., multiply the variable by ten). When the variance for the mean is increased so
it is no longer close to zero, specifying the IW prior distribution for this coefficient will be relatively
trivial. However, this is not possible for the autoregressive coefficient, because it is standardized by
merit of the stationarity assumption that results in equal variances for yt and yt−1 (Hamilton, 1994).
While the transformation is possible for the crossregression coefficients, in a multivariate model
increasing one crossregression coefficient results in decreasing the other crossregression coefficient
— merely shifting the problem to another coefficient. Further, it may be difficult to determine in
advance by how much to increase a coefficient, since its value is unknown a priori.
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of the variances and covariances of the random effects is minimal, under the specific
circumstance that the true sizes of some of these variances are small, as would be the
case for the autoregression coefficients φj .

For this purpose we will first discuss the IW distribution, which is the conjugate
prior for covariance matrices given normally distributed data, then we will go into
more detail about the prior specification problem for covariance matrix Ψ, and we
will discuss three prior specifications for Ψ suggested in the literature.

The IW Prior Distribution
The prior distribution that is typically used for the covariance matrix of multivariate
normally distributed variables, such as the covariance matrix Ψ for the random ef-
fects, is the IW distribution (Gelman, Carlin, Stern, & Rubin, 2003; Gelman & Hill,
2007). The IW distribution is a conjugate prior for the covariance matrix of multi-
variate normal distributed variables, which implies that when it is combined with the
likelihood function, it will result in a posterior distribution that belongs to the same
distributional family. Another important advantage of the IW distribution is that it
ensures positive definiteness of the covariance matrix.

The IW distribution is specified with an r× r scale matrix S, where r is equal to
the number of random parameters, and with a number of degrees of freedom df , with
the restriction that df > r−1. S is used to position the IW distribution in parameter
space, and the df set the certainty about the prior information in the scale matrix.
The larger the df , the higher the certainty about the information in S, and the more
informative is the distribution (Gelman, Carlin, Stern, & Rubin, 2003; Gelman &
Hill, 2007). The least informative specification then results when df = r, which is the
lowest possible number of df .

The means and covariance matrix of the IW distribution are a function of the
elements skl on row k and column l from S, r, and the df . That is, the density of the
IW distribution is ∣∣∣S df

2

∣∣∣
2
dfr
2 Γr

(
df
2

) |X|− df+r+1
2 e−

1
2 tr(SX

−1) (2.4)

where tr () stands for the trace function, and Γr stands for the multivariate
Gamma function. The mean of the IW distribution is
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E[X] =
S

df − r − 1
(2.5)

and the variance of each element of the IW distribution is

V ar[xkl] =
(df − r + 1)s2kl + (df − r − 1)skksll
(df − r)(df − r − 1)2(df − r − 3)

). (2.6)

The variances for the diagonal elements of the IW distribution simplify to

V ar[xkk] =
2s2kk

(df − r − 1)2(df − r − 3)
. (2.7)

It can be seen from Equations 2.6 and 2.7 that when the df increase, the denomi-
nator will increase more rapidly than the numerator, so that the variance will become
smaller, which implies that the IW distribution will become more informative. It can
also be seen that the size of the variance is partly determined by S: The smaller
the elements of S, the smaller the variance of the IW distribution, and hence the
more informative the prior will be. However, setting the scale to large values also
influences the position of the IW distribution in parameter space, as can be seen from
Equation 2.5. In other words, specifying a IW prior distribution requires balancing
the size of S and the df .

A typically used relatively uninformative IW prior is a prior with small df and an
identity matrix S. In many situations this prior specification will be uninformative
enough for the the data to dominate the prior, so that the influence of the prior on
the results will be minimal. However, when the variances are quite small, IW priors
are informative, so that the estimates for the variances will be sensitive to the IW
prior specification, resulting in over- or under-estimation of the variances depending
on the specification of the prior distribution. The reason for this sensitivity when
the variances are close to zero is that the IW distribution is bounded at zero for the
variances: in consequence of this boundedness, slightly changing the central tendency
of the distribution can have large effects on the weights placed on values close to zero.

We illustrate this in Figure 2.2, which shows eight plotted marginal densities for
one of the diagonal elements of a bivariate IW distribution with varying df and S.
The four panels include two densities with the same diagonal S, with respectively
.001, .01, .1, or 1 as diagonal elements. For each panel, the density plotted in black
has a larger df than the corresponding density plotted in gray. These plots further
demonstrate that the IW distribution tends to place either a lot of weight on a specific

31



2. A Comparison of Inverse-Wishart Prior Specifications for
Covariance Matrices in Multilevel Autoregressive Models

value close to zero (as in the upper panels), or place almost no weight close to zero
(as in the lower panels). This shows that the IW- distribution is easily misspecified
when variances are small. When the prior is specified too far from zero (e.g., IW prior
with S as an identity matrix), this will result in an overestimation of the variances.
However, specifying the central tendencies too close to zero will result in an under-
estimation of the variances, firstly because too much weight is shifted towards zero,
and secondly because an element of the scale matrix set close to zero will also have
a small variance (the density is more peaked). This is the case for instance for an IG
distribution — which is basically a univariate simplification of the IW distribution
— with a shape and scale close to zero (e.g., IG(10−5,10−5)). This IG distribution is
often considered as an uninformative prior specification for a single variance, however
it has been shown that this indeed results in an underestimation of the variance when
this variance is small (Browne & Draper, 2006; Gelman, 2006). Although Gelman
(2006) demonstrates that in the univariate case it is possible to use a Uniform or In-
verse Half-Cauchy distribution instead of the conjugate IG distribution, giving good
results, the solution to this problem is less simple for multivariate (IW prior) cases.
In the following we will discuss three IW prior specifications that have been suggested
in the literature.

Three Ways to Choose S for the IW Prior Distribution
In order to find the best way to specify the prior for Ψ when some of the variances
are close to zero, we will evaluate the performance of three IW priors for Ψ that
have been suggested in the literature, using a simulation study.3 Note that for most
Bayesian software, including the software WinBUGS that we use for the simulation
study (Lunn et al., 2000), one actually specifies a Wishart distribution for the preci-
sions, rather than the IW for the variances. The relation of the IW and the Wishart
distribution is that if X (here, the precision matrix) is Wishart distributed with scale
matrix V and degrees of freedom df , then variable X−1 (here, the covariance matrix)

3We considered the scaled Wishart described by Gelman and Hill (2007) as well, however, this
specification resulted in traps in WinBUGS (e.g., the estimation procedure would crash). Further,
we considered specifying the variances and covariances in a regression structure avoiding the use of
the IW prior specification, specifying the model with univariate priors, and to transform the random
parameters so that they have a larger variance, and specifying an IW prior for the covariance matrix
of the transformed parameters. For this work however, we decided to focus on different specifications
of IW specifications suggested in the literature. More information on the other specifications is
available from the first author.
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Figure 2.2: Eight Inverse-Wishart (IW) marginal probability densities, each specified
with specific degrees of freedom df and scale matrix S. The densities are based on
samples from a bivariate IW distribution with a diagonal S. All eight specifications
are informative: In the area around zero, each specification gives either a lot of weight
to a specific value around zero, or gives almost no weight around zero. As such, the
IW prior distribution is easily misspecified if a IW distributed variable is close to
zero.
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is IW distributed with scale matrix V −1 and degrees of freedom df . Below, we dis-
cuss the prior specifications in terms of the IW distribution. For the corresponding
Wishart specification, the scale matrix is simply inverted. For all three specifications
the df are set equal to r (here r = 3), so that the priors are minimally informative
(Gelman, Carlin, Stern, & Rubin, 2003; Gelman & Hill, 2007).

The first IW prior specification we will examine is the one that is commonly used
as an uninformative prior specification, and which we will refer to as the Identity
Matrix (ID) specification. In this specification the diagonal elements of scale matrix
S are set to 1 and the off-diagonal elements are set to zero. We expect that this
prior specification will prove to be quite informative in the current context where the
variance of φj is small.

The second IW prior specification that will be examined is an IW prior specifi-
cation in which the scale matrix is based on prior estimates of the variances of the
random parameters. Using estimates of the variances as input for the IW prior spec-
ification ensures that the prior specification will be close to the data, and therefore
should limit bias. However, this requires us to use the data twice; once for estimating
the input for the prior, and again for the likelihood. When the data are used twice,
the certainty about the estimated parameters is exaggerated (Kass & Steffey, 1989;
see also discussions on the use of Empirical Bayes by Gill, p. 276–270 2008, and
Lindley, 1969, p. 420–421). This can have statistical repercussions: because certainty
about the point estimates is exaggerated, the standard deviations of the point esti-
mates and their credible intervals will become too small (Kass & Steffey, 1989). How
much the estimates will be influenced by using the data twice, will depend on how,
and how much of the data is used. When the information in the used data is little,
the effect will be negligible asymptotically (see for instance Berger & Pericchi, 1996;
O’Hagan, 1995, on training data). Setting the df of the IW specification as small as
possible minimizes the information value of the data-based prior, and therefore limits
the effects of exaggerating the certainty about the point estimates. We will examine
the effect of using the data twice as part of the simulation study, for instance by
examining the coverage rates for the credible intervals of the estimated variances.

For the simulation study we will use a maximum likelihood procedure to obtain
prior estimates of the variances, and we will refer to the prior specification based on
these estimates as the maximum likelihood input (ML) specification. In this ML prior
specification, we specify the Wishart prior distribution in WinBUGS so that the ML
estimates of the variances of the random parameters are plugged into the Wishart
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distribution scale matrix S−1 so that the mean of the Wishart distribution equals
the estimated precisions (inverted variances). Note however that it is also possible to
obtain estimates of the variances by other means — for instance by fitting a Bayesian
model with uniform priors on the variances (ignoring any covariances), and base the
IW or Wishart scale matrix on those estimates of the variances. Another option
would be to fit an autoregressive model for each individual separately, provided that
there are enough repeated measures per person to do this. Afterwards, the variances
can be estimated by computing the variances of the estimated individual coefficients,
which can then be used for the IW or Wishart prior specification. For our simulation
study we opt for ML mainly because of its speed. We obtain the ML estimates by
fitting the model in R (R Development Core Team, 2012) with the R-package lme4
(Bates, Maechler, & Bolker, 2012). In order to estimate the variance of the mean and
not the variance of the intercept, the model in lme4 was fit on person-centered data.
We used only the ML estimated variances as input for the prior specification, while
setting the prior covariances to zero, because preliminary results showed that using
estimates of the full covariance matrix decreased performance, probably because the
ML-estimates for the covariances were not close to the true values.

The third IW specification we consider is the Default Conjugate (DC) prior pro-
posed by Kass and Natarajan (2006). In the DC prior specification, the mean of the
IW distribution is set to  1

n

k∑
j=1

Z′
jWjZj

−1 , (2.8)

where n is the number of participants, Zj is the design matrix for person j, and Wj

is the generalized linear model weight matrix for person j. The latter is based on
(estimates of) model parameters. In the case of a normal model, Wj is a diagonal
matrix with 1/σ2 on the diagonal (see Fahrmeir & Tutz, 1994). Given that we need an
estimate of the residual variance σ2 for the specification of the DC prior specification,
we fit the multilevel model with maximum likelihood techniques in R-package lme4,
and use ML-estimates of σ2 as input for the generalized linear model weight matrix.
Therefore, this specification is also data-based. However, the information in the data
used will be little, so that the effect of using the data twice should be negligible, as
is shown by Kass and Natarajan (2006).

The effect of the DC prior specification is that half of the prior weight on the
random parameters is given to the common effects (γµ, γφ, γβ), and half of the weight

35



2. A Comparison of Inverse-Wishart Prior Specifications for
Covariance Matrices in Multilevel Autoregressive Models

is given to estimates for each individual separately (µ, φ, β for each individual) as if
a model was fit for each individual separately. This approach is directly related to
shrinkage estimates (see Bryk & Raudenbush, 1992; Kass & Natarajan, 2006, but note
that the weight on the random parameters is not necessarily one half for shrinkage
estimates). In other words, the prior information is specified so that the prior weight
is in between a parameter variance of zero (i.e., no individual differences) and the
maximum parameter variance (i.e., maximum individual differences).

Kass and Natarajan (2006) compare the performance of the DC prior specification
and ML specification for a Poisson model in a simulation study. In their study the
DC prior outperformed the ML prior in terms of coverage rates, and squared and
entropy loss. However, the model used was univariate with respect to the random
parameters: only one parameter was random, so only one variance had to be modeled.
Hence it remains unclear how the DC prior performs with regard to the estimation
of the covariances between the random parameters. It also remains unclear how the
DC prior performs when variances are close to zero. We will investigate these issues
in the simulation study.

2.3 Simulation Study
Our simulation study consists of two parts: in the first part we examine the perfor-
mance of the Wishart priors for different sizes of (small) variances in Ψ, and in the
second part we examine the performance of the IW prior specifications for different
sample sizes and covariance structures when one or more variances in the covariance
matrix are small. We compare three prior specifications for Ψ as discussed previously:
the ID specification, the ML specification, and the DC specification (Kass & Natara-
jan, 2006). We will evaluate the performance of these three specifications against a
specification that has the df set to 3, and the means of the IW distribution set to
the true values. In practice this benchmark (BM) specification of course cannot be
used, but we use it in the simulation study to determine optimal performance. For
both parts the data are simulated according to the previously described model in
open source software R (R Development Core Team, 2012). For both parts of the
study the models are simulated 1,000 times (1,000 replications). In both parts of the
simulation study γµ is set to 3, ψ2

µ is set to 0.25, γφ is set to 0.3, γβ is set to 0.35,
and σ2 is set to 1. The variance of the predictor variable x, ν2, is set to 1.2.

For both parts we implemented and estimated all models in free Bayesian mod-
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2.3. Simulation Study

eling software WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000), in combina-
tion with the R-package R2WinBUGS (Sturtz, Ligges, & Gelman, 2005). We chose
Normal(0, 10−9) priors (specified in terms of precision instead of variance, which is
required in WinBUGS) for the fixed effects γφ, γβ , and γµ, and a Uniform(0, 10)

prior for σ2, the residual variance at level 1. We evaluated the convergence of each
model based on the visual inspection of the mixing of the three chains, and the
Gelman-Rubin convergence diagnostic (Gelman & Rubin, 1992). We also evaluated
the autocorrelations for the samples. Practically it was not possible to evaluate the
convergence for each replication of each model in the simulation study (e.g., run each
replication with three chains and visually inspect the convergence). Instead, we fitted
and evaluated the convergence for one replication for each different condition in Part
I and II of the study.

For all models convergence results were fairly similar. The three chains mixed well
for all models and parameters. The Gelman-Rubin diagnostic was 1, or very close to
1, for the parameters in all models. Generally, the autocorrelations decreased expo-
nentially to zero for the parameters σ2, γµ, and ψµ, and the individual µjs. For the
remaining parameters, the autocorrelations were generally a bit slower to decrease,
depending on the sample size and size of the variances of the random parameters. For
most model specifications autocorrelations for these parameters diminished to zero
after about 20 lags. Autocorrelations diminished to zero after about 40 to 60 lags
when variance size is the smallest (.0025), and sample size is the smallest (25 persons
and repeated measures). Based on the convergence results and the autocorrelations,
we judged 40,000 iterations with 30,000 burn-in iterations as sufficient for conver-
gence.

As point estimates for the parameters we used the means of the posterior distri-
butions. Performance is evaluated using: a) coverage rates of the 95% (equal tailed)
credibility intervals (CIs), which we would expect to be about .95 when the priors
are uninformative; b) bias, which is computed by taking the average of the difference
between the true value and the point estimate across all 1,000 replications; and c)
the ratio of the average posterior standard deviation and the standard deviation of
the posterior averages, which should be about 1 if the posterior standard deviations
reflect the actual sampling variation.
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2. A Comparison of Inverse-Wishart Prior Specifications for
Covariance Matrices in Multilevel Autoregressive Models

Part I: The Effect of Small Variances inΨ

In order to study the effect of the (small) size of the variances of the random pa-
rameters per prior for Ψ, the variances ψ2

φ and ψ2
β were either set to .0025, .01, or

.0225. These variances result in 95% intervals for the autoregression coefficients of
respectively [.202, .398], [.104, .496], and [.006, .594]. These ranges are in line with
autoregressive coefficients reported in the literature, which are usually small and pos-
itive (e.g, Moberly and Watkins (2008), Nezlek and Gable (2001), Suls et al. (1998),
and Wang et al. (2012) report fixed autoregression effects between .08 and .3 ap-
proximately). The sample size is set to 50 individuals and 50 time points. All the
correlations between the random parameters are set to .3. This results in a 4 × 3

(i.e., priorspecification × sizevariance) simulation design. Below, we summarize
the results for Part I of the simulation study. More detailed results for the simulation
study are available as supplementary materials with the online paper (Schuurman,
Grasman, & Hamaker, 2016) or at www.nkschuurman.com, and the simulated data
are available upon request from the first author.

The results show that overall, the ML prior specification performs best. The bias
of the ML specification is quite close to that of the BM specification. It can be seen
from Figure 2.3 that even though coverage rates are lower than 95% for ψ2

φ and ψ2
β for

this prior specification, it outperforms both the ID specification and DC specification.
The coverage rates for ψ2

φ and ψ2
β are lower than .95 likely as a result of the double use

of data: the data is used once in the prior and again in the likelihood, and as a result
the information about the estimation is exaggerated, which in turn results in smaller
credible intervals. The ID specification severely overestimates ψ2

φ and ψ2
β . The DC

specification performs well only if the prior specification is close to the true values of
ψ2
φ and ψ2

β . In this simulation study this was the case when the true variances were
.01 or .0225, but not when they were .0025. Since in practice it is unknown if the
DC prior is close to the true values of ψ2

φ and ψ2
β , it is an undependable prior to use

when the aim is to use an uninformative prior for the covariance matrix, while some
variances are close to zero. The ML specification on the other hand is by definition
close to the information in the data and therefore performs relatively well.

Note that when a variance is further away from zero, all prior specifications per-
form reasonably well: The true value for the variance ψ2

µ for random effect µj was .25,
and it can be seen from Table 2.1 to 2.4 that all prior specifications perform well for
this parameter. We discuss the results per prior specification in more detail below.
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Performance ID specification
Overall, the ID specification performs poorly. From Figure 2.3 it can be seen that
the coverage rates for ψ2

φ and ψ2
β are equal to zero regardless of the true sizes for ψ2

φ

and ψ2
β , indicating that the true values were never within the credible interval. This

is due to a large bias in these parameter estimates: The parameters ψ2
φ and ψ2

β are
severely overestimated. The coverage rates for the remaining parameters on the other
hand are equal or close to one (see Table 2.1), as a result of too conservative standard
deviations for all parameters for the ID specification. This is illustrated by the the
ratios of the average posterior standard deviations and calculated standard deviations
of the posterior means, over 1,000 replications, reported in Table 2.4, which are much
larger than one — indicating too large posterior standard deviations.

Performance ML specification
The coverage rates for the ML specification are similar to those for the BM specifi-
cation, except for the estimates of the random effects φj , βj , and their variances ψ2

φ

and ψ2
β . The coverage rates for ψ

2
φ and ψ2

β for the ML specification are low compared
to the BM specification, ranging from approximately .70 when ψ2

φ and ψ2
β are .0025

to approximately .90 when ψ2
φ and ψ2

β are .01 or .0225 . These coverage rates are
however considerably better than those for the ID specification. The coverage rates
for the random parameters φj and βj range from .893 to .936 (lowest rates for a true
variance of .0025), which is relatively low compared to the other prior specifications,
including the BM specification. These results are consistent with the relatively small
posterior standard deviations for ψ2

φ, ψ
2
β , φj , and βj for the ML specification com-

pared to the other prior specifications, as can be seen from the ratios of standard
deviations in Table 2.4. The relatively small posterior standard deviations for these
parameters are likely the consequence of the double use of data. Further, it can be
seen from Tables 2.2 and 2.3 that the ML specification results in very little bias com-
pared to the ID and DC specification, and that the amount of bias is actually similar
to that of the BM specification.

Performance DC specification
The performance of the DC specification varies depending on the true values for
the variances ψ2

φ and ψ2
β , as can be most clearly seen from a plot of the bias and
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coverage rates in Figure 2.3. The DC specification performs well when ψ2
φ and ψ2

β

are .01 and .0225: the coverage rates, bias, and ratios of the posterior standard
deviations and standard errors for the DC specification are then close to those for
the BM specification. However, when the variances are equal to .0025, performance
strongly declines, with coverage rates for ψ2

φ and ψ2
β that are equal to zero. Closer

inspection of the results indicates that this low coverage rate is due to an upward bias
for these parameters. The ratio of the posterior standard deviations and standard
errors also strongly increases when ψ2

φ and ψ2
β are .0025, indicating that the posterior

standard deviations are overestimated. The upward bias for the parameters is so
large however that it is not compensated by the relatively wide credible intervals.
The DC prior has low coverage rates for the covariance and correlation between
µj and φj . This is the result of a downward bias for this parameter, which seems
due to the DC prior specification which sets ρφµ to approximately −.90 based on
Equation 2.8. The coverage rates for the remaining parameters are high compared to
the BM specification, due to relatively large posterior standard deviations for these
parameters, as shown in Table 2.4.

The discrepancy in performance of the DC prior specification across the three
values of ψ2

φ and ψ2
β probably results because the DC specification does not depend

directly on ψ2
φ and ψ2

β , so that it does not change much in accordance with ψ2
φ and ψ2

β .
Therefore, the input for the DC specification may be similar regardless of the true
value for ψ2

φ and ψ2
β . When the information in the DC specification for ψ2

φ and ψ2
β

is not close to the information from the data, it biases the estimates for ψ2
φ and ψ2

β .
This can be seen most clearly from Figure 2.3, which shows that the bias increases
when the true variance diverges from the DC prior specification: When ψ2

φ and ψ2
β

are .0025 or .01 the bias is positive, and when they are .0025 the bias turns negative.
Apparently the DC specification was close enough to ψ2

φ and ψ2
β when their true

values were .01 and .0225, but not close enough when their true values were .0025.

Part II: The Effects of Sample Size and Covariance Structure
For Part II of our simulation study, we aim to study the effect of sample size and
the sizes of the covariances or correlations on the parameter estimates for each prior
specification for Ψ. For this purpose we vary sample sizes between 25, 50, and 75
for both number of individuals and time points, and the correlations between the
random parameters are either all set to 0 or all set to .3. The variances for both the
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Figure 2.3: Part I coverage rates, estimated bias, and ratios of the average estimated posterior
standard deviations and the standard deviations of the estimated posterior means, for ψφ and ψβ
calculated over 1000 replications. The coverage rates, bias, and ratios of standard deviations are
shown for the benchmark (BM), identity matrix (ID), maximum likelihood input (ML), and default
conjugate (DC) prior specification, for true values for ψφ and ψβ of .0025, .01, and .0225.
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crossregression and autoregression coefficients are set to .01 for this study, which is
the medium value for the variances in Part I. This results in a 4 × 3 × 3 × 2 (i.e.,
priorspecification × timepoints × individuals × correlationmatrixspecification)
simulation design. The results for Part II of the simulation study are presented below.

Effects of sample size
In general, when sample size increased, parameter estimates improved as would be
expected: The bias became smaller, the coverage rates became closer to .95, and the
ratios of the posterior standard deviations and standard errors became closer to 1.
Figure 2.4 contains graphs for the coverage rates, bias, and ratios of standard de-
viations for ψ2

φ, and ψ2
β for sample sizes of 25 time points and individuals, 50 time

points and individuals, and 75 time points and individuals. The results for different
combinations of time points and individuals, such as 25 time points and 50 individu-
als, were not included in Figure 2.4 to save space; these results, as well as the results
for the other parameters are available as supplementary materials with the online
paper (Schuurman, Grasman, & Hamaker, 2016) or at www.nkschuurman.com, and
the simulated data are available upon request from the first author.

The estimates for µj , φj , and βj improved when the number of time points in-
creased, as would be expected for within-subject parameters. For the remaining
parameters, estimates improved both when time points and number of individuals in-
creased, as would be expected for between-subject parameters. Increasing the number
of individuals seems most advantageous for these parameters. Noteworthy is that for
all sample sizes and all prior specifications, including the BM specification, the cred-
ible intervals and posterior standard deviations for the correlations were quite large:
For the BM specification the posterior standard deviations ranged from approximately
.30 for the smallest sample size to .16 for the largest sample size. Although the ac-
curacy of the estimates of the correlations increases as sample size increases, efficient
estimates of the correlations clearly will require even larger sample sizes. We discuss
the results per prior specification in more detail below.

The ID specification did not perform well regardless of sample size, as can be seen
from Figure 2.4. The coverage rates for ψ2

φ and ψjβ were equal to zero, regardless of
number of time points or individuals. Although the bias in the parameter estimates
decreased when sample sizes increased, it remained large, which was reflected in the
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coverage rates. The ratios of standard deviations are larger than 1, and large com-
pared to the other prior specifications, which indicates that the posterior standard
deviations are relatively large across sample sizes, resulting in relatively large credible
intervals.

For the ML specification, the coverage rates for φj and βj were low when sample
sizes were small, but they improved as sample size increased, from approximately .88

for 25 time points and individuals to .94 for 75 time points and individuals. The
coverage rates for ψ2

φ and ψ2
β also improved when sample size increased, from approx-

imately .73 for 25 time points and individuals to .90 for 75 time points and individuals
(see Figure 2.4).

The performance of the DC prior specification also increased when sample size
increased. However, Figure 2.4 shows that for small sample sizes the DC specification
shows an especially sharp drop in coverage rates ψ2

β , indicating that for this param-
eter the small sample was not enough to dominate the prior. In general, for all prior
specifications and across both parts of the simulation study, the estimates for ψ2

φ seem
to be slightly less biased than those for ψ2

β . In this case the true value for ψ2
β seems

to lie just outside the credible interval, whereas the true value for ψ2
φ lies just within

the credible interval, resulting in this sharp drop in coverage rates for ψ2
β , but less so

for ψ2
φ. The estimates for the covariance ψµφ and correlation ρµφ improve strongly as

sample size increases, with coverage rates ranging from approximately .55 to .92 for
ψµφ and from .43 to .93 for ρµφ, and bias ranging from approximately from −.04 to
−.003 for ψµφ, and from −.7 to −.08 for ρµφ, for the smallest to the largest sample
sizes respectively.

Effects of covariance structure
In general, performance did not differ much when the covariance structure was altered,
except for the estimates of the covariances and correlations of the random parameters
for the ID and ML prior specification. Note that the performance for the correlations
and covariances will not necessarily be the same because the correlations are also
affected by the estimates of the variances. However, for both the correlations and
covariances estimates were better when the true values of the covariances were set to
zero, which is not surprising since these prior specifications had covariances set to zero.
When correlations of .3 were used to generate the data, the covariance and correlation
estimates were downward biased for these specifications compared to the benchmark
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Figure 2.4: Part II coverage rates, estimated bias, and ratios of the average estimated
posterior standard deviations and the standard deviations of the estimated posterior means,
for ψφ and ψβ calculated over 1000 replications for the models with correlations set to .3.
The coverage rates, bias, and ratios of standard deviations are shown for the benchmark
(BM), identity matrix (ID), maximum likelihood (ML), and default conjugate (DC) prior
specification, for sample sizes of 25 time points and 25 individuals, 50 time points and 50
individuals, and 75 time points and 75 individuals.
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specification. This relatively large bias compared to the benchmark specification was
absent for the ID and ML specification when the true values of the correlations were
equal to zero, and decreased when sample size increased so the data dominated the
prior more. For the smallest to the largest sample sizes, for the BM specification this
bias ranged from approximately −.06 to .004 for ρµφ and ρµφ, and from −.18 to −.04

for ρµφ. For the ID specification the bias ranged from approximately −.24 to −.16

for ρµφ and ρµφ, and from −.27 to −.23 for ρβφ. The bias for the ML specification
was considerably less with the bias for ρµφ and ρµφ ranging from −.19 to −.03, and
from −.26 to −.04 for ρβφ. For the DC specification, the bias for the correlations was
generally in between the bias for the ML and BM specification, except for ρµφ, as was
the case for this parameter for the DC specification for Part I of the simulation study.
For all prior specifications, the coverage rates and ratios of standard deviations were
not clearly affected by the different true correlation values. We briefly evaluated the
performance of the BM and ML model for correlations equal to .7 rather than .3, with
sample sizes of 25 occasions and persons, and 75 occasions and persons. As would
be expected, the bias in the correlations for the ML specification was more severe
when the correlations were equal to .7. For the rest, results were comparable to the
condition for which the correlations were equal to .3.

Conclusion
Overall, the ML prior specification outperformed the other prior specifications. The
ID specification, which is probably one of the most common choices in specifying
uninformative priors for covariance matrices in practice, is not a good choice when
variances may be small, because it results in severely overestimated variances even
for relatively large sample sizes. The DC specification performs better than the ID
specification, but gives inconsistent results. That is, it strongly influences the results
when the DC prior information is not close enough to the information in the data.
Given that there is no guarantee that the prior information from the DC will be close
to the information in the data, the performance of the DC prior is unreliable when
variances are small. The ML specification on the other hand, is directly based on
maximum likelihood estimates of the variances from the data, which provide a good
guess of the true value of the variances. As a result, the ML specification performs
relatively well. The double usage of the data in the ML specification however does
have consequences for the standard deviations and credible intervals of the variances:
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these are too small. However, this effect diminishes when sample size increases.
A disadvantage of the ML specification is that when the models of interest become

more complex, it may be difficult to fit these models with traditional ML procedures
and software — in fact, this may be one of the reasons to opt for Bayesian estimation
in the first place. For instance, multivariate multilevel modeling is often not avail-
able in frequentist software whereas it is relatively easy to fit with Bayesian software.
Two other examples are multilevel multivariate autoregressive models that include
latent variables, and models that include random residual variances — both may not
be possible with frequentist software, whereas it is relatively trivial within Bayesian
software. There are several ways to get estimates for the covariance matrix of the ran-
dom parameters, or the variances in this matrix, when the models are too complex to
fit with traditional techniques: Firstly, it may be possible to use simpler models that
allow ML estimation to get preliminary estimates of the variances in question. For
instance, if one aims to fit a multivariate multilevel autoregressive model, one option
is to fit multiple univariate models with ML techniques in order to get preliminary
estimates for the variances, and use these estimates in the prior specification. Sec-
ondly, an option is to fit state-space models per individual instead of one multilevel
model, and calculate the variances based on the estimates of the individual param-
eters. Thirdly, one can fit the model with Bayesian estimation using uniform priors
for the variances, while disregarding potential covariances, and use these estimates
for the variances in the specification of the IW prior distribution. In the following
section we will illustrate this last option, together with the ID, DC, and ML prior
specification, using an empirical example.

2.4 Empirical Application on Positive Affect and Worrying
The data for this empirical illustration consist of ESM measurements (see Geschwind,
Peeters, Drukker, van Os, & Wichers, 2011). Each participant was alerted randomly
throughout each day to fill out the provided questionnaires, for six days, resulting
in approximately 45 repeated measures per participant. Here we focus on baseline
measures for 129 participants of positive affect (PA), measured with principal compo-
nent scores for seven items (I feel ‘happy’, ‘satisfied’, ‘strong’, ‘enthusiastic’, ‘curious’,
‘animated’, and ‘inspired’) (for details, see Geschwind et al., 2011), and on baseline
measures of worrying, measured with the item ‘I am worrying’. All items were an-
swered on a scale from 1 to 7 (with 1 being ‘not at all’ and 7 being ‘very much
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so’). Because an assumption for AR(1) models is that time intervals between mea-
surement are about equal, we added observations and coded these observations as
missing between measurements, when time intervals between random measurements
were especially large (e.g., between the last observation of a day and the first obser-
vation of the following day), resulting in an average time lag of about 1.7 hours.

In the psychological literature worrying is considered to be both potentially pro-
ductive and potentially destructive. That is, worrying is productive when it results
in solving a (potential) problem, reducing negative affect that accompanied the prob-
lem. In that case, worrying is considered an adaptive emotion-regulating strategy
(Ehring & Watkins, 2008; Nolen-Hoeksema, Wisco, & Lyubomirsky, 2008; Pyszcyn-
ski & Greenberg, 1987; Watkins, 2008). On the other hand, it may become destructive
when the problem cannot be solved, and worrying becomes repetitive or compulsive
in continuously trying to solve the problem, exacerbating negative emotions related to
the problem. This repetitive worrying has been considered as a maladaptive strategy
to regulate emotions, and has been related to affect, especially negative affects such
as sadness and anxiety, to rumination, and to various depressive and anxiety disor-
ders (Aldao, Nolen-Hoeksema, & Schweizer, 2010; Ehring & Watkins, 2008; Nolen-
Hoeksema et al., 2008; Pyszcynski & Greenberg, 1987; Querstret & Cropley, 2013;
Watkins, 2008). Within the current modeling framework, a positive autoregressive
effect for worrying may serve as an indication of such repetitive or compulsive think-
ing — reflecting that a person tends to ‘get stuck’ in their worrying across multiple
observations. Here, we will explore this autoregressive effect of worrying, and that of
PA, and we will explore the reciprocal effects of worrying and PA on each other, by
means of fitting a multilevel multivariate autoregressive model. Furthermore, we will
investigate whether there are any associations between the individual autoregressive
effects, cross-lagged effects, and individual means. Note that this is possible because
we are using a model with a multilevel and multivariate structure.

Modeling Approach
Applications of multivariate multilevel autoregressive models are sparse (see Lodewyckx
et al., 2011, for an exception). Univariate applications are more commonly seen in the
psychological literature (e.g., Cohn & Tronick, 1989; De Haan-Rietdijk et al., 2014;
Moberly & Watkins, 2008; Nezlek & Allen, 2006; Nezlek & Gable, 2001; Rovine &
Walls, 2005; Suls et al., 1998). When researchers are interested in reciprocal lagged

51



2. A Comparison of Inverse-Wishart Prior Specifications for
Covariance Matrices in Multilevel Autoregressive Models

effects between two or more variables, they typically estimate several univariate mod-
els instead (e.g., Moberly & Watkins, 2008; Nezlek & Allen, 2006; Nezlek & Gable,
2001). The reason for this may be that it is difficult to estimate multivariate multilevel
models using traditional software. Here, a Bayesian approach is extremely valuable,
because it can be easily extended to multivariate processes. An additional advantage
of the Bayesian approach that is especially important for longitudinal designs is that
it handles missing data well. We have some missing data for the measures on wor-
rying and PA as a result of nonresponse, as well as the observations we added and
coded as missing as noted previously. As such, the Bayesian approach will be quite
helpful here.

