
Productivity of Stream DefinitionsI

Jörg Endrullisa, Clemens Grabmayerb, Dimitri Hendriksa, Ariya Isiharaa, Jan Willem Klopa

a Vrije Universiteit Amsterdam, Department of Computer Science,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

b Universiteit Utrecht, Department of Philosophy,
Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Abstract

We give an algorithm for deciding productivity of a large and natural class of recursive stream definitions.
A stream definition is called ‘productive’ if it can be evaluated continually in such a way that a uniquely
determined stream in constructor normal form is obtained as the limit. Whereas productivity is undecidable
for stream definitions in general, we show that it can be decided for ‘pure’ stream definitions. For every pure
stream definition the process of its evaluation can be modelled by the dataflow of abstract stream elements,
called ‘pebbles’, in a finite ‘pebbleflow net(work)’. And the production of a pebbleflow net associated with
a pure stream definition, that is, the amount of pebbles the net is able to produce at its output port, can
be calculated by reducing nets to trivial nets.

Key words: recursive stream definitions, productivity, functional programming, dataflow networks

1. Introduction

In functional programming, term rewriting and λ-calculus, there is a wide arsenal of methods for proving
termination such as recursive path orders, dependency pairs (for term rewriting systems, [22]) and the
method of computability (for λ-calculus, [20]). All of these methods pertain to finite data only. In the
last two decades interest has grown towards infinite data, as witnessed by the application of type theory
to infinite objects [6], and the emergence of coalgebraic techniques for infinite data types like streams [18].
While termination cannot be expected when infinite data are processed, infinitary notions of termination

IThis research has been partially funded by the Netherlands Organisation for Scientific Research (NWO) under FO-
CUS/BRICKS grant number 642.000.502.

Email addresses: joerg@few.vu.nl (Jörg Endrullis), clemens@phil.uu.nl (Clemens Grabmayer), diem@cs.vu.nl
(Dimitri Hendriks), ariya@few.vu.nl (Ariya Isihara), jwk@cs.vu.nl (Jan Willem Klop)

Preprint submitted to Theoretical Computer Science November 13, 2008

become relevant. For example, in frameworks for the manipulation of infinite objects such as infinitary
rewriting [13] and infinitary λ-calculus [14], basic notions are the properties WN∞ and SN∞ of infinitary
weak and strong normalization [15], and UN∞ of uniqueness of (infinitary) normal forms.

In the functional programming literature the notion of ‘productivity’ has arisen, initially in the pioneering
work of Sijtsma [19], as a natural strengthening of what in our setting are the properties WN∞ and UN∞.
A stream definition is called productive if not only can the definition be evaluated continually to build up
a unique infinite normal form, but the resulting infinite expression is also meaningful in the sense that it
is a constructor normal form which allows us to consecutively read off individual elements of the stream.
Since productivity of stream definitions is undecidable in general, the challenge is to find ever larger classes
of stream definitions significant to programming practice for which productivity is decidable, or for which
at least a powerful method for proving productivity exists.

Contribution and Overview. We show that productivity is decidable for a rich class of recursive stream
specifications that hitherto could not be handled automatically. (Since a stream definition, in the sense most
commonly used, defines a stream only in case that it is productive, here and henceforth we use the more
accurate term ‘stream specification’.) We start with a brief introduction to infinitary rewriting, and define
some preliminary notions in Section 2. In Section 3 we define ‘pure stream constant specifications’ (SCSs)
as orthogonal term rewriting systems, which are based on ‘weakly guarded stream function specifications’
(SFSs). In Section 4 we develop a ‘pebbleflow calculus’ as a tool for computing the ‘degree of definedness’
of SCSs. The idea is that a stream element is modelled by an abstract ‘pebble’, a stream specification by a
finite ‘pebbleflow net’, and the process of evaluating a stream specification by the dataflow of pebbles in the
associated net. In Section 5, we give a translation of SCSs into ‘rational’ pebbleflow nets, and prove that
this translation is production preserving. Finally in Section 6, we show that the production of a ‘rational’
pebbleflow net, that is, the amount of pebbles such a net is able to produce at its output port, can be
calculated by an algorithm that reduces nets to trivial nets. We obtain that productivity is decidable for
pure SCSs. We believe our approach is natural because it is based on building a pebbleflow net corresponding
to an SCS as a model that is able to reflect the local consumption/production steps during the evaluation
of the stream specification in a quantitatively precise manner.

