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Abstract 

Reliable prediction of binding affinity changes (∆∆G) upon mutations in protein complexes 

relies not only on the performance of computational methods but also on the availability and 

quality of experimental data. Binding affinity changes can be measured by various 

experimental methods with different accuracies and limitations. To understand the impact of 

these on the prediction of binding affinity change, we present the Database of binding 

Affinity Change Upon Mutation (DACUM), a database of 1872 binding affinity changes upon 

single point mutations, a subset of the SKEMPI database (Moal and Fernández-Recio, 2012) 

extended with information on the experimental methods used for ∆∆G measurements. The 

∆∆G data were classified into different datasets based on the experimental method used and 

the position of the mutation (interface and non-interface). We tested the prediction 

performance of the original HADDOCK score, a newly trained version of it and mCSM (Pires 

et al., 2014), one of the best reported ∆∆G predictor so far, on these various datasets. Our 

results demonstrate a strong impact of the experimental methods on the performance of 

binding affinity change predictors for protein complexes. This underscores the importance of 

properly considering and carefully choosing experimental methods in the development of 

novel binding affinity change predictors. The DACUM database is available online at 

https://github.com/haddocking/DACUM. 
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1. Introduction 

 
Protein-protein interactions (PPIs) play fundamental roles in the regulation of various 

biological processes. A single mutation in a protein can be sufficient to alter the properties of 

its PPIs network by modulating the strength of interaction with its partners, as measured by 

the binding affinity, or binding affinity changes upon mutation, which, in turn, can lead to 

malfunction or disease (Stites, 1997). Studying and measuring the impact that mutations 

might have on binding affinity is therefore crucial to a proper understanding of PPIs and 

related biological phenomena. 

 

Currently, there are many experimental methods that can be used to measure the binding 

affinity of a protein complex, for example, isothermal titration calorimetry (ITC), surface 

plasmon resonance (SPR), fluorescence, spectroscopy and stopped-flow assays (Kastritis and 

Bonvin, 2013). These methods have been extensively applied to study the difference of 

binding affinity between wild type and mutant protein complexes, expressed as binding 

affinity changes upon mutation (∆∆G). During the last decades, a large amount of 

experimental data on binding affinity change upon mutation have been generated. The most 

recent and largest collection of such data is the SKEMPI database (Structural database of 

Kinetics and Energetics of Mutant Protein Interactions) (Moal and Fernández-Recio, 2012), 

which contains 2317 entries with available thermodynamics parameters for both wild type 

(native) and mutant protein-protein complexes.  

 

As experimentally measuring the effect of mutations on protein complexes can be costly and 

time-consuming, scientists have also turned to computational methods to predict binding 

affinity changes upon mutation in protein complexes. Taking advantage of the SKEMPI 

database, several binding affinity change predictors have been developed over the last years 

(Dehouck et al., 2013; Moal and Fernández-Recio, 2013; Berliner et al., 2014; Dourado and 

Flores, 2014; Li et al., 2014; Pires et al., 2014; Brender and Zhang, 2015). Of these, mCSM 

(mutation Cutoff Scanning Matrix) (Pires et al., 2014)  shows a strong performance  with an r 

of 0.81 in terms of Pearson’s correlation coefficient between the predicted and the measured 

binding affinity changes. It was trained on a dataset of single point mutations derived from 

SKEMPI. Although datasets collecting mutation data are essential to develop and test new 

prediction approaches, one should also pay attention to the quality of the data. By classifying 

the latter based upon the experimental methods used for their measurements, we have recently 
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demonstrated that these have an impact on the achievable accuracy of predictor of absolute 

binding affinities (Vangone and Bonvin, 2015). In the case of binding affinity changes upon 

mutation, none of this has yet been investigated, mainly because SKEMPI does not provide 

information on the experimental methods used in their measurements. 

 

Besides the experimental method used for its measurement, also the position of a mutation 

may have an impact on the achievable accuracy of a predictor. According to Levy’s 

classification of structural regions (Levy, 2010), a mutation located in the interface core, rim 

or support regions can be defined as interface mutation, while one on the remaining surface or 

in the interior region (buried mutation) is considered a non-interface mutation. It is easy to 

assume that an interface mutation will have a larger and more direct effect on PPIs than a non-

interface one, therefore causing a larger change in binding affinity. It seems therefore 

necessary, when training and testing binding affinity change predictors, to also distinguish the 

data based on their location. Despite the fact that this is provided in SKEMPI, most known 

SKEMPI-based predictors have not taken that information into account. 

