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Abstract

Atherosclerosis is a lipid-driven inflammatory disease, for which nanomedicinal interventions are under evaluation. Previously, we showed that
liposomal nanoparticles loaded with prednisolone (LN-PLP) accumulated in plaque macrophages, however, induced proatherogenic effects in patients.
Here, we confirmed in low-density lipoprotein receptor knockout (LDLr −/−) mice that LN-PLP accumulates in plaquemacrophages. Next, we found that
LN-PLP infusions at 10 mg/kg for 2 weeks enhancedmonocyte recruitment to plaques. In follow up, after 6 weeks of LN-PLP exposure we observed (i)
increased macrophage content, (ii) more advanced plaque stages, and (iii) larger necrotic core sizes. Finally, in vitro studies showed that macrophages
become lipotoxic after LN-PLP exposure, exemplified by enhanced lipid loading, ER stress and apoptosis. These findings indicate that liposomal
prednisolone may paradoxically accelerate atherosclerosis by promoting macrophage lipotoxicity. Hence, future (nanomedicinal) drug development
studies are challenged by the multifactorial nature of atherosclerotic inflammation.
© 2016 Elsevier Inc. All rights reserved.
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Atherosclerosis is a chronic disease of the arterial wall,
characterized by a lipid-rich, low-grade inflammatory milieu.1

Despite the success of lifestyle changes and statins in
cardiovascular prevention and treatment,2 disability and death
from cardiovascular disease (CVD) is still increasing
worldwide.3 Consequently, anti-inflammatory drugs, amongst
which nanomedicinal approaches, are being assessed.4

Nanotechnology holds a promise by increasing drug accumu-
lation in target tissues, while reducing systemic exposure.5,6 In
support of this concept, liposomal nanoparticles loaded with
anti-inflammatory prednisolone phosphate (LN-PLP) were shown
to accumulate in aortic lesions of rabbits, of which a high degree of
LN-PLP co-localized with lesional macrophages.7 Moreover,
LN-PLP rapidly reduced the inflammatory activity of atheroscle-
rotic lesions in rabbits.7 In humans, the accumulation of LN-PLP in
plaque macrophages isolated from patients after intravenous
infusion was also found.8 However, in patients with advanced
atherosclerosis, LN-PLP treatment tended to increase the degree of
arterial wall inflammation.8

Unfortunately, discrepant drug effects between the preclinical
stage and first-in-human are no exception.1 Whereas previous
studies focused on the inflammatory metrics, here, we addressed
LN-PLP’s effect on atherosclerosis in low-density lipoprotein
receptor knockout (LDLr −/−) mice, characterized by lipid-rich
and macrophage-rich plaques. We found an increased number of
inflammatory cells in the plaque after LN-PLP infusions for
2 weeks. In line with this initial proinflammatory effect, we next
show that prolonged exposure to LN-PLP for 6 weeks induced
more advanced plaque stages in this atherosclerotic mouse
model. Subsequent in vitro studies in both murine and human
macrophages corroborated that LN-PLP induced lipotoxic
effects in macrophages residing in a lipid-rich environment.
Methods

Nanoparticle formulations

The empty liposomal nanoparticles (LN) and liposomal
prednisolone phosphate (LN-PLP) were formulated as previous-
ly described9 and detailed in the Supplementary Material.

LDLr −/− mice studies

In vivo studies, as illustrated in Supplementary Figure 1, were
performed in 8 weeks old LDLr −/− mice on a C57BL/6
background purchased from Jackson Laboratories, fed a high fat
diet (HFD; Hope Farms) containing 0.15% (w/w) cholesterol,
16% fat (w/w) and no cholate for 6 weeks. All animal
experiments were approved by the Committee for Animal
Welfare of Amsterdam Medical Centre or Mount Sinai New
York and were carried out in compliance with guidelines issued
by the local governments.

Biodistribution of LN-PLP
LDLr −/− mice were sacrificed 24 hours after tail vein

injection of either PBS (n = 4) or 10 mg/kg cy5.5-labelled
liposomal prednisolone (LN-PLP; n = 4).10 LN-PLP uptake was
assessed with near infrared fluorescence (NIRF) imaging and
flow cytometric analysis of blood, spleen and aortic arches, as
described in the Supplementary Methods.