This paper is a revised and extended version of the paper [9] presented at FCT 2007. We follow [19, 5]
in describing the quantitative input/output behaviour of a stream function f by a ‘modulus of production’
νf : (N)r → N with the property that the first νf(n1, . . . , nr) elements of f(t1, . . . , tr) can be computed
whenever the first ni elements of ti are defined. In fact, our approach is distinguished by the use of optimal
moduli. Moreover, our decision algorithm exploits moduli that are ‘rational’ functions ν : (N)r → N which,
for r = 1, have eventually periodic difference functions ∆ν(n) := ν(n + 1) − ν(n), that is ∃n, p ∈ N. ∀m ≥
n.∆ν(m) = ∆ν(m+p). This class of moduli is effectively closed under composition, and allows us to calculate
fixed points of unary functions. Rational production moduli generalise those employed by [23, 11, 6, 21], and
enable us to precisely capture the consumption/production behaviour of a large class of stream functions.

Related Work. In order to facilitate a comparison of our contribution with previous approaches, we describe
the various notions of production moduli that have been proposed.

It is well-known that networks are devices for computing least fixed points of systems of equations [12].
The notion of ‘productivity’ (sometimes also referred to as ‘liveness’) was first mentioned by Dijkstra [7].
Since then several papers [23, 19, 6, 11, 21, 5] have been devoted to criteria ensuring productivity. The
common essence of these approaches is a quantitative analysis.

In [23] Wadge uses dataflow networks to model fixed points of equations. He devises a so-called ‘cyclic
sum test’, using production moduli of the form ν(n1, . . . , nr) = min(n1 + a1, . . . , nr + ar) with ai ∈ Z, i.e.
the output ‘leads’ or ‘lags’ the input by a fixed value ai.

Sijtsma [19] points out that this class of production moduli is too restrictive to capture the behaviour of
commonly used stream functions like even or zip. For instance, consider:

M = 0 : zip(inv(even(M)), tail(M)) ,

2

a definition of the Thue–Morse sequence (see also Figure 1), which we use as a running example, cannot
be dealt with by the cyclic sum test and other methods mentioned below. Therefore Sijtsma develops
an approach allowing arbitrary production moduli νf : Nr → N, having the only drawback of not being
automatable in full generality.

In order to formalize coinductive types in type theory, Coquand [6] defines a syntactic criterion called
‘guardedness’ for ensuring productivity. Giménez [10] implements a modified version of this criterion in the
Coq proof assistant. This notion of guarded recursion avoids the introduction of non-normalizable terms,
but is too restrictive for programming practice, because it disallows function applications to recursive calls,
like even(M) in the definition of M above.

Telford and Turner [21] extend the notion of guardedness with a method in the flavour of Wadge. They
use a sophisticated counting scheme to compute the ‘guardedness level’ of a stream function, an element
in Z ∪ {−ω, ω}. With this, a stream specification is recognized to be productive if the result of computing
its guardedness level (by plain addition in the case of unary functions) from the guardedness levels of the
stream functions occurring is positive. However, their approach does not overcome Sijtsma’s criticism: their
production moduli are essentially the same as Wadge’s. Determining a guardedness level x, hence a modulus
of the form n 7→ n+x, for the stream function even leaves x = −ω as the only possibility. As a consequence,
their algorithm does not recognize the specification of M to be productive.

Hughes, Pareto and Sabry [11] introduce a type system using production moduli with the property that
νf (a · x + b) = c · x + d for some a, b, c, d ∈ N. For instance, the type assigned there to the stream function
tail is Sti+1 → Sti. Hence their system rejects the stream specification for M because the subterm tail(M)
cannot be typed. Moreover, their class of moduli is not closed under composition, leading to the need for
approximations and a loss of power.

