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Abstract. In this paper we show how to interpret Robinson’s Arithmetic Q
and the theory R of Tarski, Mostowski and Robinson as theories of cardinals
in very weak theories of relations over a domain.

Bei der Verfolgung eines Hasen wollte ich mit meinem Pferd über einen Morast setzen.
Mitten im Sprung musste ich erkennen, dass der Morast viel breiter war, als ich anfänglich
eingeschätzt hatte. Schwebend in der Luft wendete ich daher wieder um, wo ich hergekom-
men war, um einen größeren Anlauf zu nehmen. Gleichwohl sprang ich zum zweiten Mal
noch zu kurz und fiel nicht weit vom anderen Ufer bis an den Hals in den Morast. Hier
hätte ich unfehlbar umkommen müssen, wenn nicht die Stärke meines Armes mich an
meinem eigenen Haarzopf, samt dem Pferd, welches ich fest zwischen meine Knie schloss,
wieder herausgezogen hätte. Baron von Münchhausen.

1. Introduction

The development of the arithmetic of the finite cardinals is one of the basic tasks of any
foundational project. It is quite natural to ask ourselves with how little can we actually do
it? Of course, this question needs some further explication. We must ask ourselves what
kind of means to develop arithmetic will we be considering? and how will we measure the
strength of our solution?

We address the first question first. We propose to take the idea of cardinal seriously.
A cardinal is given by an equivalence relation on classes. So, we need a theory of classes
or relations as our starting point. We follow an idea of John Burgess (see [Bur05]): we
start with a basic theory of binary relations over a domain of objects, adjunctive relation
theory or ar. We consider what we should add to ar to get the weakest possible theories
of numbers R and Q. We will see that it is possible to derive both these theories from
surprisingly modest additions to the basic theory ar.

As soon as one has Q one has automatically a lot more, e.g., the theory I∆0 + Ω1, as
has been shown. a.o., by Edward Nelson. See his book [Nel86]. See also [HP91].

The theories of sets and relations that we will use as a basis to develop Q are all
mutually interpretable. So, we need a more refined instrument to compare their strength.
Fortunately, there is a well motivated method available. Our means of measuring strength
is o-direct interpretability. This is an instrument appropriate to measure the strength of
theories of such things as sets and classes over a given domain. We say that V o-directly
interprets U if there is an interpretation K of U in V that preserves both the object
domain and the identity relation on the object domain. The idea is that we consider U
and V as means to talk about the given domain. It is the job of our theories to treat the
given domain. We only allow interpretations that preserve that basic functionality.
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The interpretability of Q in a weak set theory has been studied extensively and we will
make ample use of ideas and insights derived from previous results. Here is a brief history
of the result that Q is interpretable in the salient weak Adjunctive Set Theory or AS.

(1) In the paper [ST50], Wanda Szmielew and Alfred Tarski announce the inter-
pretability of Q in a theory S that is essentially AS plus extensionality.1 See also
[TMR53], p34. No proof was published.

(2) A proof of the Szmielew-Tarski result is given by George Collins and Joseph
Halpern in [CH70]. Collins and Harper did not have Solovay’s method of short-
ening cuts available.2 So, it is rather amazing that they manage to obtain a total
addition and multiplication. They succeed by a clever choice of values for plus
and times whenever the recursive definition does not turn out a value. Their
interpretation of Q is direct.

(3) Franco Montagna and Antonella Mancini, in their paper [MM94], give an im-
provement of the Szmielew-Tarski result. They prove that Q can be interpreted
in an extension N of AS in which we have the functionality of empty set and
the operation of adjoining of singletons. They sketch a proof of the Herbrand
consistency of their set theory that can be proved in a predicative arithmetic.

(4) In appendix III of [MPS90], Jan Mycielski, Pavel Pudlák and Alan Stern provide
the ingredients of the interpretation of Q in AS.3 They do not develop the theory
of addition and multiplication, but these can be treated in familiar ways using
the theory of sequences that is provided by their argument. See e.g. [Pud83] or
[HP91].

(5) John Burgess in his [Bur05], Section 2.2, provides a variant of the Montagna-
Mancini argument. Burgess starts with adjunctive relation theory ar (principles
R1 and R2 on page 92 of Burgess’ book), enriched with a theory of successor on
the object domain (principles Q1 and Q2 on page 56 of Burgess’ book).

In these proofs the basic operations are defined by recursion. We will provide a new
recursion-free proof of the interpretability of Q in AS.

The interpretability of Q in AS important for more reasons than the foundational inter-
est articulated above. It plays an important role in developing the notion of sequentiality,
an explication of what it is for a theory to ‘have coding’. See, e.g., the discussion of
sequentiality in [Vis08].

2. Theories and Interpretations

In this section, we fix some basic concepts and notations. The reader is advised to go
over it lightly, returning just when a notation or notion is not clear.

We work with RE theories in many-sorted first order predicate logic of finite signature.
These theories have officially a relational signature. Unofficially, we use function symbols,
but these can be eliminated using a well-known unwinding procedure. Every sort has
identity.

The most general notion of interpretation is piecewise, more-dimensional, many-sorted,
relative interpretations with parameters, where identity is not necessarily translated as
identity. Since, the presence of parameters, being piecewise and more-dimensionality only
play a minor role, we will only give a definition of one-dimensional, many-sorted, relative
interpretations without parameters, where identity is not necessarily translated as identity.

1John Burgess in [Bur05] , p90-91, calls this theory ST, for Szmielew-Tarski set theory.
2Solovay’s method dates from roughly 1976. See the unpublished letter [Solle].
3Mycielski, Pudlák and Stern do not provide a name for their weak set theory. They call any

theory that directly interprets AS: a weak set theory.
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2.1. Translations. To define an interpretation, we first need the notion of translation.
Let Σ and Ξ be finite signatures for many-sorted predicate logic with finitely many sorts.
The sorts are supposed to be specified with the signature. A relative translation τ : Σ → Ξ
is given by a triple 〈σ, δ, F 〉. Here σ is a mapping of the Σ-sorts to the Ξ-sorts. The
mapping δ assigns to every Σ-sort a a Ξ-formula δa representing the domain for sort a of
the translation. We demand that δa contains at most a designated variable vσa

0 of sort σa

free. The mapping F associates to each relation symbol R of Σ a Ξ-formula F (R). The
relation symbol R comes equipped a sequence ~a of sorts. We demand that F (R) has at
most the variables vσai

i free. We translate Σ-formulas to Ξ-formulas as follows:

• (R(ya0
0 , · · · , y

an−1
n−1 ))τ := F (R)(yσa0

0 , · · · , y
σan−1
n−1 ).

(We assume that some mechanism for α-conversion is built into our definition
of substitution to avoid variable-clashes.)