LN-PLP efficacy studies
Phosphate-buffered saline (PBS), free prednisolone (PLP,

only in 6 weeks drug study), empty liposomes (LN) or LN-PLP
tail vein injections of 10 mg/kg were given twice a week for
either 2 or 6 weeks (n = 66 and n = 64, respectively). Efficacy
of LN-PLP was assessed using cytochemical and immunohisto-
chemical stainings of aortic roots or arches, flow cytometric
assays and mRNA expression in aortic arches.

In vitro macrophage assays

Bone marrow cells were isolated from both femurs and tibiae
of wild-type mice (C57BL/6; n = 2). Cells were cultured in
RPMI-1640 with 100U/ml penicillin/streptomycin, 10% fetal
bovine serum (FBS; all GIBCO Invitrogen) and 15% L929
conditioned medium (LCM) for 8 days to generate bone
marrow-derived macrophages (BMDM) as previously
described.11 BMDM of two mice were pooled and seeded at a
density of 0.15 × 106 cells/cm2 24 hours prior to stimulation.
THP-1 monocytes (ATCC) were cultured in RPMI-1640
supplemented with 100U/ml penicillin/streptomycin and 10%
FBS. Cells were differentiated into macrophages by adding
50 ng/ml phorbol-12-myristate-13-acetate (PMA) for 24 hours.
The RAW264.7 stable cell line containing the 3x-NFκB-luc
plasmid12 was cultured in DMEM-high glucose (GIBCO
Invitrogen) containing 100U/ml penicillin/streptomycin and
10% FBS. For each in vitro experiment, cells were stimulated
with a low (20 μM) and high (80 μM) dose of PLP. LN-PLP was
given at a concentration of 10 μg/ml (equivalent to 20 μM PLP)
or 40 μg/ml (equivalent to 80 μM PLP). The empty liposomes
(LN) were added in the same liposomal concentrations as
LN-PLP. Macrophage assays comprised of immunostaining,
NFκB transcriptional activity (RLU were normalized to
untreated cells), mRNA gene expression, cholesterol efflux,
oil-red-O staining and flow cytometric assays.

Statistical analysis

In vivo mice studies were performed in at least n = 4 (see
Supplementary Figure 1). In vitro experiments were performed
at least three times in triplicate. Statistical analyses were
performed using GraphPad Prism version 5 (San Diego, CA).
A Shapiro–Wilk normality test was performed before either an
unpaired t-test (Welch corrected when necessary) or Mann
Whitney test was used to define differences between 2 groups.
For differences in plaque stage, the Chi2 test was used. Statistical
significance between the 3 and 4 treatment groups was assessed
using the 1-way ANOVA. Data in the text are presented as
mean ± SD. The significance level was set at P b 0.05.
Results

LN-PLP accumulates in plaque macrophages of LDLr −/− mice

Near infrared fluorescence (NIRF) imaging substantiated
accumulation of LN-PLP in the atherosclerotic plaques located



Figure 1. LN-PLP uptake in LDLr −/− mice. (A) NIRF images showing
accumulation and distribution of Cy5.5-labelled LN-PLP (n = 4) or PBS
(n = 4) 24 hours after tail vein injection (10 mg/kg) in 8-week old LDLr −/−

mice, 6 weeks on HFD. (B,C) Cellular distribution of LN-PLP in spleen,
blood and aorta was assessed by flow cytometry. Data are presented as
mean ± SEM. HFD = high fat diet, LN-PLP = liposomal prednisolone,
NIRF = near infrared fluorescence, PBS = phosphate-buffered saline.
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in the aortas of LDLr −/− mice, 24 hours after tail vein injection
(Figure 1, A). In line with previous experiments,13 LN-PLP was
also found in the liver, lung, spleen and kidney (Figure 1, A).
Flow cytometry assays showed that predominantly myeloid cells
take up LN-PLP (Figure 1, B). In the circulating and splenic
myeloid cells, the highest uptake was found in proinflammatory
Ly6C+ monocytes and macrophages (Figure 1, B). Also in the
aortic arch, uptake of LN-PLP by macrophages and monocytes
was demonstrated (Figure 1, C).