In order to illustrate the effect of different prior specifications for the covariance
matrix Ψ of the random parameters (two means, two cross-lagged parameters, and
two autoregressive parameters per person), we fit the model with the ID prior, the
DC prior, and the ML prior. Because fitting a multivariate multilevel autoregressive
model currently is not an option in ML software, we fit two univariate models with
package lme4 in R (Bates et al., 2012; R Development Core Team, 2012) in order to
obtain estimates for the variances in Ψ to plug into the ML and DC prior. This may
not be ideal, because 1) fitting two univariate models ignores any residual correlation
between PA and worrying; and 2) In lme4 any missing observations are discarded
from the analysis by means of listwise deletion, so that many observations are dis-
regarded in this analysis: one missing value in the dependent variable, also means
a missing value in the predictor at the preceding occasion, resulting in the list-wise
deletion of two observations. Therefore, we also specify a second data-based prior,
based on first fitting a bivariate Bayesian model with Uniform priors on the variances
of the random parameters. Although this model ignores any correlation between the
random parameters, it allows for a residual correlation between PA and worrying,
and more importantly, it efficiently deals with the missing observations. We plug the
estimates for the variances of the random parameters of this model into an Inverse-
Wishart prior for a full multivariate model, and we will refer to this Inverse-Wishart
prior specification as the Bayesian data based (BDB) prior specification.

In the first six panels of Figure 2.5 we provide plots of the resulting (marginal)
IW prior distributions for the variances of the random parameters. For the variances
of the means (two top most panels) the ML, BDB, and DC prior specifications are
quite similar, with the exception of the DC prior specification for the mean of wor-
rying which is more similar to the ID prior specification. For the variances of the
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autoregressive and cross-lagged coefficients there are more dissimilarities between the
prior specifications, as we would expect. The ML, DC, and BDB prior distributions
all peak in the area close to zero for the variances of these regression coefficients. For
these parameters, the prior distributions for the ML and BDB specification are most
similar (except for βWo−>PAj), but they do not overlap completely, especially in the
area close to zero. As expected, the ID prior peaks quite far away from zero, and is
most dissimilar to the other prior specifications. The final two panels of Figure 2.5
show plots for two of the fifteen correlations between the random parameters, specifi-
cally between βWo−>PAj and φWoj , and between φWoj and µWoj . For the correlation
between βWo−>PAj and φWoj the prior covariance was set to zero for all prior spec-
ifications, resulting in a symmetric, saddle-shaped distribution. For the correlation
between φWoj and µWoj , the prior covariance was set to zero for all specifications
except the DC prior, for which the prior is shifted in favor of a negative correlation.

We fitted each model with three chains, with each 40,000 samples of which 20,000
were burn-in. We evaluated the convergence of each model through the visual in-
spection of the mixing of the three chains, the Gelman-Rubin convergence diagnostic
(Gelman & Rubin, 1992), and autocorrelations. Based on these results we judged
40,000 iterations with 20,000 burn-in iterations as sufficient for convergence. Code
for R and WinBUGS for simulating data and fitting the bivariate model, based on
the ML prior specification and the BDB prior specification, is provided as supple-
mentary materials with the online paper (Schuurman, Grasman, & Hamaker, 2016)
or at www.nkschuurman.com.

Results
From Table 2.5 it can be seen that for most parameters, the estimates are quite similar
across the different prior specifications. As would be expected, the largest differences
are between the estimated variances of the random autoregressive and cross-lagged
parameters (see the random effect for φPA and φWo, and βPA→Wo and βWo→PA in
Table 2.5), and therefore, between the estimates of the individual random parame-
ters. For the models with the ML based prior and the BDB prior we find very similar
estimates for the variances. For the DC prior, we also find similar results, albeit a
somewhat smaller point estimate for the variance of the cross-lagged effect of PA on
worrying, compared to the models with ML and BDB priors. In the model with the
ID prior specification, the variances are consistently estimated to be about twice as
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Figure 2.5: Plots of the (marginal) Inverse-Wishart prior distributions based on the
maximum likelihood (ML), Bayesian data-based (BDB), default conjugate (DC), and
identity matrix (ID) specification for the variances of the random parameters, and for
the correlation between βWo−>PAj and φWoj , and βWo−>PAj and φWoj , and between
φWoj and µWoj .
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Figure 2.6: Scatter-plots of the point estimates of the random parameters based on
the Bayesian data-based (BDB) prior specification, indicating negative correlations
between the means for PA and worrying (µPAj and µWoj), the cross-lagged effects of
worrying on PA and the means of worrying (βWo−>PAj and µWoj), and cross-lagged
effects of worrying on PA and the autoregressive effects for worrying (βWo−>PAj and
φWoj).

large compared to the estimates for the other prior specifications.
The fixed autoregressive effects are positive, which implies that on average, a

participants’ current PA is likely to be similar to their PA of the previous occasion,
and a participants’ current worrying is likely to be similar to their worrying of the
previous occasion. Based on these point estimates for fixed effects, and the corre-
sponding estimates of the variances based on BDB prior, we find an approximate
95% interval of .065 to .647 for the random autoregressive parameters of PA, and
of -.041 to .591 for the autoregressive parameters of worrying. This indicates that
the autoregressive coefficients are expected to be positive for most individuals. The
average cross-lagged effect for the effect of worrying on PA is near zero, which implies
that on average worrying on the preceding occasion does not affect PA at the current
occasion. However, the variation around this average effect implies that for some
persons the effect is actually positive, whereas for others it is negative: The point
estimate of the fixed effect and of the corresponding variance imply a 95% interval of
-.172 to .132 for the cross-lagged effects of worrying on PA. This may indicate that
for some persons worrying is mostly a productive problem solving behavior, with suc-
cessful problem solving leading to more positive affect, whereas for others worrying
is ineffective, leading to less positive affect. The average cross-lagged effect of PA on
worrying is negative, which implies that on average (across persons), higher PA on the
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preceding occasion is likely to lead to less worrying at the current occasion, whereas
diminished PA is likely to lead to more worrying. Based on the estimated fixed effect
and corresponding variance, we find a 95% interval of -.485 to .171 for the random
cross-lagged effects of PA on worrying, indicating that this effect is expected to be
negative for most persons. This seems a logical result if worrying is problem-oriented:
When there are problems to be solved, this may lead to lower PA, and to worrying
in order to solve the problem, and vice versa.

For the correlations between the random parameters (not reported in Table 2.5
for reasons of space) we find that most correlations have quite wide credible inter-
vals, with values ranging from strongly negative to strongly positive, so that we have
too little information to draw conclusions about these correlations (similar to our
findings in the simulation study). However, for three correlations we find credible
intervals that include only negative values across the DC, ML, and DBD prior spec-
ifications, namely between the means for PA µPAj and worrying µWoj (−.293, 95%
CI:[−.453,−.115]), between the mean of worrying µWoj and the cross-lagged effect
of worrying on PA βWo→PAj (−.360, 95% CI:[−.615,−.047]), and between the au-
toregressive parameter for worrying φWoj and the cross-lagged effect of worrying on
PA βWo→PAj (−.551, 95% CI:[−.771,−.197]; here we report the results based on the
BDB prior, though results are similar across the other specifications). To gain more
insight in the meaning of these correlations we made scatter plots of the individual
parameters (see Figure 2.6), and we discuss each correlation in more detail below.
First, the negative correlation between the mean of PA and of worrying (left panel of
Figure 2.6), indicates that persons with higher average PA are likely to worry less on
average compared to persons who generally have lower average PA. Second, the cor-
relation between the cross-lagged effect of worrying on PA with the mean of worrying
(middle panel of Figure 2.6) implies that individuals who worry a lot on average tend
to have a negative cross-lagged effect of worrying on PA at the next occasion, whereas
individuals who do not worry a lot on average tend to have a positive cross-lagged ef-
fect of worrying on PA. This may reflect the dual nature of worrying. For persons for
whom worrying is effective in solving problems, worrying results in a higher positive
affect because problems are being dealt with (i.e., a positive cross-lagged effect), and
therefore may not need to worry as much (i.e., a low mean of worrying). In contrast,
for persons for whom worrying is not effective, worrying may result in a lower PA
(i.e., a negative cross-lagged effect) without the relief and accomplishment of solving
the problem, and they may worry relatively a lot on average (i.e., a high mean for
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worrying), because their problems are not going away. Third, the correlation between
the cross-lagged effect of worrying on PA with the autoregressive effect of worrying
(right panel of Figure 2.6) implies that persons who have high inertia in worrying
(i.e., get stuck in worrying), tend to have a negative cross-lagged effect of worrying
on PA, whereas persons that have little or no inertia in their worrying tend to have a
positive cross-lagged effect of worrying on PA. This correlation also seems to illustrate
the potential problem solving nature of worrying: When worrying results in solving
the problem, worrying may result in a higher PA (i.e., a positive cross-lagged effect),
and for persons for whom this is the case there may be little need to keep worrying
(i.e., a relatively low inertia in worrying). In contrast, when worrying is ineffective,
the futile worrying may result in a lower PA (i.e., a negative cross-lagged effect), and
the persons for whom this is the case may continuously worry in order to keep trying
to solve the problem, resulting in a relatively high positive inertia in worrying.

Finally, we note that there remains a strong negative association (−.479, 95%
CI:[−0.499,−0.459]) between the residuals of PA and worrying. This residual cor-
relation between PA and worrying after the lagged effects are taken into account,
indicates that there is more to the relationship between PA and worrying. As such,
it may be worthwhile to look at the relationship between PA and worrying at other
time intervals than the interval of about 1.7 hours that was considered here, or to
look for additional explanatory variables, for instance specific negative events, social
interactions, stress, or psycho-physiological factors.

In sum, these results provide interesting considerations for future (confirmatory)
research on the relationship between worrying and PA, and individual differences in
this relationship. Based on the correlations between the random effects, we found
that individuals who worry a lot on average, as well as individuals who get stuck in
worrying, tend to have a negative cross-lagged effect of worrying on PA, indicating
that for them worrying is a maladaptive coping strategy. In contrast, individuals
who do not worry a lot on average, or who bounce back from worrying quickly, tend
to have a positive cross-lagged effect from worrying to PA, indicating that for them
worrying is a adequate tactic to solve current problems. Note that we were only
able to find these results because we made use of a multivariate multilevel model,
allowing for all random effects to be correlated. That is, had we used two separate
multilevel models (i.e., for PA and worrying as dependent variables separately), we
would not have obtained estimates of the correlations between these random effects.
This illustrates the unique opportunities offered by the multivariate approach. Fur-
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thermore, fitting several (data-based) priors helps evaluate the influence of specifying
certain priors: The results for the ID specification considerably diverged from the
results from the other prior specifications. The remaining three prior specifications
however converged to approximately the same results, so that we feel that we can be
reasonably confident about our results and conclusions based on these specifications.

2.5 Discussion
The multivariate multilevel autoregressive model is a valuable model for studying
between-person differences in within-person processes. The Bayesian modeling frame-
work provides a flexible environment for fitting this complex multilevel model. How-
ever, when some variances of the random parameters in the model are close to zero,
the conjugate IW prior distribution for the covariance matrix of the random parame-
ters becomes quite informative, unintentionally influencing the parameter estimates.
In this study we evaluated the performance of three different IW prior specifications
for the covariance matrix of the random parameters by means of a simulation study.
In addition, by means of an empirical data set we demonstrated a sensitivity analysis
for the IW prior specification, and illustrated the added value of the multivariate,
multilevel modeling approach provided by the flexible Bayesian modeling environ-
ment.

The results from the simulation study indicate that the data-based ML prior
specification for the covariance matrix of the random parameters performs the best
compared to the ID specification and the DC specification. The ML specification
performs well because it is based on estimates of the variances from the data. There
are multiple ways to obtain estimates of the variances based on the data besides the
ML procedure, that we discussed in the conclusion of the simulation study. The con-
sequence of using the data twice is that the certainty about the parameter estimates
is overestimated, resulting in too small posterior standard deviations. A solution to
this problem may be to use a small part of the data for calibrating the prior specifica-
tion (also referred to as training data, see Berger & Pericchi, 1996; O’Hagan, 1995),
and using the remainder of the data for the model fitting procedure. Of course, this
raises questions for future research on exactly how to do this. To cite two examples:
Should you use part of the persons in your sample for calibrating the prior, or part of
the repeated measures of each person? What sample size would provide good enough
estimates for calibrating the prior?
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An alternative specification that we considered, but was inoperative for the mul-
tilevel autoregressive model in WinBUGS (see footnote 3), is the scaled Wishart
discussed in Gelman and Hill (2007). However, this may be a viable specification for
other multilevel models. Other alternative IW prior specifications for Ψ that we did
not investigate consist of specifying improper IW priors with df smaller than r, or to
use a specification suggested in a recent study by Huang and Wand (2013), in which
Half-Cauchy distributions for the standard deviations, and Uniform distributions for
the correlations, are specified via an IW distribution. However, both WinBUGS and
OpenBUGS require proper IW priors, and do not allow for setting priors within IW
priors, so that these specifications are not available within this software. Still an-
other option may be to transform the random parameters so that they have a larger
variance, and specifying an IW prior for the covariance matrix of the transformed
parameters. Finally, two potential specifications that circumvent the use of an IW
distribution, are to specify the variances and covariances in a regression structure, or
to specify uniform distributions for the variances of the random parameters, if dis-
regarding the covariances does not affect the parameter estimates of interest. If the
covariances between the random covariances are of primary interest, a possibility for
the latter specification may be to correlate the random parameters a posteriori. Pos-
sible directions for future research are to compare the performance of the alternative
specifications with the ML specification in a simulation study (in other software).

In conclusion, this study demonstrates that the IW prior specification for co-
variance matrices should not be taken lightly. When variances are small, the prior
specification can have considerable consequences for the parameter estimates. In the
multilevel autoregressive model, it is known in advance that some variances will be
close to zero. We expect that our results will generalize to any multilevel model that
has small variances in the covariance matrix of the random parameters, either as a
result of the scale of the variables or parameters, or simply because there are only
small individual differences in the parameters. Therefore, it seems imperative to in-
clude a prior specification sensitivity analysis for the covariance matrix of the random
parameters in multilevel studies in psychology. Our empirical application provides
an example of such an analysis, in which we compared the results for four different
prior specifications: Three different (data-based) priors converged to approximately
the same results, whereas the ID specification showed divergent results. Finally, we
advise to include a data-based prior in such a prior sensitivity analysis. Although it
may not be ideal to use the data twice in order to calibrate the prior, our simulation
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study results indicate that a prior distribution based on estimates of the variances of
the random parameters performs the best in this specific situation that some variances
in the covariance matrix may be close to zero.
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3 How to Compare Cross-Lagged Associations in a
Multilevel Autoregressive Model

by N.K. Schuurman, E. Ferrer, M. de Boer-Sonnenschein, and E.L. Hamaker

Many questions in psychological research are concerned with the way two or more
variables influence each other over time. Examples of such research questions are
“How do concentration and job satisfaction influence each other?,” “How does ma-
ternal stress influence a child’s behavior, and vice versa?,” or “How do anxiety and
rumination influence each other?.” Many of these questions cannot be investigated
experimentally due to ethical limitations - and, as a result, researchers make use of
correlational designs such as the cross-lagged panel design. In this approach, two or
more variables are measured at two or more occasions, and the cross-lagged associ-
ations between the variables over time are examined while controlling for the effect
that variables have on themselves (i.e., the autoregression; cf., Rogosa, 1980).,

An important goal in many cross-lagged panel studies is to establish causal effects
using cross-lagged regression coefficients, and then comparing these associations with
respect to their strength (e.g., Christens et al., 2011; de Jonge et al., 2001; de Lange
et al., 2004; Kinnunen et al., 2008; Talbot et al., 2012). The strongest association is
then judged to provide the most important causal influence that drives the system,
also referred to as being ‘causally dominant’ (c.f., de Jonge et al., 2001; de Lange et
al., 2004; Kinnunen et al., 2008). By taking multiple repeated measures and incorpo-
rating them in the cross-lagged model, two requisites for establishing causal relations
are fulfilled, namely establishing an association between the variables studied, and
taking into account the time order of the processes (e.g., the cause has to occur before
the result). Such an association between variables, where a variable x predicts future

This chapter is based on: Schuurman, N.K., Ferrer, E., de Boer-Sonnenschein, M., & Hamaker,
E.L. (2016). How to Compare Cross-Lagged Associations in a Multilevel Autoregressive Model.
Psychological Methods.

Author contributions: Schuurman designed the study, performed the analyses, processed and
interpreted the results, and wrote the paper. Ferrer provided data for an empirical example that
was later removed (which is now used in Chapter 5) and provided feedback on the written work.
De Boer-Sonnenschein provided the data for the empirical example and provided feedback on the
written work. Hamaker proposed the topic for the study (standardizing in the multilevel model),
provided extensive feedback on the design of the study, and on the written work.
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values of another variable y, is referred to as ‘Granger-causal’: Variable x Granger-
causes variable y (Granger, 1969).

Of course, establishing Granger-causal relations is not enough to infer a true causal
relationship, or true ‘causal dominance,’ as that would require ruling out that any
of these associations may be spurious. However, comparing the relative strength of
the Granger-causal cross-lagged associations can provide direction for studying cross-
lagged associations in more depth. For instance, consider a treatment study in which
rumination and stress have a reciprocal cross-lagged relation. Specifically, the associ-
ation between rumination at a previous occasion and stress at a later occasion is much
stronger than the association between stress at a previous occasion and rumination
at a later occasion. In this situation, it may be most efficacious to focus most on the
former association in further research, or in practice during therapy. The question
in this and related scenarios, is how such a comparison of the strength of the cross-
lagged associations can best be made. The common approach is to standardize the
cross-lagged regression coefficients - and then compare their absolute values (Bentler
& Speckart, 1981).

In recent years, several alternatives for the cross-lagged panel design have gained
popularity, including Experience Sampling Method (ESM), daily diary measurements,
and ambulatory assessment. These methods result in more intensive longitudinal
data (often with more than 30 repeated measurements per person), which are also
more densely spaced in time (i.e., day-to-day, moment-to-moment, or even second-
to-second), thus containing more detailed information about the process under inves-
tigation. Researchers, being aware of the richness of these data, are trying to find
alternative ways to analyze them in order to extract as much information as possible.
This has led to the implementation of autoregressive models, and multilevel exten-
sions of these models (Cohn & Tronick, 1989; Kuppens et al., 2010; Lodewyckx et
al., 2011; Madhyastha et al., 2011; Moberly & Watkins, 2008; Nezlek & Allen, 2006;
Nezlek & Gable, 2001; Suls et al., 1998).

The combination of intensive longitudinal designs and multilevel modeling has two
important advantages over more traditional cross-lagged panel studies. First, han-
dling the data in a multilevel model allows one to separate the within-person dynamics
from stable between-person differences. This is essential for investigating the actual
dynamics of a psychological (causal) process that operates at the within-person level
(Hamaker, Kuijper, & Grasman, 2015). Second, disregarding individual differences in
dynamics, and only investigating group effects, can be misleading when these results
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are generalized to the Granger-causal processes that happen at a within-person level
(Borsboom et al., 2003; Hamaker, 2012; Kievit et al., 2011; Molenaar, 2004; Nezlek &
Gable, 2001). Multilevel modeling allows for group effects and investigating whether
there are individual differences in the dynamics, for instance, in the reciprocal rela-
tions. For example, for some individuals, having higher levels of concentration may
lead to more job satisfaction, while for others, having higher levels of concentration
is mostly a result of their high levels of job satisfaction. Similarly, when investigating
mother-child dyads, for some dyads maternal stress may be the dominant force that
affects the child’s disruptive behavior, while for other dyads the child’s disruptive
behavior is what triggers maternal stress.

For making a meaningful direct comparison of the strengths of the reciprocal as-
sociations, standardized coefficients are more suitable than unstandardized regression
coefficients. The unstandardized coefficients vary in size depending on the variances
of the variables, while standardized coefficients are reflective of the proportions of
unique variance explained in an outcome variable by the predictors. However, there
are different ways to standardize the coefficients, based on different variances for the
variables (i.e., the total variance, the within-person variance, and the between-person
variance), which may lead to different conclusions about which effect is the strongest.
This issue is further complicated by the fact that one can standardize the fixed effects
(i.e., the average parameters across individuals), but also the individual parameters
(i.e., for each person separately).

The purpose of this study is therefore twofold: Firstly, we illustrate the value
of the multilevel model in studying Granger-causal cross-lagged relations, and the
individual differences therein. Secondly, we examine how the cross-lagged parame-
ters from multilevel bivariate autoregressive models can be standardized and discuss
the substantive interpretation of these standardized parameters when the aim is to
compare the relative strength of cross-lagged associations. We begin by introducing
the multivariate multilevel autoregressive model. Next, we discuss the rationale of
standardization in general and how to standardize the parameters of the multilevel
multivariate autoregressive model. This is followed by an illustration of the model
and the standardization procedure on an empirical data set. We end the manuscript
with a discussion in which we highlight our main conclusions.
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3.1 The Multilevel Bivariate Autoregressive Model
In this section we explicate how the multilevel multivariate autoregressive model is
related to other cross-lagged models, respectively the cross-lagged panel model, and
the autoregressive (n=1) time series model. After this comparison, we discuss the
specification of the multilevel model.

Relation to Other Cross-Lagged Models
The multilevel multivariate autoregressive model we consider throughout this work
has strong links to the cross-lagged panel model on the one hand, and the (n=1) bivari-
ate autoregressive time series model on the other hand. Both cross-lagged panel mod-
eling and multivariate autoregressive time series modeling are used to study Granger
causal processes of multiple variables, and to establish which effect is causally dom-
inant. As such, both models incorporate autoregressive coefficients, which represent
the effect of a variable on itself at the next time point, and cross-lagged coefficients,
which reflect the effects of variables on each other at the next time point. However,
these models were developed for different types of data and, as a result, provide dif-
ferent perspectives.

Specifically, the cross-lagged panel model is fitted to panel data, which generally
consist of a few repeated measures (2-5) taken from a large number of participants.
The autoregressive effects of the cross-lagged panel model indicate how stable the
individual differences in the scores are over time. The cross-lagged effects reflect the
association between the individual differences of one variable with the individual dif-
ferences of another variable at the next occasion. An advantage of the cross-lagged
panel model is that it is fitted for a group of individuals at once, and in that sense,
is easy to generalize to a larger population. On the other hand, these effects do not
necessarily generalize to the dynamic process for any specific individual (Borsboom
et al., 2003; Hamaker, 2012; Hamaker, Kuijper, & Grasman, 2015; Kievit et al., 2011;
Molenaar, 2004). Firstly, because the cross-lagged model does not separate stable
between-person differences (differences in the intercepts) from the within-person ef-
fects (c.f., Hamaker, Kuijper, & Grasman, 2015). Secondly, because the panel model
provides average group effects, and average effects do not necessarily apply to the
individual effects the average was taken over. This is illustrated further in the em-
pirical application.

On the other extreme, autoregressive time series models are fitted to one person
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who is repeatedly measured over time (e.g., 50 repeated measures or more; Hamilton,
1994; Madhyastha et al., 2011). The autoregressive effects in this model tell us how a
specific individual’s past measures influence his or her current measures. The cross-
lagged effects tell us how past scores of one variable influence the current scores of
another variable after controlling for all autoregressive effects. As such, it describes
the intra-individual differences or dynamics for a specific person. A disadvantage of
the time series approach is that, because these models are fitted to one individual at
a time, the results are hard to generalize to a larger population.

The multilevel autoregressive model that we consider here allows us to model the
within-person processes as in the (n=1) time series model simultaneously for multi-
ple individuals, and model group effects that allow us to generalize results to a larger
population. Specifically, at the within-person or first level, the time series model is
specified to describe the dynamics of the process for each individual, while at the
between-person or second level, the individual differences in these dynamics are cap-
tured. As such, the multilevel autoregressive model provides a way to combine the
best of two worlds. On the one hand, the model is an extension of the cross-lagged
panel model, simply incorporating many more repeated measures, and allowing the
intercepts or means and the regression coefficients to vary across persons. On the
other hand, it can be seen as an extension of the n=1 time series model, with the
added assumption that the person-specific parameters come from a particular distri-
bution; the characteristics of this distribution such as its mean or variance, can then
be used to say something about the average effects in the group of individuals. We
discuss the specification of this model in more detail below.

Model Specification
Let y1ti and y2ti represent the scores on variable y1 and variable y2 of person i at
occasion t. Each score can be separated into two parts: 1) a trait part µ1i and
µ2i, which remains stable over time and can be thought of as the individual’s means
or trait-score on the variables y1 and y2; and 2) a state part ỹ1ti and ỹ2ti, which
represents the individual’s temporal deviations from the person’s trait scores. In
vector notation this can be expressed as

[
y1ti

y2ti

]
=

[
µ1i

µ2i

]
+

[
ỹ1ti

ỹ2ti

]
(3.1)
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The temporal deviations ỹ1ti and ỹ2ti may depend on preceding deviations. For
example, consider determination and self-confidence within individuals: If a person’s
determination or self-confidence is strong at a particular time point, this may also
likely be the case at the following time point. Such relationships are modeled with
autoregressive parameters φ1i, φ2i, which indicate how each variable y1 and y2 affects
itself over time. A positive autoregression can be interpreted as the inertia - resistance
to change - of the process (Kuppens et al., 2010; Suls et al., 1998): With a positive
autoregressive effect, the current level of confidence will partly carry over to future
levels of confidence, and as a result, when confidence is high at one occasion it will
only slowly revert back to baseline levels. If the autoregressive parameter is close to
zero, this indicates that y does not depend much on its previous value, so that it is
hard to predict future values of confidence from past values of confidence, and that
if confidence is high at one occasion, the process will return relatively quickly back
to baseline levels. A negative autoregressive effect indicates that if y is high at one
occasion, it is likely to be low at the next. Such an autoregressive association may
be expected, for instance, for processes that concern daily intake, for instance of the
number of calories, or the number of alcoholic beverages (e.g., Rovine & Walls, 2005).

Besides the autoregressive effects of determination and self-confidence on them-
selves, current high levels of determination may, for instance, also lead to subsequent
high self-confidence, and in turn, current high self-confidence may lead to elevated
levels of determination. Such cross-lagged relationships can be investigated by adding
cross-lagged regression parameters φ12i, φ21i to the model, which reflect the associ-
ations of variable y1 and y2 at time t − 1 with each other at time t for person i.
The 2× 2 matrix Φi contains the autoregression coefficients φ1i, φ2i for each variable
on the diagonal , and the cross-lagged coefficients φ12i, φ21i on the off-diagonals for
person i. In vector notation this model can then be expressed as[

ỹ1ti

ỹ2ti

]
=

[
φ1i φ12,i

φ21,i φ2i

][
ỹ1t−1i

ỹ2t−1i

]
+

[
ε1ti

ε2ti

]
(3.2)

[
ε1ti

ε2ti

]
∼MvN

{[
0

0

]
,

[
σ2
1

σ12 σ2
2

]}
. (3.3)

The innovations, εti, reflect the effect of perturbations on the system by anything
that is not explicitly measured and modeled for person i at time point t.1 An elevation

1Note that the innovations are not the same as measurement errors. For details, and on incor-
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of determination as a result of reading an inspiring book is an example of what an
innovation may (partly) represent. As can be seen from Equation 3.3, we assume that
the innovations are normally distributed with means of zero, and covariance matrix
Σ. Note that autoregressive models as discussed above are stationary, a consequence
of which is that the means and covariance structure of the outcome variables are
fixed over time for each person. This results in certain restrictions on the matrix
with regression parameters Φi, specifically that the eigenvalues of the matrix should
lie within the unit circle (see Hamilton, 1994, p. 259).

The model as defined above forms level one of the multilevel model. The subject
index i shows that the means, as well as the autoregressive and cross-lagged regressive
parameters, are allowed to vary across persons. In the multilevel context we assume
such individual parameters come from a distribution, with a mean that is referred to
as the fixed effect (denoted by γ), and a person-specific part that is referred to as the
random effect. We model this at level two as the vector [µ1i, µ2i, φ1i, φ12i, φ21i, φ2i]

′

(where ′ indicates the transpose), which has a multivariate normal distribution with
mean vector [γµ1, γµ2, γφ1, γφ12, γφ21, γφ2]′, and 6× 6 covariance matrix Ψ. The fixed
effects γ reflect the average individual autoregressive and cross-lagged effects, and
the variances ψ2

µ1, ψ
2
µ2, ψ

2
φ1, ψ

2
φ12, ψ

2
φ21, ψ

2
φ2 from the covariance matrix Ψ reflect the

variation of the individual parameters around this mean. The variances of the person-
specific means ψ2

µ1 and ψ2
µ2 are also referred to as the between-person variances for

variable y1 and y2, because they reflect the variance in the trait-scores across persons.
The covariances in matrix Ψ reflect the associations between the person-specific pa-
rameters. For instance, if persons with relatively high average confidence generally
also have relatively high levels of determination, compared to persons with lower lev-
els of confidence, this would be reflected in a positive correlation between µ1i and µ2i

(i.e., covariance element [1, 2] in matrix Ψ). Finally, note that constraining all the
effects to be fixed in the multilevel autoregressive model (i.e., constraining the ele-
ments of Ψ to zero, so that there are no random effects) leads to a cross-lagged panel
model, whereas the model defined at level one is identical to an n=1 autoregressive
time series model.

porating measurement error in n=1 AR models we refer to Schuurman, Houtveen, and Hamaker
(2015). Multilevel AR modeling with measurement error is currently a work in progress.
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Fitting the Model with Bayesian Techniques
We fit the multilevel bivariate autoregressive model, and estimate the accompanying
standardized coefficients using Bayesian modeling techniques. There are several rea-
sons for opting for a Bayesian approach here. First, in contrast to most multilevel
software packages, software based on Bayesian analysis is very flexible with respect to
model specification, and thus allows us to fit the complete bivariate model simultane-
ously. Second, it directly supplies the estimates for the fixed effects in the model, as
well as the individual parameters, which are needed to standardize the results. Third,
in Bayesian modeling it is easy to calculate additional quantities, such as the stan-
dardized regression coefficients, and take into account the uncertainty about these
new quantities, which is expressed in the posterior standard deviations and credi-
ble intervals for these quantities (i.e., the Bayesian equivalents of the standard error
and confidence intervals in frequentist statistics; cf. Gelman et al., 2003; Hoijtink,
Klugkist, & Boelen, 2008). For an introduction to Bayesian statistics, we refer the
interested reader to Gelman et al. (2003) and Hoijtink et al. (2008). We provide ex-
ample R and WinBUGS code (note that the model code can also be used within the
software OpenBUGS and JAGS; Lunn et al., 2009, 2000; Plummer, 2003) for simulat-
ing data based on the multilevel VAR model, fitting the model, and standardizing the
parameters in the supplementary materials published with the online paper (Schuur-
man, Ferrer, de Boer-Sonnenschein, & Hamaker, 2016) or at www.nkschuurman.com.
In Appendix 3.A we provide information on the prior specifications and convergence
for the empirical application.

3.2 Standardizing Cross-Lagged Regression Coefficients in Order to
Compare the Strength of Cross-Lagged Associations

In this section we discuss the standardization of the regression coefficients in the
multilevel bivariate autoregressive model in order to compare the relative strength of
the cross-lagged effects. However, whereas some researchers will have no hesitation
regarding the use of standardized coefficients for comparing the relative strength of
associations, others may prefer to retain the original measurement scale, as they con-
sider it to be more meaningful than a standardized scale. Since this is a key issue in
the current discussion, we begin this section with an argument for the use of standard-
ized parameters. We then discuss conceptual differences between multiple methods
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for the standardization of the parameters in the multilevel bivariate autoregressive
model, followed by which method to use.

A Rationale for Standardized Cross-Lagged Parameters
A unstandardized regression parameter indicates the expected increase in measure-
ment units in the outcome variable if the predictor were to increase by one measure-
ment unit. Standardized regression parameters are parameters that would have been
obtained if the variables had been standardized before the analysis, that is, if for
each observation the mean was subtracted, and this centered score was divided by
the standard deviation of the relevant variable. A standardized regression parameter
indicates the expected increase in standard deviations in the outcome variable if the
predictor were to increase by one standard deviation. A standardized parameter b∗

can be calculated from the unstandardized parameter b, using the standard deviations
of the predictor ωx and the outcome variable ωy, that is, b∗ = bωx/ωy.

Unstandardized parameters are generally considered unsuited for comparing rela-
tive strengths of associations, because they are sensitive to differences in measurement
units. When the sizes of these parameters are directly compared to infer which ef-
fect is the strongest, conclusions about the relative strength of the associations may
change depending on what measurement unit was used for some of the variables. Of
course, this is undesirable because the true underlying relative strength of the re-
lationships does not change as a result of an arbitrary choice of measurement unit.
Further note, that even if two variables are measured on the same measurement scale,
they may not have the same variances, and therefore may not have equally large ef-
fects on the system, even if they have the same unstandardized parameters. Consider,
for instance, the exchange in affect between a man and a woman in a relationship.
If both individuals have the same cross-lagged effects on each other but she is much
more variable in her scores then he is, then, in practice, she will produce more change
in the dynamic system than he will. These differences in how likely a variable is to
increase one unit are not taken into account when using unstandardized parameters.

In contrast, standardized coefficients are not sensitive to measurement units and
take into account differences in the variances of the variables, because they have
standard deviations as units (see also Hunter & Hamilton, 2002; Luskin, 1991). As a
result, the standardized parameters are reflective of the amount of unique explained
variance in a dependent variable per predictor variable. The standardized coefficients
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are therefore often considered more suitable for comparing the relative strengths of
associations, than unstandardized regression coefficients. 2

It is important to note that when the predictor variables in a regression model are
independent from each other, the squared standardized regression parameters repre-
sent the proportion of total variance in the outcome variable that is explained by each
predictor variable (Cohen, Cohen, West, & Aiken, 2003). As a consequence, the pre-
dictor variable with the largest standardized parameter has on occasion been deemed
the predictor variable that is ‘relatively most important ’ in the model. This inter-
pretation has however been a point of controversy in the literature (e.g., see Blalock,
1967; Darlington, 1968; Greenland, Maclure, Schlesselman, Poole, & Morgenstern,
1991; King, 1986, 1991), because when the predictor variables are dependent, they
partly explain the same variance in the outcome variable, and it is no longer possible
to determine how much variance is accounted for by each separate predictor (cf., Co-
hen et al., 2003, page 64-79). When considering cross-lagged regression parameters,
the predictor variables are almost always correlated, as are their residuals, such that
– even if one could be sure that the lagged relations represent true causal mechanisms
– the standardized parameters generally do not indicate which variable explains the
most variance in the model as a whole, or which variable therefore is ‘relatively most
important’ in the model as a whole. The standardized regression parameter is how-
ever a reflection of the proportion of unique explained variance, that is, the amount of
variance in the outcome variable that is not shared with any of the other predictors.3

As such, the standardized regression parameters indicate which predictor variable has
the strongest direct relationship with an outcome variable, or has the most unique
explained variance, regardless of the (in)dependence of the predictor variables.