• (·)τ commutes with the propositional connectives;
• (∀ya A)τ := ∀yσa (δa(y) → Aτ );
• (∃ya A)τ := ∃yσa (δa(y) ∧Aτ ).

Suppose τ is 〈σ, δ, F 〉. Here are some convenient conventions and notations.

• We write δτ for δ and Fτ for F .
• We write Rτ for Fτ (R).
• We will always use ‘=a’ for the identity relation of a theory for sort a. In the

context of translating, we will however switch to ‘Ea’.
• We write ~x : δ~a for: δa0(xσa0

0 ) ∧ . . . ∧ δan−1(x
σan−1
n−1 ).

• We write ∀~x : δ~a A for: ∀xσa0
0 . . .∀xσan−1

n−1 (~x:δ~a → A).
Similarly for the existential case.

2.2. Interpretations and Interpretability. A translation τ supports a relative inter-
pretation of a theory U in a theory V , if, for all axioms A of U , we have U ` A ⇒ V ` Aτ .
(Note that this automatically takes care of the theory of identity. Moreover, it follows that
V ` ∃v0 δa

τ v0, for each Σ-sort a.) Thus, an interpretation has the form: K = 〈U, τ, V 〉.

Par abus de langage, we write ‘δK ’ for: δτK ; ‘PK ’ for: PτK ; ‘AK ’ for: AτK , etc. We define:

• We write K : U �V or K : V �U , for: K is an interpretation of the form 〈U, τ, V 〉.
• V � U :⇔ U � V :⇔ ∃K K : U � V .

We read U � V as: U is interpretable in V . We read V � U as: V interprets
U .

We say that a theory V locally interprets a theory U if, for any finite subtheory U0 of U ,
we have V � U0. We write V �loc U for: V locally interprets U .

2.3. Special Interpretations. We consider pointed theories, i.e., theories with a desig-
nated sort of objects o. An translation τ is o-direct if στ preserves the designated sort,
and, for the designated sort, τ is unrelativized and has absolute identity, i.e.:

• δo(v0) :↔ (v0 = v0),
• v0E

o
τ v1 :↔ v0 = v1.

An interpretation is o-direct if it is based on a direct translation. We write V �o-dir U , for
V o-directly interprets U , etc.

We will use the o-direct sum T �oU of pointed theories. This sum is obtained as follows.
First we make the sorts and predicates of the theories disjoint except the designated sort
o and except for the identity predicates for the designated sort. Then, we take the union
of the modified theories.

Our sum is the sum in a suitable category of o-direct interpretations. Thus, the sum is
a bifunctor w.r.t. the preorder of direct interpretability, i.e., if V �o-dir U and V ′ �o-dir U ′,
then (V �o V ′) �o-dir (U �o U ′).
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The one-sorted theory of pure equality EQ is in the lowest degree of o-direct inter-
pretability together with any many-sorted predicate logic. We clearly have EQ �o U = U .

In case we consider one-sorted theories, we will use the default assumption that the
sort is o.

3. Theories of Number

In this section we discuss various weak theories of number and their interrelations.
First, we formulate systems with partial operations that can also be theories of a number,
and, then, we give the traditional systems R and Q with total operations. The systems
for partial operations will emerge as the natural systems for cardinal arithmetic in our
context. In the rest of the paper, we will work with these systems. In this section, we will
pin down the precise relationships of certain systems of partial operations and R and Q.

3.1. Theories of a Number of all Numbers. We formulate theories that can be a
both theories of a number and of all numbers.

The theory TN0 is given a follows. We have, apart from equality, the following symbols
in the signature: a constant 0, one binary relation symbols S, and two ternary relations
A and M. The theory is axiomatized as follows.

tn1 ` (Sxy ∧ Suv) → ((x = u ∧ y = v) ∨ (x 6= u ∧ y 6= v)),
tn2 ` ¬Sx0,
tn3 ` x = 0 ∨ ∃y Syx
tn4 ` (Axyu ∧ Axyv) → u = v,
tn5 ` Ax0x,
tn6 ` ∃u (Syu ∧ Axuv) ↔ ∃z (Szv ∧ Axyz),
tn7 ` (Mxyu ∧Mxyv) → u = v,
tn8 ` Mx00,
tn9 ` x 6= 0 → (∃u (Syu ∧Mxuv) ↔ ∃z (Azxv ∧Mxyz)),

We will treat 6 as a defined relation:

• ` x 6 y :↔ ∃z Azxy.

We briefly pause to see the necessity of the assumption of Axiom tn9. Suppose we would
drop it. We get, from the resulting axiom in combination with Axiom tn5, taking x, v, z :=
0:

` M0y0 → ∃u (Syu ∧M0u0).

It follows that the class of y such that M0y0 contains 0 and is closed under successor.
Hence, we can derive Enum

n := ∃x1, . . . , xn (S0x1∧ . . .∧Sxn−1xn), for each n.4 This defeats
our intention to give a theory that can also be the theory of a number.

We define the theory TNn as TN0 plus the axiom Enum
n . We define TN∞ as TN0 pus

the axioms Enum
n , for every n.

The following theorem, is not really necessary for the subsequent development, but it
gives some feeling for the theory TN0. Let INF be the theory axiomatized by the axioms
Eob

n := ∃x0, . . . , xn−1

V
i<j xi 6= xj .

Theorem 3.1. The theories TNn and TN0 + Eob
n coincide. It follows that TN∞ and

TN0 + INF coincide.

Proof. It is easy to see that Enum
n implies Eob

n over TN0.

We show that TN0 plus Eob
n proves Enum

n . Reason in TN0. Suppose we have Sv0v1,
. . . , Svk−2vk−1. We claim that Enum

k , i.e., there are u1, . . . , uk−1 such that S0u1, . . . ,
Suk−2uk−1. This follows from Axiom tn5 plus repeated applications of Axiom tn6. Clearly,

4We can, in fact, do much more. By Solovay’s methods, we can interpret AS0 plus the axiom
that S is total. This theory interprets Q. See Subsection 3.3.
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we have Sv0v1 and Av00v0. Hence, for some u1, S0u1 and Av0u1v1. Now we have Sv1v2

and Av0u1v1. Hence, for some u2, Su1u2 and Av0u2v2. Etc.
Suppose we have pairwise distinct elements x0, . . . , xn−1. Consider xi. By Axiom tn3,

xi is either 0 or a successor. In the second case it has a predecessor x
(1)
i . Similarly, x

(1)
i

is either 0 or it has a predecessor x
(2)
i . Etc. If we have a descending chain of length

n, it follows by our previous observation that Enum
n . If, for all i, the descending chain is

smaller than n, then it follows by the functionality and injectivity of successor that the
xi are among the elements of some chain Sw0w1, . . . , Swj−2wj−1, for some j < n. Quod
impossibile, since the xj are pairwise disjoint. 2

3.2. The theory R. The theory R was introduced by Tarski, Mostowski and Robinson
in their book [TMR53]. It is a very weak theory that is essentially undecidable, i.e.,
every consistent RE extension of the theory is undecidable. It was observed by Cobham
that one still has an essentially undecidable theory if one drops the axiom R6 (given
below), obtaining the theory R0. See [Vau62] and [JS83]. Cobham has shown that R has
a stronger property. Consider any RE theory T . Suppose we have translation α of the
arithmical language into the language of T . Suppose T is consistent with Rα

0 . Then, T
is undecidable.5 For the proof of a closely related result, see Vaught’s paper [Vau62]. In
fact one can show that, if T is consistent with Rα

0 , then there is a finitely axiomatized
extension A of R0 and a translation β, such that T is consistent with Aβ .