Two weeks LN-PLP induces monocyte recruitment into
atherosclerotic plaques

To evaluate drug effects in lipid-rich atherosclerotic plaques, we
fed 8-week old LDLr −/− mice a high fat diet (HFD) for 6 weeks
inducing substantial atherosclerosis in both the arches and roots
(baseline; Figure 2, A,B). Followed by 2 weeks administration of
LN-PLP, empty liposomes (LN) or PBS (10 mg/kg, biweekly), no
difference in plaque size was observed between the treatment groups
(Figure 2, A-B). However, the percentage of proinflammatory
monocytes was significantly higher in aortic arches of the LN-PLP
mice (11% ± 6; mean ± SD) compared with LN (5% ± 3,
P b 0.05) and PBS (6% ± 3, P b 0.01; Figure 2, C). To analyse
the recruitment of monocytes to the lesions, we assessed the
expression of ER-MP58; a characteristic of circulating immature
myeloid cells, which is lost upon differentiation intomacrophages.14

Immunostaining of the roots showed a significantly higher number
of ER-MP58 positive cells after LN-PLP (24 ± 11;mean ± SD total
ER-MP58+ cells per mouse) compared with LN (13 ± 4,
P b 0.0001) and PBS (17 ± 8, P b 0.05; Figure 2, D), which
indicates an increased presence of freshly influxed monocytes. No
increase in the number of blood monocytes was observed after
LN-PLP (Figure 2, E). Of note, the body weight in LN-PLP treated
mice was lower, whereas plasma cholesterol levels among the main
lipoprotein classes were not different between groups (Supplemen-
tary Figure 2, A,B). Also, RBCs, platelets and haematocrit were
similar between groups (Supplementary Figure 2, C).
Six weeks LN-PLP aggravates atherosclerotic plaques

To assess whether increased monocyte influx after a 2-week
LN-PLP administration translated into accelerated atherogenesis,
we performed an additional experiment using a similar approach in
8-week old LDLr −/− mice fed a HFD for 6 weeks, now receiving
6 weeks of intravenous LN-PLP, LN, PLP or PBS infusion
(10 mg/kg, biweekly). After the start of LN-PLP body weight
decreased whereas plasma cholesterol levels and circulating blood
cells were not different between groups (Supplementary Figure 3,
A-C). Plaque size was not different between groups (Figure 3, A),
yet, plaque stage was more advanced 6 weeks after LN-PLP (40%
of plaques in stage V) compared with PLP, LN and PBS (for all
b10% of plaques in stage V, P b 0.001; Figure 3, B).
Immunohistochemical stainings revealed an increasedmacrophage
content after LN-PLP (25% ± 13) compared with PLP (14% ± 8,
P b 0.05), LN (18% ± 7, P b 0.01) or PBS (14% ± 5, P b 0.01;
Figure 3, C). In addition, plaques had lower smooth muscle cell
content in the LN-PLP mice (SMCs; 7% ± 2) compared with PLP
(10% ± 3), LN (11% ± 5) and PBS (11% ± 4, for all P b 0.05;
Figure 3, D). In agreement, less collagen was present in the
LN-PLP group (43% ± 11) compared with PLP (52% ± 20,
P b 0.05), LN (62% ± 12, P b 0.0001) and PBS (61% ± 12,
P b 0.001; Supplementary Figure 3,D). Finally, enlarged necrotic
core areas were found after LN-PLP (68% ± 4) compared with
PLP and LN (both 61% ± 1, both P b 0.05), and PBS (52% ± 3,
P b 0.01; Figure 3, E). In addition, the mRNA expression of
chemokinesMcp-1 and Sdf-1α (Figure 4, A-B) in the aortic arches
was higher after LN-PLP compared with control groups. In
addition, the expression of Chop (Figure 4, C), a gene activated
upon endoplasmic reticulum (ER) stress, was upregulated after
LN-PLP in comparison to control groups.