 

Several approaches have been proposed to predict from structure the impact of mutations on 

binding affinity. Several of those implement empirical potentials (Li et al., 2014; Brender and 

Zhang, 2015). They are typically composed of physico-chemical terms such as van der Waals, 

electrostatic and desolvation energies in combination with various other terms such as 

changes in buried surface area. Rather similar functions are used in our docking software 

HADDOCK (Dominguez et al., 2003) to rank docking models. Despite its simplicity the 

HADDOCK scoring function has proven robust for scoring as demonstrated in the joint 

CASP-CAPRI prediction round (Lensink et al., 2016). 

 

Here we present DACUM, a Database of binding Affinity Change Upon Mutation derived 

from SKEMPI, which, in addition to the information reported in SKEMPI, also provide the 

information on the experimental methods used to measure the binding affinity for each 

mutation, and a classification of the mutations as interface/non-interface (which effectively 

represents as simplification of the SKEMPI classification from rim, core and support into 

interface, and interior and surface regions into non-interface). We test the impact of the 

experimental methods used for affinity measurement and of the location of the mutations on 

the achievable accuracy of predictors of binding affinity changes. This is done using mCSM, 

one of the best performing predictor to date and our simple HADDOCK score. Considering 
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that the scoring function of HADDOCK has been initially conceived to score and rank 

docking poses, we retrained it specifically to predict the impact of mutations. Our overall 

results demonstrate that experimental methods strongly impact the ∆∆G prediction 

performance, as was previously observed for absolute affinity prediction (Vangone and 

Bonvin, 2015). As a consequence, experimental data sets should be carefully chosen when 

training new predictors. 

 
 
 
2. Materials and Methods 

 

Building the database. Our Database of binding Affinity Change Upon Mutation (DACUM) 

was built from the SKEMPI database (Moal and Fernández-Recio, 2012). SKEMPI contains 

data on thermodynamic and kinetic parameters for protein-protein interactions for which the 

structure of the complex is available in the Protein Data Bank (Berman et al., 2000). Version 

1.1 contains 3047 mutations for 158 complexes (PDB IDs) including single and multiple point 

mutations, with associated dissociation constant (Kd) together with the original reference 

(PubMed ID) and the location of the mutated residue, according to the definition provided in 

Levy’s method (Levy, 2010).  

 

In DACUM we added data about the experimental method used to measure binding affinity 

changes for each single point mutant. This was done by checking manually the original 

references for the reported mutants. We classified the experimental methods as defined in 

Table 1. In this process we found several errors in the reported binding affinity values that 

were corrected in DACUM. These are reported in SI Table S1. 

 

We further filtered and classified the mutations as follows: 

1. Only single point mutations were kept. 

2. Only mutations with a unique experimental binding affinity value were kept. 

3. Mutations were classified according to their location into interface (ITF) and non-interface 

(NIF) mutations. ITF combines the core (COR), support (SUP) and rim (RIM) classes in 

SKEMPI, while NIF combines interior (INT) and surface (SUR). 

4. ITF and NIF mutations were further sub-divided into different classes based on the 

experimental methods reported in the related references (see Table 1). 
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Finally, the changes in binding affinity upon mutation ΔΔG were calculated from the reported 

Kd and temperature (T) as:  

 

 ΔG = RT ln(Kd/C0) (1) 

 ΔΔG = ΔGmut – ΔGwt (2) 
 

where the ΔGmut and ΔGwt are the binding free energies of the mutant and wild-type  

complexes, respectively,  R the ideal gas constant (0.0019872 kcal K-1 mol-1), C0 the standard 

reference concentration (1 mol L-1), T the temperature in Kelvin, and Kd the dissociation 

constant in mol L-1.  

 

Our database can be freely downloaded from https://github.com/haddocking/DACUM. 

 

HADDOCK refinement of protein-protein complexes. Starting from the wild-type entries 

reported in DACUM, we generated models of all reported mutants as follows.  