We consider the signature with 0, S, + and ·. We define 0 := 0, n + 1 := Sn, and
x 6 y :↔ ∃z z + x = y. We have the following axioms.

R1. ` Sn = n + 1
R2. ` m + n = m + n
R3. ` m · n = m · n
R4. ` m 6= n, for m 6= n
R5. ` x 6 n →

W
i6n x = i

R6. ` x 6 n ∨ n 6 x

The theory R0 is axiomatized by R1-5 and R is axiomatized by R1-6.6

We first show that TN∞ interprets R. We define a translation σ.

• δσv :↔ v = v,
• Sσvw :↔ Svw ∨ (∀u¬ Svu ∧ w = 0),
• Aσv0v1w :↔ Av0v1w ∨ (∀u¬Av0v1u ∧ w = 0),
• Mσv0v1w :↔ Mv0v1w ∨ (∀u¬Mv0v1u ∧ w = 0).

It is easily seen that σ gives us an interpretation of R in TN∞.

We proceed to provide an interpretation of TN∞ in R0. Since, everything is simple once
we have a decent linear ordering on our objects, we will first develop an extension of R0

with a linear ordering. Our development is an extension of the one given in [JS83].
We will employ the notational machinery of virtual classes. We define [x, y] := {z | x 6

z 6 y} and x < y :↔ x 6 y ∧ x 6= y. We define the virtual class X as follows. It is the
class of those x such that:

X1. [0, x] is a linear ordering that contains 0 and x;
X2. u < v 6 x → Su 6 v;
X3. u 6 v 6 x → ∃w 6 v w + u = v;

Lemma 3.1 (R0). We have:

5Cobham’s proof remains unpublished, but, using the methods and results of this paper and
the clues provided in [Vau62], it is not hard to find a proof.

6The original version of R does not have S, but a constant 1. However it is definitionally
equivalent with our version: The original version can be recovered from ours by translating 1 to

S0. Our version can be recovered from the original one by translating Sx to x + 1.



6 ALBERT VISSER

i. n ∈ X.
ii. X is downwards closed w.r.t. 6.
iii. For x, y ∈ X, we have x 6 y ↔ ∃z∈X z + x = y.

Proof. (i) and (ii) are trivial. We treat (iii). From right to left is trivial. Suppose x, y ∈ X
and x 6 y. since y ∈ [0, y] and [0, y] is a linear ordering, we have x 6 y 6 y, and, hence,
there is a z 6 y, such that z + x = y. Since X is downwards closed by (ii), we find
z ∈ X. 2

We now construct a translation τ by:

• δτ := X,
• 0τ := 0,
• Sτx := Sx, if Sx ∈ X, Sτx := x, otherwise.
• x +τ y := x + y, if x + y ∈ X, x +τ y := y, otherwise,
• x ·τ y := x · y, if x · y ∈ X, x ·τ y := y, otherwise,

The translation τ gives us an interpretation of R0 plus the following axioms.

• 6 is a treelike partial ordering, i.e., it is a partial ordering satisfying y 6 x and
z 6 x implies y 6 z or z 6 y

• ` y < x → Sy 6 x
• ` y 6 x → ∃z6x z + x = y

The only worry in the verification is the absoluteness of 6 w.r.t. τ . Consider x, y ∈ X.
If x 6 y, then there is a z ∈ X, such that z + x = y, and hence z +τ x = y. So, x 6τ y.
Conversely, suppose x 6τ y. So, for some z ∈ X, z +τ x = y. In case z + x ∈ X, we have
z + x = y, so x 6 y and we are done. If z + x 6∈ X, we have x = y. Since y ∈ X, we have
y 6 y, and so x 6 y.

Let’s call the theory so obtained R1. We work in R1. Define Y as the class of all x, such
that (Y 1): for all y, y 6 x or x 6 y.

Lemma 3.2 (R1). We have:

i. n ∈ Y .
ii. Y is downwards closed.
iii. 6 restricted to Y is a linear ordering.

Proof. We prove (i). Consider any y. We prove y 6 n or n 6 y, by external induction
on n. Since [0, y] is a linear ordering including 0 and y, we have 0 6 y. Suppose we have
y 6 n or n 6 y. In the first case, y 6 n 6 n + 1, and hence y 6 n + 1. In the second case,
we have either n = y or n 6= y. In the first subcase, we find y = n 6 n + 1. In the second
subcase, we find n < y, and, hence, n + 1 = Sn 6 y.

We prove (ii). Suppose z 6 x ∈ Y . Consider any y. We have y 6 x or x 6 y. In the first
case, y 6 z or z 6 y, since [0, x] is linear. In the second case, z 6 x 6 y, so z 6 y.

(iii) is trivial. 2

We define a translation ρ as follows.

• δρ := Y ,
• 0ρ := 0,
• Sρx := Sx, if Sx ∈ Y , Sρx := x, otherwise.
• x +ρ y := x + y, if x + y ∈ Y , x +ρ y := y, otherwise,
• x ·ρ y := x · y, if x · y ∈ Y , x ·ρ y := y, otherwise,

It is easy to see that the interpretation based on ρ gives us the theory R?, axiomatized by:

R?1. ` Sn = n + 1
R?2. ` m + n = m + n
R?3. ` m · n = m · n
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R?4. ` m 6= n, for m 6= n
R?5. ` x 6 n →

W
i6n x = i

R?6. 6 is a linear ordering
R?7. ` x < y → Sx 6 y
R?8. ` x 6 y → ∃z6y z + x = y

Finally, we define the promised interpretation of TN∞. Let W be any virtual class (pos-
sibly with parameters). We define a translation θW of the language of TN0, as follows.

• δθ,W := W ,
• 0θ,W := 0,
• Sθ,W vw :↔ v, w ∈ W ∧ Sv = w,
• Aθ,W v0v1w :↔ v0, v1, w ∈ W ∧ v0 + v1 = w,
• Mθ,W v0v1w :↔ v0, v1, w ∈ W ∧ v0 · v1 = w,

We write W |= B for BθW .