Buchholz [5] presents a formal type system for proving productivity, whose basic ingredients are, closely
connected to [19], unrestricted production moduli νf : Nr → N. In order to obtain an automatable method,
Buchholz also devises a syntactic criterion to ensure productivity. This criterion easily handles all the
examples of [21], but fails to deal with functions that have a negative effect like even, and hence with the
specification of M above.

2. Infinitary Rewriting

The theoretical foundation and background of our work is that of infinitary rewriting, ensuring us of
unique normalization results when dealing with infinite objects such as streams, that are computed in
an infinite timescale. For general reference and a more complete introduction we mention [22, 15, 13].
Here we just give a succinct introduction to the notions of infinitary rewriting. We will do this in the
following somewhat informal glossary, starting with the notion of infinitary rewriting itself. Thereafter,
these preliminary notions will be given in more technical detail.

2.1. Glossary
(I). Infinitary rewriting is a natural extension of ordinary, finitary rewriting, by allowing terms to have
infinite branches. Canonical examples are infinite (term) trees, infinite streams of data, or infinite λ-terms.
For infinite λ-terms, see [4] for untyped infinite λ-terms, and [1] for simply typed infinite λ-terms. In
mathematical and physical theories the use of such infinite objects is common-place in the form of infinite
expansions and power series. In λ-calculus a particular class of infinite λ-terms is well known as Böhm
trees [3].

(II). Infinite terms. Formally, one can introduce infinite terms in several ways: most concretely as partial
mappings from the set of positions N∗ to the alphabet symbols of some signature Σ, or by means of coin-
ductive notions, or as the completion of the metric space of finite terms with the usual metric based on
the familiar notion of distance that yields distance 2−(n+1) for a pair of terms that are identical up to and
including level n from the root, but then have a difference (see Definition 2.2). In this complete metric space
of finite and infinite terms we have the notion of Cauchy convergence.

3

(III). Reduction (or rewriting) sequences. In ordinary, finitary, rewriting theory rewriting sequences (we
also use ‘reduction’ for ‘rewriting’) are just finite or infinite. This view is much more refined in infinitary
rewriting, by allowing rewrite sequences of any countable ordinal length. The passage over limit ordinals is
given by a strengthened notion of Cauchy convergence, called ‘strong convergence’.

Note that Cauchy convergence of reduction sequences is not yet sufficient to make a reduction sequence
‘connected’, as it should be; without more it could jump at a limit stage to a totally unrelated term. So, we
evidently have to impose the requirement of continuity that at a limit stage λ the reduction sequence proceeds
with the limit of the prefix up to λ. Thus, e.g., in the reduction sequence t0 → r1 → . . . tω → tω+1 → . . .
the term tω equals limi→ω ti (see [15] for several examples of transfinite reductions sequences).

(IV). Strong convergence is Cauchy convergence with the extra requirement that the ‘activity’, that is the
depth of the successive redex contractions (‘firings’) in a rewrite sequence, has to go deeper and deeper when
approaching a limit ordinal. For the rationale of this requirement and a more detailed introduction we refer
to [13, 22]. Here we just mention the essential benefit of this requirement: it provides us with a natural
notion of ‘descendant’ or ‘residual’, also in limit passages. In classical λ-calculus and term rewriting, the
ubiquitous notion of descendant or residual has proved to be indispensable for a fruitful development of the
theory.

(V). Compressing transfinite rewriting sequences. The full-fledged framework of infinitary rewriting com-
prises transfinitely long rewrite sequences. However, when one wishes to avoid the transfinite realm, there
is the sub-framework where one restricts to the first infinite ordinal ω. What we definitely do retain (see
Definition 2.3) is the notion of strong convergence: also in a rewrite sequence of length ω, the redex depth of
the sequence must tend to ∞: the evaluation is not allowed to stagnate at some finite level, but must proceed
and deliver more and more levels of the constructors that we are interested in. Technically, the property
that yields this modest framework of reductions of length not exceeding ω, is the Compression Property,
stating that every transfinitely long rewrite sequence can be compressed, by a dove-tailing strategy of redex
selection, to a rewrite sequence with the same begin and end point, but of length ≤ ω. The property holds
when we deal with a class of well-behaved systems of rewrite rules, known as ‘orthogonal rewrite systems’.