From the reported wild-type PDB structures of the complexes we generated all mutants using 

our in-house script mutate.py (available from https://github.com/haddocking/haddock-tools), 

which simply changes the residue name on the PDB entry. The histidine protonation states 

were defined using molprobity (Davis et al., 2007), the missing atoms were built and the 

resulting models subjected to a gentle refinement in explicit water (TIP3P) with the OPLS 

force field (Jorgensen and Tirado-Rives, 1988) using an 8.5Å cut-off, following the default 

protocol implemented in the refinement interface of the HADDOCK2.2 web server (van 

Zundert et al., 2016). For each mutant, 50 models were generated in this way. They were 

ranked using the default HADDOCK Score (HS): 

 

 HS = 1.0 Evdw + 0.2 Eelec + 1.0 Edesolv  (3) 

 

where Evdw is the intermolecular van der Waals energy described by a 12-6 Lennard-Jones 

potential, Eelec the intermolecular electrostatic energy described by a Coulomb potential and 

Edesolv an empirical desolvation energy term (Fernández-Recio et al., 2004). Besides these 

three energy terms, the buried surface area [Å2] (BSA) was also calculated. 
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For the best HADDOCK model (i.e the one with the lowest HS) of each complex, the 

HADDOCK score and its components (Evdw , Eelec, Edesolv and BSA) were collected and 

differences between mutant and wild-type complexes were calculated as:  

 

 ΔHS = HSmut – HSwt  (4) 

 ΔEvdw = Evdw-mut – Evdw-wt  (5) 

 ΔEelec = Eelec-mut – Eelec-wt  (6) 

 ΔEelec = Eelec-mut – Eelec-wt  (7) 

 ΔBSA = BSAmut – BSAwt  (8) 

 

These were used for training of a new binding affinity change predictor (see below). 

 

Prediction of affinity changes upon mutation using mCSM. The mCSM webserver (Pires 

et al., 2014) was used to predict the binding affinity change upon mutation for all 1872 

DACUM entries using default settings.  

 

Correlation and regression analysis. The correspondence between experimental and 

predicted binding affinity changes was measured using Pearson’s correlation coefficients (r). 

 

Trained HADDOCK ∆∆G predictor. Based on the various HADDOCK terms, we trained a 

predictor using multiple linear regression, applying the Akaike information criterion (AIC) in 

a stepwise selection approach (backward and forward) to identify significant parameters and 

calculate weights only for them.  

 

 HS∆∆G = wvdw Evdw + welec Eelec + wdesolv Edesolv + wBSA BSA + C (9) 

 

Both regression analysis and AIC were implemented in R (R Development Core Team, 2014). 

The standard error of regression (σ) was calculated to quantify the difference between 

predicted and experimental values. 
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3. Results 

 

Database of binding affinity change upon mutation 

From the original 3047 mutations reported in SKEMPI, after filtering (see Material and 

Methods) 1872 single point, non-redundant mutations were selected for DACUM. For each 

entry in DACUM, the SKEMPI_ID, ∆∆G value, position of mutation, experimental method 

and related reference are provided. Compared to other datasets (Dehouck et al., 2013; Moal 

and Fernández-Recio, 2013; Berliner et al., 2014; Dourado and Flores, 2014; Li et al., 2014; 

Pires et al., 2014; Brender and Zhang, 2015) derived from SKEMPI, DACUM is the first to 

provide detailed information about experimental methods used to measure the binding affinity 

for each mutant. The experimental methods reported in DACUM are summarized in Table 1. 

In total, 15 different experimental methods were obtained from 119 references. This 

information was used to classify the data into different datasets based on the experimental 

measurement method. Further, the ∆∆G values in DACUM were calculated and obtained after 

correcting a few (44) misreported values in SKEMPI (see SI Table S1). 

 

Statistics of methods and interface / non-interface mutations 

DACUM contains 1580 and 292 “interface” and “non-interface” mutations, respectively. 

These two groups (referred to as “ALL” datasets) were further classified according to the 

experimental binding affinity measurement methods. The resulting ∆∆G distributions and 

number of mutants for each sub-set are shown in Figure 1.  