We work in R?. Define Z := {x | ∀y6x [0, y] |= TN0}. It is easy to see that each n is in Z.
We take θZ as our desired interpretation of TN∞. Clearly, for each n, Z |= Enum

n .
Moreover Z is downwards closed.

We check one direction of one sample axiom of TN0, to wit tn6. The other verifications
are similar. Suppose, we have x, y, u, v ∈ Z and Sy = u and x + u = v. Let w be the
maximum of x, y, u, v. Since [0, w] |= TN0, we find ∃z ≤ w (Sz = v ∧ x + y = z). By the
downwards closure of Z, we find that z ∈ Z.

3.3. The Theory Q. Robinson’s Arithmetic Q was introduced in [TMR53]. It is a finitely
axiomatized sequential theory. Using Solovay’s method of shortening cuts (see [Solle]), one
can show that Q interprets seemingly much stronger theories like I∆0 + Ω1. See [Nel86]
and [HP91]. Here are the axioms of Q.

Q1. ` Sx = Sy → x = y,
Q2. ` 0 6= Sx,
Q3. ` x = 0 ∨ ∃y x = Sy,
Q4. ` x + 0 = x,
Q5. ` x + Sy = S(x + y),
Q6. ` x× 0 = 0,
Q7. ` x× Sy = x× y + x.

The theory Q is mutually interpretable with TN0 plus the axiom that S is total, by a result
of Vı́těslav Švejdar. The theory TN0 plus S is total is Hájek’s weak arithmetic Q−

haj. The

theory Q−
haj extends an even weaker theory Q−, due to Grzegorczyk. Švejdar, in his paper

[Šve07], shows that Q is interpretable in Q−.

4. Adjunctive Relation Theory

We define adjunctive relation theory, ar, as follows. The theory ar is two-sorted, with a
sort o of objects and a sort r of binary relations. We have a ternary application predicate
app of type roo. We write ‘Rxy’ or ‘(x, y) ∈ R’ for: app(R, x, y).7

ar1. ` ∃R ∀x, y ¬Rxy,
ar2. ` ∀R, x, y ∃S ∀u, v (Suv ↔ (Ruv ∨ (u = x ∧ v = y)).
ar3. ` R = S ↔ ∀x, y (Rxy ↔ Sxy).

7We use minuscules in the name ‘ar’ to stress the non-iterability of our relations. This theory
allows finite models. We will write e.g. the name of adjunctive set theory ‘AS’ in majuscules,

since the sets we consider are iterable. This theory only has infinite models.
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The theory ar was introduced by John Burgess in his book [Bur05]. Note that extensional
identity on relations can be added as a defined relation to ar. It is then a theorem that
extensional identity functions as a congruence w.r.t. app. Note, however that by having
ar3, we do put a constraint on extensions of the theory in an expanded signature.

To formulate comprehension principles. it will be useful to treat the theory in a richer
signature. If the additional signature is Σ, we will call the theory arΣ.

We will use the usual set theoretic abbreviations on relations, like ∅ for the empty
relation, R ∪ {(x, y)}8, for adjunction, ⊆, ∪, etc.

We will develop o-direct interpretations of stronger versions of the theory. The method-
ology of our bootstrap is as follows. First, we will follow the cardinal style of development.
Secondly, we aim at the very weak arithmetics R and Q−

haj. The strategy has the advantage
that we obtain a good modularity of the development. The basic results work independent
of whether the domain is finite or infinite. The choice to aim at Q−

haj has one disadvantage:

it obscures that, in the theory ar + nu (to be introduced later), we can develop a category
of classes over the basic objects with all finite limits, initial objects and finite sums. (We
did not try to build co-equalizers, so it is not clear whether we can get all finite co-limits
too.)

4.1. Downwards Closure of Virtual Classes. We first introduce a useful operation
on virtual classes and show that this operation preserves desirable properties.

We work in arΣ. Let Y be any virtual class of relations that (i) contains the empty
relation and (ii) is closed under adjunction and (iii) is such that, for all R ∈ Y, and all S,
R ∩ S exists. Define sub(Y) as the class of all R such that, for all S ⊆ R we have S ∈ Y.

We show that sub(Y) contains the empty relation, is closed under adjunction, and is
downwards closed under ⊆.

We treat the case of closure under adjunction. Suppose R is in sub(Y) and S ⊆
R∪ {(x, y)}. Clearly, R∩S exists and (R∩S) ⊆ R. We may conclude that R∩S is in Y.
Either S = R ∩ S or S = (R ∩ S) ∪ {(x, y)}. In both cases, we find that S is in Y.

4.2. Bounded Predicative Comprehension. A formula of arΣ is predicative if it con-
tains no bound class variables.

We work in arΣ. Let Ai(x, y, ~z, ~Q) be a finite sequence of formulas. We demand that
A0(x, y, Q) = Qxy, for some chosen variable Q. Consider the virtual class P0 of all binary

relations P such that
V

i ∀~z, ~Q∃R ∀x, y (Rxy ↔ (Pxy ∧ Ai(x, y, ~z, ~Q))). It is easy to see
that P0 is contains the empty relation and is closed under adjunction.

Consider any P in P0, and any Q. By the definition of P0 and the special choice of
A0, we can find an R such that, for all x, y, Rxy iff Pxy and Qxy. I.o.w., P ∩Q exists.

We take P := sub(P0). When we relativize our relations to P, we o-directly interpret
arΣ plus Bounded Predicative Comprehension BPCΣ for the formulas Ai:

BPCAi . ` ∀~z, P, ~Q∃R ∀x, y (Rxy ↔ (Pxy ∧Ai(x, y~z, ~Q))).

Note that we need downwards closure to guarantee that the promised relation R is indeed
in P.

We may conclude that arΣ �o-dir,loc (arΣ + BPCΣ).

Inspection of our argument shows that we can even do a bit better: we can allow subset-
bounded quantifiers in the formulas of our comprehension principle.

In this paper we will only use a finitely many instances of BPC. Still it is pleasant not
to have to worry about which precise instances one needs. We will reason with the full
principle in the background. When a result is reached, we will note that we used only
finitely many instances, so that we proved global and not merely local interpretability.

8We use ‘(x, y)’ for external, non-iterable pairing and we use ‘〈x, y〉’ for the internal, iterable
pairing that we have in some theories.
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4.3. Union. We work in arΣ + BPCΣ. Consider the class U of R such that, for all S, we
have R ∪ S exists. Clearly, U contains the empty relation and all singleton relations.

We show that U is closed under unions. Suppose X and Y are in U . Clearly, Y ∪ Z
exists and, hence, X ∪ (Y ∪ Z) exists. Since (X ∪ Y ) ∪ Z = (X ∪ (Y ∪ Z)), we find that
(X ∪ Y ) ∪ Z exists.

Finally, we show that U is downwards closed w.r.t. ⊆. Suppose Y ⊆ X ∈ U . Then
Y ∪ Z = {w∈(X ∪ Z) | w ∈ Y ∨ w ∈ Z} exists by BPCΣ.