2Further note,that when two predictor variables have the same probability distribution, a score
larger than (for example) one standard-deviation is equally likely to occur in both variables. This
is another reason that standardized parameters are deemed more comparable to each other than
unstandardized parameters.

3When there are two predictors x1 and x2 for the outcome variable y, the standardized regression
parameter for the first predictor can be expressed in terms of correlation parameters using b∗1 = (ry1−
r12ry2)/(1− r2

12), where ry1 is the correlation between y and x1, r12 the correlation between x1 and
x2, and ry2 the correlation between y and x2. The proportion of uniquely explained variance is equal

to the squared semi-partial correlation, which is expressed as ry(1.2) = (ry1 − r12ry2)/
√

(1 − r2
12).

Although this relationship is more complicated than taking the square of the standardized regression
parameter, a larger (absolute) standardized regression parameter implies a larger proportion of
unique explained variance.
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Within-Person, Between-Person, and Grand Standardization in Multilevel
Models

In order to establish the reciprocal cross-lagged effects and determine which variables
have the strongest Granger-causal associations, we would like to compare the strength
of each cross-lagged effect for each individual, but also for the group of individuals
as a whole. For instance, in the context of a network of depression symptoms, we
may want to know whether feelings of anxiety, anhedonia, or sleep problems are the
strongest driving force within the network for a specific person (c.f., Borsboom &
Cramer, 2013; Bringmann et al., 2013). In addition, we would like to be able to
determine in general, across all individuals, which variable has the strongest cross-
lagged effect. Therefore, we are interested in standardizing the individual cross-lagged
parameters, but also in obtaining the standardized fixed effects from the multilevel
bivariate autoregressive model.

While standardization may be considered trivial in regression analysis, it is less
straightforward in multilevel modeling. In fact, there are three ways to standardize
the parameters from a two-level multilevel model: Within-person (WP) standard-
ization, grand standardization, and between-person (BP) standardization. For all
three methods, the person-specific standardized cross-lagged coefficients φ∗jki are cal-
culated as the product of the person-specific unstandardized coefficient φjki, and the
ratio of the standard deviations of the predictor variable yk and the outcome vari-
able yj . Considering the standardization of the fixed effects, we believe that like the
unstandardized fixed effects, the standardized fixed effects should reflect the average
person-specific relations. That is, for each of the three methods we determine the
standardized fixed effects by taking the expectation with respect to the standardized
person-specific parameters. However, WP, grand, and BP standardization are based
on different standard deviations for the predictor variables and outcome variables,
so that each method results in different standardized person-specific and fixed effects
(Heck & Thomas, 2000). In the following, we will discuss the three methods in more
detail. An overview of the different variances for each method, and the equations
for the person-specific parameters and fixed effects for each method are presented in
Table 3.1.
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Within-person standardization
WP standardization (also referred to as within-group standardization when the data
consists of persons clustered in groups), is based on standardizing the parameters for
each individual separately with their individual WP variances. Conceptually, the WP
variance for a certain variable for a specific individual can be seen as the variance
of that specific individual’s repeated measures for that variable. That is, the WP
variance for a specific variable for individual i is based solely on his or her person-
specific parameters as would be the case for an n=1 autoregressive model. The WP
variances ω2

1i and ω2
2i for variables y1 and y2 are the diagonal elements of the person-

specific covariance matrix Ωi. Based on the regression equation in Equation 3.2, this
covariance matrix can be expressed as Ωi = ΦiΩiΦ

′
i + Σ (where Φ′i is the transpose

of matrix Φi). However, this not helpful in practice, because this equation includes
Ωi at both sides of the equation. To obtain an expression for the WP covariance
matrix Ωi in terms of Φ and Σ only, we can make use of the following expression
instead

Ωi = mat((I −Φi ⊗Φi)
−1vec(Σ)), (3.4)

where ⊗ indicates the Kronecker product, function vec() transforms a matrix into
a column vector, and mat() returns this vector back into a matrix (Kim & Nelson,
1999, p. 27).

As can be seen from Table 3.1, the WP standardized person-specific parameters
equal the unstandardized person-specific parameters φjki multiplied by the ratio of
the WP standard deviations ωji and ωki. The person-specific WP standardized pa-
rameters reflect the number of person-specific standard deviations that the dependent
variable will increase, when the independent variable increases one person-specific
standard deviation. Thus, given that the unstandardized cross-lagged parameters for
a certain person are equal, the standardized parameter will be the largest for the
predictor variable that varies the most within that person over time.

The WP standardized fixed effects are equal to the expectation of the person-
specific parameters. The person-specific WP standardized parameters are a function
of three dependent random variables (that vary across persons i), φjk (normally
distributed), ωj and ωk (both with a distribution of unknown form), so that the dis-
tribution of these parameters is not of a known form. Therefore, the fixed effects
cannot be simplified further from E

i

[
φjk

ωk
ωj

]
, and should be calculated based on the
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person-specific standardized parameters. That is, E
i

[
φjk

ωk
ωj

]
6= γφjk

E
i
[ωk]

E
i
[ωj ]

, so that the

WP standardized fixed effect should not be calculated using the unstandardized fixed
effect γφjk and the average WP standard deviations E

i
[ωj ] and E

i
[ωk]. The latter

would disregard the dependencies between the random variables φjk, and ωj and ωk.

It is unclear how different the results will be using γφjk
E
i
[ωk]

E
i
[ωj ]

rather than E
i

[
φjk

ωk
ωj

]
,

because of the complicated nature of their dependencies and distribution, which will
depend on many different parameters.

We estimate the standardized parameters as part of the Bayesian model fitting
procedure. The person-specific standardized parameters can be estimated in a num-
ber of ways. One approach is to calculate the standardized coefficients directly in
each Markov Chain Monte Carlo (MCMC) iteration, based on the estimated unstan-
dardized regression coefficients using the equations in Table 3.1. Another, seemingly
pragmatic, approach is to standardize the observed variables and fit the multilevel
VAR model to these standardized data, resulting in standardizing regression coeffi-
cients. Note that in the case of WP standardization, these two methods for obtaining
the standardized parameters rely on different assumptions about the distributions of
the unstandardized and standardized parameters, and therefore may lead to different
results. When the model described in Section 3.1 is fitted to unstandardized data, the
individual unstandardized parameters are assumed to be normally distributed. Then,
the WP standardized individual regression parameters, which are a function of three
dependent random variables, φjk, ωk, and ωj , will not be normally distributed. In
contrast, if we fit the multilevel model described previously to standardized data, we
would assume that the standardized regression parameters are normally distributed,
rather than the unstandardized regression parameters. In this case, the unstandard-
ized regression parameters have a distribution of unknown form. Hence, standardizing
the data, and standardizing the regression parameters, are associated with different
model assumptions, and thus may lead to different results. As such, when estimating
the WP standardized and unstandardized coefficients, one needs to choose one of the
two assumptions, and calculate the coefficients that are not directly estimated (stan-
dardized or unstandardized) a posteriori using the equations in Table 3.1.

We opt here for the assumption that the unstandardized parameters are normally
distributed and calculating the standardized coefficients afterwards, for two reasons.
Firstly, this normality assumption is in line with conventions in multilevel research.
Secondly, for standardizing either the data or the regression coefficients, estimates are
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needed for the person-specific means and the WP variances. When we standardize the
coefficients a posteriori, we can easily use model-based parameter estimates for this
purpose, rather than having to rely on sample means and variances. This is prefer-
able, because model-based estimates usually provide somewhat better estimates than
sample statistics (given that the used model is correct) especially for smaller sample
sizes, and importantly, using model-based estimates allows us to take the uncertainty
about these estimates into account.

Hence, to estimate the person-specific WP standardized parameters, we first cal-
culate the WP variances based on Equation 3.4, within each iteration of the MCMC
procedure. Subsequently, we calculate the person-specific standardized coefficients
by means of the equation in Table 3.1 (i.e., the equation in the first column, the
second row), also within each iteration of the MCMC procedure. The standardized
fixed effects are estimated by calculating the average person-specific standardized co-
efficient in each iteration of the MCMC procedure, because the distribution of the
person-specific coefficients is of unknown form, and thus cannot be taken analytically.
In this way, a posterior distribution is obtained for each of the WP standard devi-
ations, the standardized person-specific coefficients, and for the standardized fixed
effects, which can be used to derive point estimates, credible intervals and posterior
standard deviations for the standardized coefficients. The R code in the supplemental
materials includes example code for WP standardizing the cross-lagged coefficients
(the supplemental materials can be found with the online paper (Schuurman, Ferrer,
et al., 2016) or at www.nkschuurman.com).

Note that any other relevant statistics besides the standardized coefficients can
be calculated in a similar way. For instance, we will make use of this in the empirical
example, where we determine the proportion of individuals for whom φ∗i12 is larger
than φ∗i21 in each iteration of the MCMC procedure, resulting in a posterior distri-
bution for the proportion of persons who have a larger directed association between
variable 1 at occasion t and variable 2 at occasion t-1, than between variable 1 at
occasion t-1 and variable 2 at occasion t.

Grand standardization
Grand standardization is based on the grand or total variances, that consist of the
average WP variances (the average of all the person-specific variances), and the BP
variances (the variances of the person-specific means). Conceptually, the grand vari-
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ance is the variance taken over all the repeated measures for all individuals. The
grand variances are the diagonal elements g2j of the grand covariance matrix G (for
which the derivation can be found in Appendix 3.B),

G = E
i
[Ω] +ψµ, (3.5)

where E
i
[Ω] is the expected value taken over the person-specific covariance matrices

Ωi, and ψµ is the BP covariance matrix, that is, the covariance matrix of the person-
specific means.
The person-specific parameters for grand standardization are simply the unstandard-
ized regression parameters, each multiplied by a constant - the ratio of the grand
standard deviations, as can be seen from Table 3.1. As a result, the grand stan-
dardized person-specific parameters will be normally distributed, just like the un-
standardized parameters. Thus, the grand standardized fixed effects are equal to the
product of the unstandardized fixed effect γφjk and the ratio of the grand standard
deviations (see Table 3.1). The grand standardized parameters reflect the number of
grand standard deviations the outcome variable increases when the predictor variable
increases one grand standard deviation. Thus, when the unstandardized parameters
are equal, the predictor variable for which the combination of the BP variance and
average WP variance is the largest will have the largest standardized parameter, and
will be deemed to have the strongest Granger causal effect.

The grand standardized parameters can be estimated by calculating the grand
variances (which includes calculating the WP covariance matrix Ωi for each person,
and then calculating the average of the WP variances across all persons to estimate
E
i
[Ω]) and standard deviations, and calculating the grand standardized person-specific

coefficients and fixed effects by means of the equations in Table 3.1, in each iteration
of the MCMC procedure. We have included example R code for grand standardization
in the supplementary materials.

Between-person standardization
BP standardization is based on the BP variance ψ2

µ, the variability in the person-
specific means µi across persons. In other words, BP standardization is based on the
difference between the grand variance and the average WP variance. For BP stan-
dardization, the person-specific parameters are simply the unstandardized regression
parameters, each multiplied by the ratio of the BP standard deviations. As a result,

77



3. How to Compare Cross-Lagged Associations in a Multilevel
Autoregressive Model

the BP standardization person-specific parameters will be normally distributed, and
the fixed effects for BP standardization are equal to the product of the unstandard-
ized fixed effect and the ratio of the BP standard deviations (see Table 3.1).

In BP standardization, the standardized parameters reflect the number of stan-
dard deviations for the person-specific means the dependent variable would increase, if
the predictor variable increases one standard deviation of the person-specific means.
This implies that when the unstandardized cross-lagged coefficients are equal, the
BP standardized parameter will be the largest for the predictor variable for which the
person-specific means vary the most across persons.

The BP variances are estimated as part of the multilevel VAR model, as discussed
in Section 3.1. In order to estimate the BP standardized parameters, one would cal-
culate the BP standard deviations in each iteration of the MCMC procedure based
on these estimated BP variances, and then calculate the person-specific and fixed
standardized coefficients in each iteration by means of the equations in Table 3.1.
The supplementary materials include R code for BP standardizing the cross-lagged
coefficients.

WP standardization, BP standardization and grand standardization lead to
different results
In general, WP, BP, and grand standardization will lead to different numerical results,
and may lead to different conclusions about the relative strength of the Granger causal
effects. Differences between the grand, BP, and the WP standardized parameters will
arise from differences between the respective variances used for standardization.

The first, most apparent difference between the WP variance and the grand and
BP variance is that the latter two both include the BP variance - the variance of the
random mean across persons for the variable in question - while the WP variance
does not. As a result, differences between the grand standardized parameters and the
WP standardized parameters will arise when the ratios of the BP variances, and the
ratios of the WP variances for the two variables are quite different. This may lead to
different conclusions concerning the relative strength of the cross-lagged associations,
both for the standardized random parameters, and the standardized fixed effects.

We illustrate this point in Figure 3.1, in which simulated WP, grand, and BP
standardized random and fixed parameters are plotted. A point above the plotted
diagonal line indicates that the standardized coefficient φ∗12 is larger than the stan-

78



3.2. Standardizing Cross-Lagged Regression Coefficients in Order to Compare the
Strength of Cross-Lagged Associations

Table 3.1: Equations for the variances for WP, BP and grand standardization, for
the standardized person-specific parameters φ∗jki and fixed effect parameters γ∗φjki for
outcome variable j and predictor variable k. The person-specific standardized param-
eters are the product of the unstandardized parameters, and the ratio of the standard
deviation of the predictor variable k and the standard deviation of the outcome vari-
able j. The standardized fixed effects are calculated by taking the expectation (E

i
[])

over the standardized person-specific parameters for all persons i.

WP BP grand

variance ω2
i ψ2

µ E
i
[ω2] + ψ2

µ

φ∗jki φjki
ωki
ωji

φjki
ψµk
ψµj

φjki

√
E
i
[ω2
k]+ψ

2
µk√

E
i
[ω2
j ]+ψ

2
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i

[
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√
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i
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2
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Note.The term ω2
i indicates the person-specific variance

based on Equation 3.4. For variable j this variance is re-
ferred to as ω2

ji, and for variable k as ω2
ki. The term ψ2

µ in-
dicates the variance of the person-specific means. For vari-
able j this becomes ψ2

µj , and for variable k this becomes
ψ2
µk. The term E

i
[ω2] indicates the expectation taken over

all the person-specific variances ω2
i .

dardized coefficient φ∗21, implying that variable 2 is causally dominant; a point below
the diagonal line indicates that φ∗21 is larger than φ∗12, implying that variable 1 is
causally dominant. From both plots it can be seen that grand, WP, and BP stan-
dardization do not give the same results: The plotted squares (grand standardization),
circles (WP standardization), and triangles (BP standardization) do not match in lo-
cation. In addition, in both cases grand and BP standardization result in different
conclusions from WP standardization: Grand standardization and BP standardiza-
tion show that φ∗21 > φ∗12 for most persons, while WP standardization shows that this
is the case for some persons, while the reverse is true for other persons. Therefore, the
grand and BP standardized fixed effects indicate that φ∗21 > φ∗12 on average, while the
WP standardized fixed effects indicate that they are (approximately) equally large
on average. The discrepancy between WP standardization and BP and grand stan-
dardization can be explained by the fact that the average WP variances for y1 and y2
are about equally large, while the BP variance for y1 is larger than for y2, resulting
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in a larger grand variance for y1.
Similarly, in the second plot in Figure 3.1 the WP variances for y2 are smaller

than for y1, while the grand variance for y2 is larger than for y1, and the unstan-
dardized parameters are equal. As a result, BP and grand standardization actually
give opposite conclusions from WP standardization, both for the individual parame-
ters and the fixed effects: For grand and BP standardization, φ∗12 is larger than φ∗21,
while for WP standardization it is the reverse. Finally, note that while grand and
BP standardization both result in the conclusion that φ∗12 is larger than φ∗21, the dif-
ference between φ∗12 and φ∗21 is much more extreme for BP standardization, because
the difference between the BP variances for variables y1 and y2 is more extreme than
the difference between the two grand variances.

A second difference between the WP variance, and the BP variance and grand vari-
ance is that the latter two are fixed; they are the same for each person, while the WP
variance varies across persons. Therefore, differences between the grand standardized
and WP standardized parameters can arise when the person-specific variances devi-
ate from the average person-specific variances, even if the BP variances were equal
to zero. If the average WP variance for variable x is larger than the average WP
variance for variable y, but for a specific individual the WP variance for variable x is
smaller than for variable y, this can result in opposite conclusions about the relative
strengths of the cross-lagged associations based on the grand standardized and WP
standardized parameters for that individual. Clearly, the method of standardization
has the potential to strongly influence the results and, subsequently, the conclusions
regarding which cross-lagged association is the strongest.

Why WP Standardization Should be Preferred
Currently, there seems to be no consensus on the optimal standardization approach for
comparing the relative strength of effects in the multilevel literature. For instance,
Nezlek (2001) cautions against WP standardization, indicating that it seems more
complicated and may result in different p values than those obtained for the unstan-
dardized coefficients. Heck and Thomas (2000) state that all forms of standardization
may be useful depending on what variance one is interested in, but they do not spec-
ify why one variance may be more interesting than the others, or which should be
preferred in what situation. Notably, in later editions this information on standard-
ization has been removed. Many dedicated multilevel software packages, such as for
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Figure 3.1: Plots of simulated individual cross-lagged parameters and accompany-
ing fixed effects, with squares indicating grand standardized parameters, triangles
indicating BP standardized parameters, and circles indicating WP standardized pa-
rameters. The area below the diagonal line implies that the association between y1
with future y2 is the strongest, while the area above the diagonal line implies that
the association between y2 with future y1 is the strongest. When the ratios of the
BP variances, grand variances for y1, and y2 and the WP variances for y1 and y2
are different, BP, grand and WP standardization will result in different conclusions.
These ratios for the simulated data are depicted above each of the two plots: the
white rectangle indicates the average WP variance, while the gray rectangle indicates
the BP variance, the total of these rectangles is equal to the grand variance. The
fixed effects of the unstandardized parameters γφ12 and γφ21 were equal to .2 for both
plots. The variances for φi12 and φi21 were equal to .005 for the first plot, and .01 for
the second plot.
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instance HLM, lme4 in R, and SPSS Mixed, currently do not include the option to
obtain standardized coefficients, perhaps because of the lack of consensus on how to
standardize coefficients in multilevel models (see also Heck & Thomas, 2000, for a soft-
ware overview, p. 134). An exception is the multilevel software STREAMS, for which
the manual explicitly recommends and provides grand standardization (Gustafsson
& Stahl, 2000, p. 118). Another exception is the SEM modeling software Mplus,
which also features multilevel modeling, and seems to standardize within-person (“to
the variance on within for within relationships”), although it is unclear how this is
achieved exactly, and if what is the case for the fixed effects (Heck & Thomas, 2000;
Muthén, 2008).4

The lack of consensus may partly be a result of different researchers having dif-
ferent modeling backgrounds: Some may take a bottom-up perspective based on an
n=1 time series modeling background, whereas others may take a top-down perspec-
tive based on a cross-lagged panel modeling background. Here, WP standardization
can be considered to be in line with standardization in classical time series models:
Given that in this context only one subject is modeled, the only way to standardize
is by using the WP variances. In contrast, grand standardization is more in line
with standardization as would be performed in cross-lagged panel models, in which
the variances are naturally calculated across the scores of all persons, disregarding
potential differences in variances between persons, and the distinction between BP
variance and WP variance (c.f., Hamaker, Kuijper, & Grasman, 2015). Hence, for
researchers who have a background in cross-lagged panel modeling and researchers
who have a background in n=1 modeling, different methods of standardization may
seem more natural.

We argue that when standardization is used to compare the relative strength of
different predictors, WP standardization should be the preferred approach. The rea-
son for this is that we are interested in Granger causal psychological processes, which
happen within persons, at the level of the individual. It does not seem reasonable
to conflate this WP variation with variation between persons, given that the person-
specific Granger causal processes are not concerned with differences in the means of
these processes between individuals. Rather, we would like to obtain standardized
coefficients with a similar interpretation as we would in a single subject study.

To elaborate on this, consider a multilevel study on the effects of anxiety of moth-

4This is based on Mplus forum responses by Muthén.
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ers and that of their children on each other. Suppose that the person-specific mean
levels for anxiety vary much more across different mothers, than the person-specific
mean levels vary across the children: That is interesting to consider in itself. However,
if the interest is in determining how a mother’s anxiety influences that of her child
(and vice versa), that is, the interest is in Granger-causal WP (or within-dyad) ef-
fects, such stable differences between persons are not directly relevant. Therefore, the
cross-lagged regression parameters that reflect the personal Granger causal processes
that happen within persons (a dyad) should not be convolved. BP standardization
(and therefore also grand standardization) does convolve this information, with the
following interpretation of the BP standardized coefficient for the Granger causal ef-
fect of the mother’s anxiety on that of her child: the number of standard deviations
for the average levels of anxiety across children in the population that the score of this
child increases, when that child’s mother’s anxiety increases one standard deviation
in the average levels of anxiety across mothers in the population. Yet, there is no
reason to suppose that the strength of the effect of a specific mother’s anxiety on that
of her child or vice versa over time, is related in such a way with how the average level
of anxiety differs across all mothers in the population, nor by how the average level of
anxiety differs across all children in the population. Therefore, the standardized WP
effects should not include the BP variance. This is the case for WP standardization,
but not for grand or BP standardization.

Further, note that the (unstandardized) cross-lagged effects reflect the increase in
the dependent variable given a unit increase in the predictor variable for a specific
person. That is, the predictors explain the variation in the dependent variables that
occurs within a specific person - not across different persons. As such, the stan-
dardized cross-lagged coefficients are only indicative of the proportion of uniquely
explained variance for WP standardization, not for BP and grand standardization
(c.f., Section 3.2).

Finally, WP standardization takes into account that each individual may have
a unique variance for each variable, while grand and BP standardization are based
on standardizing with the same variance for each person and as such disregard this
person-specific information. For these reasons, we prefer WP standardization over
grand and BP standardization.
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3.3 Empirical Application on Burnout Data
In this section we begin by presenting an empirical data set concerned with moment-
to-moment WP measurements of symptoms of burnout. After that, we apply the
multilevel autoregressive model to the burnout data and present the unstandardized
results. After that, we present and interpret the WP standardized results, and finally
we compare these results to those obtained using BP and grand standardization.

Burnout Data: An Experience Sampling Method Study
Two core components of burnout are severe exhaustion and diminished experienced
personal competence (Maslach & Jackson, 1981; Maslach, Jackson, & Leiter, 1996;
WorldHealthOrganization, 2008). Our empirical application is concerned with the
way these two components influence each other over time. Both exhaustion and com-
petence were measured with multiple items, each scored on a 7-point Likert scale
(Sonnenschein, Sorbi, van Doornen, & Maas, 2006; Sonnenschein, Sorbi, van Door-
nen, Schaufeli, & Maas, 2007). We obtained sum scores across the items: “I feel
tired,” “I feel exhausted,” “I feel dead tired,”“I feel lethargic,” “I feel energetic” (re-
versed), and “I feel fit” (reversed), to represent the current state of exhaustion, and
sum scores across the items “I feel competent right now,” “What I’m doing right now
I can handle well,” and “This activity is going well for me,” to represent the current
state of competence. Data were collected using experience sampling for a period of
two weeks, for 54 individuals with burnout. Each day the participants were alerted
randomly throughout the day to fill out their questionnaire, and they filled in their
diary right before sleep and after waking. For exhaustion this resulted in an average
of 80 repeated measures per person, while for competence this resulted in an average
of 40 repeated measures per person, as the latter was only measured during the day,
but not in the morning after waking or in the evening before bedtime.5

5Note that as a result of the general set-up of ESM data collection, and because participants do
not fill out the diaries during the night, the distance between measurements is not the same across all
repeated measurements. Equidistant time intervals are an assumption of discrete time series models,
including the one presented in this paper. To correct for this, we added missing observations to the
data set when the interval was particularly large (> 5 hours, which occurred mostly at night when
participants slept), which resulted in time intervals of on average 2.3 hours (sd 1.1). After adding
these missing values, the average rate of missing data was .55 (sd .17). This should limit the effects
of the non-equidistant time intervals. An alternative option is to use continuous time models, which
do not require the assumption of equally spaced observations, assuming instead that the process
changes continuously over time. However, current multilevel extensions of continuous time models
have strong limitations: Either the lagged effects are fixed (Voelkle, Oud, Davidov, & Schmidt, 2012),
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Investigating whether and how experienced exhaustion and competence affect
themselves and each other over time can provide important information for further
research and the treatment of individuals with burnout. We are specifically interested
in whether the association of competence at time t − 1 with exhaustion at time t is
stronger or weaker than the association of exhaustion at time t− 1 with competence
at time t. In more traditional longitudinal designs such research questions are usually
handled with cross-lagged panel modeling, using a few repeated measurements ob-
tained from a large sample of individuals, which will result in a description of how BP
differences of these variables are related over time. However, we want to understand
the actual individual dynamics at play - whether competence and exhaustion affect
each other, and if so, which one is the driving force in the perpetuation of burnout.
Furthermore, we want to know whether and how this may differ across persons. The
current rich data set allows us to model these WP processes, and investigate whether
there are BP differences in these processes. For instance, it may be the case that for
some individuals the association between current exhaustion and future competence
is the strongest, while for others it is the reverse. Obtaining insights in such differ-
ences is desirable, as it would allow for a more person-tailored – and hopefully more
effective – treatment of burnout.

Modeling Moment-to-Moment Exhaustion and Competence
To fit the model presented in Equations 3.1 to 3.3, we make use of WinBUGS (in
combination with R, and the R–packages r2winbugs and CODA), which is free soft-
ware for conducting Bayesian analysis (Lunn et al., 2000; Plummer, Best, Cowles, &
Vines, 2006; R Development Core Team, 2012; Sturtz et al., 2005). The WinBUGS
code we used for the modeling procedure for both applications can be found in the
supplementary materials (available with the online paper (Schuurman, Ferrer, et al.,
2016) or at www.nkschuurman.com), together with R code for simulating example
data, fitting the model with WinBUGS, and standardizing the model using WP, BP,
and grand standardization (note that WinBUGS model code can also be used within
the software Openbugs and JAGS; Lunn et al., 2009; Plummer, 2003). Information
on the prior specifications and convergence of the procedure can be found in Ap-
pendix 3.A.

or the random cross-lagged effects are assumed to be equal within a person (Oravecz & Tuerlinckx,
2011), which is clearly undesirable in the current context.
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Figure 3.2: Time series for Arnold and Peter, representing their exhaustion (in black)
and competence (in gray). Dotted lines represent the individuals’ estimated mean
scores µCi and µEi.

We present the unstandardized results for the multilevel bivariate autoregressive
model discussed previously. Taking a bottom-up perspective, we will start by dis-
cussing the results for two of the 53 individuals from the burnout sample whom we
will refer to as Arnold and Peter, in order to show how the multilevel model can lead
to different dynamics for individuals. We contrast the results for these individuals
with the average results - the fixed effects. The estimated unstandardized model pa-
rameters for the burnout data can be found in Table 3.2.

In Figure 3.2 the observations for two individuals, whom we refer to as Arnold and
Peter, are plotted against time, where the black line represents scores on exhaustion,
and the gray line represents scores on competence. Breaks in these lines indicate a
missing value at that measurement occasion. The dotted lines indicate Arnold and
Peter’s estimated mean scores on exhaustion and competence. The estimated indi-
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Figure 3.3: Estimated model parameters for the associations between Arnold and
Peter’s exhaustion and competence over time.

vidual regression parameters for Arnold and Peter are displayed in Figure 3.3. Both
Arnold and Peter have large positive autoregressive coefficients for exhaustion (i.e.,
.436 with 95% CI [.228, .644], and .316 with 95% CI [.102, .524], respectively), which
implies that if they feel exhausted at one occasion, they are likely to feel similarly
exhausted at the next occasion, and if they feel fit at one occasion, they are likely to
feel fit the next occasion. As a result, when Arnold’s or Peter’s process of exhaustion
is perturbed by a sudden late night, causing their exhaustion to increase, their ex-
haustion will only slowly return to baseline. This also holds for Arnold’s feelings of
competence (i.e., autoregression of .404 with 95% CI [.124, .646]), implying that his
feelings of high competence tend to last for some time, while his feelings of incompe-
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tence also tend to last for some time. In contrast, Peter’s autoregressive parameter
for competence is close to zero (i.e., .021 with 95% CI [−.276, .269]), which implies
that his current state of competence does not depend on his preceding state of com-
petence. The differences between these two cases show the importance of allowing for
individual variation in parameters: The inertia in these two components of burnout
is not invariant across individuals.

When considering the cross-lagged relations, we see that for Peter the relation
between past exhaustion with current competence is negative (i.e., −.289 with 95%
CI [−.530,−.078]), implying that higher levels of exhaustion lead to lower levels of
competence. The relation of past competence with current exhaustion, however, is
relatively close to zero (i.e., −.145 with 95% CI [−.428, .159]), which indicates that
there is little evidence that his feelings of competence predict his exhaustion. For
Arnold, both cross-lagged coefficients are relatively close to zero (i.e., φCEi = −.179,
95% CI [−.416, .086]; φECi = −.099, 95% CI [−.357, .155]), indicating that there is
little evidence that his feelings of competence predict his exhaustion the next occa-
sion, or vice versa. Again, this illustrates that there can be important individual
differences in the dynamics of such processes.

In addition to considering the particular dynamics of individuals, it is also of
interest to consider the average group effects in order to be able to generalize con-
clusions to a broader population. For this purpose, the fixed effects representing the
average parameters, and the variances and covariances of the random effects, rep-
resenting the amount of BP differences in the individual parameters, can be used.
The estimated fixed effects for the regression coefficients are presented in Figure 3.4.
We found positive average autoregression coefficients for both exhaustion and com-
petence (i.e, γφE = .427, 95% CI [.367, .484]; γφC = .157, 95% CI [.066, .248]), in-
dicating that averaged across individuals, feelings of exhaustion tend to carry over
strongly to next observations, while feelings of competence only carry over a little.
The fixed cross-lagged effect from exhaustion on competence was negative, but small
(i.e., γφCE = −.091, 95% CI [−.158,−.023]), and the fixed effect from competence
on exhaustion was approximately zero (i.e., −.019, 95% CI [−.11, .071]). Thus, on
average, there is a pattern of higher exhaustion being followed by lower competence
(and thus lower exhaustion being followed by higher competence), but there is very
little evidence to suggest that competence predicts exhaustion at the next occasion.

This could imply that changes in feelings of competence in individuals with burnout
are mostly the result of feeling more or less exhausted, and that in treatment it would
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Figure 3.4: Estimated fixed effects for the multilevel autoregressive model studying
the associations between exhaustion and competence for the group of individuals
diagnosed with burnout.

be most beneficial to focus on exhaustion, rather than on the feelings of competence.
However, two points are worth considering here. First, there is considerable variation
in these effects across persons, which is reflected in the variances of the individ-
ual parameters (i.e., ψφCE = .025, 95% CI [.014, .048]; and ψφEC = .066, 95% CI
[.035, .116]). In fact, the individual coefficients range from −.308 to .111 for φCE ,
and from −.571 to .532 for φEC . As such, merely inspecting the fixed effects here is
misleading. This exemplifies a large pitfall of cross-lagged panel designs to evaluate
Granger-causal processes: Cross-lagged panel designs evaluate average effects over a
group of individuals, ignoring potentially substantial individual differences, as is the
case in this empirical illustration.

Second, to compare these cross-lagged effects, we need to determine their relative
strength by WP standardizing the coefficients and comparing the resulting standard-
ized coefficients, rather than the unstandardized coefficients reported here. In the
following section we discuss the standardized results for the burnout data.

Standardized Results for the Burnout Data
In the following we first discuss and interpret the results for the WP standardized
coefficients. After that, we compare these results to those obtained for BP and grand
standardization.
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WP standardized results
The WP standardized cross-lagged coefficients for each participant and the corre-
sponding fixed effects are displayed as circles in the left panel of Figure 3.5. For
the unstandardized results we find large individual differences in the unstandardized
cross-lagged associations between exhaustion and competence. As can be seen from
Figure 3.5, these individual differences are also reflected in the WP standardized co-
efficients. Specifically, the individual WP standardized coefficients range from −.265

to .103 for φ∗CE , and from −.471 to .54 for φ∗EC . The fixed WP standardized ef-
fect of exhaustion on competence is equal to −.077 (95% CI[−.12,−.029]), and the
fixed WP standardized effect for competence on exhaustion equal to −.004 (95%
CI[−.065, .054]).

For some individuals the effect of competence on exhaustion seems most likely to
be positive, for others the effect seems most likely to be negative. This has important
implications for the use of the fixed effects: Given that some individuals have neg-
ative cross-lagged coefficients and others have positive cross-lagged coefficients, the
fixed effects can give misleading results regarding which cross-lagged association is
stronger on average, because the negative and positive coefficients cancel each other
out. Therefore, we inspect the average absolute WP standardized cross-lagged coef-
ficients (the absolute WP standardized fixed effects).

The absolute WP standardized cross-lagged coefficients for each individual and
the fixed effects are displayed as circles in the right panel of Figure 3.5. It shows that
for most persons in our sample, the effect of competence on exhaustion is stronger
than that of exhaustion and competence. The absolute WP standardized fixed effect
for the effect of exhaustion on competence is 0.121 (95% CI[.093, .154]), and the abso-
lute fixed effect for the effect of competence on exhaustion is .197 (95% CI[.156, .235]).
This indicates that the average effect of competence on exhaustion is actually stronger
than the average effect of exhaustion on competence - while the non-absolute fixed
effects, led to the opposite, misleading, conclusion.

Next to investigating which cross-lagged association is the largest on average, it is
informative to investigate what proportion of the individuals has a larger (absolute)
cross-lagged effect of competence at one occasion on exhaustion at the next occasion,
and for what proportion the reverse is true. The estimated population proportion of
individuals for whom the relationship between past competence and current exhaus-
tion is larger than the relationship between past exhaustion and current competence
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is .66 with a 95% CI of [.528, .774].6 This indicates that the cross-lagged effect of
exhaustion on competence is not only weaker than the cross-lagged effect of compe-
tence on exhaustion on average across individuals, but this is also the case for the
majority of the individuals.