  

For interface mutations (Figure 1A), the ALL dataset presents a large distribution of 

experimental ΔΔG values, ranging from -13 to 13 kcal/mol for 1580 mutations. The number 

of mutations largely varies from dataset to dataset, e.g. the Spectroscopy (SP) dataset is the 

largest with 564 mutations, whereas both ELFA and EMSA datasets contain only 6 mutations 

each. Despite the various distributions for these datasets, most show a range roughly between 

-4 and 6 kcal/mol with a median of about 1 kcal/mol. 

 

Compared to interface mutations, the various methods datasets for non-interface mutations 

show much tighter distributions of experimental ∆∆G. Not surprisingly, the variability of 

∆∆G is roughly 5 times smaller, ranging from -1 to 1 kcal/mol. Also the sizes of the datasets 
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are much smaller for a total of 292 non-interface compared to 1580 interface mutations. 

Further some methods are not represented (SPR, SFSP, IAGE and EMSA). 

 

Other features of the dataset such as number of mutation types, number of complexes and 

number of mutations per complex (PDB IDs) are summarized in SI Table S2. Most datasets 

(11/15 and 8/11 for interface and non-interface mutations, respectively) have a ratio of 

number of mutations per complex smaller than 10, indicating a well-balanced dataset in terms 

of number of complexes and mutations (i.e. not dominated by a single complex). 

 

∆∆G prediction performance of mCSM on different method datasets 

We tested the performance of mCSM, which was trained on all single point mutations of 

SKEMPI database, on the various methods datasets. mCSM achieved a correlation of r=0.61 

and 0.17 for the ALL datasets of interface mutations and non-interface mutations, respectively 

(Figure 2A and 2B). The original paper (Pires et al., 2014) reports a correlation of r=0.80 for 

the 2317 single point mutations dataset in SKEMPI. 

 

When considering the various methods datasets, mCSM showed a similar performance on 

both interface and non-interface mutations with average correlations of r=0.50±0.25 and 

0.42±0.41, respectively. It achieves a correlation higher than 0.5 for 10 out of the 15 interface 

datasets, and a negative correlation for 1 dataset. The performance varies largely depending 

on the experimental measurement method ranging from r = -0.140 for ELISA to 0.844 for FL. 

For non-interface mutations, excluding the IAFL dataset with only 2 mutations, the 

correlation coefficients exceed 0.5 for 5 datasets with the largest values (r=0.70) for FL, and a 

negative correlation of r=-0.620 for IASP. These large variations in prediction performance 

clearly indicate a rather strong impact of the experimental measurement method on the 

reliability of the prediction. 

 

∆∆G prediction performance of the raw HADDOCK score on different method 
datasets 

Not surprisingly, the raw HADDOCK score performs rather poorly when it comes to 

predicting changes in binding affinity upon mutation with a correlation coefficient of r=0.28 

for the ALL interface mutations dataset (Figure 2A – green bars). This was already observed 

for absolute binding affinity prediction of protein-protein complexes (Kastritis and Bonvin, 
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2010; Kastritis et al., 2011). Only for 4 method datasets we obtained correlation coefficients 

over 0.5, namely SFFL, SFFP, IAGE and RA. Three method datasets have negative 

correlations, namely CSPRIA, ELFA and EMSA dataset. The largest correlation was 

achieved on SFSP dataset with only 10 mutations (r=0.918), while the minimum occurred for 

ITC dataset with 42 mutations (r=0.076).  

 

The non-interface mutations showed insignificant correlation of r=0.01 for the ALL dataset, 

with an average value of r=0.08±0.35 for all 11 method datasets (SI Figure S1 – green bars). 

This is not surprising since the HADDOCK score is only calculated from the intermolecular 

energies with an 8.5Å cutoff. As such any remote mutations will not really affect the score. 

 

Performance of the trained HADDOCK ∆∆G predictor on different method 
datasets 

Using the components of the HADDOCK score (Evdw, Eelec, Edesolv and BSA) we trained 

a new ∆∆G predictor. The entire interface dataset and each method dataset were separately 

used to train a multiple linear regression model (see Materials and Methods). The results of 

the trained predictors are shown in Table 2. We can see that the HADDOCK terms selected 

and their corresponding weights for predictors of different method datasets were obviously 

different, and the training failed to generate a predictor for CSPRIA, ELISA and EMSA 

datasets with 23, 16 and 6 mutations, respectively. It is noticeable that none of the trained 

predictors reported all the four HADDOCK terms, and only three or less HADDOCK terms 

were kept in predictors after applying the feature selection method AIC. 