By relativizing our relations to U , we get an o-direct interpretation of ar+Σ := arΣ +
BPCΣ + union, where union is the axiom that unions exist.

4.4. Classes and Functions. We define classes as diagonal relations, writing x ∈ X for
Xxx. We adopt the usual abbreviations like ⊆ and ∩ for classes. We write, using ‘f ’ to
range over relations:

f : X → Y for: ∀x (x∈X ↔ ∃y fxy) ∧ ∀x, y, y′ ((fxy ∧ fxy′) → y = y′).

If f : X → Y , we often write fx = y, for fxy.
Note that, if X ⊆ Y , then there is a function embX,Y : X → Y , witnessing the

embedding: this is just X itself as a diagonal function. Moreover, in ar+Σ , we have that,
for f : X → Y , X ′ ⊆ X, Y ′ ⊆ Y :

(1) f [X ′], the f -image of X ′ exists.
(2) f−1[Y ′], the inverse f -image of Y ′ exists.
(3) f � X ′ : X ′ → Y exists.
(4) f � Y ′ : f−1[Y ′] → Y ′ exists.

4.5. Creating a Category. We work in ar+Σ . Define the virtual class X0 as the class of
all classes X such that:

i. for all f : X → Y , g : Y → Z, there is a h : X → Z such that, for all x ∈ X,
hx = gfx, i.o.w. g ◦ f exists;

ii. for all y, the function cX,y : X → {y} with cX,yx := y, exists;
iii. if f : X → Y is a bijection then f is an isomorphism, i.e., the inverse f−1 exists.

Clearly, the empty class and al singletons are in X0. Suppose X and Y are in X0. We
show that X ∪ Y is in X0.

We treat case (i). Suppose f : (X ∪ Y ) → Z and g : Z → W . We now may take:
g ◦ f = (g ◦ (f � X)) ∪ (g ◦ (f � Y )).

Case (ii) is easy. We treat Case (iii). Suppose we have a bijection f between X ∪ Y
and Z. It follows that f0 := (f � X) � f [X] is a bijection between X and f [X]. Also,
f1 := (f � Y ) � f [Y ] is a bijection between Y and f [Y ]. Let g0 and g1 be the promised
inverses of f0, respectively f1. Then (g0 ∪ g1) : Z → (X ∪ Y ) is an inverse of f .

Let X := sub(X0). Clearly X contains the empty set and all singletons. We show that
X is closed under unions. Suppose X and Y are in X and Z ⊆ (X ∪ Y ). It follows that
(Z ∩X) ⊆ X and (Z ∩ Y ) ⊆ Y . Ergo, (Z ∩X) ∈ X0 and (Z ∩ Y ) ∈ X0. it follows that
Z = ((Z ∩X) ∪ (Z ∩ Y )) ∈ X0.

We define a category with as objects the elements of X and as morphisms the functions
f : X → Y . (Strictly speaking, the morphisms are the triples (X, f, Y ).) It is easy to
verify that this is a category with as initial object the empty set and with as final objects
the singletons. Also, it is easy to see that the category has equalizers.

We redefine the notion of class to: class in X . So, from this point on, ‘X’, ‘Y ’, ‘Z’ will
range over X .

In the following two subsections we verify the desired properties of the sum and the
product. This just follows the standard development. The main point of the verification
is to convince ourselves that ar+Σ is sufficient to make all the steps work.
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4.6. The Sum. Remarkably, the treatment we give below only works when we have at
least two elements in the object domain. If there is only one object, we do not get the
injectivity of successor, since we will have S0 = S1 = 1. For this reason we will assume
that there are at least two objects. We work in ar+Σ + Eob

2 . Let x? and y? be two distinct
objects.

The class Z is a sum of X and Y iff there are functions in0 : X → Z and in1 : X → Z such
that, for every W and every f : X → W and every g : Y → W there is a unique h such
that f = h ◦ in0 and g = h ◦ in0. Clearly, Z is uniquely determined up to isomorphism.
We will write X + Y for Z and [f, g] for h.

X
in0- X + Y �in1

Y

W

[f, g]......?

......

�

gf
-

The sum need not always exist in our category. As usual, the sum is associative in the
strong sense that, if (X + Y ) + Z exists, then X + (Y + Z) exists and is isomorphic to
(X + Y ) + Z, and vice versa. The sum is also commutative in the strong sense. Finally,
X is a sum of X and ∅, with in-arrows idX and emb∅,X .

We show that the sum, if it exists, is a disjoint union of isomorphic copies. First we
show that the ini are jointly injective. If X is empty, the injectivity of in0 on X is
automatic. Suppose x ∈ X. take W := X, f := idX , g : emb{x},X ◦ cY,x. We see that
[f, g] ◦ in0 = idX . It follows that in0 is injective. Similarly, we find that in1 is injective.
Finally, let W := {x?, y?}, f := emb{x?},{x?,y?} ◦ cX,x? , g := emb{y?},{x?,y?} ◦ cY,y? . We
see that [f, g](in0(x)) = x? and [f, g](in1(y)) = y?. So, in0(x) 6= in1(y).

We show that in0 and in1 are jointly surjective. Suppose z ∈ X + Y is not in the range
of the ini. Consider our previous choice of W , f and g. Suppose, e.g., [f, g](z) = x?. We
easily see that ([f, g]\{(z, x?)})∪{(z, y?)} exists (by BPC and adjunction) and also makes
the sum diagram commute. This contradicts the uniqueness of [f, g].

Let X ′ := in0[X]. This class exists by BPC as a subclass of X + Y . Let ı0 := in0 � X ′.
Since ı0 is injective and surjective, it is an isomorphism. Similarly, for Y ′ := in1[Y ]. We
may conclude that X +Y is the disjoint union of X ′ and Y ′, which are isomorphic copies,
respectively of X and Y .

Conversely, it is easy to see that the union of two disjoint isomorphic copies of X and
Y , if such exist, is a sum. So, we have shown that sums are disjoint unions of isomorphic
copies, where the sum exists iff there exist disjoint copies.

4.7. The Product. We work again in ar+Σ + Eob
2 . The class Z is a product of X and Y

iff there are functions π0 : Z → X and π1 : Z → X such that, for every W and every
f : W → X and every g : W → Y there is a unique h such that f = π0 ◦ h and g = π1 ◦ h.
Clearly, Z is uniquely determined up to isomorphism. We will write X × Y for Z and
(f, g) for h.

W

X �
π0

�

f

X × Y

(f, g)......?

.......