LN-PLP induces macrophage lipotoxicity in vitro

In vitro, RAW264.7 NFκB-luc cells were used to assess
prednisolone’s classical anti-inflammatory effect.12 As expected,



Figure 2. LN-PLP inducesmonocyte recruitment in plaques ofLDLr −/−mice. (A,B) Plaque sizewas quantified in (A) the aortic arches (original magnification ×25; scale
bars represent 1 mm) and (B) the roots usingHematoxylin-Eosin (HE) staining, 6 weeks after HFD (baseline,n = 6) and an additional 2 weeks with PBS, LN or LN-PLP
iv administration (n = 20/group, 10 mg/kg, biweekly). (C) Pro-inflammatory monocytes were assessed by flow cytometry of the arches, and (D) total number of cells
positive for ER-MP58 staining, indicative of freshly recruitedmonocytes in the roots, (E) the number of bloodmonocytes. Data are presented asmean ± SEM; *P b 0.05,
**P b 0.01, ****P b 0.0001. LN = empty liposomes, LN-PLP = liposomal prednisolone, PBS = phosphate-buffered saline.
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pretreatment of cells with either LN-PLP or PLP significantly
decreased NFκB activity (RLU were normalized to untreated
cells) upon LPS challenge (8.6 ± 0.8 and 9.8 ± 0.4 for the
highest dose, respectively) compared with control (23.8 ± 3.8;
for both P b 0.001), whereas its activity was not influenced by
empty LN (23.3 ± 3.5; Figure 5, A).

In view of the lipid-rich environment in atherosclerotic plaques,
we addressed the effect of LN-PLP on lipid-handling pathways in
BMDM. The expression of the major cholesterol efflux protein
Abca1 was significantly diminished after LN-PLP (0.007 ± 0.001)
or PLP (0.035 ± 0.002) compared with control (0.013 ± 0.002;
P b 0.001 and P b 0.01, respectively; Figure 5, B). In line with the
decreased expression of Abca1, the cholesterol efflux capacity of
macrophages reduced after LN-PLP and PLP (0.73% ± 0.18 and
1.34% ± 0.26, respectively) compared with LN (1.65% ± 0.45) or
control (2.00% ± 0.27, P b 0.01; Figure 5, B). Also, BMDM lipid
contentwas higher after LN-PLP and free PLP comparedwith empty
LN and control (Figure 5, C).

The expression of the intracellular lipid transporter Fabp4 was
also increased after both LN-PLP (0.81 ± 0.07) and PLP (0.79 ±
0.08), compared with control (0.47 ± 0.05, bothP b 0.01), whereas
after LN the Fabp4 expression was decreased (0.09 ± 0.01,
P b 0.001; Figure 5, D). Increased levels of intracellular lipid
trafficking by Fabp4 have been shown to promote ER-stress and
induce an unfolded protein response (UPR).15 Indeed, we observed
that in lipid-rich macrophages, LN-PLP markedly increased the
mRNA expression of the ER-stress markers Perk (P b 0.05
compared with either LN or PBS; Figure 4, D) and Chop
(P b 0.05 compared with both control groups; Figure 5, E).
Activation of Perk and Chop are elementary in the switch from
pro-survival to pro-death signalling; in line with this, 23% of the
macrophages underwent late apoptosis and 7% necrosis after
LN-PLP, as compared with b15% and b3% of the macrophages,
respectively, in control conditions (Figure 5, F-G).

Comparable results were observed using the human THP-1
cell line; a reduced cholesterol efflux towards apo-A1, increased
Fabp4 gene expression, and attenuated apoptosis in response to
both PLP and LN-PLP (Supplementary Figure 4).
Discussion

In the present study, we show that LN-PLP administration for
2 weeks increases monocyte influx into the plaques of LDLr−/−

mice. Following these early proinflammatory changes, admin-
istration of LN-PLP for 6 weeks results in an increased plaque
macrophage content. In addition, prolonged LN-PLP adminis-
tration aggravates plaque stage, characterized by a decreased
collagen and smooth muscle cell content, as well as increased
necrotic core area. Using an in vitro approach, we show that in a
lipid-rich environment, LN-PLP decreases the macrophage
cholesterol efflux capacity, driving lipid-induced ER-stress and