In conclusion, there are large individual differences in the dynamics associated
with burnout. We find that, for approximately 34% of persons diagnosed with
burnout, the relation between feeling exhausted and subsequently feeling competent
at the next occasion is stronger than the reverse. For most people, the relation be-
tween feeling competent and feeling exhausted at the next occasion is the strongest.
Note, however, that for some persons this relation is positive, while for others it is
negative. Perhaps, for some people, feeling good about themselves gives them a boost
of energy, resulting in a negative relationship between competence and subsequent
exhaustion, while for other people feeling competent drives them to work harder,
resulting in fatigue, and a positive relationship between competence and subsequent
exhaustion.

Comparison of the WP, BP, and grand standardized results
When we compare the coefficients that result from WP standardization with those
that result from BP and grand standardization for the burnout data, we find that the
results for the three methods are similar in some respects, but not identical. For some
individuals the standardized coefficients are markedly different for WP standardiza-
tion compared to BP and grand standardization. However, for most individuals the
conclusions about which cross-lagged effect is the strongest are the same for the three
methods. Note however that the conclusions about the strength of cross-lagged ef-
fects will not necessarily be the same for any other particular study, as demonstrated
in Section 3.2. Furthermore, the interpretations of the grand and BP standardized
coefficients are not particularly sensible, so that we recommend against using them
for comparing the strength of the cross-lagged effects in practice. In the following,
we compare the WP, BP and grand standardization results in more detail.

In the left panel of Figure 3.5 the standardized person-specific coefficients and
fixed effects for each method are plotted together. As can be seen from this plot,
the three standardization methods result in different values for the cross-lagged co-

6We estimate the population proportion of persons
∣∣φ∗i12

∣∣ is larger than
∣∣φ∗i21

∣∣ by calculating
for each Gibbs sample for how many individuals

∣∣φ∗i12

∣∣ > ∣∣φ∗i21

∣∣ and dividing it by the number of
individuals, resulting in a posterior distribution for this proportion.
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Table 3.2: Unstandardized parameter estimates for the multilevel bivariate autore-
gressive model studying the association between exhaustion and competence in indi-
viduals diagnosed with burnout.

Parameter Median Estimate [95% CI]

γµE 3.971 [3.787, 4.154]
γµC 4.919 [4.753, 5.085]
γφE .427 [.367, .484]
γφC .157 [.066, .248]
γφCE -.091 [-.158, -.023]
γφEC -.020 [-.110, .071]

ψ2
µE .413 [.280, .633]
ψ2
µC .336 [.227, .515]
ψ2
φE .024 [.013, .043]
ψ2
φC .047 [.024, .089]
ψ2
φCE .025 [.014, .048]
ψ2
φEC .066 [.035, .116]

σ2
E .787 [.749, .827]
σ2
C .742 [.697, .791]
σCE -.324 [-.360, -.288]
ρCE -.424 [-.460, -.385]

efficients; the triangles, squares and dots in the plot do not overlap perfectly. The
differences between the three methods are the largest for coefficients that are farther
away from zero (which is to be expected, because when the regression coefficients
are near zero, the ratio of the variances will make a relatively small impact). The
coefficients obtained with BP and grand standardization are generally very similar,
because the ratios of the grand standard deviations and BP standard deviations are
very similar to each other. The differences between the coefficients obtained with BP
and grand standardization and those obtained with WP standardization are larger,
and can be quite large for some persons (see the bottom-most coefficients in the
left panel of Figure 3.5). This indicates that for certain individuals, the ratio of
the person-specific standard deviations is markedly different from the ratio of the
grand standard deviations and the BP standard deviations. The fixed effects for
WP, BP and grand standardization are quite similar to each other, with for φ∗CE a
fixed effect of −.083 (95% CI[−.128,−.035]) for grand standardization, −.082 (95%
CI[−.138, .033]) for BP standardization, and −.077 (95% CI[−.12,−.029]) for WP
standardization , and for φ∗EC −.021 (95% CI[−.083, .041]) for grand standardization,
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−.021 (95% CI[−.088, .042]) for BP standardization, and −.004 (95% CI[−.065, .054])
for WP standardization .

In the right panel of Figure 3.5, the absolute values of the standardized coeffi-
cients are plotted, where coefficients plotted below the diagonal line indicate that the
association of exhaustion with future competence is the strongest, and coefficients
plotted above this line indicate that the association of competence with future ex-
haustion is the strongest. As can be seen from this plot, for the majority of the
individuals, and the fixed effects, the WP, BP and grand standardized coefficients are
on the same side of the diagonal line. This means that for most individuals and for
the fixed effects, the conclusions about the strength of the cross-lagged associations
are the same for grand, BP, and WP standardization. Specifically, the absolute fixed
effects for φ∗CE were 0.124 (95% CI[.093, .161]) for grand standardization, .122 (95%
CI[.082, .179]) for BP standardization, and 0.121 (95% CI[.093, .154]) for WP stan-
dardization, and the absolute fixed effects for φ∗EC were 0.211 (95% CI[.163, .257]) for
grand standardization, 0.213 (95% CI[.147, .301]) for BP standardization, and .197

(95% CI[.156, .235]) for WP standardization. When we calculate the proportion of
individuals for whom the effect of competence on future exhaustion is the strongest,
we find a proportion of .623 (95% CI of [.491, .775]) for grand standardization, .642
(95% CI of [.434, .811]) for BP standardization, and .66 (95% CI of [.528, .774]) for
WP standardization.

3.4 Discussion
The aim of this study was twofold. First, we wanted to show the added value of
the multilevel model in studying individual differences in Granger-causal cross-lagged
relations. Second, we wanted to show how the cross-lagged parameters from mul-
tilevel bivariate autoregressive models should be standardized in order to compare
the relative strength of these relations and study the individual differences therein.
The ability to capture inter-individual differences in within-person processes is an
important advantage of using multilevel time series modeling over techniques like
cross-lagged panel modeling. Evaluating only average effects across persons can prove
misleading because they do not necessarily apply to any specific individual. If we had
focused only on the average (unstandardized or standardized) effects in the empiri-
cal example, we might have erroneously concluded that generally exhaustion has the
strongest Granger-causal effect on competence, and that competence has no effect on
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Figure 3.5: The left panel shows a plot of the point estimates of the WP, BP, and
grand standardized random parameters and fixed effects for the cross-lagged associ-
ations between exhaustion and competence in individuals with burnout. The right
panel shows the absolute values for the standardized random parameters and fixed ef-
fects. In the right panel, for individuals with estimated coefficients plotted below the
diagonal line, the association of exhaustion with future competence is the strongest.
For individuals with estimated coefficients above the diagonal line, the association of
competence with future exhaustion is the strongest.

exhaustion for persons diagnosed with burn-out. However, the bottom up multilevel
approach allowed us to uncover large individual differences in the person-specific
cross-lagged effects, with some persons having a positive association between past
experienced competence and current exhaustion, and others having a negative asso-
ciation. Further, by standardizing the individual coefficients within each person, and
then comparing the absolute WP standardized coefficients, we found that actually for
most individuals competence has the strongest effect on exhaustion, rather than the
reverse. We would not have established this if we had examined only fixed effects,
as would have been the case in cross-lagged panel modeling. A next step in research
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could be to explain and predict the inter-individual differences in the cross-lagged
coefficients, and the inter-individual differences in the relative strengths of these as-
sociations: Why is the effect positive for certain individuals and negative for others,
and why is one association stronger than the other for certain individuals, while for
others it is the opposite? These questions may be studied further by expanding the
multilevel model by adding predictors for the random parameters.

We argued that, in order to meaningfully compare the strength of cross-lagged as-
sociations and investigate potential inter-individual differences herein, the estimated
cross-lagged regression coefficients should be standardized within each person. Firstly,
because grand and BP standardization undesirably include the variance in means
across persons in the process of standardization, while WP standardization does not.
Secondly, WP standardization takes into account that each person may have unique
standard deviations for the outcome and predictor variables, while the other methods
of standardization - grand and BP standardization - do not. While we focus here on
the comparison of cross-lagged effects in a multilevel autoregressive model, we believe
that the arguments to use WP standardization for comparing the relative strength
of effects also generalizes to other multilevel models. Given that random effects are
generally included to account for differences across subjects (be it persons, or groups,
or classrooms, and so on) it makes sense to also account for these differences when
comparing standardized coefficients by using WP standardization - even when the
main interest is in the resulting fixed effects. The main appeal of the fixed effects
is that they summarize the effects on the lower level, specifically, they reflect the
average within-subject effects. As such, it is desirable that this interpretation of the
fixed effects remains intact when comparing the strength of the fixed effects using
the standardized fixed parameters. Given that the subject-specific parameters should
be obtained by WP standardization, the standardized fixed effects should reflect the
average WP standardized subject-specific parameters.

Finding out which direct effect is the strongest, and why, is valuable for provid-
ing direction in both further research, or in practice. Consider the effect of feeling
competent on exhaustion and vice versa in the context of the treatment of burnout.
For individuals for whom the effect of competence on exhaustion is the strongest for
example, it may be most beneficial to focus on this relationship in treatment. This
could be implemented by increasing the level of competence, and by altering the re-
lationship between competence and exhaustion at the next occasion - for instance by
diminishing it if it is positive. Note that the focus here is not only on decreasing
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or increasing mean levels of variables, but also on altering the harmful or beneficial
relations between psychological variables, which may provide more resilience against
negative events. This latter focus is central to the network perspective on psychologi-
cal processes (e.g., Borsboom & Cramer, 2013; Bringmann et al., 2013; Schmittmann
et al., 2013), a promising novel perspective in which psychological processes are con-
ceptualized as networks of observed variables. The networks are represented in graphs
in which the reciprocal associations are displayed as arrows from the predictor vari-
able to the dependent variable, and the strength of these relationships - inferred from
the respective size of the cross-correlations or cross-lagged regression coefficients - are
indicated in the graphs by the thickness of the arrows (Borsboom & Cramer, 2013;
Bringmann et al., 2013; Schmittmann et al., 2013). In such a setting, comparing the
relative strength of associations, and capturing individual differences herein is one of
the fundamental goals. How to compare the associations in a network in a meaning-
ful way is an issue that has not received much attention thus far. We hope that the
current paper will contribute to this innovative area of research.

Of course, there are limitations to the use of standardized coefficients for compar-
ing effects, especially when these are used to guide decisions concerning interventions
in practice. For instance, standardization does not take into account how easily rele-
vant associations or variables are manipulated in practice (by a clinician for example),
or how costly that would be. Further, when comparing cross-lagged coefficients, we
are comparing the effects of predictors on two different dependent variables. The
standardized coefficients may show which association is the strongest statistically; it
does not take into account if changes in the dependent variables are equally impor-
tant in practice. To illustrate, the standardized cross-lagged coefficients may indicate
that the increase in standard deviations in stress associated with a standard deviation
increase in depression, is larger than the number of standard deviations increase in
depression associated with a standard deviation increase in stress. However, a stan-
dard deviation increase in stress scores may be much less detrimental for the quality
of life of a person than a standard deviation increase in depression scores. To com-
plicate matters further, whether this is the case or not may also differ across persons.

Other aspects that were not considered in the current work are how to stan-
dardize models that include more than one lag, or how to standardize coefficients in
non-stationary models. For a stationary model that includes multiple lags, one can
simply calculate the standardized parameters based on the equations in Table 3.1
using the WP variances, and the raw coefficients for the relevant time lag. For non-
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stationary models, the standardization procedure becomes much more complex, given
that the regression coefficients and variances may change over time. Another impor-
tant question for future work is how to evaluate how change in one variable affects
the system as a whole, considering multiple lags and variables, compared to other
variables in the system, rather than comparing specific associations by comparing the
standardizing coefficients directly, as was the focus here.

In summary, in this paper we show how multilevel multivariate autoregressive
models can be applied to psychological intensive longitudinal data, and that by stan-
dardizing the results within-person, the relative strengths of cross-lagged associations
can be investigated. We believe that these techniques can provide an excellent basis
for uncovering some of the hidden information in intensive longitudinal data, and we
hope that these techniques will be applied more frequently to elucidate psychological
processes.
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Appendix 3.A Prior Specifications and Convergence for the Empirical
Application

The Bayesian analysis requires the specification of prior distributions for the indi-
vidual parameters, the fixed effects, the innovation variances, and the variances and
covariances of the random effects. We aimed to use uninformative prior specifications
for all parameters. We specified normal distribution with means of zero and precision
10−9 for the fixed effects. For the innovation variances we specified uniform(0,10)
prior distributions, and a uniform(-1,1) prior for the correlation between the innova-
tions. It is notoriously difficult to specify uninformative priors for covariance matrices
that are larger than 2×2, such as the covariance matrix Ψ for the random parameters.
The conjugate prior for covariance matrices in a normal model is the Inverse-Wishart
prior. Like the Inverse-Gamma prior, the Inverse-Wishart prior is relatively infor-
mative when the variance parameters are close to zero (Gelman, 2006; Schuurman,
Grasman, & Hamaker, 2016).

The solution that currently has been found to work the best is to specify the
Inverse-Wishart prior based on prior estimates of these variances. We did this us-
ing ML estimates as described in Schuurman, Grasman, and Hamaker (2016). We
checked the sensitivity of the result to this prior by also fitting a model with uniform
priors specified for the variances, ignoring potential covariation between the random
parameters. Both analyses gave very similar results and conclusions about the mod-
eled processes. We report the results for the ML based prior, given that with this
prior potential covariances between random parameters are taken in to account.

We evaluated the convergence of the fitted models by fitting 3 chains, each with
30,000 burn-in and 10,000 samples. Convergence was evaluated based on the mixing
of the three chains, the Gelman-Rubin statistic (Gelman & Rubin, 1992), and au-
tocorrelations. Based on the results we concluded that 10,000 samples with 30,000
burn-in was sufficient for convergence. With and Intel Xeon 3.1 GHz CPU it took
approximately 24 hours to fit the model. We excluded one participant from the anal-
yses because the regression coefficients for this participant did not converge, which
was most likely a result of having only 24 observations for competence, which were
also quite dispersed (note that the lack of convergence for this participant did not
influence the group results). Throughout this paper, we will report the medians, and
95% credible intervals of the posterior distributions for the parameters of interest.



Appendix 3.B

Appendix 3.B Derivation of the Grand Variance
For a vector of variables X, the covariance matrix Θ is derived as follows,

Θ = E [XX′]− E [X]E [X]
′
, (3.6)

where E[] indicates the expectation, and symbol ′ indicates the transpose. Then for
a multilevel model with persons i and repeated measures t per person the covariance
matrix taken over the repeated measures t for all persons i - the grand covariance
matrix G - equals

G = E
it

[Y Y ′]− E
it

[Y ]E
it

[Y ]
′
. (3.7)

And, for person i in the multilevel VAR model

Ωi = E
t

[
YiY

′
i

]
− µiµ′i. (3.8)

Then, for the multilevel model with i persons and t repeated measures per person
it follows that

E
i

[Ω] = E
i

[
E
t

[Y Y ′]− µµ′
]

= E
it

[Y Y ′]− E
i

[µµ′]

= E
it

[Y Y ′]−
(
E
i

[µ]E
i

[µ]
′
+ψ2

µ

)
= E

it
[Y ]E

it
[Y ]
′
+G− E

i
[µ]E

i
[µ]
′ −ψ2

µ

= G−ψ2
µ,

(3.9)

such that,

G = E
i

[Ω] +ψ2
µ (3.10)
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4 Incorporating Measurement Error in n=1
Psychological Autoregressive Modeling

by N.K. Schuurman, J.H. Houtveen, and E.L. Hamaker

The dynamic modeling of processes at the within-person level is becoming more and
more popular in psychology. The reason for this seems to be the realization that
inter-individual differences, in many cases, are not equal to intra-individual differ-
ences. Indeed, studies that compare interindividual differences and intraindividual
differences usually do not harbor the same results, exemplifying that conclusions
based on studies of group averages (including cross-sectional studies and panel data
studies), cannot simply be generalized to individuals (Adolf et al., 2014; Borsboom
et al., 2003; Ferrer, Steele, & Hsieh, 2012; Hamaker, 2012; Kievit et al., 2011; Mad-
hyastha et al., 2011; Molenaar, 2004; Nezlek & Gable, 2001; Rovine & Walls, 2005;
Wang et al., 2012).,

The increased interest in analyses at the within-person level, and the increasing
availability of technology for collecting these data, has resulted in an increase in psy-
chological studies that collect intensive longitudinal data, consisting of many (say 25
or more) repeated measures from one or more individuals. A popular way to analyze
these data currently is by autoregressive time series (AR) modeling, either by mod-
eling the repeated measures for a single individual using classical n=1 AR models, or
by using multilevel extensions of these models, with the repeated measures for each
individual modeled at level 1, and individual differences modeled at level 2 (Cohn
& Tronick, 1989; De Haan-Rietdijk et al., 2014; Kuppens et al., 2010; Lodewyckx et
al., 2011; Madhyastha et al., 2011; Moberly & Watkins, 2008; Nezlek & Allen, 2006;
Nezlek & Gable, 2001; Rovine & Walls, 2005; Suls et al., 1998; Wang et al., 2012).

This chapter is based on: Schuurman, N.K., Houtveen, J.H., & Hamaker, E.L. (2015). Incorpo-
rating Measurement Error in n=1 Psychological Autoregressive Modeling. Frontiers in Psychology,
6, 1038. doi:http://dx.doi.org/10.3389/fpsyg.2015.01038.

Author contributions: Schuurman designed and performed the study, analysed, processed and
interpreted the results for the simulation study and the empirical example, and wrote the paper.
Houtveen was part of the data collection in 2006 for the data used in the empirical example. Hamaker
proposed the topic for the study (accounting for measurement error), collected the data for the
empirical example in 2006, provided feedback on the design of the study, and on the written work.
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In an AR model of order 1 (i.e., an AR(1) model), a variable is regressed on a lagged
version of itself, such that the regression parameter reflects the association between
this variable and itself at the previous measurement occasion (c.f., Chatfield, 2004;
Hamilton, 1994). The reason for the popularity of this model may be the natural
interpretation of the resulting AR parameter as inertia, that is, resistance to change
(Suls et al., 1998). Resistance to change is a concept which is considered to be relevant
to many psychological constructs and processes, including attention, mood and the
development of mood disorders, and the revision of impressions and opinions (Geller
& Pitz, 1968; Goodwin, 1971; Kirkham et al., 2003; Koval et al., 2012; Kuppens et
al., 2010; Suls et al., 1998).

However, a problem with the regular AR(1) model is that it does not account
for any measurement errors present in the data. Although AR models incorporate
residuals, which are referred to as ‘innovations’ or ‘dynamic errors’, these residuals
are to be distinguished from measurement error. Simply put, the distinction between
dynamic errors and measurement errors is that dynamic errors carry over to next
measurement occasions through the autoregressive relationship, while measurement
errors are specific to one measurement occasion. Therefore, even though taking mea-
surement errors into account is considered business as usual in many psychological
studies of interindividual differences, it is largely neglected in AR modeling. Two
exceptions are formed by Wagenmakers (2004) and Gilden (2001),1 both of which
concern studies on reaction time and accuracy in series of cognitive tasks. Gilden
notes that there is evidence that some variance in reaction time is random (mea-
surement) error as a result of key-pressing in computer tasks. Measurement error
however is not limited to ‘accidentally’ pressing the wrong button or crossing the
wrong answer, but is made up of the sum of all the influences of unobserved factors
on the current observation, that do not carry-over to the next measurement occa-
sion. Disregarding measurement error distorts the estimation of the effects of interest
(Staudenmayer & Buonaccorsi, 2005). This is quite problematic, considering that in
psychological studies it is often impossible to directly observe the variable of interest,
and it therefore seems likely (and this seems generally accepted among psychological
researchers) that psychological research in general is prone to having noisy data.

The aim of this study is therefore three-fold. First, we aim to emphasize the im-

1Other exceptions are of course dynamic factor models, and other latent variable models in which
the measurement structure for multiple items is explicitly modeled. Here we focus on applications
in which each construct is measured with one variable.
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portance of considering measurement error in addition to dynamic error in intensive
longitudinal studies, and illustrate the effects of disregarding it in the case of the
n=1 autoregressive model. Second, we aim to compare two modeling strategies for
incorporating measurement errors: 1) fitting an autoregressive model that includes a
white noise term (AR+WN), and 2) fitting an autoregressive moving average (ARMA)
model. These modeling strategies are the two most frequently suggested in the lit-
erature (e.g., in mathematical statistics, control engineering, and econometrics, c.f.,
Chanda, 1996; Chong, Liew, Zhang, & Wong, 2006; Costa & Alpuim, 2010; Deistler,
1986; Granger & Morris, 1976; Patriota, Sato, Blas, & G., 2010; Staudenmayer &
Buonaccorsi, 2005; Swamy, Chang, Mehta, & Tavlas, 2003). Third, our aim is to
compare the performance of these models for a frequentist and a Bayesian estimation
procedure. Specifically, for the frequentist procedure we will focus on a Maximum
Likelihood (ML) procedure based on the state-space modeling framework, which is a
convenient modeling framework for psychological longitudinal modeling, as it readily
deals with missing data, and is easily extended to multivariate settings, or to include
latent variables (Harvey, 1989). The Bayesian alternative shares these qualities, and
has the additional advantage that the performance of the estimation procedure is
not dependent on large samples (Dunson, 2001; Lee & Wagenmakers, 2005), while
the performance of the frequentist ML procedure depends on asymptotic approxima-
tions, and in general requires large samples. This is convenient for the modeling of
intensive longitudinal data, given that large amounts of repeated measures are of-
ten difficult to obtain in psychological studies. By means of a simulation study we
will evaluate the parameter recovery performance of the Bayesian procedure for the
ARMA(1,1) and the AR+WN model, and compare it to the ML procedure.

This paper is organized as follows. We start by introducing the AR(1) model,
ARMA(1,1) model, and the AR(1)+WN model, and discussing their connections.
After that, we present the methods for the simulation study, followed by the results.
We present an empirical application concerning the daily mood of eight women, in
order to further illustrate the consequences of disregarding measurement error in
practice, and we end with a discussion.

4.1 Models
In this section we present the AR(1) model, and explain the difference between the
dynamic errors that are incorporated in the AR(1) model, and measurement errors.
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After that we will introduce models that incorporate measurement errors, namely the
autoregressive model with an added white noise term (AR(1)+WN model), and the
autoregressive moving average (ARMA) model.

The AR(1) Model
In order to fit an AR model, a large number of repeated measures is taken from one
individual. Each observation, or score, yt in the AR model consists of a stable trait
part - the mean of the process denoted as µ, and a state part ỹt that reflects the
divergence from that mean at each occasion. In an AR model of order 1, the state of
the individual at a specific occasion ỹt depends on the previous state ỹt−1, and this
dependency is modeled with the AR parameter φ. Specifically, the AR(1) model can
be specified as

yt = µ+ ỹt

ỹt = φỹt−1 + εt
(4.1)

εt ∼ N
(
0, σ2

ε

)
. (4.2)

For a graphical representation of the model, see Figure 4.1A. A positive value for φ
indicates that the score at the current occasion will be similar to that at the previous
occasion - and the higher the positive value for φ, the more similar the scores will
be. Therefore, a positive AR parameter reflects the inertia, or resistance to change,
of a process (Suls et al., 1998). A positive AR parameter could be expected for many
psychological processes, such as that of mood, attitudes, and (symptoms of) psycho-
logical disorders. A negative φ indicates that if an individual has a high score at one
occasion, the score at the next occasion is likely to be low, and vice versa. A negative
AR parameter may be expected for instance in processes that concern intake, such
as drinking alcoholic beverages: If an individual drinks a lot at one occasion, that
person may be more likely to cut back on alcohol the next occasion, and the following
occasion drink a lot again, and so on (Rovine & Walls, 2005). An AR parameter
close to zero indicates that a score on the previous occasion does not predict the
score on the next occasion. Throughout this paper we consider stationary models,
which implies that the mean and variance of y are stable over time, and φ lies in the
range from -1 to 1 (Hamilton, 1994). The innovations εt reflect that component of
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Figure 4.1: A) Graphical representation of an AR(1) model; B) Graphical repre-
sentation of an AR(1)+WN model; C) Graphical representation of an ARMA(1,1)
model.
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each state score ỹt that is unpredictable from the previous observation. The inno-
vations εt are assumed to be normally distributed with a mean of zero and variance σ2

ε .

Dynamic Errors vs. Measurement Errors
The innovations εt perturb the system and change its course over time. Each innova-
tions is the result of all unobserved events that impact the variable of interest at the
current measurement occasion, of which the impact is carried over through the AR
effect to the next few measurement occasions. Take for example hourly measurements
of concentration: Unobserved events such as eating a healthy breakfast, a good night
sleep the previous night, or a pleasant commute, may impact concentration in the
morning, resulting in a heightened concentrating at that measurement occasion. This
heightened concentration may then linger for the next few measurement occasions as
a result of an AR effect. In other words, the innovations εt are “passed along” to
future time points via φ, as can be seen from Figure 4.1A, and this is why they are
also referred to as “dynamic errors.”

Measurement errors, on the other hand, do not carry over to next measurement
occasions, and their effects are therefore restricted to a single time point. Classi-
cal examples of measurement error, which are moment-specific, are making an error
while filling in a questionnaire, or accidentally pressing a (wrong) button during an
experiment (e.g., Gilden, 2001). However, any unobserved effect of which the influ-
ence is not carried over to the next measurement occasion may also be considered as
measurement error, rather than dynamic error. The only distinguishing character-
istic of measurement errors and dynamic errors is that the latter’s influence lingers
for multiple measurement occasions. Therefore, in practice, what unobserved effects
will end up as measurement error, and what effects will end up as dynamic error,
will depend largely on the measurement design of the study, such as on the frequency
of the repeated measures that are taken. For example, some unobserved effects may
carry-over from minute to minute (e.g., having a snack, listening to a song), but not
from day to day - if measurements are then taken every minute, these unobserved
effects will end up in the dynamic error term, but if measurements are taken daily,
such effects will end up in the measurement error term. As such, the more infrequent
measurements are taken, the more measurement errors one can expect to be present
in the data, relative to the dynamic errors.

106



4.1. Models

In psychological research, measurement is complicated and likely to be noisy. As
such, the contribution of measurement error variance to the total variance of the mea-
sured process may be considerable. Ignoring this contribution will result in biased
parameter estimates. Staudenmayer and Buonaccorsi (2005) have shown that in the
case of an AR(1) model, φ will be biased toward zero. Specifically, the estimated AR
coefficient φ̂ will be equal to (1− λ) ∗ φ, where φ is the true AR parameter and λ is
the proportion of measurement error variance to the total variance. Hence, in order
to prevent the measurement error from biasing estimates of φ, it is necessary to take
measurement error into account in the modeling procedure. This approach has two
advantages: First, it leads to less biased estimates of φ, and second, it allows us to
investigate to what extent the measurements are determined by measurement error.

Incorporating Measurement Error: The AR(1)+WN Model
A relatively simple way to incorporate measurement error in dynamic modeling is
to add a noise term to the model, typically white noise, to represent the measure-
ment error. White noise is a series of random variables that are identically and
independently distributed (Chatfield, 2004). For the AR model with measurement
error (AR(1)+WN), the white noise ωt is simply added to each observation yt (see
Figure 4.1B). We assume that this white noise is normally distributed with a mean
of zero and variance σ2

ω. This results in the following model specification for the
AR(1)+WN model

yt = µ+ ỹt + ωt

ỹt = φỹt−1 + εt
(4.3)

εt ∼ N
(
0, σ2

ε

)
(4.4)

ωt ∼ N
(
0, σ2

ω

)
. (4.5)

Important to note is that when φ is equal to zero, the measurement error and dynamic
error will no longer be discernible from each other, because they are only discernible
from each other from the merit that the innovations are passed to future time points
through φ, while the measurement errors are not. In that case, the AR(1)+WN
model is no longer identified, which is problematic for estimating the model param-
eters. Further note that when φ is nonzero, the higher |φ|, the easier it will be to
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discern measurement error from the innovations, and as such the model will be easier
to identify empirically, and likely easier to estimate. Hence, in this sense the (em-
pirical) identification of the AR(1)+WN model may be seen as dimensional rather
than dichotomous, ranging from unidentified when φ is zero, to maximally empirically
identified when |φ| is one.

Incorporating Measurement Error: The ARMA(1,1) Model
Another way to incorporate measurement error into an AR(1) model that is rela-
tively frequently suggested in the literature on dynamic modeling with measurement
error, is to use an autoregressive moving average (ARMA) model (see for instance:
Chanda, 1996; Chong et al., 2006; Costa & Alpuim, 2010; Deistler, 1986; Granger
& Morris, 1976; Patriota et al., 2010; Staudenmayer & Buonaccorsi, 2005; Swamy et
al., 2003; Wagenmakers et al., 2004). Granger and Morris (1976) have shown that
the AR(p)+WN model is equivalent to an ARMA(p,p) model, where p stands for
the number of lags included in the model. As a result, an ARMA(1,1) model can
be used as an indirect way to fit an AR(1) model and take measurement error into
account (Granger & Morris, 1976; Staudenmayer & Buonaccorsi, 2005; Wagenmakers
et al., 2004). One advantage of fitting an ARMA(1,1) model rather than fitting an
AR(1)+WN model directly, is that it can be estimated with a wide range of estima-
tion procedures, and a wide range of software, including for instance SPSS. A second
important advantage is that the ARMA(1,1) is identified when the value of φ is equal
to zero, so that in practice it may be easier to estimate than the AR(1)+WN model.

An ARMA(1,1) process consists of an AR(1) process, and a moving average pro-
cess of order 1 (MA(1)). In an MA(1) process, the current state ỹt depends not
only on the innovation, ε∗t , but also on the previous innovation ε∗t−1, through moving
average parameters θ.2 For example, consider the daily introverted behavior for a
specific person. On a certain day, the person has a shameful experience, resulting
in a strong boost (e.g., an innovation or perturbation) in introverted behavior. The
next day, this person may display lingering heightened introverted behavior from the
previous day as a result of an AR effect, but there may also be a delayed response
to the perturbation from yesterday, for instance because the person remembers the
events of the previous day. The strength of the delayed response depends on the size

2We add the ∗ to ε, to distinguish the innovations for the ARMA(1,1,) model from the innovations
of the AR(1)+WN model.
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of θ. The ARMA(1,1) model, which is depicted in Figure 4.1C, can be specified as:

yt = µ+ ỹt

ỹt = φỹt−1 + θε∗t−1 + ε∗t
(4.6)

ε∗t ∼ N
(
0, σ2∗

ε

)
. (4.7)

The ARMA(1,1) model is characterized by four parameters, that is, the mean µ, AR
parameter φ, moving average parameter θ, and innovation variance σ2∗

ε . The model
is stationary when φ lies between -1 and 1, and is invertible if θ lies between -1 and
1 (Chatfield, 2004; Hamilton, 1994).

If the true underlying model is an AR(1)+WN model, the φ and µ parameter
in an ARMA(1,1) will be equal to those of the AR(1)+WN model. Granger and
Morris (1976) have shown that the innovation variance σ2

ε and measurement error
variance σ2

ω can be calculated from the estimated θ, φ, and σ2∗
ε as follows (see also

Staudenmayer & Buonaccorsi, 2005),

σ2
ω = (−φ)−1θσ2∗

ε , (4.8)

σ2
ε = (1 + θ2)σ2∗

ε − (1 + φ2)σ2
ω. (4.9)

It is important to note that while the AR(1)+WNmodels is equivalent to an ARMA(1,1)
model, an ARMA(1,1) models is not necessarily equivalent to an AR(1)+WN model.
That is, it is only possible to transform the ARMA(1,1) parameters to AR(1)+WN
model parameters under these restrictions in line with an underlying AR(1)+WN
model (Granger & Morris, 1976; Staudenmayer & Buonaccorsi, 2005):

1

1 + φ2
>

θ

1 + θ2
(−φ−1) ≥ 0 (4.10)

4.2 Simulation Study Methods
We present a simulation study in which we simulate data according to an AR pro-
cess with added measurement error. We fit an AR(1) model to the data in order
to illustrate the effects of ignoring any present measurement error, and compare the
performance of the AR(1) model to the AR(1)+WN, and ARMA(1,1) model, which
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both account for measurement error. Furthermore, we will compare the performance
of the Bayesian and frequentist estimation of these models.

Frequentist Estimation
For the frequentist estimation of the AR(1) model and the ARMA(1,1) model a rela-
tively wide range of procedures and software is available. Potential estimation proce-
dures for fitting the AR(1)+WN model include specially modified Yule-Walker equa-
tions, and modified Least Squares estimation procedures (Chanda, 1996; Dedecker,
Samson, & Taupin, 2011; Staudenmayer & Buonaccorsi, 2005). However, we opt to
use the (linear, Gaussian) state-space model, for which the Kalman Filter (Harvey,
1989; Kim & Nelson, 1999) is used to estimate the latent states, while Maximum
Likelihood is used to estimate the model parameters (c.f., Staudenmayer & Buonac-
corsi, 2005, for this approach, but with the measurement error variance considered
as known). This is an especially convenient modeling framework for psychological
longitudinal modeling, as it readily deals with missing data, and is easily extended
to multivariate settings, or to include latent variables (c.f., Hamilton, 1994; Harvey,
1989; Kim & Nelson, 1999).

In the state-space model representation, a vector of observed variables is linked
to a vector of latent variables – also referred to as ‘state variables’ – in the measure-
ment equation, and the dynamic process of the latent variables is described through
a first-order difference equation in the state equation (Hamilton, 1994; Harvey, 1989;
Kim & Nelson, 1999). That is, the measurement equation is

yt = d+ F ỹt + ωt

ωt ∼MvN (0,Σω) ,
(4.11)

where yt is anm×1 vector of observed outcome variables, ỹt is an r×1 vector of latent
variables, d is anm×1 vector with intercepts for the observed variables, F is anm×r
matrix of factor loadings, and ωt is an m× 1 vector of residuals that are assumed to
be multivariate normally distributed with zero means and m×m covariance matrix
Σω. The state equation (also referred to as the transition equation) is specified as

ỹt = c+Aỹt−1 + εt

εt ∼MvN (0,Σε) ,
(4.12)
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where c is an r×1 vector of intercepts for the latent variables, A is an r×r matrix of
structural coefficients, and εt is an r× 1 vector of residuals, which are assumed to be
multivariate normally distributed with zero means and r × r covariance matrix Σε.