 

The results for each predictor are shown in Figure 2A (red bars). The predictor trained and 

tested on the ALL dataset achieved a correlation of r=0.27 with standard error of regression 

σ=2.03 kcal/mol, which is roughly equivalent to the performance of the raw HADDOCK 

Score on the ALL dataset. Compared with the ALL predictor, SPR and SP predictors 

performed similarly on their individual dataset, while other predictors performed much better, 

e.g. the Pearson’s r of ITC, FL and SFFL predictors were about 0.5, and that of SFSP, IAFL, 

IASP, IAGE, IARA, RA and ELFA predictors were higher than 0.6. The predictor having the 

largest correlation is SFSP with r=0.939 for a limited set of 10 mutations, while the SPR 

predictor got the lowest correlation with r=0.234 for 305 mutations. From Figure 2 it might 

look as if the trained predictor is now performing as well or better than mCSM, but this is 

misleading since the HADDOCK predictors were trained separately for each dataset while the 
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same mCSM model was used for all datasets. A comparison of performance of mCSM and 

the ALL trained HADDOCK predictor is shown in SI Figure S2. 

 
 
4. Discussion 

In this work we reported DACUM, a filtered subset of SKEMPI with 1872 cleaned, single 

point, non-redundant mutations with additional information on the experimental methods used 

to measure the binding affinity. This allowed us to define 15 different classes of experimental 

methods.  

 

The datasets of interface mutations show a larger distribution of binding affinity change than 

those of non-interface mutations. This is not surprising, since it is expected that mutations at 

the interface will have a stronger impact on the affinity, resulting in larger changes in binding 

affinity between wild-type and mutant complexes compared to non-interface mutations. As 

shown previously, the latter can still contribute to overall binding affinity of a complex 

(Kastritis and Bonvin, 2010). The difference between these two classes of mutations is also 

reflected in the performance of binding affinity change (∆∆G) predictors: both mCSM and 

HADDOCK (either raw or retrained) scores achieved much higher correlation on interface 

than on non-interface mutations. mCSM, which is based on a machine learning model with 

graph-based signatures based on more than 20 features including sequence profiles, performs 

much better than our simple HADDOCK score based on empirical energies. Only when 

trained separately against various experimental methods dataset does the HADDOCK score 

reach a reasonable performance. 

 

As already shown in our previous work on contact-based prediction of binding affinity 

(Vangone and Bonvin, 2015), the experimental methods used for measuring binding affinity 

have a strong impact on the prediction performance: using the classification reported in 

DACUM, we demonstrated that both HADDOCK and mCSM show a great variability in 

performance depending on the experimental method, with correlation coefficients for 

interface mutations ranging from r=-0.446 (EMSA) to 0.918 (SFSP) for the raw HADDOCK 

score, and from r=-0.140 (ELISA) to 0.844 (FL) for mCSM. The performance of HADDOCK 

and mCSM on the ALL dataset (0.276 and 0.606, respectively) is close to the average 

performance calculated over all method datasets (0.28±0.34 and 0.50±0.25, respectively). 
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Even if only large datasets are considered (i.e. SPR, FL, SP, SFFL, IASP), the performance 

differences between datasets were still significantly large.  

 

A better performance can be obtained by training on datasets for a specific method as 

demonstrated with the retrained HADDOCK predictor. But how realistic is that? In principle 

the impact of a mutation on the strength of an interaction should not depend on the 

experimental method used to measure it. The observed difference might rather reflect 

different accuracies of experimental measurement methods, next to of course all the various 

factors that can affect binding affinity measurements, like salt concentration, buffer, pH, 

temperature. For example, the failed training on CSPRIA, ELISA and EMSA datasets may 

suggest a low quality of the reported data. These large differences between datasets raises the 

questions of which datasets should ideally be used for training a new predictor and what is the 

reliability of various experimental methods. To illustrate this, we calculated the prediction 

performance of the trained HADDOCK score on the various methods datasets not used for 

training (Figure 3). The resulting correlation matrix clearly shows that predictors trained on 

some datasets seem to perform better overall. The prediction performance of each predictor 

over the other datasets (independent validation) is indicated on the right side of the matrix 