π1

- Y

g

-

Note that we do not have the means available to develop the product as a set of pairs,
since we cannot define an iterated pairing function on our domain.
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We can easily show that the product is associative and commutative, in the strong
sense, and that X × ∅ is ∅ and X × {y} is X. Also we have that, if X × Y and X ′ × Y ′

exist and f : X → X ′ and g : Y → Y ′, then there is a unique f × g : X × Y → Y × Y ′

with f ◦ πi = π′i ◦ (f × g), for i = 0, 1. Moreover, when everything is defined × has the
usual functorial properties.

We want to show the distributivity of + over ×. Suppose X is not empty and X × Y
exists. Say x ∈ X. The function  := (emb{x},X ◦ cY,x, idY ) is a coretraction: we have
π2 ◦ = idY . It is immediate that  is injective. Let Y ? be [Y ]. It follows that ? :=  � Y ?

is a bijection from Y to Y ? and, hence, that Y and Y ? are isomorphic.
We assume that:

(1) X is not empty.
(2) X × Yi exists with witnessing projection functions πi

j .
(3) Z := (X × Y0) + (X × Y1) exists.

We show that the class (X × Y0) + (X × Y1) is a product of the form X × (Y0 + Y1).

We first show that Y0 +Y1 exists. Let i be the embedding of Yi in X×Yi described above
(for some fixed x ∈ X). We define:

• Y0 + Y1 := in00[Y0] ∪ in11(Y1).
• in′i := ini ◦ i.

This is indeed the sum, since it is a union of disjoint isomorphic copies.

We show that (X × Y0) + (X × Y1) is a product with witnessing projection functions
π∗0 := [π0

0 , π1
0 ] and π∗1 := π0

1 + π1
1 . Here are the relevant diagrams.

X × Y0
in0- (X × Y0) + (X × Y1) �in1

X × Y1

X

[π0
0 , π1

0 ]......?

.....

�
π
1
0

π 0
0

-

X × Y0
in0- (X × Y0) + (X × Y1) �in1

X × Y1

Y0

π0
1

? in0 - Y0 + Y1

π0
1 + π1

1......?

.....

� in1
Y1

π1
1

?

Suppose we have f : W → X and g : W → Y0 + Y1. Let Wi := g−1[ini[Yi]] and
gi := g � ini[Yi]. Clearly, the Wi form a partition of W . We consider W as the sum of the
Wi with the obvious embeddings as in-functions. Let fi := f � Wi. We find: f = [f0, f1]
and g = g0 + g1. Putting everything together, we obtain the following diagram.

W0+W1

X �
[π0

0 , π1
0 ]

�

[f0
, f1

]

(X × Y0)+(X × Y1)

(f0, g0)+(f1, g1)......?

......

π0
1 + π1

1

- Y0 + Y1

g
0 +

g
1

-

It is easily seen that the diagram commutes. To prove uniqueness, suppose h also finishes
the diagram. We have: h : (W0 +W1) → ((X×Y0)+(X×Y1). Let h′i := (h � Wi). Clearly
the range of h′i is ini[Xi × Y ]. Let hi := h′i � ini[Xi × Y ]. We find: h = h0 + h1. We may
conclude that πi

0◦hi = fi and πi
1◦hi = gi. So hi = (fi, gi) and, thus, h = (f0, g0)+(f1, g1).
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We turn to the other direction. Suppose that:

(1) X is not empty.
(2) Y0 + Y1 is defined.
(3) X × (Y0 + Y1) is defined.

We show that Z := X × (Y0 + Y1) is a sum. Consider Zi := π−1
1 [ini[Yi]]. We note that the

Zi are disjoint and cover X×(Y0+Y1). Define πi
j := πi � Zi. We show that Zi is a product

X × Yi. Suppose f : W → X and g : W → Yi. Then, we have (ini ◦ g) : W → (Y0 + Y1).
Let h be the unique function given by the universal property of X × (Y0 + Y1). It is easily
seen that h[W ] ⊆ Zi. So h � Zi finishes the product diagram of X × Yi.

Let h′ be another function that makes the diagram for X × Yi and f, g commute. It is
easy to see that embZi,Z ◦h′ makes the diagram for X × (Y0 + Y1) and f, ini ◦ g commute.
So h′ is uniquely determined.

4.8. Successor. We work in arΣ + Eob
2 . A successor SX is simply a class X + {x}. We

easily see that SX is defined iff there is an isomorphic copy X ′ of X and an element
x′ 6∈ X ′.

Suppose SX and SY both exist and SX is isomorphic to SY . Say SX = X ′ ∪ {x′},
where X ′ is an isomorphic copy of X and x′ 6∈ X ′. Say SY = Y ′ ∪ {y′}, where Y ′ is an
isomorphic copy of Y and y′ 6∈ Y ′. It is easy to transform an isomorphism of X ′ ∪ {x′}
and Y ′ ∪ {y′} into an isomorphism of X ′ and Y ′. Hence, X and Y are isomorphic. Ergo
S is injective modulo isomorphism.

Finally, clearly, every X is either the empty class or a successor.

4.9. Interpretation of Number Theory. We are now able to interpret TN0 in acΣ+Eob
2 .

First we interpret ac+
Σ+Eob

2 in acΣ+Eob
2 . Next, we interpret our numbers by the elements of

X modulo isomorphism. We take 0 := ∅, SX := X +{x}, and + and × are the + and × of
the category. Note that we get more than TN0: we have associativity and commutativity
of addition and multiplication. We have the full distributivity of times over plus. (Since
TN0 is finitely axiomatized, we get interpretability rather than local interpretability.)

Consider ac �o INF. This is, modulo some minor details, the theory T0 of [Vau62]. It
is immediate that this theory interprets TN∞ and, hence R.9 In the other direction, one
can show that R interprets ac �o INF. We will prove this in a subsequent paper.

Finally, consider ac extended with the no-universe axiom:

nu ` ∀X ∃x x 6∈ X.

In other words, we add the axiom: there is no universal class. We easily see that this
theory implies that successor is total. Thus, it interprets Q−

haj, and, hence, Q. Conversely,
it is well known that Q interprets the theory AS of Subsection 5.3. Moreover, AS is easily
seen to interpret ar + nu. Thus, Q and ar + nu are mutually interpretable.

5. Consequences

In this section, we explore some consequences of our main result. Moreover, we discuss
the relationship of our result to related results in the literature.

5.1. Progressive Linear Order. Let U be any extension of arΣ that interprets the
theory of a progressive linear preorder on the object domain, i.e. a linear preorder L with
the extra property ∀x∈δL ∃y x <L y. We now restrict the relations of our theory to the
virtual class of relations L, where R is in L iff, for some z ∈ δL, for all x ∈ δL and for all
y, we have, if Rxy or Ryx, then x 6L z. I.o.w., the objects in the intersection of the field
of <L and δL, have an upper bound in δL.

9This answers a question of Vaught, see [Vau62], p22.
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It is easy to see that L contains the empty relation and is closed under adjunction.
Restricting our relations to L give us an o-direct interpretation of arΣ + nu. We may
conclude that U � Q.