The previously discussed AR(1) and AR(1)+WN model are both already speci-
fied in terms of a state-space representation in Equations 4.1 through 4.5 (simplified
where possible). For the state-space model specification for the ARMA(1,1) model
vector d is µ, F is [ 1 0 ]

T , ỹt is [ ỹ1t ỹ2t ]
T , Σω is a zero matrix, c is a zero vector,

A is 2 × 2 matrix
[
φ 0
1 0

]
, and 2 × 2 matrix Σε is equal to HTH with H equal to

[ σ1ε∗ θσ1ε∗ ], where superscript T indicates the transpose.
To fit the frequentist state-space models we use R, with R packages FKF (Kalman

Filter; Luethi, Erb, & Otziger, 2010) combined with R base package optim (for max-
imum likelihood optimization; R Development Core Team, 2012). Within optim we
used optimization method l-bfgs-b, with lower bounds and upper bounds for φ and θ
of -1 and 1, -Inf and Inf for µ, and 0 and Inf for σ2

ε , σ2
ω, and σ2∗

ε .

Bayesian Estimation
Bayesian modeling shares a lot of conveniences with the frequentist state-space model-
ing framework: For instance, like frequentist state-space modeling procedures, Bayesian
modeling can deal conveniently with missing data, is flexible in modeling multivari-
ate processes, and in including latent variables in the model. Particular to Bayesian
modeling is the relative ease in extending models to a hierarchical or multilevel set-
ting (e.g., De Haan-Rietdijk et al., 2014; Lodewyckx et al., 2011). Another advantage
may be the possibility to include prior information in the analysis, based, for instance,
on expert knowledge or results from previous research (e.g., Rietbergen, Groenwold,
Hoijtink, Moons, & Klugkist, 2014; Rietbergen, Klugkist, Janssen, Moons, & Hoi-
jtink, 2011). Finally, the Bayesian estimation procedures are not dependent on large
sample asymptotics like the frequentist procedures, and may therefore perform better
for smaller samples (Dunson, 2001; Lee & Wagenmakers, 2005). Because currently
there is no literature on the Bayesian estimation performance for the AR(1)+WN
model, we will compare the performance of the Bayesian AR(1), ARMA(1,1), and
AR(1)+WN model with the frequentist modeling equivalents in a simulation study.

In Bayesian estimation the information in the data, provided through the like-
lihood, is combined with a prior distribution using Bayes’ rule (c.f., Gelman et al.,
2003; Hoijtink et al., 2008). The prior distribution is specified such that it contains
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prior information the researcher would like to include in the analysis. Here we prefer
to specify uninformative prior distributions that contain minimal prior information,
such that their influence is minimal. Specifically, we use the following prior spec-
ifications across the three models: A uniform(0, 20) prior on σ2

ω, σ2
ε , and σ2∗

ε , a
uniform(−1, 1) prior on φ and θ, and a normal(0, .001) prior for µ (specified with
precision rather than variance). When the prior distribution and the likelihood are
combined using Bayes’ rule, this results in the posterior probability distribution or
density of the estimated parameters. Summary statistics based on this distribution
can then be used to summarize the information on the estimated parameters, for
instance, the mean or median may be used to obtain a point estimate for an esti-
mated parameter, and the posterior standard deviation can be used to describe the
uncertainty around that point estimate.

Although it is possible to obtain the posterior distribution analytically for some
simple models, the Bayesian estimation of more complex models is usually done with
Markov Chain Monte Carlo algorithms, such as Gibb’s sampling, which relies on con-
secutively samples from the conditional distributions of the parameters (rather than
directly from their joint distribution, c.f., Casella & George, 1992); when the proce-
dure has converged, one effectively samples from the (joint) posterior distribution.
These samples can then be used as an approximation of the underlying posterior dis-
tribution, which in turn can be used to obtain point estimates for the parameters.
A particularly desirable feature of MCMC procedures is that, based on the samples
of the estimated parameters, it is also possible to calculate new statistics and obtain
their posterior distribution. For instance, based on the estimated parameters θ, φ,
and σ2∗

ε for the ARMA(1,1) model, we will calculate the innovation variance σ2
ε and

measurement error variance σ2
ω in each sample, such that we obtain posterior distri-

butions for these parameters. In our simulations we use the free open source software
JAGS (Plummer, 2003) which employs a Gibb’s sampling algorithm, in combination
with the R package Rjags (Plummer, Stukalov, & Plummer, 2014).

Simulation Conditions
Throughout the simulation study, we simulated 1000 data sets per condition according
to the AR(1)+WN model specified in Equations 4.3 to 4.2 using R (R Development
Core Team, 2012). For all conditions, the mean of the model is fixed to 2. The study
consists of three parts. First, we examine the effect of the proportion of measurement
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error variance to the total variance, on parameter recovery. The total variance for
the AR(1)+WN is the sum of the variance for an AR(1) model and the measurement
error variance: σ2

total = σ2
ε /(1−φ2)+σ2

ω (c.f., Harvey, 1989; Kim & Nelson, 1999). To
vary the proportion of σ2

ω to the total variance, φ and σ2
ε are both fixed to .5 in this

study while the measurement error variance is varied. Specifically, the measurement
error variance takes on the values 0, .1, .2, .3, .5, .7, 1, 2, 4, and 12, which results
approximately in the following proportions of measurement error variance to the total
variance: 0, .13, .23, .31, .43, .51, .6, .75, .86, and .95.

Second, we examine the effect of the size of φ on parameter recovery. We vary φ
over the values -.75, -.5, -.25, 0, .25, .5, and .75. The proportion of measurement error
variance to the total variance of the AR(1)+WN process is fixed to .3 here, through
varying the innovation variances σ2

ε by approximately 1.2, 1.1, .9, .5, .9, 1.1, and 1.2
respectively.

Third, we examine the effects of sample size. In part 1 and 2 of the study we use
a sample size 100 repeated measures. We based this number roughly on what one
may expect for research in psychology: Typically, what we see in time series applica-
tions in psychology is a range of about 60 to 120 repeated measures per person (e.g.,
see Adolf et al., 2014; Ferrer et al., 2012; Madhyastha et al., 2011; Nezlek & Gable,
2001; Rovine & Walls, 2005; Wang et al., 2012). However, in preliminary analyses
we found difficulties in estimating the model with a small sample size, especially for
the frequentist estimation procedure, that pointed to empirical underidentification
(we elaborate on this in the next section). Therefore, we varied sample size by 100,
200, and 500. For this part of the study σ2

ε , σ2
ω, and φ were fixed to .5, implying a

proportion of measurement error variance to the total variance of .43.
We judge the performance of each model based on: a) its bias in the estimates;

b) the absolute error in the estimates; and c) coverage rates for the 95% confidence
or credible intervals. It is not clear whether Bayesian 95% credible intervals should
have exactly 95% coverage rates, however, with uninformative priors we would expect
this to be the case. Moreover, we consider it informative to see how often the true
value lies within the credible interval across multiple samples (e.g., if this occurs very
rarely this seems problematic for making inferences).

For the coverage rates of the variances estimated with the frequentist ML proce-
dure, we calculate the confidence intervals based on a χ2 distribution with degrees of
freedom df as follows: CI( (df)s2

χ2
1−α/2

, (df)s
2

χ2
α/2

), where n is the sample size, and s2 is the
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estimated variance (df = n− 2 for σ2
ε in the AR(1) model, and df = n− 3 for σ2

ε and
σ2
ω in the ARMA(1,1) and the AR(1)+WN model).

Expectations
For part 1, we expect that all models will decrease in performance (i.e., more bias and
absolute error, lower coverage rates) as the proportion of measurement error variance
increases, because an increase in random noise should make it harder to distinguish
an (autoregressive) effect. Furthermore, we expect that the decrease in performance
will be larger for the AR(1) model than for the ARMA(1,1) and AR(1)+WN model.
Specifically, based on Staudenmayer and Buonaccorsi (2005), we expect a bias in the
estimates of φ in the AR(1) model of approximately 0, -.07, -.12, -.16, -.21, -.26, -.30,
-.38, -.43, and -.47, given that the proportions of measurement error variance are 0,
.13, .23, .31, .43, .51, .6, .75, .86, and .95.

For part 2, we expect that the AR(1)+WN and ARMA(1,1) models will improve
in performance as the value of |φ| increases, given that σ2

ω and σ2
ε should be more eas-

ily distinguished from each other as |φ| approaches 1. We are specifically interested in
the performance of the AR(1)+WN model compared to the ARMA(1,1) model when
|φ| is relatively small. Given that the ARMA(1,1) model is identified regardless of the
value of φ, we expect the ARMA(1,1) model may converge better, and therefore to
perform better when φ is relatively close to zero than the AR(1)+WN model, which
is no longer identified when φ is equal to zero.

For part three, we expect that performance will improve as sample size increases
for the ARMA(1,1) model and the AR(1)+WN model, both in the frequentist and
Bayesian estimation procedure. Finally, we expect that the Bayesian procedure will
perform better than the frequentist state-space procedures for smaller sample sizes,
given that both modeling procedures have similar benefits, but the Bayesian estima-
tion procedure is not dependent on large sample asymptotics (Dunson, 2001; Lee &
Wagenmakers, 2005).

4.3 Simulation Study Results
In this section we present the results of the simulation study. As was mentioned
before, for a sample size of 100 we found some convergence issues especially for the
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frequentist ML procedure. Given that convergence is an important precondition for
obtaining reasonable parameter estimates, we start by discussing the convergence of
the Bayesian models and frequentist models across the different parts of the simulation
study. After that, we discuss the parameter recovery performance for each condition
specific for each of the three parts of the simulation study. We end with a summarizing
conclusion.

Convergence of the Bayesian Procedures
For the Bayesian procedures we obtained three chains of 40,000 samples each for each
replication, half of which was discarded as burn-in. We judged convergence based
on the multivariate Gelman-Rubin statistic and autocorrelations for all replications,
and we inspected the mixing of the three chains visually a number of replications
(c.f., Brooks & Gelman, 1998; Gelman & Rubin, 1992). For the AR(1) model the
chains mixed well, the Gelman Rubin statistic was generally equal to one, and the
autocorrelations for the parameters decreased exponentially across all conditions.

For the ARMA(1,1) the chains generally mixed well, and the Gelman Rubin statis-
tic was equal to one across all conditions.3 The autocorrelations for the parameters
decreased slower than for the AR(1) model, and decreased most slowly when the pro-
portion of measurement error variance was higher than 50% or |φ| was zero.

For the AR(1)+WN model, overall the chains mixed well and the Gelman Rubin
Statistic was equal to one for most replications. For approximately 1% to 2% of the
data sets the Gelman Rubin statistic was larger than 1.1, indicating possible non-
convergence, with the exception of the condition where φ = .75, for which it was 8%.
Closer inspection indicated that these problems usually originated and were limited
to µ. The percentage of non-convergence is larger for the condition φ = .75, most
likely because when φ is strong and positive it is most difficult to estimate µ because
observations may tend to linger longer above or below the mean. The autocorrela-
tions for the AR(1)+WN model are higher overall, and slower to decrease than those
for the AR(1) and ARMA(1,1) model across all conditions. More measurement error
and a closer |φ| to zero, was associated with more slowly decreasing autocorrelations.

3By visually inspecting the chains for µ in the ARMA(1,1) model, we found some extreme values
for some of the Gibb’s samples (visible as large ’spikes’ in the chains). To limit these extreme values
we adjusted the normal prior for µ to have a smaller variance (10), however this did not resolve the
issue completely. As a result, the posterior standard deviation for µ was very large, however, the
effects on the point estimates and credible intervals seem limited when we compare these results for
µ to those of the other models.
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Convergence of the (Frequentist) ML State-Space Modeling Procedures
For the ML procedure we encountered three types of problems: 1) negative standard
errors for the estimated parameters , 2) optim failing to initialize (more rarely),
and 3) Heywood cases (negative variances) for the measurement error variance or
the innovation variance. The first and second type of problem could usually be
resolved by providing alternative starting values and rerunning the model. For a
small percentage of data sets, five sets of starting values still did not resolve these
issues (for the number of data sets per condition, see Table 4.2 in Appendix 4.A).
These data sets are excluded from the parameter recovery results. When sample size
was increased to 200 or 500 repeated measurements, these problems were no longer
encountered.

The third type of problem - Heywood cases - was much more prevalent, and could
generally not be resolved by providing different starting values. For the AR(1)+WN
model, for 10% to 55% of the replications σ2

ω, or more rarely σ2
ε , were estimated at the

lower bound of zero. For the ARMA(1,1) model, we similarly detected Heywood cases
for σ2

ω and σ2
ε (note that σ2

ω and σ2
ε are calculated a posteriori based on the estimated

φ, θ and σ2∗
ε by means of Equation 4.8 and 4.8). In the case that for the AR(1)+WN

model σ2
ω or σ2

ε were estimated at the lower bound, usually a Heywood case would
also observed for the ARMA(1,1) model for that replication. The proportions of
Heywood cases for σ2

ω and σ2
ε across all conditions are reported in Table 4.2 in the

Appendix 4.A.
The number of Heywood cases increased when: 1) φ got closer to zero, such that

it is harder to discern measurement errors from innovations 2) when there was very
little measurement error, such that σ2

ω was already close to zero, and 3) There was
a lot of measurement error, such that all parameter estimates were uncertain (large
standard errors). This indicates issues of empirical identification, and as such we
expected these issues to decrease as sample size increases.

The Heywood cases for σ2
ε and σ2

ω decreased as sample size increased - however,
the issues were not resolved completely: For n=200 almost 30% of the data sets still
returned a Heywood case, and for n=500 almost 13% still returned a Heywood case.
Given that for smaller sample sizes (e.g., less than 500), which are much more common
in psychological studies, the proportion of replications with Heywood cases was quite
large for many conditions, this seems quite problematic. In practice, encountering
such a result may lead a researcher to erroneously conclude that there most likely is
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no considerable measurement error variance, so that a regular AR(1) model should
suffice.

In the following sections, where we discuss the parameter recovery results, the data
sets with Heywood cases for σ2

ω or σ2
ε are included in the results, because to exclude

so many data sets would make a fair comparison to the Bayesian procedure (for which
no data sets need to be excluded) problematic. However, the results with these data
sets excluded for the ML AR(1)+WN model and ARMA(1,1) model are presented
and discussed in Appendix 4.A. Finally note that, in contrast to our expectations,
in the ML procedure the ARMA(1,1) model does not seem to converge more easily
than the AR(1)+WN model. In general it seems that in order to properly estimate
and distinguish the measurement error variance from the innovation variance using
ML, quite large sample sizes are required.

Parameter Recovery for Different Proportions of Measurement Error
In general, as the proportion of measurement error increases, the estimated parame-
ters become increasingly more biased, the absolute errors become larger, and coverage
rates become lower, as expected. In Figure 4.2 we provide plots of the 95% cover-
age, absolute errors, and bias for each model, condition, and parameter. As can
be seen from this figure, overall, the Bayesian AR(1)+WN model outperforms the
other procedures in terms of coverage rates and absolute errors, and for the variance
parameters also in terms of bias. The ML state-space AR(1)+WN model performs
second-best overall, and performs the best for φ in terms of bias. The Bayesian and
frequentist AR(1) and ARMA(1,1) models perform relatively poorly in all respects.
However, the ARMA(1,1) models result in better coverage rates for φ than the AR(1)
models, so that an ARMA(1,1) model is still preferred over a simple AR(1) model.
Below, we will discuss the results in more detail, per parameter.

For µ, all models perform similarly well in terms of bias and absolute error, as can
be seen from the top-left panel of Figure 4.2. In terms of coverage rates, the Bayesian
AR(1) and AR(1)+WN model outperform the other models for µ, most pronouncedly
when the proportion of measurement error is high.

For φ, the models that perform the best in terms of bias are the ML AR(1)+WN
model, followed by the Bayesian AR(1)+WN model (see the top-right panel in Fig-
ure 4.2). The bias for φ in both AR(1) models is in line with our expectations,
increasing from approximately zero to -.5 as measurement error increases. As can
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Figure 4.2: Coverage rates, absolute errors, and bias for the parameter estimates
for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN models across
different proportions of measurement error variance to the total variance.
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be seen from the top-right panel of Figure 4.2, in terms of absolute error for φ,
the Bayesian AR(1)+WN model performs the best, followed by the ML AR(1)+WN
model. The top-right panel of Figure 4.2 shows that the coverage rates for φ based on
the 95% CI’s for the Bayesian ARMA(1,1) model are consistently higher than those
for the other models, however, this is a result of having wider credible intervals, rather
than a result of more precise estimates for φ. The coverage rates for the Bayesian
AR(1)+WN model are most stable across the different proportions of measurement
error variance. The coverage rates for this Bayesian model are generally higher than
.95,4 only dropping below .95 when 75% or more of the total variance is measurement
error variance. In comparison, the ML AR(1)+WN model starts with a coverage
rate of approximately .95 for φ when measurement error is absent, and the coverage
decreases as measurement error increases (with a lowest coverage of .55 when 95%
of the variance is due to measurement error). The ML ARMA(1,1) model and the
Bayesian and ML AR(1) models perform the worst, as can be seen from Figure 4.2.
Note that for the AR(1) models, the coverage rates for φ are already below 90% when
the proportion of measurement error variance is as little as .13.

In the bottom panel of Figure 4.2 the results for σ2
ω and σ2

ε are displayed. When
the proportion of error variance is larger than about .3, the Bayesian AR(1)+WN
model starts to outperform the ML AR(1)+WN model in terms of bias for σ2

ω and
σ2
ε . Further, it can be seen from Figure 4.2 that for the AR(1)+WN models, when the

proportion of measurement error is small, the measurement error variance is slightly
overestimated, while when the proportion of measurement error is large, the mea-
surement error variance is underestimated. The coverage rates are the highest for
the Bayesian AR(1)+WN and ARMA(1,1) model. Note that for the ARMA(1,1)
model σ2

ω and σ2
ε are calculated based on the estimated ARMA(1,1) parameters. For

the Bayesian model this was done in each Gibbs sample by means of Equations 4.8
and 4.9, resulting in a posterior distribution for σ2

ω and σ2
ε . However, depending on

the specific values of the ARMA(1,1) parameters in each Gibbs sample, σ2
ω and σ2

ε

may become quite large or even negative. As a result, the posterior standard devia-
tions and credible intervals for σ2

ω and σ2
ε in the Bayesian ARMA(1,1) model can be

quite large, including negative and large positive values. The confidence intervals for

4While it may seem undesirable that the Bayesian model has ‘too high’ coverage rates, indi-
cating too large credible intervals or exaggerated uncertainty about the estimated parameters, it is
important to note that compared to the ML model, the Bayesian estimates actually have smaller
posterior standard deviations than the ML standard errors (except for parameter µ, for which it is
the reverse).
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the variances parameters in frequentist procedures are consistently too narrow, which
results in low coverage rates, as can be seen from the bottom panel of Figure 4.2. As
such, for the two variances, the Bayesian AR(1)+WN model performs best in terms
of coverage rates, followed by the Bayesian ARMA(1,1) model (which has higher cov-
erage rates, but much wider intervals), and the ML AR(1)+WN model. The same
pattern holds for the absolute errors as can be seen in Figure 4.2.

Parameter Recovery for Different Values of φ
For this part of the study, the value of φ was varied from -.75, to -.5, -.25, 0, .25, .5
and .75. As can be seen from the top-left panel of Figure 4.3, for µ all the models
perform very similarly in terms of bias, absolute errors, and coverage rates. The
absolute errors and bias increase as φ becomes larger, because when φ is strong and
positive, observations may tend to linger longer above or below the mean than when
φ is weak or negative, making it harder to estimate µ.

As can be seen from the top-right and bottom panel of Figure 4.3, the results for
φ and the variance parameters are symmetric for negative and positive values of φ
(or mirrored in the case of bias). As such, we will discuss these results in terms of
|φ|. For the parameters φ, σ2

ε and σ2
ω, performance increases as |φ| increases, except

the AR(1) models, for which it is the opposite. Overall, the Bayesian AR(1)+WN
performs best, followed by respectively the ML AR(1)+WN model, the Bayesian
ARMA(1,1) model, and the ML ARMA(1,1) model. The performance of the latter
three models decreases considerably more as |φ| decreases than that of the Bayesian
AR(1)+WN model, as can be seen from Figure 4.3.5 For the two variances, the
ML AR(1)+WN model outperforms the Bayesian model in terms of bias. Finally,
we find that when |φ| is relatively close to one, the measurement error variance is
underestimated, however, when |φ| is relatively small, the measurement error variance
was actually overestimated, as can be seen from the bottom panel of Figure 4.3.

5The diverging patterns in the bias and absolute errors for the ML ARMA(1,1) model is a result
of the Heywood cases discussed in section 4.3; when the Heywood cases are removed the pattern is
similar to the patterns of the other models, as can be seen in Figure 4.31 to 4.32 in Appendix 4.A
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Figure 4.3: Coverage rates, absolute errors, and bias for the parameter estimates
for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN models across
different values for φ.
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Parameter Recovery for Different Sample Sizes
For this part of the simulation study, the sample size was varied from 100 to 200 and
500. As shown in Figure 4.4, as sample size increases, parameter recovery improves:
Bias and absolute errors decrease, while coverage rates become closer to .95. We
Further, the ML AR(1)+WN results become more similar to those of the Bayesian
AR(1)+WN model as sample size increases, although the Bayesian model still outper-
forms the ML model in terms of absolute error and coverage: The Bayesian procedure
results in higher coverage rates, but less wide intervals, that is, in more precise es-
timates than the ML procedure for φ. Note that the performance of the ML and
Bayesian ARMA(1,1) models only near the performance of the AR(1)+WN models
as sample size has increased to 500 observations.5

Conclusion
Overall, the Bayesian AR(1)+WN model performs better than the other five proce-
dures we considered. We expected that the ARMA(1,1) models may outperform the
AR(1)+WN models in parameter recovery, because we expected this model to have
less trouble with identification and convergence. Interestingly, although the Bayesian
ARMA(1,1) model seems to converge more easily than the Bayesian AR(1)+WN
model, the AR(1)+WN model still outperforms the ARMA(1,1) model in terms of
parameter recovery, even when φ is close or equal to zero. The ML AR(1)+WN
model and ARMA(1,1) models are both unstable for small sample sizes (n=100),
frequently resulting in Heywood cases for the innovation and measurement error vari-
ances. However, the ML AR(1)+WN model still performs relatively well for estimat-
ing φ compared to the AR(1) models. For a smaller sample size of 100 observations
the Bayesian procedure outperforms the frequentist ML procedure. When sample
sizes are larger, the discrepancies between the Bayesian and frequentist AR(1)+WN
model decrease, although the confidence intervals for the variance parameters in the
frequentist procedures are consistently too narrow. As expected, the AR(1) models
severely underestimate |φ|, which is reflected in large bias and absolute errors, and
low coverage rates. Finally, we note that although the AR(1)+WN models perform
considerably better than the AR(1) models, some bias in φ still remains, because the
innovations and measurement errors cannot be perfectly discerned from each other.
Generally, the more measurement error and the lower |φ|, the more the estimate of
|φ| will be biased, even when measurement error is taken into account by the model.
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Figure 4.4: Coverage rates, absolute errors, and bias for the parameter estimates
for the frequentist and Bayesian AR(1), ARMA(1,1), and AR(1)+WN models across
sample sizes.
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4.4 Empirical Application on Mood Data
To further illustrate the AR(1), ARMA(1,1), and AR(1)+WN model discussed above,
we make use of time series data that was collected from female first year social science
students at Utrecht University in 2007. Eleven women kept a daily electronic diary for
approximately three months (across participants the minimum was 90 observations,
the maximum 107 observations), in which they filled out how they felt that day on a
scale from 1 to 100 - 1 meaning worst ever, and 100 meaning best ever. Three of the
eleven women were excluded from the current study because of non-compliance, issues
with the electronic devices, and one woman had very little variation in her scores. For
the remaining women the average number of missing observations was approximately
nine. Values for these missing observations will be automatically imputed as part of
the estimation procedure, based on the specified model.

We are interested in finding out to what extent current mood influences mood
the following day. As such, we are interested in fitting an AR(1) model, and specif-
ically in the AR effect reflected in parameter φ. However, the mood of each person
is not likely to be perfectly measured. For instance, it is possible that participants
accidentally tapped the wrong score when using the electronic diary stylus to fill in
the questionnaire. Furthermore, the participants evaluate their mood for the day on
average, such that momentary influences around the time of filling out the diary may
have colored their evaluation of the whole day (i.e., a form of retrospective bias). In
fact, anything that is not explicitly measured and modeled, and of which the influence
does not carry-over to the next day, can be considered measurement error. As such, it
seems likely that there is at least some measurement error present in the data. There-
fore, we fit the AR(1)+WN model to take this measurement error into account, and
for illustrative purposes compare it to an ARMA(1,1) model, and an AR(1) model
(which disregards measurement error). We make use of a Bayesian modeling proce-
dure, given that the results from our simulation study indicate that the parameter
recovery performance of the Bayesian procedure is better and more stable for this
number of repeated measures. The data and code used for fitting the models are
available as supplementary materials with the online publication (Schuurman et al.,
2015) or at www.nkschuurman.com. The priors we use for the models are aimed to
be uninformative, specifically: A uniform(0, 500) prior distribution for all variance
parameters, a uniform(−1, 1) prior distribution for φ and θ, and a normal(0, .001)

prior distribution for µ (specified with a precision rather than a variance).
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We evaluated the convergence of the AR(1), ARMA(1,1), and AR(1)+WN model
by visually inspecting the mixing of the three chains, the Gelman Rubin statistic, and
the autocorrelations. For the AR(1) and AR(1)+WN model the chains mixed well,
the Gelman Rubin statistic was approximately equal to one, and the autocorrelations
for the parameters decreased within 50 to 100 lags across all participants. For the
ARMA(1,1) model this was the case, except for participants 3 and 8.6 We included
the ARMA(1,1) estimates for these participants in Table 4.1, but these should be
interpreted with caution.

The parameter estimates of the mean µ, AR parameter φ, innovation variance
σ2
ε , measurement error variance σ2

ω, and moving average parameter θ for each person
are presented in Table 4.1. For most of the eight individuals, the baseline mood is
estimated to be around 60-70, which indicates that on average they are in moderately
good spirits. Further, we see that across models and persons, the AR parameters are
either estimated to be positive, or nearly zero. Participant 8 has an AR effect near
zero in both the AR(1) model and the AR(1)+WN model, so that for her, everyday
seems to be a ‘new day’: How she felt the previous day does not predict her overall
mood today. On the other hand, for participants 2, 4, 5, and 6, the credible intervals
for φ include only positive values across models: how they feel today depends in part
on how they felt yesterday. For the remaining individuals, 1, 3, and 7, the point
estimates for φ are also positive, however, the credible intervals including negative
and positive values for φ.

When we compare the results for the AR(1) model and the AR(1)+WN model,
we find that for all participants except participant 8, the AR parameter is estimated
to be higher in the AR(1)+WN model: Because the AR(1) model does not take mea-
surement error into account, the AR parameter is estimated to be lower than for the
AR(1)+WN model. The extent to which the estimate for φ differs across the AR(1)
and AR(1)+WN model, differs from person to person. The larger the estimated
measurement error variance relative to the total variance, the larger the difference
between the estimated φ in the AR(1) and AR(1)+WN model. For instance, for
participants 4 and 6 their estimates of φ in the AR(1) model are quite similar to each
other (i.e., .21 and .27), but because the measurement error variance for participant

6For participants 3 and 8 we found that the estimates for φ and θ in the ARMA(1,1) model were
very dispersed, varying across the entire range of -1 to 1, switching from negative to positive values.
A density plot of their samples revealed a bimodal distribution for φ and θ (with one peak around
negative values, and one for positive values): This seems to be some form of label switching, which
is indicative of (empirical) under–identification of the ARMA(1,1) model for these two participants.
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4 is estimated to be much larger than that for participant 6 (i.e., 70 versus 10), her
φ in the AR(1)+WN model φ is also estimated to be larger (i.e., .69 vs. .33).

Note that the ARMA(1,1) and AR(1)+WN model should not necessarily give the
same results: Although the AR(1)+WNmodel is equivalent to the ARMA(1,1) model,
the reverse is not the case. In other words, it is possible that the ARMA(1,1) model
captures a different pattern of variation in the data than the AR(1)+WN model, giv-
ing different results. However, when we compare the results for the ARMA(1,1) and
AR(1)+WN model, we do find fairly similar results for most of the participants (with
exception of participants 3 and 8, who had convergence issues for the ARMA(1,1)
model), especially for participants 2 and 5. However, a clearly notable difference is
that the ARMA(1,1) model has less precise estimates than the AR(1)+WN model,
as can be seen from the relatively wide credible intervals for the φ parameters in
Table 4.1.

Finally, we note that when we calculate the estimated proportion of measurement
error variance relative to the total variance based on the AR(1)+WN model for each
participant, we find a range of .34 to .50 (i.e., .36, .47, .48, .50, .46, .42, .46, and .34
respectively). This implies that across these eight women, between one third to half
of the observed variance is estimated to be due to measurement error.

4.5 Discussion
In this paper we demonstrate that it is important to take measurement error into ac-
count in AR modeling. We illustrated the consequences of disregarding measurement
error present in the data both in a simulation study, and an empirical example based
on a replicated time series design. Further, we compared the parameter recovery
performance for the Bayesian and frequentist AR(1)+WN and ARMA(1,1) models
that account for measurement error. Ignoring measurement error present in the data
is known to result in biased estimates toward zero of the AR effects in AR(1) models,
with the extent of the bias depending on the proportion of measurement error vari-
ance and the size of φ (Staudenmayer & Buonaccorsi, 2005). Our simulations also
demonstrated this bias, and showed large absolute errors and importantly, very poor
coverage rates for the AR effect when measurement error is disregarded, regardless
of sample size. For research in psychology, for which it is very difficult or perhaps
impossible to measure error-free, it seems imperative to consider this potentially large
source of variance in our (AR) time series models. In our empirical application for
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instance, between one third to half of the variance in the data is estimated to be due
to measurement error.

Comparing the parameter recovery for the models that incorporate measurement
error - the Bayesian and ML ARMA(1,1) model and AR(1)+WN model - revealed
that the Bayesian AR(1)+WN model performed best in terms of parameter recovery.
It proved relatively tricky to properly estimate the ML ARMA(1,1) and AR(1)+WN
model, even for larger sample sizes of 500 repeated measures: These models are prone
to Heywood cases in the measurement error variance and to a lesser extent in the
innovation variance. This was especially common (up to 55% of the replications)
when AR effect was closer to zero, or the amount of measurement error was large.
In practice, hitting such a lower bound for the measurement error variance may er-
roneously suggest to researchers that the model is overly complex, and that there is
no notable measurement error present in the data, which is problematic.

Note that while 100 observations may be small for estimation purposes, it is quite
a large number of repeated measures to collect in practice. In psychological research
using intensive longitudinal data, we usually see no more than about 120 observations
per person (to illustrate, 120 observations would arise from about 4 months of daily
measurements, or for more intense two weeks regime, measuring someone 9 times
a day). Fortunately, the Bayesian AR(1)+WN model provides a good option even
for such small sample sizes. Still, the models that incorporate measurement error
need more observations to give as precise estimates as the basic AR(1) model, which
has relatively small credible/confidence intervals (although this is precision around a
wrong estimate when there actually is measurement error present in the data). There-
fore, it seems good practice to take potential measurement error into account in the
design of the study, thus collecting more repeated measures in order to compensate
for any potential measurement error that has to be filtered out later. Expectedly,
and as is shown in the simulation study, this becomes especially important when the
proportion of measurement error variance is relatively large, or when the AR effects
are (expected to be) relatively small. One option to improve the estimates may be
to use (weakly) informative prior specifications based on previous research, or expert
knowledge. However, prior information on the model parameters may currently prove
difficult to obtain, given that studies that estimate measurement error or take it into
account are very rare, and that the model parameters differ from person to person,
and from variable to variable. Another option could be to extend the AR+WN model
to a multilevel model, assuming a common distribution for the parameters of multiple
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individuals, and allowing the model parameters to vary across persons. By making
use of this hierarchical structure that can take similarities between persons into ac-
count, a relatively low number of time points may be compensated for to some extent
by a large number of participants, which may be easier to obtain (for examples of the
multilevel AR(1) model, see De Haan-Rietdijk et al., 2014; Lodewyckx et al., 2011;
Rovine & Walls, 2005).

The reader may wonder how one may determine if there is, or isn’t, measure-
ment error present in the data. One way to do this is to use information criteria
to compare the AR(1) model with the ARMA(1,1) or AR(1)+WN model. Although
a thorough study of model selection is beyond the scope of the current paper, we
provide some preliminary evaluations of the model selection performance of the AIC,
BIC, and DIC, in Appendix 4.B. We find that these criteria frequently incorrectly
selects the simpler AR(1) model over the (true) AR(1)+WN model and ARMA(1,1)
model, so that these criteria seem inappropriate for selecting between the AR(1)
and the ARMA(1,1) model or the AR(1)+WN model in this context. Selecting be-
tween an AR(1)+WN model and an ARMA(1,1) model will also be problematic using
standard information criteria, because the AR(1)+WN model may be considered a
restricted (simpler) version of the ARMA(1,1) model (see Equation 4.8), while they
have the same number of parameters, and thus the same penalty for complexity for
many fit criteria. In that sense, when they have equal fit, the AR(1)+WN model may
be preferred because it is the simpler model, but if this is not the case, it becomes
more complicated to choose between the two. Directions for future research therefore
are to establish information criteria for selecting between the AR(1)+WN model and
the AR(1) and ARMA(1,1) model, perhaps using information criteria or Bayes fac-
tors developed for restricted parameters (c.f., Dudley & Haughton, 1997; Klugkist &
Hoijtink, 2007; Kuiper, Hoijtink, & Silvapulle, 2012). Although model selection using
information criteria may prove complicated, it is important to note that the estimates
for φ in the AR(1)+WN models seem to be reasonably accurate, even when there is
no measurement error present in the data. Combined with the intuition that most
psychological measurements will contain at least some measurement error, fitting the
model that incorporates measurement error seems a relatively ‘safe bet.’

Another interesting topic for future work is how measurement error affects esti-
mates of the effects variables have on each other over time, that is, the cross-lagged
effects. This may be especially relevant for individual network models of psycholog-
ical processes (Schmittmann et al., 2013). For example, in a network model for an
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individual diagnosed with a depressive disorder, the depression symptoms constitute
the nodes in the network, and the AR and cross-lagged effects between the symptoms
constitute the connections in this network (Borsboom & Cramer, 2013; Bringmann
et al., 2013). It would be interesting to investigate to what extent measurement error
in each variable affects the resulting network.