(VI). Orthogonal term rewriting systems (TRSs) with constructors. We will employ orthogonal TRSs,
formally introduced in Definition 2.1. These systems have been widely studied, and admit an extensive and
elegant theory. Orthogonality means that the reduction rules are left-linear (no variable occurs twice in
the left-hand side), and there are no critical pairs. The signatures will contain, next to ‘defined function
symbols’, also ‘constructor symbols’; they are not meant to be rewritten, but are generating the finite data
or infinite ‘codata’. We adhere to a sorting discipline; the straightforward details are stated in Section 2.2.

(VII). The basic finitary notions CR, UN, SN, WN. We briefly recall the basic properties pertaining
to finite rewriting: CR is the Church–Rosser or confluence property, stating that every pair of coinitial
reductions can be prolonged to a common reduct; UN is the immediate corollary to CR that ensures the
uniqueness of normal forms (terms without redexes): two finite reductions ending in normal forms, end in
the same normal form. As is well-known, for orthogonal TRSs the properties CR and hence UN always hold,
and this is even so for weakly orthogonal TRSs, where trivial critical pairs are allowed. The property SN,
Strong Normalization, states that there are no infinite reductions, or rephrased, that every reduction must
terminate eventually, if prolonged ‘long enough’. Weak Normalization (WN) just states that there exists a
reduction to normal form.

(VIII). The basic infinitary notions CR∞, UN∞, SN∞, WN∞. In the realm of infinitary reductions the
finitary properties introduced above generalize to analogous notions indicated by the superscript ∞. CR∞

states that infinitary reductions starting from the same (finite or infinite) term can be prolonged to a common
reduct, using infinitary reductions. The property UN∞ states that two such infinitary reductions cannot end
in two different possibly infinite normal forms. The generalization to WN∞ is obvious too: there exists an
infinitary reduction to normal form. The definition of the stronger property SN∞ is more subtle: roughly,
it means that we are bound to find a normal form when we reduce, transfinitely, long enough. This entails

4

that it is guaranteed that the reduction cannot ‘stagnate’ at some finite level. For a more precise discussion
of this notion we refer to [15] or [22]. Here we are restricting ourselves to the versions of the infinitary
generalizations of WN∞ and SN∞ where we deal only with reduction sequences not exceeding length ω.
For the general background we mention that even for orthogonal TRSs the property CR∞ fails, due to the
possible presence of ‘collapsing’ reduction rules (they have as right-hand side a single variable). However,
UN∞ does hold for orthogonal TRSs. Remarkably, for weakly orthogonal TRSs UN∞ fails. In [15] it is
proved that the global versions of SN∞ and WN∞, where ‘global’ means that they hold for all terms, are
in fact equivalent, even without the condition of non-erasing rules (as the analogous equivalence for finite
reductions requires).

(IX). Productivity. In the setting of orthogonal TRSs, productivity is a strengthening of WN∞ where we
require that the normal form, whose existence is assured by WN∞, must be not just any (possibly infinite)
normal form, but one that is ‘intended’, namely, built solely from constructors. Productivity is the main
property that we will be concerned with in this paper.