5.2. A Total, Injective and non-Surjective Relation. The theory InS of a total,
injective and non-surjective binary relation is axiomatized by the follwoig axioms.

ins1. ` ∃y ∀x ¬x σ y,
ins2. ` ∀x∃y x σ y,
ins3. ` ∀x, y, z ((x σ z ∧ y σ z) → x = y.

There is another way of looking at the theory InS. We introduce Vaught’s Set Theory VS.
(This theory was introduced in [Vau67].) It’s axioms are:

vsn. ` ∀x0, . . . , xn−1 ∃y ∀z (z ∈ y ↔
W

i<n z = xi).

For the case n = 0, vs0 gives us the existence of empty sets. The theory VSn is axiomatized
by the axioms vs0 and vsn. The theory VS is axiomatized by all axioms vsn. The theory
VS interprets R. Since, R is locally finitely satisfiable, i.e., every finite subtheory has a
finite model, it is clear that R does not even interpret VS1.

We claim that VS2 is mutually o-directly interpretable with InS. To interpret VS2 in
InS, it is sufficient to read translate x ∈ y by y σ x. In the other direction, we translate σ
by:

• y σ x :↔ y ∈ x ∧ ∀z∈0x z = y.

We start with ar �o InS. We have shown how to o-directly interpret ar+ in ar. In this case
we need only add: subtraction of singleton relations. We work in ar�o InS plus subtraction
of singleton relations.

Define the virtual class Z as the class of all classes Z such that:

i. Z is Dedekind finite, i.o.w, if Z ≡ Y and Y ⊆ Z, then Y = Z. Here ≡ means that
there is a witnessing bijection.

ii. There is an Y and an f : Z ≡ Y , such that for all z in Z, we have z σ fz.

Clearly, Z contains the empty class. We show that it is closed under adjunction.
We verify the preservation of (i). Suppose X is in Z. Consider X ∪ {x}. If x ∈ X,

we are done. So, suppose x 6∈ X. Suppose g : (X ∪ {x}) ≡ Y and Y ⊆ (X ∪ {x}). If
x ∈ Y , we define Y ′ := Y and g′ := g. If x 6∈ Y , we take Y ′ := (Y \ {gx}) ∪ {x} and
g′ := (g \ {(x, gx)}) ∪ {(x, x)}. We find g′ : X ≡ Y ′, Y ′ ⊆ (X ∪ {x}), and x ∈ Y ′. It
follows that:

(g′ \ {(x, g′x)}) : (X \ {x}) ≡ (Y \ {g′x}).
So, X = Y ′ \ {x} and, hence, X ∪ {x} = Y ′. If Y 6= Y ′, we have: gx 6∈ Y ′. But,
gx ∈ Y ⊆ (X ∪ {x}) = Y ′. A contradiction. So X ∪ {x} = Y ′ = Y .

The preservation of (ii) under adjunction is easy.
We claim that the universe, say V , is not in Z. Suppose Z did contain V . We would

have f : V ≡ Y , where f is contained in the virtual relation σ. Since σ is not surjective,
we find Y 6= V . On the other hand Y ⊆ V , contradicting the Dedekind finiteness of V .

We restrict our relations to the union of Z and the non-diagonal relations. This gives us
a direct interpretation witnessing: (ar �o InS) �o-dir (ar + nu). It immediately follows that
(ar �o VS1) �o-dir (ar + nu). Thus we find that (ar �o InS) �o-dir Q and (ar �o VS1) �o-dir Q.

Remark 5.1. There is an alternative strategy for obtaining this result. Note that, as
soon as we have developed our category in ar+, it is sufficient for the totality of successor
that every class is isomorphic to a non-universe. To get this property, it is sufficient to
ensure that, for every Z, there are Y and f such that f : Z ≡ Y and, for all z in Z, z σ fz.
If we pursue this strategy, we must make sure that the result of restricting the classes is
closed under isomorphic copies.



14 ALBERT VISSER

Remark 5.2. We can improve our result by only demanding that we have the InS-axioms
on a (sub)domain of objects δ modulo an equivalence relation E.

Example 5.3. Let SUCC be the theory with the following axioms:

succ1 ` Sx 6= 0.
succ2 ` Sx = Sy → x = y.

John Burgess proves in [Bur05] that (ar �o SUCC) � Q. This result follows immediately
from the result of this section, since Sx = y is a total, injective and non-surjective relation.

5.3. Sets versus Pairs & Classes. In this subsection, we study adjunctive set theory
(sometimes also called: baby set theory) and the adjunctive theory of classes over a basic
theory of pairs. First we introduce adjunctive set theory AS. The language of the one-
sorted theory AS has, apart from identity, just one binary predicate ∈. The theory is given
by the following axioms.

AS1. ` ∃x∀y y 6∈ x,
AS2. ` ∀x, y ∃z ∀u (u ∈ z ↔ (u ∈ x ∨ u = y)).

As discussed in the introduction, AS is the fundamental theory used to define the notion
of sequentiality. The adjunctive theory of classes ac is a close analogue of ar. It is a two
sorted theory of objects and classes. We have, apart from identity the binary predicate
app of type co. We write x ∈ X for app(X, x). Here are the axioms of ac.

ac1. ` ∃X ∀y y 6∈ X,
ac2. ` ∀X, y ∃Z ∀u (u ∈ Z ↔ (u ∈ X ∨ u = y)),
ac3. ` ∀X, Y (∀z (z ∈ X ↔ z ∈ Y ) → X = Y ).

The theory of non-surjective unordered pairing and a theory of non-surjective ordered
pairing is the theory VS2.10 This theory is mutually o-directly interpretable with a theory
PAIR of non-surjective ordered pairing which is defined as follows.

pair1. ` ∃z ∀x, y ¬pair(x, y, z),
pair2. ` ∀x, y ∃z pair(x, y, z),
pair3. ` ∀x, x′, y, y′, z ((pair(x, y, z) ∧ pair(x′, y′, z)) → (x = x′ ∧ y = y′)).

We can directly interpret VS2 in PAIR, by translating x ∈ y to the formula:

∃u (pair(x, u, y) ∨ pair(u, x, y)).

We can directly interpret PAIR in VS2 via Wiener-Kuratowski pairing. We translate
pair(x, y, z) into:

∃u, v ( ∀w (w ∈ z ↔ (w = u ∨ w = v)) ∧
∀w′ (w′ ∈ u ↔ w′ = x) ∧ ∀w′′ (w′′ ∈ v ↔ (w′′ = x ∨ w′′ = y)) ).

We have:

Theorem 5.4. (ac �o PAIR) ≡o-dir AS.

Proof. The theory AS o-directly interprets (ac �o PAIR) using diagonal relations and
Wiener-Kuratowski pairing.