Figure 3. LN-PLP aggravates atherosclerotic plaques in LDLr −/− mice. (A) After 6 weeks HFD alone, followed by 6 weeks PBS, PLP, LN or LN-PLP
administration (n = 16/group, 10 mg/kg iv, biweekly), (A) plaque size and (B) plaque stage were determined in HE stained sections of the roots. (C-E)
Representative photomicrographs and quantifications (C) of macrophage content (MAC-3), (D) smooth muscle cell content (1A4) and (E) necrotic core size are
shown. A,C,D original magnification ×25; E, ×100; scale bars represent 1 mm. Data are presented as mean ± SEM; *P b 0.05, **P b 0.01, ***P b 0.001.
LN = empty liposomes, PLP = free prednisolone, LN-PLP = liposomal prednisolone, PBS = phosphate-buffered saline.

Figure 4. Gene expression in aortic arches from LDLr −/− mice. (A-C) mRNA was isolated from aortic arches of LDLr −/− mice after 6 weeks administration of
either PBS, PLP, LN or LN-PLP (n = 16, 10 mg/kg iv, biweekly) to analyse gene expression of monocyte migration factors,Mcp-1 (A) and Sdf-1α (B), and the
endoplasmatic reticulum stress marker, Chop (C). Gene expression was normalized to 36B4 housekeeping gene. Data are presented as mean ± SEM; *P b 0.05,
**P b 0.01.Chop = C/EBP homologous protein, LN = empty liposomes, LN-PLP = liposomal prednisolone, Mcp-1 = monocyte chemotactic protein-1,
PBS = phosphate-buffered saline, PLP = free prednisolone, Sdf-1α = stromal cell-derived factor-1α.
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Figure 5. LN-PLP promotes macrophage lipotoxicity. (A) NFκB activity was determined in RAW267.4 NFκB-luc cells as the relative fold change to control without
100 ng/ml LPS stimulation. (B) BMDMwere isolated fromC57BL/6mice to study gene expression levels ofATP-binding cassette transporter A1 (Abca1) and cholesterol
efflux towards the acceptor apo-A1. (C) BMDM lipid content after 48 hours oxLDL (50 ug/ml) using oil-red-O stain. (D) Gene expressions of the intracellular lipid
transporter Fabp4, and (E) ER-stress markers Perk and Chop in BMDM exposed to oxLDL (50 ug/ml) for 24 hours. (F-G) Late apoptosis and necrosis following a
72-hour oxLDL (50 ug/ml) incubation were assessed by Annexin-V / propidium iodine flow cytometry. Gene expression was normalized to 36B4 and 18S housekeeping
genes. Oil-red-O photomicrographs were taken with a 400× magnification. Data are presented as mean ± SEM; *P b 0.05, **P b 0.01, ***P b 0.001.BMDM = bone
marrow derived macrophages, Chop = C/EBP homologous protein, Fabp4 = fatty acid binding protein 4, LN = empty liposomes, LN-PLP = liposomal prednisolone,
PBS = phosphate-buffered saline, Perk = pancreatic endoplasmic reticulum kinase, PLP = free prednisolone.
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subsequent apoptosis/necrosis. These findings indicate that local
exposure to prednisolone elicits a proatherogenic, lipotoxic
effect in plaque macrophages in LDLr −/− mice.
The finding of enhanced monocyte influx in plaques of
LDLr −/− mice after 2 weeks of LN-PLP is discordant with
the previously described reduction in inflammatory cell
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content in rabbit’s atherosclerotic lesions only days after a
single LN-PLP administration.7 Explanations for this discrep-
ancy may include differences in timing (2 days versus 2 weeks
treatment), dosing (single versus multiple injections of
LN-PLP) and differences in plaque composition between
rabbits and mice.16 The latter may be of particular relevance,
since the acute inflammatory response following the double-
balloon injury in the rabbit model more closely represents
‘classical’ inflammation,17 explaining the beneficial impact of
glucocorticoids. Conversely, the lipid-driven inflammation in
LDLr −/− mice, and for that matter also in patients, reflects a
chronic inflammatory disease state.18