2.2. Preliminaries
Let N+ := N \ {0}. We consider a finite or infinite term as a function on a prefix closed subset of N∗

+

taking values in a first-order signature, adhering to a sortedness discipline. Let U be a finite set of sorts. A
U-sorted set A is a family of sets {Au}u∈U . We sometimes write x ∈ A as a shorthand for ∃u ∈ U. x ∈ Au.
A U-sorted signature Σ is a U-sorted set of symbols f , each equipped with an arity 〈u1 · · ·un, u〉 ∈ U∗ × U ,
for which we will use the suggestive type notation u1 × · · · × un → u, where f ∈ Σu. Let X be a U-sorted
set of variables. Then, a term over Σ and X of sort u ∈ U is a partial map t : N∗

+ ⇀ Σ ∪ X such that:

(i) its root t(ε) is defined and has sort u;
(ii) its domain is prefix closed: p ∈ dom(t) whenever pi ∈ dom(t), for all p ∈ N∗

+, i ∈ N+;
(iii) symbol arities define the number of immediate subterms and their respective sorts: for all p ∈ N∗

+,
if t(p) ∈ X then pi 6∈ dom(t), for all i ∈ N+, and if t(p) ∈ Σ with arity u1 × · · · × un → u, then
t(pi) ∈ (Σ ∪ X)ui

if 1 ≤ i ≤ n, and pi 6∈ dom(t) otherwise.

The set of terms over Σ and X of sort u ∈ U is denoted by Ter∞(Σ,X)u. Usually we keep the variables
implicit, assuming a countably infinite set X , and write Ter∞(Σ)u. The set Ter∞(Σ) of all terms is defined
by Ter∞(Σ) :=

⋃
u∈U Ter∞(Σ)u. The set of positions Pos(t) of a term t ∈ Ter∞(Σ) is the domain of t.

A term t is called finite if the set Pos(t) is finite. We write Ter(Σ) for the set of finite terms. We use the
symbol ≡ to indicate syntactical equality of terms. For positions p ∈ Pos(t) we use t|p to denote the subterm
of t at position p, defined by t|p(q) := t(pq) for all q ∈ N∗

+.
For f ∈ Σ with arity u1 × · · · × un → u and terms ti ∈ Ter∞(Σ)ui we write f(t1, . . . , tn) to denote the

term t ∈ Ter∞(Σ)u that is defined by t(ε) = f , and t(ip) = ti(p) for all 1 ≤ i ≤ n and p ∈ N∗
+. For constants

c ∈ Σ we simply write c instead of c(). We use x, y, z, . . . to range over variables.

Definition 2.1. A U-sorted term rewriting system (TRS) is a pair 〈Σ, R〉 consisting of a finite, U -sorted
signature Σ and a finite, U-sorted set R of rules with finite left- and right-hand sides that satisfy well-
sortedness: Ru ⊆ Ter(Σ,X)u ×Ter(Σ,X)u for all u ∈ U , as well as the standard TRS requirements: for all
rules ` → r ∈ R, ` is not a variable, and all variables in r also occur in `.

Let T = 〈Σ, R〉 be a U-sorted TRS. We define D(Σ) := {root(l) | l → r ∈ R}, the set of defined symbols,
and C(Σ) := Σ \ D(Σ), the set of constructor symbols. T is called a constructor TRS if, for every rewrite
rule ρ ∈ R, the left-hand side is of the form F (t1, . . . , tn) with F ∈ D(Σ) and ti ∈ Ter(C(Σ)); then ρ is a
defining rule for F .

A substitution is a U-sorted map σ : X → Ter∞(Σ,X), that is, ∀u ∈ U, x ∈ Xu. σ(x) ∈ Ter∞(Σ,X)u.
For terms t ∈ Ter∞(Σ,X) and substitutions σ we define tσ as the result of replacing each x ∈ X in t by
σ(x). Formally, tσ is defined, for all p ∈ N∗

+, by: tσ(p) = σ(t(p0))(p1) if there exist p0, p1 ∈ N∗
+ such that

p = p0p1 and t(p0) ∈ X , and tσ(p) = t(p), otherwise. Let [] be a fresh symbol, [] 6∈ Σ ∪ X . A context C is
a term from Ter∞(Σ,X ∪ {[]}) containing precisely one occurrence of []. By C[s] we denote the term Cσ
where σ([]) = s and σ(x) = x for all x ∈ X .