We prove that (ac �o PAIR) �o-dir AS. To give the heuristic, let’s ignore for a moment
the fact that pairing is not necessarily functional. The basic idea is to code e.g. the set
consisting of a, b, c as 〈〈〈0, a〉, b〉, c〉, where 0 is a non-pair. Now forget about functionality
again. We define:

• dc(Y ) :↔ ∀u, v, p ((pair(u, v, p) ∧ p ∈ Y ) → u ∈ Y ),
(We will also write Y :dc for dc(Y ).)

• x ∈ y :↔ ∀Y :dc (y ∈ Y → ∃w, q (pair(w, x, q) ∧ q ∈ Y )).

10John Burgess in [Bur05] calls the result of adding extensionality to this theory: UST.
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Consider any non-pair z. We clearly have {z}:dc. If we would have x ∈ z, then, for some
pair q, we would have that q is in the class {z}, quod non. So z is an empty set.

Consider any x and y. Pick any p with pair(y, x, p). We show that:

∀u (u ∈ p ↔ (u ∈ y ∨ u = x)).

We first treat the right-to-left direction. Suppose u ∈ y, dc(Y) and p ∈ Y . We find y ∈ Y ,
and, hence, for some w and q, pair(w, u, q) and q ∈ Y . So, u ∈ p. Moreover, it is immediate
that x ∈ p.

Conversely, suppose u ∈ p, dc(Y ) and y ∈ Y . We have dc(Y ∪ {p}) and p ∈ Y ∪ {p}.
It follows that, for some w and q, we have pair(w, u, q) and q ∈ Y ∪ {p}. If q = p, then
u = x. If q 6= p, then q ∈ Y and, thus, u ∈ y. 2

The above theorem illustrates that the ‘direct’ sum �o makes the summands interact in
non-trivial ways. In this, it contrasts with the ordinary disjoint sum ⊕. E.g., sequential
theories like AS are connected or join-irreducible in the degrees of interpretability. See
[Pud83] and [Ste89].

Here is our new proof of the (Tarski+Szmielew) - (Collins+Halpern) - (Montagna+Mancini)
- (Mycielski+Pudlák+Stern) Theorem.

Theorem 5.5. Each of ac �o VS2, ac �o PAIR, and AS interprets Q.

Proof. Since, by our earlier results, the theories ac�oVS2, ac�oPAIR, and AS are mutually
o-directly interpretable, it is sufficient to show that one of them interprets Q. We evidently
have (ac �o VS2) �o-dir (ar �o VS1), since we can interpret the relations as classes of pairs.
So, by the result of Subsection 5.2, we are done. 2

6. Separations

We separate some of the salient systems of this paper in the preorder of o-direct inter-
pretability.

Theorem 6.1. We have EQ �6=o-dir
ac �6=o-dir

ar

Proof. The fact that EQ �o-dir ac �o-dir ar is easy.

Suppose EQ �o-dir ac. Then:

PAIR = EQ �o PAIR

�o-dir ac �o PAIR

≡o-dir AS

However, PAIR has a decidable extension (see e.g., [Ten] or [CR01]) and AS is essentially
undecidable. Quod impossibile.

Here is another, relatively theory-free, proof of the same fact. Suppose we have an o-direct
interpretation K of ac in EQ. Let’s allow more-dimensional and piece-wise interpretations,
to create the classes. (This rules out the one-element model as a trivial counterexample.)
It is easy to see that there are k and m such that for every EQ-model M with n elements,
the internal model K(M) has at most nk + m elements. But an ac-model with n-objects
has 2n classes. A contradiction.

Suppose ac �o-dir ar. Then:

ac � SUCC �o-dir ar � SUCC

� Q

It follows that ac �o SUCC is essentially undecidable. On the other hand, ac �o SUCC
is contained in the (true) monadic second order theory of one successor. This theory is
decidable. A contradiction. Alternatively, ac �o SUCC is contained in the weak (true)
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monadic second order theory of one successor. Here the second order variables range over
finite sets. This theory is again decidable. Again we have our contradiction. (See [BE59],
[Büc60], [Elg61], [ER66], for the basics on weak and strong successor theories.)

Here is an alternative, theory-free, proof. Suppose we have an o-direct interpretation K
of ar in ac. There is a k such that, for any model M of ac with N elements, the number
of elements of K(M) is of order Nk. Moreover, if M has n objects, then the number of
elements (objects and classes) of M is of order 2n. So, K(M) has about 2kn elements.

On the other hand the number of elements of a model of ar with n objects is of order 2n2
.

A contradiction. 2

Theorem 6.2. We have:

(ar + nu) �6=o-dir
(ar �o VS1)

≡o-dir (ar �o InS)

�6=o-dir
(ac �o VS2)

≡o-dir (ac �o PAIR)

≡o-dir AS.

Proof. We show that ar + nu does not o-directly interpret ar �o VS1, even when we allow
ourselves parameters. Consider the model M of ar+nu, where we have an infinite domain
of urelements and as classes the finite sets over that domain. Suppose we have finitely
many parameters ~p. Without loss of generality we may assume that these are urelements.
Suppose we had an o-direct interpretation K of ar �o VS2. Let V0 be the virtual class
of urelements that are not set-singletons, V1 the virtual class of urelements that are set-
singletons of the elements of V0, etc. All these classes are disjoint and non-empty. Consider
any Vk without elements from ~p. Since all permutations of the urelements that fix ~p induce
automorphisms of our model, we find that Vk must include all urelements except possibly
some parameters. But this must hold of co-finitely Vk. A contradiction.

We show that ar�o VS1 does not o-directly interpret ac�o PAIR. Consider the following
model N of ar�o VS1. The elements of the domain sequences of 0,1,2 including the empty
sequence. We define s ∈ t iff t = sj, for j = 0, 1, 2. We add all finite relations over our
domain. We show that we cannot define pairing over the object domain in N , not even
with parameters. Let the parameters be ~u. Suppose we could define pairing. Clearly, we
can find s0, s1 and t such that pair(s0, s1, t) and the si and t are all longer than the ~u.

Let α be a permutation of {0, 1, 2}. We define σw,α(v) := wα(i)v1, if v = wiv1, and
σw,α(v) := v, otherwise. We easily see that σw,α lifts to an automorphism of N , which,
par abus de langage, we will again call ‘σw,α’.

If t is not a weak end-extension of one of s0, s1, we find that σs,(01) interchanges the
si and leaves t in place. If t is a weak extension of, say, s0, then σs,(12) leaves t in place
but sends s1 to s2. However, the pairing axiom tells us that any automorphism that fixes
t also should fix s0 and s1. A contradiction. 2

Note that it follows from the above considerations that VS1 6�o-dir VS2. On the other
hand, it is easy to see that VS2 �o-dir VSn, for all n, and so VS2 �o-dir,loc VS. We do not
have VS2 � VS, since VS2 has decidable extensions and VS is essentially undecidable.
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