(boxed column). From these, SPR, FL, SFFL, SFSP, IAFL and RA seem to perform best 

(with an average r over the independent sets ranging from 0.28 to 0.37, possibly indicating 

that the corresponding data sets are more reliable. All together, these datasets represent 902 

mutations, which is already a nice set for developing new predictors. Retraining a predictor on 

this subset using four-fold cross-validation results in an improved HADDOCK predictor 

performance of r=0.391±0.005 (cross-validated r) (see SI Table S3). The HADDOCK raw 

score performance in the same subset is r=0.363, indicating that our simple scoring function is 

already reasonably robust (optimization does not improve it much), but too simple for ∆∆G 

prediction compared to the more sophisticated mCSM method. 

 

For the future research, it will thus be important to take the experimental methods and 

position of mutation into account when testing and training new binding affinity change 

predictors for protein complexes. The DACUM database, which is providing this information, 

is only a start. Ideally one would hope that a large, reliable and consistent set of ∆∆G 

measurements will become available in the future. For the time being we have to rely on a 

heterogeneous collection of data, obtained mainly in academic labs. The industry could play 
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here significant role by making data available since the experimental conditions for their 

measurements might be much more controlled and uniform than in an academic setting.  
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Figure 1. Boxplots of experimental ∆∆G values in DACUM 

 (A) Interface and (B) non-interface mutations. The “ALL” dataset is composed of all 

interface or non-interface mutations, irrespective of the experimental method. All other 

datasets are named using the abbreviation of corresponding experimental methods (see Table 

1).  
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Figure 2. Performance of HADDOCK and mCSM on DACUM datasets 

The Pearson’s correlation coefficients of mCSM, raw HADDOCK score and trained 

HADDOCK ∆∆G predictors on interface mutations (A), and that of mCSM on non-interface 

mutations (B). Note that for CSPRIA, ELISA and EMSA datasets, there were no available 

trained HADDOCK predictors (see Table 2). 
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Figure 3. Performance of differently trained HADDOCK predictors on the 
various methods datasets 

The performance of various trained HADDOCK ∆∆G predictors on interface mutations is 

shown for each independent methods dataset. The corresponding Pearson’s correlation 

coefficients are color-coded following the scale shown on the right. Off-diagonal elements 

represent an independent validation, while the values on the diagonal give the correlation for 

the training dataset. The average performance (r), excluding the training dataset, is given on 

the right side of the matrix. 
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Table 1. Summary of experimental methods in DACUM 

Abbreviation Full name Keywords of methods in 
referencea Referenceb 

ITC Isothermal Titration 
Calorimetry 

ITC; 
Isothermal Titration 
Calorimetry; 

11148036; 11420435; 15197281; 
16177825; 16227441; 16867992; 
17157249; 18471830; 18687868; 
7629185; 8952503; 9092837; 

SPR Surface Plasmon 
Resonance 

Surface Plasmon 
Resonance; 
SPR; 
BIAcore; 

10772866; 10828942; 10864923; 
10880432; 11123892; 11406576; 
12006492; 12515535; 15064755; 
15618400; 15791205; 16279951; 
16300789; 16446445; 16923808; 
17070843; 17976650; 18275829; 
18319344; 18477456; 18687868; 
19161338; 7504735; 7588629; 7654692; 
8588944; 8703938; 8756685; 8962059; 
8993317; 9050834; 9223641; 9367779; 
9461077; 9500785; 9571026; 9579662; 
9609690; 9878445; Water-mediated 
interaction at a protein-protein interface, 
Chemical Physics, Volume 307, Issues 2-
3, 2004; 

FL Fluorescence 

Fluorescence; 
Fluorimeter; 
Fluorimetry; 
Fluorometer; 
Spectrofluorimeter; 
Spectrofluorometer; 

10452608; 11171964; 11278571; 
12716886; 17475279; 18596201; 
21642453; 7592655; 7716157; 8143850; 
9047374; 9228059; 9632678; 9692956; 
9788869; Stephen Ming-teh Lu, PhD 
Thesis, Purdue University, 2000; 

SP Spectroscopy Spectroscopy; 
Spectrophotometer; 10338006; 11171964; 9047374; 