5

Definition 2.2. On the set of terms Ter∞(Σ) we define a metric d by d(s, t) = 0 whenever s ≡ t, and
d(s, t) = 2−k otherwise, where k ∈ N is the least length of all positions p ∈ N∗

+ such that s(p) 6= t(p).

A TRS T induces a rewrite relation on the set of terms as follows.

Definition 2.3. Let T be a TRS over Σ. For terms s, t ∈ Ter∞(Σ) and p ∈ N∗
+ we write s →T,p t if there

exist a rule ` → r ∈ R, a substitution σ and a context C with C(p) = [] such that s ≡ C[`σ] and t ≡ C[rσ].
We write s →R t if there exists a position p such that s →T,p t.

A reduction sequence t0 →T,p0 t1 →T,p0 . . . of length ω is called strongly convergent if limi→∞ |pi| = ∞,
that is, the lengths of the positions of the redexes contracted in the rewrite sequence tend to infinity.

Definition 2.4. Let T be a TRS and t0 ∈ Ter∞(Σ). Then T is called ω-convergent for t0, denoted by
SNω

T (t0), if every reduction t0 →T,p0 t1 →T,p0 . . . of length ω is strongly convergent. T is called weakly
ω-normalizing for t0, denoted by WNω

T (t0), if there exists a reduction t0 →T,p0 t1 →T,p0 . . . which is either
finite and ends in a normal form, or is strongly convergent, and the limit term tω := limi→∞ ti is a normal
form.

For the general definitions of SN∞ and WN∞ based on transfinite rewrite sequences we refer to [15].
For orthogonal TRSs (i.e. left-linear, and non-overlapping redexes, see [22]) infinitary strong normalization
SN∞ and infinitary weak normalization WN∞ coincide with the properties SNω and WNω, respectively:

Lemma 2.5. Let T be an orthogonal TRS and t0 ∈ Ter∞(Σ). Then we have

• T is infinitary strongly normalizing for t0, denoted by SN∞
T (t0), if and only if SNω

T (t0) holds, and

• T is infinitary weakly normalizing for t0, denoted by WN∞
T (t0), if and only if WNω

T (t0) holds.

We write SN∞
T shortly for SN∞

T (Ter∞(Σ)), that is, infinitary normalization on all terms. Furthermore, the
subscript T may be suppressed if it is clear from the context.

Note that, for non-left-linear TRSs the lemma does not hold. For instance, consider the TRS f(x, x) →
f(a, b), a → s(a) and b → s(b). Then every reduction of length ω starting from f(a, b) is strongly convergent,
that is, the depths of the redexes contracted in the terms of the reduction tend to infinity. Nevertheless,
f(a, b) is neither strongly nor weakly infinitary normalizing: we have f(a, b) →ω f(sω, sω), but the limit
term f(sω, sω) is not a normal form and even in transfinitely many steps it does not rewrite to one.

Since outermost-fair rewriting is an infinitary normalizing strategy for orthogonal TRSs, it is also possible
to characterize WN∞ as follows.

Lemma 2.6. Let T be an orthogonal TRS and t ∈ Ter∞(Σ). Then WN∞
T (t) holds if and only if every

outermost-fair rewrite sequence t0 →T,p0 t1 →T,p0 . . . of length ω is strongly convergent.

For every strongly convergent, outermost-fair rewrite sequence t0 →T,p0 t1 →T,p0 . . . in an orthogonal
TRS, the limit term limi→∞ ti is a normal form. Therefore, the important direction of the above lemma is the
‘only-if’-part. That is, in case WN∞

T (t) holds, then every outermost-fair rewrite sequence converges towards
a normal form. This normal form is unique, since orthogonal TRSs have the property UN∞ (infinitary
unique normal forms), that is, whenever t �� n1 and t �� n2 for normal forms n1 and n2, then n1 ≡ n2.

Productivity is a strengthening of infinitary weak normalization, where we require that the unique normal
form is a constructor normal form.

Definition 2.7 (Productivity). Let T be an orthogonal TRS, and let t ∈ Ter∞(Σ). Then T is called
productive for t if WN∞

T (t) holds and the unique normal form of t is a constructor normal form.