Finally, while incorporating measurement error into time series models is likely
to decrease distortions as a result of ignoring measurement error to the parameter
estimates, we emphasize that it is not a cure-all. Even in the models that incorporate
measurement errors, the AR parameters may be slightly under- or over-estimated,
because measurement error variance and innovation variance are not completely dis-
cernible from each other. The more measurement error present in the data, the more
difficult it will be to pick up any effects. Therefore, there is still a strong argu-
ment for preventing measurement errors in the first place. One option to potentially
improve the measurements is to use multiple indicators to measure the relevant con-
struct. However, in a intensive longitudinal data setting, using multiple items for
each variable would strongly increase the burden on the participant, who would have
to repeatedly fill out all these questions. What remains are classical ways of pre-
venting measurement error: Improving the respective measurement instruments, the
circumstances under which participants are measured, and explicitly measuring and
modeling potential sources of measurement error. Still, any remaining measurement
error that could not be prevented, should be taken into account in the respective
model. That is, prevention is better than cure - but a cure is better than ignoring
the issue.
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Appendix 4.A Heywood Cases
In Table 4.2 we provide the proportions of data sets for which the ML AR(1)+WN
and ARMA(1,1) procedure failed, and the proportion of data sets for which σω and σε
were estimated at the lower bound, or to be negative (a Heywood case). In the main
text we present results were the data sets for which the procedure failed (Prop failed
in Table 4.2) are excluded for the ML AR(1)+WN and ARMA(1,1) model (not for the
remaining models), but data sets with Heywood cases are included. In Figure 4.A.1,
4.A.2 and 4.A.3 we provide results with both the data sets for which the procedure
failed, and the data sets with Heywood cases are excluded for the ML AR(1)+WN
and ARMA(1,1) model (not for the remaining models). As can be seen from these
figures, the results for the frequentist AR(1)+WN and ARMA(1,1) are more similar
to the results of the Bayesian procedures. The Bayesian AR(1)+WN model overall
outperforms the remaining Bayesian and frequentist models.



Table 4.2: Proportion of data sets for which the state space AR+WN and ARMA
models would not initialize or had negative standard errors (Prop failed), had Hey-
wood cases or hit the lower bound in the estimates of σε (Prop Heywood or lower
bound σε) and σω (Prop Heywood or lower bound σω), across different proportions
of measurement error, different values for φ, and different sample sizes.

σ2
ε : 0 .1 .2 .3 .5 .7 1 2 4 12

AR+WN
Prop failed .041 .012 .009 .011 .023 .030 .060 .084 .183 .256
Prop lower bound σω .544 .456 .361 .370 .324 .288 .296 .358 .399 .355
Prop lower bound σε .002 .003 .006 .005 .020 .024 .038 .065 .075 .087
ARMA
Prop Failed .179 .030 .013 .005 .020 .040 .054 .088 .106 .112
Prop Heywood σω .511 .462 .307 .328 .209 .145 .129 .078 .044 .042
Prop Heywood σε .024 .068 .136 .147 .256 .298 .338 .445 .499 0.537

φ: -0.75 -0.5 -0.25 0 0.25 0.5 0.75

AR+WN
Prop failed .002 .024 .045 .122 .066 .011 .004
Prop lower bound σω .089 .362 .479 .430 .471 .321 .104
Prop lower bound σε 0 .002 .035 .115 .051 .003 .001
ARMA
Prop failed .002 .008 .062 .104 .042 .006 .001
Prop Heywood σω .070 .229 .140 .049 .164 .263 .131
Prop Heywood σε .001 .066 .266 .544 .457 .166 .017

N: 100 200 500

AR+WN
Prop failed .031 0 0
Prop lower bound σω .293 .219 .102
Prop lower bound σε .020 0 0
ARMA
Prop failed .016 .005 0
Prop Heywood σω .218 .218 .112
Prop Heywood σε .228 .084 .016
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Figure 4.A.1: Coverage rates, bias, and absolute errors for the parameter estimates
for the frequentist State-space and Bayesian, AR(1), ARMA(1,1), and AR(1)+WN
models across different proportions of measurement error variance to the total vari-
ance. Data sets with Heywood cases for the frequentist ARMA(1,1) and AR(1)+WN
models are excluded here.
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Figure 4.A.2: Coverage rates, bias, and absolute errors of the parameter estimates for
the frequentist ML State-space and Bayesian AR(1), ARMA(1,1), and AR(1)+WN
models across different values for φ. Data sets with Heywood cases for the frequentist
ARMA(1,1) and AR(1)+WN models are excluded here.
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Figure 4.A.3: Coverage rates, bias and absolute errors of the parameter estimates for
the frequentist ML and Bayesian AR(1), ARMA(1,1), and AR(1)+WN models across
differentsample sizes. Data sets with Heywood cases for the frequentist ARMA(1,1)
and AR(1)+WN models are excluded here.
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Appendix 4.B Information Criteria Results
While model selection is beyond the scope of this work, we provide some preliminary
evaluations here of the model selection performance of the AIC and BIC for the fre-
quentist estimation procedures, and the DIC for the Bayesian estimation procedures.
In Figure 4.B the average information criteria, as well as the proportion of the 1000
replications for each of the information criteria that the ARMA model was selected
over the AR(1) model, and the AR(1)+WN model was selected over the AR(1) model
are presented. Based on the AIC, BIC, and DIC, the AR(1) model is selected in fa-
vor of the AR(1)+WN and ARMA model for the large majority of replications, even
while the latter are the true models. Although the rate the right model is selected
improves as sample size increase, for 500 observations the percentage of data sets for
which the AR(1)+WN model is correctly selected is still only 50% for the AIC, 40%
for the BIC, and 32% for the DIC. As such, the AIC, BIC and DIC are not appro-
priate for selecting between an AR(1) model and an AR(1)+WN model. The reason
for this may be that the measurement error variance and innovation variance are not
completely distinct from each other - this depends on the value of φ, the higher |φ|
the better the can be distinguished from each other. This is supported by the results
presented in the middle panels of Figure 4.B, which show that as |φ| increases the
proportion of correctly selected models increases.
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5 Measurement Error and Person-Specific
Reliabilities in Multilevel Autoregressive Modeling

by N.K. Schuurman, J.H. Houtveen, and E.L. Hamaker

In psychology there is an increased attention for modeling within-person, dynami-
cal processes, using intensive longitudinal data. Intensive longitudinal data consist
of many repeated measures, say twenty or more, typically for multiple individuals.
These kinds of data are becoming readily available to psychological researchers due to
the development of personal devices such as smart-phones. As a result, psychological
scientists are reaching for new modeling techniques that get the most out of these
rich, complex data.
A promising approach for analyzing intensive longitudinal data is multilevel vec-

tor autoregressive (VAR) modeling. These multilevel models are based on classical
VAR models, which are fitted for single subjects (e.g., a person, dyad, country, stock
prices and so on) for which many repeated measures were taken. In VAR modeling,
multiple variables are regressed on themselves and each other at a previous measure-
ment occasion. This makes it possible to investigate how current values of a variable
affect future values of that variable - the autoregressive effect. The autoregressive
effect reflects the resistance to change, or inertia, of the psychological process (Suls
et al., 1998). Given that the concept of inertia is of interest for many psychological
processes (Goodwin, 1971), such as those of affect (Kuppens et al., 2010; Suls et al.,
1998), attention (Kirkham et al., 2003), mood disorders (Koval et al., 2012; Kuppens
et al., 2010), job performance (Kunze, Boehm, & Bruch, 2013), shopping behavior
(van Putten, Zeelenberg, & van Dijk, 2013), and the revision of impressions, opinions
and attitudes (Geller & Pitz, 1968; Goodwin, 1971), to be able to estimate the autore-
gressive effect is an attractive quality of VAR modeling. In addition, VAR modeling
makes it possible to investigate potential reciprocal effects between different variables
over time, for example: Does stress affect future feelings of depression, do feelings of
depression affect future stress, or are both the case?

Author contributions: Schuurman designed the study, performed the analyses, processed and
interpreted the results, and wrote the paper. Hamaker proposed the topic for the study (accounting
for measurement error, reliability), and provided feedback on the written work.

139



5. Measurement Error and Person-Specific Reliabilities in
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By extending these models to a multilevel model, it is possible to fit these mod-
els for multiple individuals simultaneously, taking into account that people may be
similar to some extent, and making it much easier to generalize results to a larger
population than for classical n=1 VAR models. At the same time, the multilevel
model allows for the model parameters to vary across individuals, so that differences
between individuals are taken into account. Currently, both n=1 time series model-
ing, and multilevel autoregressive modeling are finding more and more applications in
psychology, especially in the area of affect regulation and dyadic interactions (Bring-
mann et al., 2013; Cohn & Tronick, 1989; De Haan-Rietdijk et al., 2014; Kuppens
et al., 2010; Lodewyckx et al., 2011; Madhyastha et al., 2011; Moberly & Watkins,
2008; Nezlek & Allen, 2006; Nezlek & Gable, 2001; Rovine & Walls, 2005; Snippe et
al., 2015; Suls et al., 1998; van der Krieke et al., 2015; Wang et al., 2012).

In most multilevel autoregressive modeling applications in psychology it is implic-
itly assumed that the observed variables are free of measurement errors. However, it
is unlikely that measurements of psychological constructs will be perfectly reliable,
because most of these constructs are not directly observable and measuring them is
complex. In line with this notion, many cross-sectional psychological studies take
the reliability of measurements into account by measuring a single construct with
multiple exchangeable items, and modeling this measurement structure with latent
variable models, such as factor- or IRT-models (Ferrer et al., 2012; Lodewyckx et
al., 2011; Oravecz & Tuerlinckx, 2011). However, it is relatively complex to fit these
models, especially in the multilevel context, and they require a lot of data to fit
properly. Furthermore, single-item measures or single variables often play a central
role in longitudinal studies (Lucas & Donnellan, 2012); Using multiple items for each
construct of interest severely increases the burden on the participants, that may have
to fill out these items on a daily or even hourly basis. Moreover, latent variable
models may be considered inappropriate theoretically, because the items cannot be
considered exchangeable, for instance, when each item is considered to play a unique
role within a network of items (cf., Borsboom & Cramer, 2013; Borsboom et al., 2003;
Schmittmann et al., 2013). Regardless of these reasons however, ignoring the reliabil-
ity of measurements is problematic, because it leads to substantially biased regression
parameters. For example, it has been shown that for n=1 univariate AR(1) models
the regression parameters will be biased towards zero (Schuurman et al., 2015; Stau-
denmayer & Buonaccorsi, 2005).

Therefore, we introduce a multilevel VAR model in the current paper that takes
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measurement errors into account. In this model, we allow the means, regression pa-
rameters, variances, and covariances to vary across persons, by making use of Bayesian
modeling techniques. As a result, it is possible to estimate the reliability of repeated
measures for each individual, which allows us to look at the concept of reliability in a
new light. While it has occasionally been acknowledged in psychological studies that
the reliability of measurements may be different for each person (e.g., as early as 1968
by Lord and Novick), it is generally not accounted for in psychological studies. By
incorporating measurement error into the multilevel VAR model, we can estimate and
take into account the reliability for the within-person measurements of each individ-
ual, in addition to the reliability of the measurements with regard to between-person
differences.

In the remainder, we will first introduce the concept of reliability as defined in
classical test theory, and how reliability is usually evaluated in longitudinal research.
After that, we introduce the extended multilevel autoregressive model that takes
measurement error into account, we discuss the accompanying reliability estimates,
and we discuss the consequences of disregarding measurement error in the data. We
illustrate the model, person-specific reliabilities estimates, and consequences of dis-
regarding measurement error using an empirical example on the effects of men and
women’s general positive affect, and their positive affect specifically concerning their
romantic relationship. Finally, we end with a discussion in which we consider the
concept of reliability and measurement error further in light of our findings.

5.1 Measurement Errors and Reliability
Reliability concerns the consistency of measurements. That is, in the hypothetical
situation that we would replicate our measurements of a certain quality of interest
while the quality of interest has not changed, perfectly reliable measurements would
give the same result for each replication. In contrast, measurements that are unreli-
able can result in different scores for each replication. The unreliable part of a score
is due to random measurement errors,1 while the reliable part is what is consistent
across replications, and includes the true value of the actual quality of interest and
any consistent errors in the measurements (e.g., consistently measuring a person as
2 pounds heavier than he or she really is). As such, reliable measurements are not
necessarily valid, but obtaining reliable measurements is a precondition for obtaining

1Throughout the text we will refer to ‘random measurement errors’ as measurement errors.
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valid measurements.
Although we are primarily interested in reliability in the context of the autoregres-

sive modeling of within-person differences, the roots of reliability lie in cross-sectional
studies of between-person differences. Therefore, in this section we will start by dis-
cussing the definition of reliability from classical test theory, in which reliability was
first defined, and reliability estimates in the context of cross-sectional studies. Af-
ter that, we will discuss how reliability is currently handled within the context of
longitudinal (autoregressive modeling) studies of within-person differences.

Reliability in Classical Test Theory
Reliability was first defined in the context of classical test theory. As stated previ-
ously, reliability concerns the consistency of measurements across replications. A key
issue is therefore how to define these ‘replications’. Lord and Novick (1968, p. 29;
citing Lazarsfeld, 1959) describe the following thought experiment to illustrate what
is meant with replications:

Suppose we ask an individual, Mr. Brown, repeatedly whether he is
in favor of the United Nations; suppose further that after each question
we “wash his brains” and ask him the same question again. Because Mr.
Brown is not certain as to how he feels about the United Nations, he will
sometimes give a favorable and sometimes an unfavorable answer. Having
gone through this procedure many times, we then compute the proportion
of times Mr. Brown was in favor of the United Nations [...].

In this example, the proportion of times Mr. Brown was in favor of the United
Nations is defined as his “true score”, the reliable part of the replicated measurements.
That is, in classical test theory the true score θi of a specific person i is defined as
the expected score over an infinite number of independent replications, such that
θi = E

r
[yi], where yri is the observed score for a certain variable for a specific person

i at replication r. The deviations around the true score across the replications are
defined as measurement errors ωri, such that yri = θi + ωri.

Although the true score and measurement errors in classical test theory are de-
fined on the level of a specific individual, reliability is defined for the measurements
of a specific population of individuals (cf., Lord & Novick, 1968; Mellenbergh, 1996).
The focus lies on the distribution of the observed and true scores across all individuals
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in the population. The expected value of the observed scores across the individuals
in the population is equal to the expected value of the true scores of these individ-
uals, that is, E

i
[y] = E

i
[θ]. The variance of the observed scores V (y) is the sum of

the variance of the true scores τ2 and the measurement error variance σ2
ω, that is,

V (y) = τ2 + σ2
ω. The reliability rel(y) of the set of measurements is then defined as

the proportion of variance in the observed scores that is due to the variance in the
true scores, rel(y) = τ2/V (y) = 1 − σ2

ω/V (y). As such, the maximum reliability is
equal to 1, indicating that variable y is measured without error in the population,
and the minimum reliability is 0, indicating that the measurements consist of only
measurement error in the population.

In practice, the true score(s) for any individual are of course unknown, such that
in order to be able to take the reliability of our measurements into account, the
true scores (or inversely, the measurement errors) have to be estimated from the
data. In the following, we fill first discuss briefly how this is done in the context of
cross-sectional studies. After that, we will discuss how reliability is currently handled
within the context of longitudinal (autoregressive modeling) studies of within-person
differences.

Reliability for Cross-sectional Studies
In psychological cross-sectional studies, which focus on interindividual differences, one
usually encounters one of two approaches for dealing with measurement errors in the
data. In the first approach, the reliability of the measurements is estimated a priori
- before doing any other analyses on the measurements. The estimated reliability is
then judged to be either sufficient or insufficient for further usage of the measurements
to answer a particular research question. The second approach is to account for the
reliability of the measurements during the statistical analyses, by explicitly modeling
the measurement errors. This second approach is generally preferable, because in
this way the results of the analyses are corrected for the measurement errors and an
estimate of the reliability of the measurements is obtained. However, the main idea
behind both approaches is the same: Find out what part of the observed scores re-
mains constant across replications (i.e., what part is due to the true scores), and what
part fluctuates randomly across replications (i.e., what part is due to measurement
errors).

In order to achieve this, it is necessary to obtain replicate measurements for the
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construct of interest, specifically, replications of the same kind as described in the
thought experiment cited by Lord and Novick (1968, p. 29; citing Lazarsfeld, 1959).
Obtaining such replications is not an easy feat, and the different reliability measures
available are in general based on different ideas on how to obtain these replications
(Cronbach, 1947). The most well known methods for estimating the reliability of
measurements are parallel-test reliability methods, internal consistency methods, and
test-retest reliability methods. Parallel-test reliability is based on the construction
and administration of two or more ‘parallel tests’ to each individual, that is, tests
that are constructed to be equivalent (cf., Borsboom, 2003; Cronbach, 1947, 1990;
Lord & Novick, 1968). Parallel test reliability seems to be mostly used for a priori
estimates of reliability, rather than for modeling reliability. Internal consistency reli-
ability is used for composite scores, and circumvents the construction of parallel tests
by treating the components from which the scores are composed as the replications
of the construct under scrutiny (cf., Borsboom, 2003; Cronbach, 1947, 1990; Lord &
Novick, 1968). For instance, for a test-score that consist of multiple items, each item
may be considered a replicate measurement of the construct, such that the correla-
tions between these items may be used as an indicator of reliability. A well-known
estimator of reliability in this category is Cronbach’s alpha. It is also the idea behind
most measurement models that are used to account for measurement error during
analysis, such as item response theory and factor models: In these models, common
variation between the items is explained by a latent variable (i.e., the true score
variable), and what is uncommon ends up in the residual terms for the items (i.e.,
the measurement error; Mellenbergh, 1996). Finally, test-retest reliability is based
on the repeated administration of the same test, that is, each individual fills out
the same test multiple times (cf., Borsboom, 2003; Cronbach, 1947; Lord & Novick,
1968). The test-retest reliability is then equal to the squared correlation between the
measurements obtained at two occasions.

Reliability for Longitudinal Studies
One way to obtain reliability estimates for studies that focus on intraindividual differ-
ences, consists of simply generalizing reliability estimates obtained for inter-individual
differences to the within-person context: For certain questionnaires used in longitudi-
nal studies, reliability estimates may be available based on results from cross-sectional
studies. It is important to note however that it has been widely established in psychol-
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ogy that results based on between-person differences do not automatically generalize
to within-person differences, such that reliability estimates from cross-sectional stud-
ies cannot be simply generalized to (intensive) longitudinal measurements (Adolf et
al., 2014; Borsboom et al., 2003; Hamaker, 2012; Kievit et al., 2011; Molenaar, 2004;
Nezlek & Gable, 2001). Furthermore, we may not only wish to obtain an estimate of
the reliability of our repeated measures, but also to correct our parameter estimates
for this reliability. Therefore, we need to estimate and account for the reliability of
our repeated measures within our longitudinal model.

Test-retest reliability may seem a natural way to account for reliability in the con-
text of longitudinal studies, given that in such studies repeated measures are available
by definition, and that the variables of interest often have only a single indicator, thus
precluding the use of parallel tests or internal consistency methods. Classical test-
rest reliability however is only appropriate when the true score remains stable across
replications - any within-person variation across time is considered to be a result of
measurement error - and therefore is not a valid option for (intensive) longitudinal
data (Hertzog & Nesselroade, 1987).

More specifically, for longitudinal studies it is insufficient to only separate the
variance of the observed scores into variance due to between-person differences and
variance due to within-person differences. The reason for this is that the within-
person variance will consist of variation in true scores over time, and variation in
measurement errors. As such, it is necessary to establish not only what part of the
variance in the longitudinal measurements is due to systematic between-person dif-
ferences, but also what part of the within-person differences is due to systematic
within-person dynamic processes and what part of the within-person differences is
due to (within-person) measurement error.

The additional step of separating the measurement error variance from within-
person variance due to a systematic dynamic process, has gotten attention in the
literature on autoregressive modeling in the context of panel data. Panel data consist
of a few repeated measures (say between 2 to 5 measurement occasions) for many par-
ticipants, and are usually analyzed by means of structural equation modeling (SEM)
techniques. In certain panel data models, measurement error is separated from sys-
tematic within-person differences that are the result of an autoregressive process by
using multiple indicators in a factor structure (e.g., Edmondson et al., 2013). The
Trait-State-Error (TSE) model suggested by Kenny and Zautra (1995), also accounts
for the reliability of single indicator variables, and can be seen as an extension of
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the Quasi-Simplex model (Jöreskog, 1970). In the TSE model, systematic between-
person differences (‘traits’), are separated from systematic within-person differences
that are the result of the autoregressive process (‘states’), and measurement errors.

A downside of the TSE model is - as is the case for many panel data models
- that the model ignores potential individual differences in the dynamic processes:
It seems quite unlikely that these dynamic processes are the same for each person
(Kenny & Zautra, 1995; Molenaar, 2004). Furthermore, it also seems quite unlikely
that the measurement error variances are the same for each person (cf., Schuurman
et al., 2015). In fact, Lord and Novick (1968, p. 32) already mentioned this in their
discussion of classical test theory, stating

...Thus we allow the possibilities that some persons’ responses are in-
herently more consistent than those of others, and that we are able to
measure some persons’ responses more accurately than others.

An alternative to the TSE model, which does take into account that the processes
for individuals may differ from each other, is n=1 (autoregressive) time series mod-
eling, in which models are fitted for each person separately. The advantage of the
this approach is that the model can be tailored to each person, so that individual
differences in dynamics are taken into account, and that there is no between-person
variance to filter out. Although the time series models used in psychological practice
generally do not take measurement error into account, it is possible to do so (cf.,
Schuurman et al., 2015). Downsides of the n=1 approach are however that you need
relatively many repeated measures per person to fit these models, and that it is hard
to generalize the results for specific individual to a larger population.

Fortunately, it is possible to extend the n=1 models, including those that take
measurement error into account, to a multilevel setting (or similarly, extend a mul-
tilevel VAR model so it incorporates measurement error, or extend the TSE model
to incorporate random effects for all parameters of the within-person process). The
multilevel approach allows us to fit the model for all individuals at once, and evalu-
ate to what extent the within-person process differ across persons, making it easier
to generalize results to the population of individuals. Furthermore, by allowing the
measurement error variance and the systematic dynamic process to be different for
each person, we take into account that we can measure some persons’ responses more
accurately than others as mentioned by Lord and Novick, such that we can obtain
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estimates of the reliability of the measurements for each individual. We introduce the
extended multilevel VAR(1) model in the following section.

5.2 Accounting for Measurement Errors in the Multilevel VAR(1)
Model

In the following, we will introduce the interpretation and specification of the extended
multilevel VAR(1) model, which we refer to as the VAR(1)+White Noise (VAR+WN)
model. The multilevel VAR(1)+WN model consists of two levels. At level 1, the
within-person process for each individual is specified, and at level 2, the between-
person differences in this process across individuals is specified. We will start by
discussing the model at level 1. We will focus here on the specification of a bivariate
model. This model can easily be extended to models that include more dependent
variables and predictors, if the innovations and measurement error (co)variances are
fixed to be the same across persons, or if the covariances are disregarded while the
variances are allowed to vary across persons. When the (co)variances are allowed to
vary across persons, this model is theoretically still easily extended to include more
variables, but currently it is not possible, to our knowledge, to fit these models in the
available software (this is discussed further at the end of this section).

Level 1 of the VAR(1)+WN Model
The level 1 model is specified with two equations, the measurement equation, and
the transition equation (using a state space model representation, cf., Harvey, 1989;
Kim & Nelson, 1999). In the measurement equation the observed scores for person i
at measurement occasion t contained in 2×1 vector yti are separated into three 2×1

vectors, that is, [
y1ti

y2ti

]
=

[
µ1i

µ2i

]
+

[
ỹ1ti

ỹ2ti

]
+

[
ω1ti

ω2ti

]
(5.1)

[
ω1ti

ω2ti

]
∼MvN

{[
0

0

]
,

[
σ2
ω11i

σω12i σ2
ω22i

]}
. (5.2)

The vector µi contains the person-specific means µ1i and µ2i for each variable,
for individual i. These means are stable across the repeated measurements for each
individual, and therefore reflect a baseline, or ‘trait’ part, for each persons’ scores.

147



5. Measurement Error and Person-Specific Reliabilities in
Multilevel Autoregressive Modeling

For example, some persons are on average more extroverted than others. The differ-
ences between the trait scores µ1i and µ2i across persons, reflect systematic, trait-like,
between-person differences.

The vectors ỹti and ωti together reflect the within-person fluctuations around the
person-specific trait scores: While some persons are on average more extroverted than
others, a specific person i may display more or less extroverted behavior across differ-
ent occasions t. The terms ω1ti and ω2ti capture the measurement errors for person i
at occasion t, and are assumed to be serially uncorrelated, and multivariate normally
distributed with means equal to zero, and 2 × 2 covariance matrix Σωi. Variables
with such a distribution are often called (Gaussian) ‘white noise’ in the time series
literature, hence the model name VAR+WN.

The terms ỹ1ti and ỹ2ti reflect the deviations from the mean of each variable for
person i at occasion t that are due to a systematic dynamic (autoregressive) pro-
cess. The autoregressive process for ỹ1ti and ỹ2ti is further specified in the transition
equation (level 1 continued) as[

ỹ1ti

ỹ2ti

]
=

[
φ11i φ12,i

φ21,i φ22i

][
ỹ1t−1i

ỹ2t−1i

]
+

[
ε1ti

ε2ti

]
(5.3)

[
ε1ti

ε2ti

]
∼MvN

{[
0

0

]
,

[
σ2
11i

σ12i σ2
22i

]}
. (5.4)

That is, the variables ỹ1ti and ỹ2ti depend on themselves and each other at the
previous measurement occasion, such that they constitute a VAR(1) process. The
regression coefficients of the VAR(1) process are gathered in 2 × 2 matrix Φi. The
relationship between the variables and themselves at the previous measurement occa-
sion for person i is reflected in the autoregressive coefficients φ11i for variable ỹ1i, and
φ22i for variable ỹ2i. Positive autoregressive coefficients indicate that the score of the
current measurement occasion will be similar to that of the previous measurement
occasion - the larger the autoregressive coefficient the more similar the scores will be.
As such, autoregressive parameters reflect the resistance to change in a process, which
is also referred to as inertia (Kuppens et al., 2010; Suls et al., 1998). For instance,
when a person’s feelings of depression spike because of (say) an unpleasant encounter
with an ex, and this person has a positive autoregressive effect for depressive feelings,
the heightened feelings of depression will linger above baseline for a long time. On
the other hand, an autoregressive coefficient of zero or near zero indicates that the
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previous value of a variable does not, or hardly carries over to the next occasion. In
other words, if a person with an autoregressive effect of zero for depressive feelings
experiences a negative event, the effect of this event is specific to that occasion, and
does not carry-over to future occasions.2

The effects of ỹ1t−1i and ỹ2t−1i on each other at the next occasion is reflected
in the cross-lagged coefficients φ21i, and φ12i. That is, if we study motivation and
job satisfaction and their effects on each other over time, the effect of satisfaction
on motivation at the next occasion for person i is reflected in φmsi, and the effect of
motivation on satisfaction in φsmi.

The residuals for the transition equation, ε1ti and ε2ti, reflect perturbations of the
dynamic process for person i at occasion t, and are referred to as innovations. As
can be seen from Equation 5.4, we assume here that these innovations are normally
distributed with means of zero, and covariance matrix Σε.

Innovations versus measurement errors
The innovations ε1ti and ε2ti and the terms that capture the measurement errors
ω1ti and ω2ti are substantially different: The innovations ε1ti and ε2ti represent any
unmeasured effects on the observed variables that are carried over from one measure-
ment occasion to the next through the autoregressive and cross-lagged effects. This is
visible from Figure 5.1, where the effect of εt−1i is passed along through ỹt−1i, and to
ỹti via the autoregressive effect φi. Because the innovations affect the system across
multiple occasions, the innovations are sometimes also referred to as dynamic errors.
Measurement errors, on the other hand, are specific to one occasion. Consider, for
instance, the classical examples of a measurement error, where someone accidentally
checks the wrong answer on a questionnaire, or presses the wrong button during a
computer task. The effects of these errors do not carry over to the next measure-
ment occasion, but are specific to that moment. Such occasion-specific effects are not
captured by the innovations, but should be modeled separately. By including ω1ti

2A negative autoregression coefficient indicates that a relatively high score at the previous mea-
surement occasion is usually followed by a relatively low score at the current measurement occasion,
and vice versa. Negative autoregressive effects are relatively rare in psychological research, but can
be expected for processes that concern intake, such as smoking, drinking, and eating behaviors(e.g.,
Rovine & Walls, 2005). For example, a negative autoregressive effect may be expected for the num-
ber of calories that are consumed by persons that turn successively to the restriction of food, and
binging, during diets.
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and ω2ti in the measurement equation, the measurement errors are separated from
the autoregressive processes for ỹti, as can be seen from Figure 5.1, so that they can
be distinguished from dynamic errors ε1ti and ε2ti. In traditional (multilevel) VAR
models the innovations are incorporated in the model, whereas the terms ω1ti and
ω2ti are not, and as such potential measurement errors are disregarded.

Some additional remarks about the terms ω1ti and ω2ti are in place in the current
context: Although these terms will capture measurement errors present in the data,
they may also capture other within-person fluctuations that are specific to occasion
t. In fact, they will capture anything that affects the the variables at one occasion,
of which the effect is dissipated before the next measurement occasion. For example,
if someone fills out an hourly questionnaire on mood while eating a tasty snack, this
may influence that person’s mood at that occasion, but this effect on mood may have
dissipated before the next measurement occasion an hour later. Hence, this effect
would end up in the terms ωti, even though it does not reflect an actual error of mea-
surement but a true, occasion-specific, fluctuation in mood. Hence, while we refer
to the terms ωti as “measurement errors”, they actually represent a mix of occasion-
specific fluctuations of the true score and measurement errors. We will return to this
issue in the discussion.

A second issue that we need to point out is that the innovations and the occasion-
specific fluctuations are distinguishable only by merit of the autoregressive effect.
Therefore, if the autoregressive effect is equal to zero, the measurement errors and
innovations cannot be distinguished from each other, and as a result, the model will
no longer be identified (Schuurman et al., 2015).3

Level 2 of the VAR(1)+WN Model
At level 2 of the multilevel model the individual differences in the dynamic processes
of the individuals are modeled. It seems natural that the means, autoregressive and
cross-lagged regressive coefficients differ from person to person, and in most multi-
level VAR applications, this is accounted for (e.g., Bringmann et al., 2013; De Haan-
Rietdijk et al., 2014; Jongerling, Laurenceau, & Hamaker, 2015; Lodewyckx et al.,
2011; Schuurman, Grasman, & Hamaker, 2016). As such, we allow the means, autore-
gressive, and cross-lagged regressive coefficients to vary across persons. We assume

3Note however that Schuurman et al. (2015) found for n=1 models, that even if the true autore-
gressive effect was zero, a Bayesian AR+WN model still provided reasonable estimates of the model
parameters.
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Figure 5.1: A graphical representation of the multilevel VAR+WN model, a VAR
model which takes measurement errors into account: They are captured in the terms
ωi.

that each individual’s parameter comes from a common population, with a common
probability distribution. Characteristics from this distribution, such as its mean and
variance, can be used to make inferences about the between-person differences in the
within-person dynamics of the individuals. Specifically, we assume that the means
µi and the regression parameters φ11i, φ22i, φ12i, and φ21i are multivariate normally
distributed, with means γµ1, γµ2, γφ11, γφ12, γφ21, and γφ22, and a 6 by 6 covariance
matrix Ψ. The means γ, also referred to as fixed effects, reflect population averages
for the individual means (the trait scores), autoregressive, and cross-lagged effects.
The personal deviations from the fixed effects are also referred to as random effects,
and their variances are included in Ψ. The covariances in Ψ reflect the associations
between the person-specific parameters across persons.

In addition to the trait scores and regression effects, it is also important to con-
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sider that the variability of the measurement errors and innovations may differ across
individuals. Variance parameters are usually considered fixed across persons in the
multilevel literature, and also in multilevel time series applications in psychology (cf.,
Jongerling et al., 2015). This seems more practically than theoretically motivated,
as in many multilevel modeling software including a random variance parameter is
not possible. However, it is sensible to assume that the variance parameters to differ
across persons in many cases (cf., Lord & Novick, 1968). The innovation variance
and the measurement error variance may indicate sensitivity to external events (that
either carry over from one measurement occasion to the next, or are measurement oc-
casion specific). Some persons may be more sensitive to external events than others:
One person’s concentration may be highly impacted by their surroundings, and as
such their level of concentration fluctuates a lot due to a variable environment, while
another person may remain relatively steady in their concentration regardless of fluc-
tuations in their surroundings. The first individual would then have a relatively large
measurement error and/or innovation variance for concentration, indicating that ex-
ternal events have a relatively strong impact, while the second individual would have
a relatively small variance, indicating that external events have a relatively weak im-
pact. Further, each individual may experience different external events, that may
have more or less impact on each variable that is measured. As such, it seems likely
that the variances of the innovations and measurement errors, and the covariances
or correlations between the innovations or measurement errors, vary in size across
persons. These individual differences should be taken into account in the multilevel
model.

In a bivariate model, it is reasonably straightforward to allow for individual differ-
ences in the covariances matrices of the innovations and measurement error, by spec-
ifying separate hierarchical distributions for the variances, the correlations between
the innovations, and the correlations between the measurement errors. Specifically,
at the second level of the VAR+WN multilevel model, we assume that the variances
and correlations are truncated (univariate) normally distributed, that is, the variances
truncated at zero, the correlations truncated at −1 and 1. Each variance and corre-
lation term has a mean, respectively γσ2

ε11
, γσ2

ε22
, γσε12 , γσ2

ω11
, γσ2

ω22
, and γσω12

, and
a variance, respectively ψ2

σ2
ε11

, ψ2
σ2
ε22

, ψ2
ρε12 , ψ

2
σ2
ω11

, ψ2
σ2
ω22

, and ψ2
ρω12

. Here, the means
indicate the average measurement error variances, average dynamic error variances,
the average correlation between the measurement errors, and the average correlation
between the dynamic errors across persons. The variances ψ indicate the average
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5.2. Accounting for Measurement Errors in the Multilevel VAR(1) Model

divergence from the means γ across persons.4

For covariance matrices that are larger than 2× 2, it becomes considerably more
complex to allow for random covariance matrices, because it is more difficult to en-
sure that positive definite matrices are sampled in the Bayesian estimation procedure.
An option would be to (for instance) sample the person-specific covariance matrices
from an Inverse-Wishart distribution, with (hyper)prior distributions set on the scale
matrix of this distribution, or to use specific hierarchical sampling schemes that en-
sure that sampled covariance matrices for each individual are positive definite (see
for instance Tokuda, Goodrich, Van Mechelen, Gelman, & Tuerlinckx, n.d.). These
options are however not available in current software to our knowledge.