SFFL Stopped-Flow 
Fluorescence 

Stopped-Flow 
Fluorescence; 
Stopped-Flow 
Fluorimeter; 
Stopped-Flow 
Fluorometer; 
Stopped-Flow 
Fluorescenceanisotropy; 
Excitation, Emission 
Fluorescence; 

10065709; 10413501; 10876236; 
10970748; 11136978; 2479414; 2742853; 
7739054; 8494892; 9126847; 9425068; 
9718299; 

SFSP Stopped-Flow 
Spectroscopy 

Stopped-Flow 
Spectroscopy; 
Stopped-Flow 
Spectrophotometry; 

9050852; 

IAFL Inhibition Assay 
Fluorescence 

Inhibition Assay 
Fluorescence; 
Inhibition Assay 
Fluorescence 
Spectrophotometric; 

11420435; 12515831; 20656696; 
8507637; 9268350; 

IASP Inhibition Assay 
Spectroscopy 

Inhibition Assay 
Spectroscopy; 
Inhibition Assay 
Spectrophotometer; 
Inhibition Assay 
Spectrophotometric; 
Inhibition Assay 
Spectrophotometricuv; 

10065709; 10339415; 10691989; 
1281426; 15284234; 15504027; 
15865427; 16809340; 17405861; 
18775544; 1992167; 7592720; 7683415; 
7947796; 8063780; 8157652; 8276767; 
8784199; 9048543; 9480775; 9761467; 
9761468; 9891008; 

IAGE Inhibition Assay Inhibition Assay 17138564; 
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Gelelectrophoresis Gelelectrophoresis; 
 

IARA Inhibition Assay 
Radioactivity 

Inhibition, 125I-labeled, 
radioactivity; 
Competitive displacement 
assay, 125I-labeled; 
Competitive binding 
assay, radioactively 
labeled; 

10518943; 2034689; 8332602; 

RA Radioactivity 
Radioactive subunit 
exchange; 
I125-labeled; 

18471830; 2402498; 2471267; 7529940; 

CSPRIA 
Competition Solid-
Phase Radio-
Immune Assay 

Competition Solid-Phase 
Radio-Immune Assay; 1711212; 

ELFA Enzyme-Linked 
Functional Assay 

Enzyme-Linked 
Functional Assay; 7756258; 

ELISA 
Enzyme-Linked 
Immunosorbent 
Assay 

Enzyme-Linked 
Immunosorbent Assay; 7947809; 8312277; 9878445; 

EMSA Electrophoretic 
Mobility Shift Assay  

Electrophoretic Mobility 
Shift Assay;  10984496; 

 
a. The keywords of experimental methods occurred in references are reported here. 

b. References using specific experimental methods are reported. The PubMed ID is given where available, 

otherwise the whole reference is provided. 
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Table 2. The parameters of predictors trained on different DACUM datasets 
using HADDOCK terms 

 
 ALL ITC SPR FL SP SFFL SFSP IAFL IASP IAGE IARA RA ELFA 

Intercept 1.083 0.263 0.922 1.267 1.037 0.570 0.884 1.797 0.691 4.576 0.736 0.112 1.052 

Wvdw 0.068 -0.104 0.063 0.133 0.074 0.125 0.110 0.317 0.101 - - 0.176 - 

Welec 0.015 - 0.006 0.008 
-

0.014 
0.022 0.050 0.048 0.061 0.024 -0.016 0.017 - 

Wdesolv 0.049 -0.063 - 0.063 0.076 0.060 0.219 - 0.060 - - 0.107 - 

WBSA - -0.014 0.002 - - - - 0.020 - - -0.034 - 0.008 

Pearson r 0.279 0.474 0.234 0.425 0.317 0.535 0.939 0.747 0.673 0.610 0.727 0.663 0.806 

 

The trained HADDOCK ∆∆G predictors (Eq. 9) are named using the abbreviation of experimental methods. 

HADDOCK terms Evdw, Eelec, Edesolv and BSA were used for training, and corresponding weights are 

reported with the intercept. The HADDOCK terms evaluated as not relevant from the Akaike Information 

Criterion (AIC) evaluation are reported as “-”. Note that AIC did not select any term as relevant for CSPRIA, 

ELISA and EMSA, which are therefore not shown in the table. 

 