The relevance of the enhanced monocyte response after
2 weeks is substantiated by the observation that after 6 weeks of
LN-PLP administration, the number of macrophages, tissue
descendants of monocytes, is higher in plaques compared with
PLP, LN or PBS administration. In addition, mRNA expression
of chemoattractants,19 Mcp-1 and Sdf-1α, was upregulated in the
aortic arches of the LN-PLP treated mice and may be an
explanation for the observed increased monocyte influx and
macrophage plaque content. This higher macrophage number
after LN-PLP corresponds to our previous observation in patients
treated with LN-PLP who exhibited a 7% increase in carotid
18F-fluorodeoxyglucose (18F-FDG) uptake,8 which is a marker
of plaque macrophage content.20

Since we have shown that LN-PLP is taken up by plaque
macrophages in the atherosclerotic plaques, we focused on the
direct effects of LN-PLP on plaque macrophages. It has been
previously reported that glucocorticoids induce the repolariza-
tion of inflammatory (M1-like) macrophages towards reparative
(M2-like) macrophages.21 In support, we show that NFκB
activity is decreased after (LN-)PLP. Interestingly, this repara-
tive phenotype has also been reported to bear an increased
vulnerability for lipid stress,22 as suggested by increased
expression of the intracellular lipid chaperone Fabp423 and
decreased expression of the major cholesterol efflux transporter
Abca1.24 Here, we report the consequences of these phenotypical
changes in a lipid-rich environment, by showing that (LN-)PLP
decreases the efflux capacity of lipid-laden macrophages, leading
to accelerated foam cell formation. Increased lipid burden in
macrophages is known to promote cellular stress responses.15

We show that exposure of lipid-rich macrophages to (LN-)PLP
augments ER-stress and increases the number of macrophages
undergoing late apoptosis and necrosis.

The finding of a direct proatherogenic effect adds to previous
suggestions that prednisolone predominantly has indirect
adverse effects on known cardiovascular risk factors such as
glucose homeostasis, blood pressure and lipids.25 Several
observations strengthen the concept of an adverse effect of
prednisolone itself on macrophages: (i) in vitro macrophages
respond in a similar fashion to liposomal encapsulated PLP
(LN-PLP) as to free PLP, and (ii) the lipotoxic effects of
(LN-)PLP in vitro correspond to the observed proatherogenic
changes in vivo, both in mice (higher number of monocytes/
macrophages andmore advanced plaque stages) aswell as in patients
with atherosclerotic plaques (increased 18F-FDG uptake).8

Several limitations merit consideration. First, although we
show local accumulation of LN-PLP in plaque macrophages in
LDLr −/− mice, we cannot provide an absolute quantification of
the drug concentration in the atherosclerotic plaques. With the
advent of novel nanoparticle therapies for atherosclerosis,26,27

future studies need to address drug delivery efficiency. Second,
whereas we have focused on the effects of LN-PLP on
macrophages in a lipid-rich environment, we cannot exclude that
other mechanisms of glucocorticoids may also have contributed to
the observed proatherogenic effects. For instance, glucocorticoids
have been shown to induce an upregulation of 11β-hydroxysteroid
dehydrogenase type 1 (11β-Hsd1), which converts inactive
glucocorticoids into active glucocorticoids. In line, 11β-Hsd1
inhibitors decrease the active intracellular glucocorticoids and
attenuate atherosclerosis progression in ApoE−/− mice.28,29

Here, we show in an atherosclerosis mouse model, that
LN-PLP infusions induce early monocyte recruitment to plaques,
followed by increased macrophage content, more advanced
plaque stages, and larger necrotic core sizes. These in vivo
findings were recapitulated in vitro, since we observed that both
murine and human macrophages polarize into a lipid-avid
phenotype after LN-PLP exposure. In summary, these findings
indicate that macrophage targeting in plaques with prednisolone
may accelerate atherosclerosis by promoting macrophage
lipotoxicity. This also highlights the challenges of applying
anti-inflammatory strategies in atherosclerosis; favourable ef-
fects of an anti-inflammatory compound in a classical inflam-
matory disease cannot be easily extrapolated to a comparable
efficacy in the lipid-rich environment of an atherosclerotic
plaque. Hence, future drug candidates need to undergo a
multifaceted screening with careful consideration of the
lipid-rich, atherosclerotic microenvironment.
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