Fitting the VAR(1)+WN Model
We make use of Bayesian modeling to fit the VAR+WN model. A main reason to opt
for a Bayesian approach here, is the flexibility to fit complex multilevel models, al-
lowing us to fit a full bivariate multilevel VAR+WN model including random means,
regression parameters, and covariance matrices. Especially the option of modeling
random variances and covariances is often unavailable in traditional software. An-
other important reason to opt for a Bayesian approach is that it is relatively easy
to estimate new quantities based on the estimated model parameters, and obtain
information about the uncertainty around these estimated quantities in the form of
credible intervals and posterior standard deviations (which may be considered the
Bayesian equivalents of confidence intervals and standard errors). This quality of
the Bayesian approach will prove especially useful for obtaining reliability estimates
based on the estimated model parameters. For an introduction to Bayesian statistics,
we refer the reader to Hoijtink et al. (2008) and Gelman et al. (2003).

For fitting the model we make use of (free) Bayesian Markov Chain Monte Carlo
sampling software WinBUGS, in combination with R and R-package R2winbugs. We
provide details on the Bayesian model fitting procedure, including the WinBUGS
model code in Appendix 5.A and 5.B.

4Note that we do not allow these variance and correlations to correlate with each other, as
this would require the specification a high-dimensional truncated multivariate normal distribution.
This would likely require a specifically developed procedure, as such distributions are not typically
available in currently available software to our knowledge.
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5.3 Reliability Estimates Obtained from the Multilevel VAR(1)+WN
Model

The model parameters of the VAR(1)+WN model are corrected for the reliability of
the data, by modeling the measurement errors using the terms ωi. This correction
is implicit in the model – the VAR(1)+WN model does not directly estimate the
reliability of the data. However, it is desirable to obtain an estimate of the reliability
of the data, because this gives us an impression of the composition of the data: What
proportion of the data is due to between-person variance, and what proportion is due
to within-person variation over time, and of the within-person variation, how much is
the result of the dynamic process, and how much is due to measurement error? This
information can in turn be used to determine the extent of the bias in the estimated
parameters if we would not account for the reliability of our measurements, as will be
discussed in more detail in Section 5.4. Below, we will first discuss the composition of
the variance of the multilevel VAR+WN model. After that, we discuss how to derive
an estimate for the between-person reliability, and within-person reliabilities for each
person.

The reliability for a specific variable can be calculated as the proportion of true
score variance to the total variance for that variable, or equivalently, as 1 minus the
proportion of measurement error variance to the total variance. The total variance
V(y) for each variable in the VAR(1)+WNmodel, taken over all participants’ repeated
measures, can be decomposed into three parts: The between-person variance or trait
score variance ψ2

µ (i.e., the variance of the person-specific means), the expected value
of the person-specific variances for the VAR process E

i

[
τ2
]
, and the expected value

of the person-specific measurement error variances γω. Hence, we have

V (y) = ψ2
µ + E

i

[
τ2
]

+ γω. (5.5)

The person-specific variance τ2i in the term E
i

[
τ2
]
in this equation, is equal to the

diagonal element for variable y of the person-specific covariance matrix T i for person
i. This person-specific covariance matrix is equal to

T i = mat((I − Φi ⊗ Φi)
−1vec(Σεi)), (5.6)

where I is an identity matrix, ⊗ indicates the Kronecker product, function vec()

transforms a matrix into a column vector, and mat() transforms a vector into a ma-
trix (cf., Kim & Nelson, 1999, p 27).
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Based on the variance decomposition in Equation 5.5, we can calculate various re-
liability estimates for our measurements of variable y. For example, we can determine
an overall reliability of our measurements y of both within-person or between-person
differences, by calculating rel(y) = (ψ2

µ + E
i

[
τ2
]
/V (y). However, most studies have

a main interest in either within-person differences, or between-person differences. For
example, if we want to use the observed score to order people on their baseline level
of agreeableness, verbal skills, or stress for a certain time period, priority lies in being
able to establish between-person differences well. On the other hand, if the goal is
to evaluate or predict fluctuations in people’s agreeableness, verbal skills, stress, and
so on, being able to reliably establish between-person differences is of a secondary
importance compared to being able to establish within-person differences. Therefore,
we argue it is more insightful to calculate separate reliabilities for each, than mud-
dling the two in one reliability estimate. In the following, we will discuss a reliability
estimate for between-person differences based on Equation 5.5, and after that we will
discuss (person-specific) estimates for the reliability of within-person differences. In
Appendix 5.A we provide further details on how to estimate these reliabilities as part
of the Bayesian model fitting procedure.

Reliability for Systematic Between-Person Differences
The systematic between-person variance in intensive longitudinal data is captured in
ψ2
µ, the variance of the person-specific means. Therefore, we can obtain an estimate

of the between-person reliability of variable y using

relb(y) =
ψ2
µ

V (y)
. (5.7)

The reliability for establishing between-person differences may be quite small when
a lot of within-person variance is captured in the measurements, either as a result of
a systematic autoregressive process captured by E

i

[
τ2
]
in V (y), or of measurement

error captured by γω in V (y). That is, in order to obtain reliable measurements of
differences between persons, for instance for rank ordering people by their ability,
the measurements should capture as little within-person fluctuations over time as
possible, as is well known from classical test theory.
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Reliabilities for Within-Person Fluctuations (per person)
When the main interest of a study is in establishing within-person differences, this
is usually because researchers want to be able to infer something about individuals.
For example, we may want to know whether the mood of a certain person will benefit
more from increasing his/her amount of exercise or from increasing or decreasing
his/her amount social interactions. Another example could be that we may want to
predict if someone is likely to binge-eat the next day, based on his/her caloric intake
the previous day. Because such (autoregressive) psychological processes may differ
substantially from individual to individual, we need to know the reliability of the
measurements for each individual. The VAR+WN takes these individual differences
into account, and as a result we can obtain estimates of each individual’s reliability,
based on the estimates of the person-specific variances for each individual. For the
VAR+WN model, the total variance of variable yi for a specific person i equals

v(yi) = τ2i + σ2
ωi. (5.8)

Note that for any specific individual, there is no between-person variance, such that
the term ψ2

µ is excluded. Then, the reliability for the observed scores of a specific
person i can be determined with

relw(yi) =
τ2i
v(yi)

. (5.9)

From this equation, it can be seen that differences between the reliabilities of different
individuals can arise when their autoregressive or cross-lagged associations differ,
because then the terms τ2i differ; when the variability of their innovations differs,
because then the terms τ2i differ; or when the variability of their measurement errors
differ, because then the terms σ2

ωi differ.
Note that these person-specific reliabilities can only be calculated when there is

enough data available for each person to fit the multilevel VAR+WNmodel (or an n=1
model). However, we may also want to know what kind of reliability we can expect for
other individuals from the population, but whom we have not observed before. To do
this, we can use the information on the reliabilities for each individual we measured.
That is, we can estimate the expected value of the reliability across all individuals
to obtain an estimate for an individual we have not observed. For example, we can
estimate the average person-specific reliability based on our sample of individuals, and
we can estimate the variance of the person-specific reliabilities to get an impression
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5.4. Consequences of Disregarding Measurement Error in VAR Modeling

of the range of person-specific reliabilities in the population of individuals under
study. Furthermore, if level 2 (person level) predictors are available, such as gender
or personality traits, these may also be used to obtain more accurate predictions
for the person-specific reliabilities (e.g., we can use these level 2 predictors for the
person-specific parameters, and based on the predicted person-specific parameters,
determine the associated person-specific reliability).

5.4 Consequences of Disregarding Measurement Error in VAR
Modeling

Given that the model parameters and the reliability of each variable can be different
for each person, the consequences of disregarding measurement errors in the data
can also be different for each person. In the following, we will therefore discuss the
effects of disregarding occasion-specific fluctuations for the person-specific parameter
estimates of individuals. Note however that because the fixed effects in the multi-
level model equal the average person-specific parameters, the effect of disregarding
measurement error on the fixed effects depends entirely on the effects of disregarding
measurement error for each person-specific parameter. Hence, the bias in the fixed
effects can be determined by taking the expectation of the biases for each person-
specific parameter.

For a univariate AR(1) model, it is known that disregarding measurement error
in the data results in AR parameter estimates that are pulled towards zero, so that
|φi| will be underestimated (Schuurman et al., 2015; Staudenmayer & Buonaccorsi,
2005). How much |φi| will be underestimated in such a univariate model depends
directly on the person-specific reliability relw(yi) that was defined in Equation 5.9,
that is:

φ̂i = relw(yi)φi (5.10)

, where φ̂i is the expected estimated AR parameter and φi is the true AR parameter,
such that the bias in φ̂i is equal to 1 minus the person-specific reliability.

For a multivariate VAR(1) model, the effects of disregarding measurement error
are more complicated. The bias in the estimated matrix of autoregression and cross-
lagged effects in Φ̂i when measurement errors are disregarded depends on the person-
specific reliability matrix relw(yi) (p. 108-109, Buonaccorsi, 2010; Gleser, 1992),
which is equal to

relw(yi) = T i (Σωi + T i)
−1 (5.11)
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where I is an identity matrix of the same dimension as that of the covariance matrix
of the measurement errors Σωi. Each element in the reliability matrix is a rather com-
plex function of the covariances and variances of the true scores and the measurement
errors. For instance, in the bivariate case this results in

relw(yi) =

 τ2
11i(τ

2
22i+σ

2
ω22i)−τ12i(τ12i+σω12i)

(τ2
11i+σ

2
ω11i)(τ2

22i+σ
2
ω22i)−(τ12i+σω12i)

2

τ12i(τ2
11i+σ

2
ω11i)−τ

2
11i(τ12i+σω12i)

(τ2
11i+σ

2
ω11i)(τ2

22i+σ
2
ω22i)−(τ12i+σω12i)

2

τ12i(τ2
22i+σ

2
ω22i)−τ

2
22i(τ12i+σω12i)

(τ2
11i+σ

2
ω11i)(τ2

22i+σ
2
ω22i)−(τ12i+σω12i)

2

τ2
22i(τ

2
11i+σ

2
ω11i)−τ12i(τ12i+σω12i)

(τ2
11i+σ

2
ω11i)(τ2

22i+σ
2
ω22i)−(τ12i+σω12i)

2

 .
(5.12)

The diagonal elements of relw(yi) are related to the person-specific reliabilities
relw(yi) for each person: Specifically, if the correlations between the true scores are
zero, and the correlations between the measurement errors are zero, the diagonals are
exactly equal to the reliabilities relw(yi).

The relationship between the (biased) expected matrix of autoregressive and cross-
lagged effects Φ̂i for the VAR model, and the true matrix Φi can be expressed as

Φ̂i = Φirelw(yi), (5.13)

which results in the following for the bivariate case,

Φ̂i =

[
φ11r11 + φ12r21 φ11r21 + φ12r22

φ21r11 + φ22r21 φ21r12 + φ22r22

]
, (5.14)

where rpq indicates an element of the reliability matrix. It is important to note from
Equations 5.11 to 5.14, that the bias in each regression parameter partly depends
on the other regression parameters: For instance, the bias in φ11 depends on r11,
but it also depends on the product of φ12 and r12, such that the larger φ12 and r12,
the stronger the bias in φ11 may become. As a result, the more variables that are
included in the model, the more complicated and severe the bias can become, because
the more variables are included, the more biasing terms will be included in each ele-
ment of Φ̂i (e.g., in a 3× 3 model the bias in phi11 will not only depend on r11 and
the product φ12 and r12, but also on the product of φ13 and r31). Furthermore, note
that even if one variable is measured without error, the autoregressive parameter for
that variable (for instance) may still be biased as a result of measurement errors in
other variables in the model. One may further observe from Equations 5.11 to 5.14
that the impact of disregarding measurement error on estimates will depend roughly
on two aspects: The person-specific reliability for each variable, and the correlations
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between the measurement errors of the different variables in the model. More specif-
ically, the lower the reliabilities of the variables, the more severe the bias in the VAR
parameters. The stronger the (either positive or negative) correlations between the
measurement errors, the more easily spurious effects will arise for the VAR model.

In Figure 5.2 we present five examples of the effects of disregarding measurement
error on the estimated regression parameters in a VAR model. Figure 5.2 consists
of five graphs each showing a VAR process for five variables. In the graphs, the
circles represent the variables, and the arrows between the circles represent the re-
gression relationships between the variables. Arrows that point from one variable
to the same variable represent autoregressive regression parameters, and arrows that
point from one variable to another variable represent cross-lagged regression param-
eters. Red arrows indicate positive regression parameters, and blue arrows indicate
negative regression parameters. The closer a regression parameter is to zero, the
thinner the arrow. The top row of Figure 5.2 shows five network graphs of the true
data-generating VAR(1)+WN models, and the bottom row shows the corresponding
graphs for the results of a regular VAR(1) model that disregards measurement error.
Note that these graphs are based on Equation 5.13 - there was no data simulated
- such that sampling error is not an issue in these graphs. In the five examples in
Figure 5.2 the reliabilities for the variables range in between .85 to approximately .5
(for the generating values for all the relevant parameters, see Appendix 5.C). These
reliabilities are similar to those found in an n=1 empirical example by Schuurman et
al. (2015) about the daily mood of eight women, where it was found that depend-
ing on the participant, approximately 30% to 50% of the variance was estimated to
be due to measurement errors. They are also similar to the results of the empirical
example of the current work, which are presented in the following section. These
percentages may seem high, but this is not necessarily surprising. We will discuss
this issue further in the discussion.

Disregarding measurement error can have various effects on the estimated regres-
sion coefficients: The regression coefficients in the VAR model may be underesti-
mated, or they may be overestimated, to the extent that effects may ‘disappear’ or
even switch signs, and spurious effects may arise. Graphs A1 and A2 of Figure 5.2
show an example where the autoregressive and cross-lagged effects are underesti-
mated, similar to what would happen in a univariate AR(1) model: The AR and
cross-lagged parameters are pushed towards zero, so that the edges in the VAR-based
graph A2 are thinner than those in graph A1 of the true process. The extent of
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the underestimation is different for each variable, depending on the reliability of that
variable.5 Graphs B1 and B2 and C1 and C2 illustrate that spurious effects may
arise as a result of disregarded measurement error. Graphs B1 and B2 show a strong
positive spurious relationship between variable 2 and 1, where the spurious effect is
actually the strongest effect in the model. Graphs C1 and C2 show a negative spuri-
ous relationship between variable 1 and 5. Furthermore, note that across all sets of
graphs, many small spurious cross-lagged effects arise. Graphs D1 and D2 illustrate
how an effect may become underestimated to the point that it ‘disappears’ or even
changes signs (i.e., the relationship between variable 4 and 2 changes signs from .3 in
graph D1 to -.04 in graph D2). Graphs E1 and E2 illustrate that associations may
be overestimated (i.e., for the relationships between variable 4 and 2), and that many
of the effects of disregarding measurement error may occur together. Together, these
examples show that disregarding measurement errors in the VAR model can seriously
distort the estimated regression parameters.

5.5 Empirical Application on Dyadic Affect Data
In this empirical application we focus on affect measurements from a daily diary
study including 70 heterosexual couples from a local community (Ferrer et al., 2012;
Ferrer & Widaman, 2008). We focus on two measures of positive affect: a) daily rela-
tionship positive affect (RelPA), that is, the PA each person experienced specifically
about their romantic relationship that day; and b) general positive affect (GenPA),
the PA each person experienced generally that day. RelPA was measured with nine
5-point Likert scale items (1 indicated very slightly or not at all, and 5 indicated ex-
tremely), for which the participants indicated to what extent they felt the following
ways about their relationship that day: “emotionally intimate”, “trusted”, “commit-
ted”, “physically intimate”, “free”, “loved”, “happy”, “loving”, and “socially supported”.
GenPA was measured with the PANAS (Watson, Clark, & Tellegen, 1988). The man
and woman from each couple reported on their RelPA and GenPA at the end of each
day, for approximately 90 days. For each person, daily average scores were calculated
for both types of PA.

Here, we will investigate how GenPA and RelPA influence each other within a

5Note that if one is interested in calculating network statistics for these graphs, such as central-
ity/betweenness, that these characteristics can be seriously distorted for the regular VAR(1) model
as a result of this.
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person, separately for the men and women. Specifically, we want to know if a) the
temporal evaluation of one’s relationship spreads to other areas in daily life; b) gen-
eral affective tone colors the evaluation of one’s relationship; or c) both are the case.
The multilevel VAR(1)+WN approach allows us to study this question by establish-
ing associations between GenPA and RelPA, and identifying individual differences in
these associations.

We fit two bivariate models (as specified in Section 5.2) for the RelPA and GenPA
of the men and women respectively, making use of the Bayesian software WinBUGS
(Lunn et al., 2000), in combination with R and the R-package R2winbugs (R Develop-
ment Core Team, 2012; Sturtz et al., 2005). We provide details on the Bayesian model
fitting procedure and the estimation of the reliabilities in Appendix 5.A and 5.B. In
the following, we present the results of the VAR(1)+WNmodel. Below we first discuss
the results for the estimated mean scores and lagged effects. To illustrate the effect
of disregarding measurement error, we compare these results to those of the regular
multilevel VAR model. After that we discuss the estimated innovation (co)variances,
measurement error (co)variances, and the estimated reliabilities for the VAR+WN
model.

Results for the Dynamics of General and Relationship Positive Affect
The results for daily RelPA and GenPA were quite similar for men and women,
as can be seen from the point estimates of the fixed effects and the variances of
the random effects, and their 95% credible intervals (CI) presented in respectively
Table 5.1 and 5.2. We discuss the results for the various model parameters below.

Autoregressive effects
The estimated means and variances for the autoregressive effects for men and women
(see Tables 5.1 and 5.2), indicate that for most individuals the autoregressive effects
of General and RelPA are expected to be positive. For RelPA we would expect that
the autoregressive coefficients for 95% of the men range from about .2 to .9, and for
women from about .3 to .8. For GenPA we find ranges from about .1 to .8 for the
men, and from about .2 to .8 for the women. This indicates that for the most if not
all of the couples there is inertia present in the regulation of both types of positive
affect. In other words, if the general positive affect or the positive affect about the
relationship of an individual is perturbed - for instance resulting in a relatively high
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Table 5.1: Parameter estimates for the bivariate multilevel VAR(1)+WN and VAR
model for men, modeling the relationship between daily relationship and general
positive affect.

Men Fixed Effects Random Effects

Parameter VAR+WN [95% CI] VAR [95% CI] VAR+WN [95% CI] VAR [95% CI]

µg 2.9 [2.7, 3.1] 2.9 [2.7, 3.1] .44 [.31, .64] .45 [.32, .65]
µr 3.5 [3.4, 3.7] 3.5 [3.4, 3.7] .45 [.32, .65] .45 [.32, .64]
φg .45 [.39, .51] .29 [.24, .35] .04 [.03, .06] .03 [.02, .05]
φr .55 [.49, .60] .37 [.32, .42] .03 [.02, .06] .04 [.02, .05]
φrg .04 [.00, .08] .03 [-.01, .07] .02 [.01, .03] .01 [.01, .02]
φgr .09 [.04, .14] .08 [.04, .11] .02 [.01, .03] .01 [.01, .02]

σ2
εg .16 [.13, .19] .27 [.23, .31] .01 [.00, .02] .02 [.01, .03]
σ2
εs .12 [.10, .15] .22 [.18, .25] .01 [.00, .02] .02 [.01, .03]
ρεgs .37 [.29, .44] .39 [.34, .43] .05 [.03, .08] .03 [.02, .04]
σ2
ωg .13 [.10, .16] .01 [.00, .02]
σ2
ωs .10 [.08, .12] .01 [.00, .01]
ρωgs .35 [.25, .43] .06 [.03, .11]

relw(g) .65 [.60, .69] .03 [.02, .04]
relw(r) .67 [.63, .71] .03 [.02, .04]

Note. Parameter estimates for the fixed effects (group means) and the variances of the
random effects (group variances) are presented for the person-specific means (µg, µr),
autoregression effects (φg, φr), cross-lagged effects (φgr, φrg), the innovation variances
(σ2
εg, σ

2
εs) and correlation (ρεgs), the measurement error variances (σ2

ωg, σ
2
ωs) and corre-

lation (ρωgs), and person-specific reliabilities (relw(g), relw(r)) of each model.

PA - the positive affect will linger some time above the average level of PA. However,
the same holds when someone experiences a relatively low PA: In this case PA will
linger for some time below baseline levels due to the autoregressive effect.

Cross-lagged effects
The estimates of the average cross-lagged effect of GenPA at the previous day on
current RelPA are .04 (95% CI[0, .08]) for men and .03 (95% CI[−.01, .06]) for women,
which indicates there is no evidence that GenPA colors the RelPA the following day
on average for either men or women. For women, there is very little variance around
the average (estimated at approximately 0; 95% CI[0, .01]), while across men the
variance for this cross-lagged effect of GenPA on RelPA is estimated to be a bit
larger (at .02; 95% CI[.01, .03]). There is evidence that RelPA positively influences
GenPA the next day for most of the couples, although the effect may be small: The
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Table 5.2: Parameter estimates for the bivariate multilevel VAR(1)+WN and
VAR model for women, modeling the relationship between daily relationship and
general positive affect.

Women Fixed Effects Random Effects

Parameter VAR+WN [95% CI] VAR[95% CI] VAR+WN [95% CI] VAR [95% CI]

µg 2.8 [2.7, 3.0] 2.8 [2.7, 3.0] .38 [.27, .54] .37 [.27, .53]
µr 3.6 [3.4, 3.7] 3.6 [3.4, 3.7] .57 [.41, .82] .41 [.57, .81]
φg .48 [.44, .53] .30 [.27, .34] .02 [.01, .03] .01 [.01, .02]
φr .55 [.50, .60] .38 [.33, .42] .02 [.01, .03] .03 [.02, .04]
φrg .03 [-.01, .06] .03 [.00, .05] .00 [.00, .01] .00 [.00, .01]
φgr .06 [.02, .11] .08 [.04, .12] .01 [.01, .03] .01 [.01, .02]

σ2
εg .18 [.15, .22] .31 [.27, .35] .01 [.01, .02] .03 [.02, .04]
σ2
εs .14 [.11, .17] .23 [.19, .27] .01 [.01, .02] .02 [.02, .04]
ρεgs .33 [.25, .41] .33 [.28, .37] .05 [.03, .09] .03 [.02, .04]
σ2
ωg .15 [.12, .18] .01 [.00, .03]
σ2
ωs .10 [.08, .13] .00 [.00, .02]
ρωgs .27 [.17, .36] .07 [.04, .12]

relw(g) .63 [.59, .67] .02 [.02, .03]
relw(r) .67 [.63, .70] .02 [.02, .03]

Note. Parameter estimates for the fixed effects (group means) and the variances of the
random effects (group variances) are presented for the person-specific means (µg, µr),
autoregression effects (φg, φr), cross-lagged effects (φgr, φrg), the innovation variances
(σ2
εg, σ

2
εs) and correlation (ρεgs), the measurement error variances (σ2

ωg, σ
2
ωs) and corre-

lation (ρωgs), and person-specific reliabilities (relw(g), relw(r)) of each model.

estimated average cross-lagged effect was .09 (95% CI[.04, .14]) across men and .06

(95% CI[.02, .11]) across women, with variances of respectively .02 95% CI[.01, .03],
and .01 (95% CI[.01, .03]). Based on the estimated means and the variances around
these means we would expect that the cross-lagged effects of RelPA on GenPA for
95% of the men would lie in between approximately -.2 and .4, and for the women in
between -.1 and .3.

VAR+WN model results vs. the VAR model results
Tables 5.1 and 5.2 include results for the VAR model next to the results for the
VAR+WN model. When we compare the estimated autoregressive effects of the
VAR+WN model to those of the VAR model, we find that the inertia is estimated
to be much weaker for the latter, with average effects of about .29 (95% CI[.24, .35])
and .3 (95% CI[.27, .34]) for the GenPA of men and women respectively, and fixed
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effects of .37 (95% CI[.32, .42]) and .38 (95% CI[.33, .42]) for their RelPA. In fact,
the credible intervals for the fixed autoregressive effects for the VAR and VAR+WN
model do not even overlap, such that inferences about the strength of the inertia are
markedly different for the two models. The estimated average cross-lagged effects
on the other hand are very similar for the two models. That is, in this example,
we do not reach different conclusions for the cross-lagged effects in this application.
However, note that this may not be the case for other empirical data sets, as discussed
in Section 5.4 and illustrated in Figure 5.2.

Trait scores
Based on the estimated means and variances of the traits scores (see Tables 5.1
and 5.2), we find that individuals on average feel moderately positive to quite pos-
itive about their relationship, although there is considerable variance in this across
the couples. Across the men and women, 95% would be expected to have a trait
score between approximately 2, indicating they on average feel slightly positive, and
5, indicating they feel extremely positive about their relationship. The average ex-
perienced GenPA is estimated to be a bit lower on average (see Tables 5.1 and 5.2),
and based on the estimated means and variances of the trait scores across men and
women, we would expect 95% to have a trait score between approximately 1.6 (very
slight GenPA) and 4 (much GenPA).

Correlations between the random parameters
When we inspect the estimated correlations between the trait scores and the regression
parameters for the VAR+WN model, we find that the traits scores for GenPA and
RelPA are positively correlated (.6 95% CI[.41, .73] for men, and .5 95% CI[.3, .67] for
women). For the correlations between the remaining random parameters the credible
intervals for the correlations are quite wide (intervals including negative and positive
values), as a result of a limited number of participants, so that the results for these
correlations are not very informative.

Innovations and Measurement Errors
Finally, when we inspect the variances and correlations of the innovations and the
measurement errors, we find that the estimated average variances all lie within a range
of .1 to .2, and the variances around these average variances are almost all estimated
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at approximately .01 (see Tables 5.1 and 5.2). The average correlation between the
innovations of general and RelPA is .37 for men (95% CI[.29, .44]), and .33 for women
(95% CI[.25, .41]). This indicates that there is a considerable part of the concurrent
association between RelPA and GenPA that cannot be explained by the experienced
PA at the previous occasion, that seems to be due to unobserved influences of which
the effects are passed along across multiple measurement occasions. The average
correlation between the measurement errors of general and RelPA is .35 for men
(95% CI[.25, .43]), and .27 for women (95% CI[.17, .36]). This indicates that there
is also a considerable part of the concurrent association between RelPA and GenPA
that seems to be due to unobserved, occasion-specific effects.

Results for the Reliabilities for Relationship and General Positive Affect
In the following we will discuss two types of reliability for relationship and GenPA:
The between-person reliability, and the person-specific (within-person) reliabilities.

Between-person reliability
We estimated the between-person reliability, that is, the proportion of variance that is
due to stable differences across persons, for RelPA and GenPA based on Equation 5.7
(cf., Appendix 5.A, for details on how we calculated the reliabilities as part of the
Bayesian modeling procedure). We found that for GenPA about half of the variance
in the observed scores across all persons and repeated measures is estimated to be due
to systematic differences between persons, while the other half is due to differences
within persons (for men relb = .53, 95% CI[.31, .74], for women relb = .48, 95%
CI[.39, .57]). For RelPA, a bit more than half of the total variance is due to systematic
differences between persons (for men relb= .58, 95% CI[.32, .81], for women relb =
.63, 95% CI[.54, .72]).

Within-person reliabilities
We can estimate person-specific reliabilities for relationship and GenPA using Equa-
tion 5.9, based on the estimated person-specific regression parameters, the person-
specific covariance matrices of the innovations, and the person-specific covariance
matrices for the measurement errors (cf., Appendix 5.A, for details on the estimation
of the reliabilities as part of the Bayesian modeling procedure). In the previous sub-
section we found considerable variation across persons in the regression parameters,
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but also in the variances - and especially the correlations - for the innovations and
measurement errors. As a result, the reliabilities for general and RelPA will also differ
from person to person.

Figures 5.3 and 5.4 are for men and women respectively, and contain plots of the
posterior distributions for each individual’s person-specific reliability. The red (left)
distributions are the posterior distributions for GenPA, and the blue (right) distri-
butions are the posterior distributions for RelPA. The tails for each distribution are
trimmed at their respective 95% CI, and the dots in each distribution represent the
median reliability. In both figures the posterior distributions for the individuals are
ordered on the estimated median reliability for RelPA (i.e., with the person with the
lowest reliability on the top-right, and the highest on the bottom-left). The lowest
and highest estimated reliabilities for RelPA were approximately .52 and .98 for the
men, and .47 and .91 for the women. For GenPA the lowest and highest estimated
reliability were .52 and .97 for the men, and .53 and .82 for the women. However, it
can also be seen from Figures 5.3 and 5.4 that there is a fair amount of uncertainty
about the person-specific reliabilities, that is, they have wide CIs. Still, there is evi-
dence that the reliabilities of the PA measurements are likely to be lower than .8 for
many individuals (i.e., most of the posterior distribution’s mass lies below a reliability
of .8). In other words, a considerable part of the variation in the observations for
most individuals is due to measurement error. This is also reflected in the average
person-specific reliabilities (see also Tables 5.1 and 5.2), of .65 for the GenPA of men
and .63 for women (95% CI[.60, .68], 95% CI[.59, .67]), and of .67 for the RelPA of
both men and women (95% CI[.63, .71], 95% CI[.63, .70]).

Finally, we investigated whether there is an association across persons between
the between the reliabilities for relationship and GenPA. Scatter plots of the point es-
timates of the person-specific reliability for men and women are shown in Figure 5.5.
We found no convincing evidence for a positive relationship for men, with an esti-
mated correlation of .26 (95% CI[−.03, .46]), or for women, with a correlation of .09
(95% CI[−.15, .32]). This may indicate that reliability may not be a personal common
trait, as it seems that a high reliability for one type of affect (i.e., GenPA), does not
necessarily indicate a high reliability for another type of affect (i.e., RelPA).
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Figure 5.5: Scatter plots of the point estimates (medians of the posterior distributions)
of the person-specific reliabilities for general positive affect (GenPA) en relationship
positive affect (RelPA), for men and women.

5.6 Discussion
Intensive longitudinal data generally are a mix of between person variation, within-
person variation due to dynamic processes, and occasion-specific, random within-
person variation, including measurement errors. The VAR+WN model separates
these three sources of variation, while also taking into account that there may be
differences in the sources of within-person variation across persons. As a result, we
can evaluate the reliabilities of a measurement instrument for between-person differ-
ences in a specific population of individuals, but also person-specific reliabilities for
within-person fluctuations.

As noted in Section 5.1, reliability is defined as specific to a certain population and
the measurement instrument (Mellenbergh, 1996). That is, reliability estimates for
one population (e.g., men) cannot simply be generalized to another (e.g., women). In
the case of reliability for within-person psychological processes, each person may have
a unique psychological process, and as such may be considered a single subpopulation
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(within a larger population of individuals). For example, in the empirical example we
saw that people differ in their levels of inertia for both their general positive affect and
their positive affect concerning their relationship, and for some persons their feelings
about their relationship influence their general positive affect, while for other this is
not the case. Furthermore, one can imagine that some people experience more, or
are more easily affected by, external events than other people, or some persons may
take more care in filling out self-report measures than others. From this perspective,
it seems not very informative to state one reliability estimate for all individuals, dis-
regarding that there may be considerable variation in the psychological processes of
these individuals, and hence in their reliabilities. By taking a multilevel VAR+WN
modeling approach, we can take this into account, and we can evaluate the average
group reliability, and the variability around this average reliability amongst the group
of individuals.

It is important to note again however, that the measurement error terms in the
multilevel VAR model do not only contain variance that is due to measurement er-
rors - they also contain any ‘true’ occasion-specific fluctuations in the construct of
interest (as was discussed in Section 5.2). As such, reliability estimates based on this
measurement-error variance can in practice at most provide an estimate of the lower
bound of the reliability of the observed scores (as is the case for all other reliability es-
timates in psychology discussed; see also Borsboom, 2003; Guttman, 1945; Ten Berge
& Sočan, 2004). One way to separate true occasion specific fluctuations from mea-
surement errors further, would be to also make use of internal consistency reliability
measures in the VAR+WN model, by including multiple indicators to reflect one psy-
chological construct (as is done in dynamic factor modeling); if an occasion-specific
fluctuation occurs in all indicators at the same time, this may be indicative of a true
occasion specific fluctuation rather than a measurement error (see Edmondson et al.,
2013, for an example of this in the context of panel modeling). However, this would
require that the indicators function to some extent as parallel tests, for every single
individual, which may be difficult to achieve. Further, in some cases using multiple
indicators for each construct may severely increase the burden on the participants.

Regardless however of whether the ‘unreliable part’ of the data is a result of real
occasion-specific fluctuations in the construct, or of errors in measurement, it it im-
portant to take this type of variation in the data into account. Disregarding this
type of variation, as is the case in regular (multilevel) VAR models, results in se-
vere bias in the estimated autoregression and cross-lagged parameters. As we have
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shown, depending on the reliabilities of the variables and the correlations among
the occasion-specific fluctuations, the regression parameters may be under- or over-
estimated, may switch signs, and spurious cross-lagged relationships may emerge.
The lower the person-specific reliability of a specific variable, the more severe these
biasing effects will be. An important question is therefore what kind of reliabilities we
may expect in practice. Empirical examples that provide estimates of person-specific
reliabilities are still very rare. In an n=1 example by Schuurman et al. (2015) about
the daily mood of eight women, their reliabilities ranged from about .5 to .7. In the
empirical application of the current work on general and relationship PA we found
similar results, with average reliabilities of .65 across persons.

These reliabilities may seem quite low, however, this result is less surprising consid-
ering that εti includes any true occasion-specific fluctuations in the variable of interest
in addition to measurement errors. Such fluctuations may occur as a result of a wide
range of both internal and external influences, including for example the weather,
hormone levels, getting a phone call or email, eating a snack, hearing a certain song,
and so on. Whether these effects are dissipated before the next measurement will de-
pend to a large extent on the frequency of measurements: If one measures once every
second, these effects most likely carry over to the next measurement occasion through
the autoregressive effect and will be part of the innovations, but if one measures once
every hour, or once a day, or even once a week, such effects may not carry over to
the next measurement occasion and become part of the error term εti instead. As
a result, depending on the construct of interest and the frequency of measurements,
the proportion of variance due to occasion-specific fluctuations, including measure-
ment errors, may be considerable. As a consequence, the bias in the estimated VAR
parameter may also be considerable when these fluctuations (measurement errors or
not) are disregarded.

In this context, it is also important to consider if, and how, this bias can be
decreased by preventing measurement errors, next to accounting for the measure-
ment errors in the model. To some extent, the classical measurement errors, such
as making a mistake filling out a questionnaire, may be circumvented by designing
better measurement instruments or improving the (control over the) measurement
conditions. This is considerably more complex for ‘true’ occasion-specific fluctua-
tions in the psychological construct, because these fluctuations are truly part of the
psychological process of interest, and as such should be reflected in valid measure-
ments of that process. It may be possible, however, to decrease the proportion of
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such ‘true’ occasion-specific fluctuations by taking more frequent measurements, so
that these fluctuations essentially become innovations rather than measurement er-
rors. However, this is not always practically possible, for instance because it increases
the burden on participants, and it seems unlikely that these fluctuations can be com-
pletely avoided.

Therefore, it is imperative to always account for measurement errors in the VAR
models. Furthermore, it is important to take into account that the proportion of
variance that is due to measurement errors in our repeated measurements may differ
from person to person. The Bayesian multilevel VAR+WN model presented here
provides a relatively flexible environment for accomplishing these two goals.
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Appendix 5.A Fitting the Bivariate VAR+WN Model Using Bayesian
Software
Here we will provide some details about the Bayesian model fitting procedure we
used for the empirical example, after which we discuss how we obtained the reliabil-
ity estimates. For fitting the Bayesian model, prior distributions need to be specified
for the fixed effects and the (co)variances of the random effects for all the random
parameters in the model, that is, for the person-specific means, the person-specific
cross-lagged and autoregression parameters, the person-specific innovation-covariance
matrices, and the person-specific measurement error covariance matrices.

For the empirical example, we specified the following prior distributions for the
model parameters: γµg , γµr ,γφg , γφr , γφrg , γφgr were all ∼ N(0, 1e − 09) (specified
with a precision, rather than a variance); γσ2

εr
, γσ2

εg
, γσ2

ωr
, γσ2

ωg
were all ∼ U(0, 2);

γρεrg , γρωrg were both ∼ U(−1, 1); ψ2
σ2
εr
, ψ2

σ2
εg
, ψ2

σ2
ωr
, ψ2

σ2
ωg

were all ∼ U(0, 2); ψ2
ρεrg ,

ψ2
ρωrg were both ∼ U(0, 1). For the precision matrix of the random means and regres-

sion effects we specify a Wishart distribution ∼ W (df, S) with df = 6 (equal to the
dimension of the covariance matrix of the random parameters), and Scale matrix S
based on prior estimates of the variances of the random parameters. The reason for
using a data-based prior distribution here, is that the Wishart prior can be very in-
formative when variances are close to zero, which would be expected for the variances
of the autoregressive and cross-lagged effects (because these parameters are restricted
in range in a stationary model). In the study by Schuurman, Grasman, and Hamaker
(2016), such a data-based prior was found to work the best in this situation, although
this will result in slightly too small credible intervals for the estimated variances. In
the current study we obtain prior estimates of the variances of the random means and
regression parameters by fitting the model as described in Section 5.2, with the prior
distributions as discussed previously, except with uniform priors for the variances of
the random means and regression parameters (disregarding any covariance between
these parameters). The estimated variances for the random means and regression pa-
rameters are plugged into the Wishart distribution such that the mean of the Wishart
is equal to the estimated precisions of the random parameters, while the covariances
between the random parameters are set to zero.

We fit the model using the MCMC procedure provided by WinBUGS, with 3
chains of each 50000 iterations, with 30000 iterations burn-in. We evaluate the con-
vergence of the model by (visually) inspecting the mixing of the three chains, and by
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inspecting the Gelman-Rubin statistics for the parameters (Gelman & Rubin, 1992).
Based on this we judged 50000 iterations with 30000 iterations burn-in as sufficient
for convergence. Throughout the paper, we report the medians of the posterior dis-
tributions as point estimates, and the equal-tailed credibility intervals reported by
WinBUGS as the credible intervals.

Obtaining Reliability Estimates from the Bayesian VAR+WN Model
Obtaining the reliability estimates while fitting the VAR+WN model using Bayesian
techniques is fairly straightforward. For the between-person reliability of a specific
variable, we make use of Equation 5.5 to 5.7: First, in each iteration of the MCMC
procedure, we calculate the person-specific covariance matrix Ti for each person i

using Equation 5.6, based on the estimated person-specific regression parameters and
the estimated person-specific innovations covariance matrices. From the relevant diag-
onal element of each person-specific covariance matrix, we obtain the person-specific
variances τ2i we need to estimate E

i

[
τ2
]
. To obtain an estimate of E

i

[
τ2
]
- which we

need to calculate the total variance V (y) - we calculate the average person-specific
variance across persons in each iteration. We then calculate the total variance us-
ing Equation 5.5 in each iteration, based on the estimate we obtained for E

i

[
τ2
]
,

the estimated variance of the person-specific means ψ2
µ, and the fixed effect for the

measurement error variance γω. Finally, in each iteration we calculate the between-
person reliability making use of Equation 5.7, based on the estimate we obtained for
the total variance V (y) and the the estimated variance of the person-specific means
ψ2
µ. This results in a sample of the between-person reliability for each iteration of

the MCMC procedure, which together form a posterior distribution. Based on this
posterior distribution we determine a point estimate for the between-person reliabil-
ity (we use the median of the posterior distribution) and the credible interval for the
between-person reliability.

For the person-specific reliabilities for a specific variable we make use of Equa-
tion 5.6, 5.8, and 5.9: First, in each iteration of the MCMC procedure, we calculate
the person-specific covariance matrix Ti for each person i using Equation 5.6, based on
the estimated person-specific regression parameters and the estimated person-specific
innovations covariance matrices. From the relevant diagonal element of this covari-
ance matrix, we obtain the variance τ2i for our variable of interest, which we need to
estimate the person-specific total variance v(yi). Based on this estimate and the esti-
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mated measurement error variance σ2
ωi, we then calculate the total variance v(yi) for

each person using Equation 5.8 in each iteration of the MCMC procedure. Finally, in
each iteration we calculate the person-specific reliability making use of Equation 5.9
(or equivalently, we could calculate 1−σ2

ωi/v(yi)), based on the estimate we obtained
for the total variance v(yi) and the the estimated person-specific variance τ2i . This re-
sults in an estimate of the person-specific reliability for each iteration of the MCMC
procedure for each person, which together result in a posterior distribution of the
person-specific reliability for each person (see Figures 5.3 and 5.4). Based on these
posterior distributions we can determine a point estimate for each person’s reliability
and a credible interval for the between-person reliability. Finally, to obtain an esti-
mate of the average person-specific reliability across persons, and the variance of the
person-specific reliabilities across persons, we simply calculate the mean and variance
across the person-specific reliabilities in each iteration of the MCMC procedure.

Appendix 5.B WinBUGS Model Code
model{
#####model t imepoint 2 : nt ######
fo r ( i in 1 : np)
{

f o r ( t in ( startcom [ i ]+1) : endcom [ i ] )
{
## th i s reads : f o r ( t in ( rownumber o f second
## observat ion f o r pa r t i c i p an t i ) :
## ( rownumber o f l a s t obse rvat i on f o r pa r t i c i p an t i ) ) .
## These rownumbers startcom and endcom are passed to winbugs as data .

y [ t , 1 : 2 ] ~ dmnorm(muy [ t , 1 : 2 ] , Epre [ i , 1 : 2 , 1 : 2 ] )
## y ( the data ) are mu l t i va r i a t e normal d i s t r i bu t e d
## with mean muy and measurement e r r o r
## pr e c i s i o n matrix Epre , both vary ac ro s s p a r t i c i p an t s

muy [ t , 1 : 2 ] ~ dmnorm( muyti lde [ t , 1 : 2 ] , Ip re [ i , 1 : 2 , 1 : 2 ] )
## muy has a mu l t i va r i a t e normal d i s t r i b u t i o n
## with means muyti lde and innovat ion p r e c i s i o n matrix Ipre ,
## both vary ac ro s s p a r t i c i p an t s

muyti lde [ t , 1 ] <−b [ i , 5 ] + b [ i , 1 ] ∗ z y t i l d e [ t−1 ,1]
+ b [ i , 2 ] ∗ z y t i l d e [ t−1 ,2]
##muyti lde has an au t o r e g r e s s i v e p roce s s with
##mean b [ i , 5 ] , au t o r e g r e s s i on par b [ i , 1 ] ,
## and c r o s s r e g r e s s i o n par b [ i , 2 ]
muyti lde [ t , 2 ] <−b [ i , 6 ] + b [ i , 3 ] ∗ z y t i l d e [ t−1 ,2]
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+ b [ i , 4 ] ∗ z y t i l d e [ t−1 ,1]
##muyti lde has an au t o r e g r e s s i v e p roce s s with
##mean b [ i , 6 ] , au t o r e g r e s s i on par b [ i , 3 ] ,
##and c r o s s r e g r e s s i o n par b [ i , 4 ]

z y t i l d e [ t , 1 ] <− muy[ t , 1 ] − b [ i , 5 ]
##zy t i l d e e s s e n t i a l l y conta in s centered muy s c o r e s
z y t i l d e [ t , 2 ] <− muy[ t , 2 ] − b [ i , 6 ]
##zy t i l d e conta in s centered muy s c o r e s

}
}

####timepoint 1#######
##d i s t r i b u t i o n s f o r the f i r s t ob s e rva t i on s o f the pa r t i c i p an t s###
fo r ( i in 1 : np)
{

muy [ startcom [ i ] , 1 ] <− y [ startcom [ i ] , 1 ] − z [ i , 1 ]
muy [ startcom [ i ] , 2 ] <− y [ startcom [ i ] , 2 ] − z [ i , 2 ]
z y t i l d e [ startcom [ i ] , 1 ] <− muy[ startcom [ i ] , 1 ] − b [ i , 5 ]
z y t i l d e [ startcom [ i ] , 2 ] <− muy[ startcom [ i ] , 2 ] − b [ i , 6 ]

z [ i , 1 : 2 ] ~ dmnorm(zm[ i , 1 : 2 ] , Epre [ i , 1 : 2 , 1 : 2 ] )
zm[ i ,1]<−0
zm[ i ,2]<−0

}

####pr i o r s###########

fo r ( i in 1 : np)
{

Epre [ i , 1 : 2 , 1 : 2 ] <− i n v e r s e ( Evar [ i , 1 : 2 , 1 : 2 ] )
Ecor [ i ]~dnorm(Ecormu , Ecorpre ) I (−1 ,1)
Evar [ i , 1 , 1 ] ~dnorm(Evarmu1 , Evarpre1 ) I ( 0 , )
Evar [ i , 2 , 2 ] ~dnorm(Evarmu2 , Evarpre2 ) I ( 0 , )
Evar [ i ,1 ,2]<−Ecor [ i ]∗ s q r t ( Evar [ i , 1 , 1 ] ) ∗ sq r t ( Evar [ i , 2 , 2 ] )
Evar [ i ,2 ,1]<−Evar [ i , 1 , 2 ]

}

Ecormu ~duni f (−1 ,1)
Evarmu1 ~duni f ( 0 , 2 )
Evarmu2 ~duni f ( 0 , 2 )
Icormu~duni f (−1 ,1)
Ivarmu1 ~duni f ( 0 , 2 )
Ivarmu2 ~duni f ( 0 , 2 )

Evarpre1 <− 1/Evarvar1
Evarpre2 <− 1/Evarvar2
Evarvar1 ~duni f ( 0 , 2 )
Evarvar2 ~duni f ( 0 , 2 )
Ecorpre <− 1/Ecorvar
Ecorvar ~duni f ( 0 , 1 )
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Ivarpre1 <− 1/ Ivarvar1
Ivarpre2 <− 1/ Ivarvar2
Ivarvar1 ~duni f ( 0 , 2 )
Ivarvar2 ~duni f ( 0 , 2 )
I c o rp r e <− 1/ I co rva r
I co rva r ~duni f ( 0 , 1 )

f o r ( i in 1 : np)
{

Ipre [ i , 1 : 2 , 1 : 2 ] <− i n v e r s e ( Ivar [ i , 1 : 2 , 1 : 2 ] )
I c o r [ i ]~dnorm( Icormu , I c o rp r e ) I (−1 ,1)
Ivar [ i , 1 , 1 ] ~dnorm( Ivarmu1 , Ivarpre1 ) I ( 0 , )
Ivar [ i , 2 , 2 ] ~dnorm( Ivarmu2 , Ivarpre2 ) I ( 0 , )
Ivar [ i ,1 ,2]<− I c o r [ i ]∗ s q r t ( Ivar [ i , 1 , 1 ] ) ∗ sq r t ( Ivar [ i , 2 , 2 ] )
Ivar [ i ,2 ,1]<− Ivar [ i , 1 , 2 ]

}

f o r ( j in 1 : np )
{

b [ j , 1 : 6 ] ~ dmnorm(bmu [ 1 : 6 ] , bpre [ 1 : 6 , 1 : 6 ] )
## random means and r e g r e s s i o n parameters
## are mvnormal d i s t r i bu t e d

}

bmu[ 1 ]~ dnorm (0 , . 000000001)
bmu[ 2 ]~ dnorm (0 , . 000000001)
bmu[ 3 ]~ dnorm (0 , . 000000001)
bmu[ 4 ]~ dnorm (0 , . 000000001)
bmu[ 5 ]~ dnorm (0 , . 000000001)
bmu[ 6 ]~ dnorm (0 , . 000000001)

bpre [ 1 : 6 , 1 : 6 ] ~ dwish (W[ , ] , df )
##W i s input provided as data , based on
## on p r i o r e s t imate s o f the va r i ance s o f the
##random means and r e g r e s s i o n parameters . See Appendix A.
df<− 6

bcov [ 1 : 6 , 1 : 6 ] <− i n v e r s e ( bpre [ 1 : 6 , 1 : 6 ] )

f o r (d in 1 : 6 )
{

f o r ( g in 1 : 6 ){
bcor [ d , g ] <− bcov [ d , g ] / ( sq r t ( bcov [ d , d ] ) ∗ s q r t ( bcov [ g , g ] ) )

}
}

} # end model
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Appendix 5.C Parameter Values for Generating Figure 5.2
Table 5.C.1: Parameter values used for generating Graphs A and B
in Figure 5.2.

Graph A Graph B

Φi


.7 −.35 −.3 −.25 0
0 .5 0 .3 0
0 0 .5 0 0
0 .3 .15 .5 0
0 0 0 0 .6



.6 .0 .0 .0 .0
.0 .61 .3 .3 .3
.0 .0 .62 .0 .0
.0 .0 .0 .63 .0
.0 .0 .0 .0 .64



Σεi


.5 .0 .0 .0 .0
.0 .5 .0 .0 .0
.0 .0 .5 .0 .0
.0 .0 .0 .5 .0
.0 .0 .0 .0 .5



.5 −.15 −.1 −.1 −.1
−.15 .5 .2 .2 .21
−.1 .2 .5 .2 .2
−.1 .2 .2 .5 .15
−.1 .2 .2 .15 .5



Σωi


.5 0 0 0 0
0 .6 0 0 0
0 0 .5 0 0
0 0 0 .5 0
0 0 0 0 .4



.5 −.28 −.25 −.25 −.25
−.28 .5 .15 .15 .17
−.25 .15 .5 .15 .1
−.25 .15 .15 .5 .1
−.25 .17 .1 .1 .5



relw


.83 −.07 −.02 −.08 .00
−.08 .55 −.01 .09 .00
−.02 −.01 .57 .01 .00
−.08 .07 .01 .60 .00
.00 .00 .00 .00 .66



.65 −.04 .06 .07 .07
.17 .87 .02 .02 .01
.12 .08 .59 .01 .03
.11 .09 .01 .60 .00
.12 .08 .04 .00 .60



Φ̂i


.63 −.26 −.18 −.24 .0
−.06 .30 .00 .22 .0
−.01 .00 .28 .01 .0
−.07 .20 .09 .33 .0
.00 .00 .00 .00 .4



.39 −.02 .04 .04 .04
.21 .60 .20 .19 .19
.07 .05 .36 .01 .02
.07 .05 .00 .38 .00
.08 .05 .02 .00 .38
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6 Summary and Discussion

The aim for this dissertation was to further investigate, explicate, and if possible
remedy certain difficulties in fitting and interpreting multilevel autoregressive models
in the context of psychological science. In Chapter 2 we investigated a specific diffi-
culty in estimating the model parameters using Bayesian techniques. In Chapter 3 we
discussed how to standardize the multilevel model such that we can make meaningful
comparisons of the strength of the cross-lagged effects in a VAR model. In Chapters 4
and 5 we investigated the consequences of ignoring measurement errors in the data
for the estimation of n=1 and multilevel autoregressive model parameters, and we
showed how to account for measurement errors. Below, I will give a brief summary
of the main findings for each chapter. After that, I will discuss some limitations of
the multilevel autoregressive modeling approach, as well as some directions for future
research.

Chapter 2
In Chapter 2 we discussed a difficulty in specifying an Inverse-Wishart prior distri-
bution for the covariance matrix of the random parameters, for fitting the multilevel
autoregressive model in a Bayesian framework. Specifically, the issue is that the
Inverse–Wishart distribution tends to be informative when variances are close to
zero. This is problematic for the multilevel autoregressive model, because the ran-
dom autoregressive parameters in a stationary model are restricted in range, and as
a result will have a small variance across persons. We therefore compared the perfor-
mance of three Inverse-Wishart prior specifications suggested in the literature, when
one or more variances for the random effects in the multilevel autoregressive model
are small, by means of a simulation study. Our results indicated that a data-based
prior specification — a prior specification that uses plug-in estimates of the variances
— performs the best out of the three specification we compared, even though by using
a data-based prior specification the certainty we had about our estimates was over-
estimated. We recommended that for any multilevel model, especially autoregressive
models, a sensitivity analysis is performed for the prior specifications for covariance
matrices of random parameters. We illustrated such an analysis in Chapter 2 for an

181



6. Summary and Discussion

empirical application on repeated measures data on worrying and positive affect, in
which we find that for persons who worry a lot, worrying seems to be detrimental
to their positive affect, while for persons who worry relatively little, it seems to be
beneficial to their positive affect.

Chapter 3
Multivariate autoregressive (VAR) models can be used to investigate Granger-causal
cross-lagged associations between variables. The aim of the study presented in Chap-
ter 3 was two-fold: Firstly, to illustrate the added value of a multilevel multivariate au-
toregressive modeling approach for investigating cross-lagged associations over more
traditional techniques. Secondly, to discuss how to directly compare the strength
of the cross-lagged effect in the multilevel autoregressive model. In order to di-
rectly compare the strength of the cross-lagged effects by comparing the size of the
cross-lagged regression coefficients, these regression coefficients first need to be stan-
dardized. However, in the multilevel model subject-based statistics or group-based
statistics can be used to standardize the coefficients, and each method may result in
different conclusions. In Chapter 3 we argued that in order to make a meaningful
comparison of the strength of the cross-lagged associations, the coefficients should
be standardized within persons. The chapter contains an empirical application on
experienced competence and exhaustion in persons diagnosed with burnout, in which
we illustrated the multilevel VAR model and the standardization of its coefficients,
and that disregarding individual differences in dynamics can prove misleading.

Chapter 4
It is safe to assume that psychological data contain measurement errors. However,
this is not taken into account in the vast majority of autoregressive modeling applica-
tions in psychology. This is problematic, because failing to account for measurement
errors leads to biased estimates of the autoregressive parameters. In Chapter 4 we
discussed two n=1 autoregressive models that account for measurement errors: an
autoregressive model that includes a white noise term (AR+WN model), and the au-
toregressive moving average (ARMA) model. We compared the performance of these
models, and the regular autoregressive model that does not account for measurement
errors in a simulation study. Furthermore, we investigated whether these models
perform better using a frequentist approach, or a Bayesian approach. Our results
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indicated that overall, the AR+WN model recovers the model parameters the best,
and that psychological research would benefit from a Bayesian approach in fitting this
model, especially for smaller sample sizes. We illustrated the effect of disregarding
measurement error in an AR(1) model with an empirical application on mood data in
women. In this example we found that, depending on the participant, approximately
30-50% of the total variance was due to measurement error and other measurement
occasion-specific fluctuations. Disregarding this type of variance in the data resulted
in a substantial underestimation of the autoregressive parameters.

Chapter 5
In Chapter 5 we presented a multilevel VAR+WN model that accounts for mea-
surement errors — or equivalently, for the reliability of our measurements — in a
multilevel, multivariate context. The VAR+WN model presented in this chapter is
an extension of the model presented in Chapter 4. In the model the means, regression
parameters, innovations variances and covariances, and measurement error variances
and covariances are allowed the vary across persons. As a result, the reliabilities of
the measurements also vary across persons. Next to accounting for measurements
errors within the model, we showed how the multilevel VAR model can be used to
obtain estimates for the reliability of the within-person measurements of each individ-
ual, in addition to the reliability of the measurements with regard to between-person
differences.

Because the reliabilities for a specific variable may differ from person to person,
the consequences of failing to account for measurement errors for the VAR model
may also differ from person to person. In Chapter 5 we discussed these, potentially
severe, consequences: The cross-lagged effects may be underestimated or overesti-
mated, true cross-lagged effects may ‘disappear’, and spurious cross-lagged may arise
in the VAR model estimates. In the empirical example on general and relationship
positive affect in couples, we found average person-specific reliabilities across persons
of approximately .65 for both general and relationship positive affect. That is, like
in Chapter 4, we found that the proportion of variance in the data that is due to
fluctuations specific to the measurement occasion is quite large, which exemplifies the
need of accounting for this type of variance in our autoregressive models.
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Limitations and Future Directions
Although the collection and dynamic modeling of intensive longitudinal data is steadily
gaining in popularity in psychology, the methodology for both is still very much in
the development phase. In this dissertation important steps forward are made in
the modeling of intensive longitudinal data with (multilevel) autoregressive models.
However, many challenges and limitations that have not been the focus of this dis-
sertation still remain, and are important to consider. In the following, I will briefly
discuss some of these challenges, as well as some suggestions for future research.

One fairly obvious limitation that the reader has encountered throughout this dis-
sertation is the stationarity assumption of the autoregressive model: The mean and
variance of the psychological process should remain the same across time for each
person. This means that, as is, the autoregressive model is not suited for modeling
processes that involve some kind of trend, as would be expected to be the case for
many developmental processes. It is also not suited for processes in which the autore-
gression parameters or residual (co)variances change across time, either continuously
or abruptly. However, it is possible to extend the autoregressive model to incorporate
trends (Hamilton, 1994, , p. 454), abrupt changes in the dynamics (e.g., De Haan-
Rietdijk et al., 2014; Kim & Nelson, 1999), or continuous changes in the dynamics
(Harvey, 1989, p. 341). Challenges for future research will be to extend such models
to a multilevel context, and to figure out when to use which technique in practice
(e.g., how to distinguish and choose between a positive autoregressive process and a
non-stationary process that includes a trend, for relatively short time series).

A perhaps less obvious, but important, limitation of the autoregressive model is
that it requires that the time intervals between the measurement occasions are equal
for all occasions, that is, measurements should be taken each week at the same time,
or every hour, every minute and so on. Obtaining such measurements is not always
possible, and sometimes it is even purposely avoided. For instance, in Experience
Sampling Method (ESM) studies, participants are randomly prompted to report what
they are doing or how they feeling at the time. This is done randomly so that the
feelings or behavior of the participants will not change as a result of the participants’
anticipation of the next prompt. Unequally spaced observations are problematic for
VAR models, because in these models time is treated as if it is discrete. As a result,
the regression parameters indicate the effect of one variable on another across a spe-
cific time interval (e.g., across weeks, or hours, or minutes, seconds, and so on). Thus,
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if the observations are not equally spaced across time, the estimate of the effect for
a specific interval will not be correct. An ad hoc way to deal with unequally spaced
observations to some extent that the reader has encountered in Chapter 2 and 3, is
to add missing values between the observations to make the time intervals between
measurements (more) equal. A more sophisticated solution to this issue would be
to treat time as continuous, rather than discrete.1 However, the current multilevel
extensions of continuous time models still have strong limitations: either the random
cross-lagged effects are assumed to be equal within a person (Oravecz & Tuerlinckx,
2011), or the lagged effects are assumed to be the same across persons (Voelkle et al.,
2012). Many developments in this area are expected however in the near future.

Although the multilevel autoregressive model presented throughout this disserta-
tion provides a flexible framework for modeling individual differences in psychological
processes, the multilevel extension brings in some additional assumptions. For ex-
ample, it rests on the assumption that the means and regression parameters are
multivariate normally distributed. This assumption may not be tenable: the random
parameters may have completely different distributions, either known or unknown.
Future directions here could be to evaluate the robustness of the model against vio-
lations of the model assumptions, to use non-parametric multilevel techniques to fit
the model, or to use a-posteriori techniques to group participants (see for example,
Gates & Molenaar, 2012).

Finally, many limitations and challenges in fitting and extending multilevel au-
toregressive models and dynamic models in general, lie in the available technology
for collecting (enough) intensive longitudinal data, the capabilities of software, and
computational power. For example, all of these may need to be improved to be
able to successfully fit large multivariate multilevel autoregressive models. Fortu-
nately, the technology for collecting intensive longitudinal data (e.g., smartphones
and smartwatches), as well as the available software for fitting dynamic models are
rapidly being developed. Therefore, it seems only a matter of time until the dynamic
modeling of intensive longitudinal data will become one of the main focal areas in
psychological science.

1It should be noted that theoretically, by adding an infinite amount of missing data between all
observations, such that the time intervals become infinitesimally small, the autoregressive effects of
the discrete model will approach those for the continuous time model.
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Nederlandse Samenvatting

Multilevel autoregressieve modellen zijn statistische modellen die gebruikt kunnen
worden voor het analyseren van intensieve longitudinale data, dat wil zeggen, data
die bestaan uit tijdreeksen voor meerdere personen. De insteek van autoregressieve
modellen wordt goed geduid met de uitspraak “Gedrag uit het recente verleden is de
beste voorspeller van toekomstig gedrag”. In een klassiek autoregressief model wor-
den huidige scores op de afhankelijke variabele namelijk geregresseerd op voorgaande
scores op diezelfde variabele, dat wil zeggen, observaties op het huidige meetmo-
ment worden gebruikt als voorspeller voor toekomstige observaties. Door het au-
toregressieve model uit te breiden naar een multilevel autoregressief model wordt het
mogelijk om de herhaalde metingen van meerdere individuen tegelijk te modelleren
en tevens de verschillen tussen de autoregressieve processen van de individuen te
modelleren. Multilevel autoregressieve modellen worden steeds populairder binnen
de psychologie, maar de methoden voor het passen van deze modellen voor psychol-
ogische data zijn nog in de ontwikkelingsfase. Het doel van deze dissertatie was om
bepaalde moeilijkheden van het passen en interpreteren van multilevel autoregressieve
modellen te onderzoeken, uiteen te zetten en zo mogelijk te verhelpen.

In de algemene inleiding van deze dissertatie wordt besproken waarom intensieve
longitudinale data en het modelleren van individuen over de tijd essentieel is voor
de psychologische wetenschap. Daarnaast wordt het idee achter het multilevel au-
toregressieve model uitgelegd. Hoofdstuk 2 gaat over de specificatie van de Inverse-
Wishart prior kansverdeling voor de covariantiematrix van de random parameters
voor het passen van het model in het Bayesiaanse framework. Hoewel er inmiddels
ook frequentische technieken zijn om dit type modellen te passen, zijn er praktische
redenen om te kiezen voor een Bayesiaanse insteek (naast eventuele wetenschaps-
of statistischfilosofische voorkeuren). Echter, de specificatie van een Inverse-Wishart
prior kansverdeling blijkt niet eenvoudig — en misspecificaties resulteren in bias in
de varianties van de regressiecoëfficienten. Het probleem zit hem in het feit dat de
Inverse-Wishart zeer informatief wordt als varianties dicht bij nul liggen. In Hoofd-
stuk 2 zetten mijn co-auteurs en ik dit probleem uiteen en presenteren we een simu-
latiestudie waarin we drie priorspecificaties met elkaar vergelijken die zijn voorgesteld
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in de literatuur. Onze resultaten laten zien dat een priorspecificatie die gebaseerd
is op de data — waarin schattingen van de varianties van de random parameters
gebruikt worden in de specificatie — het beste presteert van de drie specificaties
die wij hebben vergeleken, zelfs al resulteert het meerdere keren gebruiken van de
data in een overschatting van de zekerheid over de schattingen. Wij adviseren dat
voor ieder multilevel model, maar met name multilevel autoregressieve modellen, een
sensitiviteitsanalyse uitgevoerd wordt voor de prior specificaties van de covarianties
van de random parameters. We geven een voorbeeld van een dergelijke analyse in
Hoofdstuk 2, uitgevoerd voor een empirische studie naar de wederkerige effecten van
piekeren en positief affect.

Multivariate autoregressieve (VAR) modellen kunnen gebruikt worden om Granger-
causale cross-lagged associaties vast te stellen tussen variabelen. In Hoofdstuk 3 be-
spreken wij hoe de sterkte van deze cross-lagged associaties vergeleken kunnen worden
door de bijbehorende regressiecoefficiënten te standaardiseren. Het vergelijken van de
sterkte van cross-lagged associaties wordt vaak interessant gevonden door psychologen
die willen bepalen welke associaties ‘causaal dominant’ of ‘de drijvende kracht’ zijn in
het psychologische proces. Gestandaardiseerde cross-lagged coefficiënten kunnen ge-
bruikt worden om te bepalen welke predictoren de meeste unieke variantie verklaren
en dus het sterkste directe effect hebben. Echter, voor multilevel modellen kunnen de
parameters gestandaardiseerd worden op basis van groepsstatistieken of op basis van
persoonspecifieke statistieken. Deze verschillende standaardisatiemethoden leveren
verschillende resultaten op en mogelijk zelfs tegenstrijdige conclusies. In Hoofdstuk 3
stellen wij dat de parameters gestandaardiseerd zouden moeten worden op basis van
persoonspecifieke statistieken. We illustreren de verschillende standaardisatiemetho-
den met een empirisch voorbeeld waarin we de sterkte vergelijken van de cross-lagged
associaties tussen de gevoelens van competentie en moeheid van mensen met burnout.
Daarnaast laten wij met dit voorbeeld zien dat het negeren van individuele verschillen
in psychologische processen misleidende resultaten kan opleveren. Dit illustreert de
toegevoegde waarde van multilevel autoregressieve modellen ten opzichte van meer
gebruikelijke cross-lagged panel modellen die deze individuele verschillen negeren.

Een belangrijke beperking van zowel het n=1 en het multilevel autoregressieve
model is dat ze negeren dat de data mogelijk meetfouten bevatten. Dit is problema-
tisch, aangezien we er vrij zeker van kunnen zijn dat psychologische variabelen niet
perfect gemeten worden en het negeren van meetfouten bias oplevert in de geschatte
regressieparameters. In Hoofdstuk 4 en 5 van deze dissertatie zetten wij uiteen hoe de
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n=1 en multilevel autoregressieve modellen uitgebreid kunnen worden zodat zij wel
rekening houden met meetfouten. In Hoofdstuk 4 bespreken we twee uitbreidingen
van het n=1 autoregressieve model waarin rekening wordt gehouden met meetfouten:
Een autoregresief model met een term met witte ruis (AR+WN model) en het au-
toregressive moving average (ARMA) model. We vergelijken de prestaties van deze
modellen en het standaard autoregressieve model (dat geen rekening houdt met meet-
fouten) middels een simulatiestudie. Daarnaast onderzoeken wij of deze modellen
beter presteren met een frequentistische of met een Bayesiaanse schattingsprocedure.
Uit de resultaten blijkt dat het Bayesiaanse AR+WN model globaal genomen het
beste presteert. De Bayesiaanse schattingsprocedure blijkt met name voordelig wan-
neer de steekproefgroottes relatief klein zijn (i.e., minder dan 500 herhaalde metingen
per persoon). We illustreren het effect van het negeren van meetfouten met een
empirisch voorbeeld waarin we herhaalde metingen van de dagelijkse stemming van
acht vrouwen analyseren. Uit deze analyses blijkt dat afhankelijk van de participant
30% tot 50% van de variantie in stemming een gevolg is van meetfouten of andere
meetmomentspecifieke fluctuaties. Het negeren van deze fluctuaties resulteert in een
substantiële onderschatting van de autoregressieve parameters.

In Hoofdstuk 5 presenteren we een bivariaat multilevel VAR model dat rekening
houdt met meetfouten (VAR+WNmodel), ofwel een model dat rekening houdt met de
betrouwbaarheid van onze metingen. Dit model is een uitbreiding van het AR+WN
model uit Hoofdstuk 4. In dit model variëren de gemiddeldes, regressieparameters,
innovatievarianties en covarianties en de meetfoutvarianties en covarianties over per-
sonen. Dientengevolge variëren ook de betrouwbaarheden van de metingen over per-
sonen. In Hoofdstuk 5 laten we zien dat naast dat in het VAR+WN model impliciet
rekening wordt gehouden met deze betrouwbaarheden, het model ook gebruikt kan
worden om schattingen van de betrouwbaarheden te verkrijgen per persoon. Daar-
naast bespreken we de gevolgen van het negeren van meetfouten in het VAR model.
Aangezien de betrouwbaarheden per persoon verschillen, verschillen ook de gevolgen
van het negeren van meetfout per persoon. Deze gevolgen kunnen ernstig zijn: de
cross-lagged parameters kunnen worden onderschat of overschat; cross-lagged associ-
aties kunnen ‘verdwijnen’ uit het model (vrijwel op nul geschat worden) en er kunnen
schijnverbanden opduiken tussen variabelen. In een empirisch voorbeeld waarin we
de algemene positieve affect en relatie-specifieke affect van mannen en vrouwen in
een relatie analyseren, vinden we een gemiddelde betrouwbaarheid over personen van
ongeveer .65. Dat wil zeggen dat we, net als in Hoofdstuk 4, vinden dat een groot deel
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van de variantie in de metingen een gevolg was van meetmomentspecifieke fluctuaties
of meetfouten, hetgeen het belang van rekening houden met deze fluctuaties in onze
modellen onderschrijft.

Ten slotte worden in het laatste hoofdstuk van dit proefschrift de voorgaande
hoofdstukken samengevat en een aantal beperkingen van het autoregressieve model
en suggesties voor vervolgonderzoek besproken.
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