Note that, we define productivity as a strengthening of WN∞ and not of SN∞. Definition 2.7 captures
the intuitive notion of well-definedness of specifications of infinite structures in lazy functional programming
languages like Haskell, Miranda or Clean. For example, consider the following Haskell program:

alt = tail(alt’)
alt’ = 0:1:alt’

6

Here, alt is perfectly well-defined, rewriting to an infinite list in the limit. However, if we only unfold
alt’ without reducing tail, then we obtain tail(0:1:0:1. . .) after ω many steps in the limit. Thus,
although the stream constant alt in this system is SN∞ we have to use an outermost-fair strategy to obtain
a constructor normal form of alt within ω many steps. Another example is the Haskell program:

zeros = f(c)
c = c
f(x) = 0:f(x)

The system is not SN∞, since the term f(c) rewrites to itself. Nevertheless, zeros is productive and
Haskell evaluates zeros to a list of zeros, infinite in the limit. The reason is the one mentioned above: every
lazy functional programming language essentially uses some form of outermost-fair (or outermost-needed)
rewriting strategy, also called ‘lazy evaluation’, see e.g. [17].

3. Recursive Stream Specifications

We introduce the concepts of ‘stream constant specification’ (SCS) and ‘stream function specification’
(SFS). An SCS consists of three layers: the SCS layer where stream constants are specified using stream and
data function symbols that are defined by the rules of the underlying SFS. An SFS consists of an SFS layer
and a data layer. These notions are illustrated by the SCS given in Figure 1. This SCS is productive and

M → 0 : zip(inv(even(M)), tail(M)) SCS layer

zip(x : σ, τ) → x : zip(τ, σ)
inv(x : σ) → i(x) : inv(σ)

even(x : σ) → x : odd(σ) SFS layer
odd(x : σ) → even(σ)
tail(x : σ) → σ

i(0) → 1 i(1) → 0 data layer

Figure 1: Example of a productive SCS.

defines the well-known Thue–Morse sequence; indeed the constant M rewrites to 0 :1 :1 :0 :1 :0 :0 :1 : . . . in the
limit. A subtle point here is the definition of the stream function zip; had we used the rule zip∗(x :σ, y : τ) →
x : y : zip∗(σ, τ) instead, then M would not produce a second element, for, in the right-hand side of M, zip∗

will never match against a constructor in its second argument. Furthermore, we mention that the rule
for M could be simplified to M → 0 : zip(inv(M), tail(M)). We have chosen a variant including the stream
function even to demonstrate the strength of our approach. As explained in the introduction, previously
stream functions like even could not be dealt with automatically. Note that, our example is not artificial,
because the simplification is based on a mathematical insight. Moreover, every computable stream can be
specified entirely without using stream functions: A → B(0), B(n) → t(n) : B(n + 1), with an appropriate
specification of the data function t. Then the actual computation of the stream elements is ‘hidden away’
into the computation of the data function t. Thus for showing productivity, the burden has shifted from
analysing the stream functions to analysing the data functions. In particular, it has to be shown that t(n)
is finitary strongly normalizing and rewrites to a constructor normal form for every n ∈ N.

To formalise the definition of SCSs and SFSs, we use many-sorted term rewriting. Only the rules in
the SFS-layer will be subjected to syntactic restrictions, in order to ensure well-definedness of the stream
functions specified. No conditions other than well-sortedness will be imposed on how the defining rules for
the stream constant symbols in the SCS-layer can make use of the function symbols in the other two layers.

In the sequel we use sorts D and S for data terms and stream terms, respectively. A stream TRS is
an {S, D}-sorted, orthogonal TRS 〈Σ, R〉 such that ‘:’ ∈ ΣS , the stream constructor symbol, with arity

7

D × S → S is the single constructor symbol in ΣS . The members of ΣD and ΣS are referred to as data
symbols and stream symbols, respectively. Without loss of generality we assume that all stream arguments
of a stream function, if present, are in front. That is, for all f ∈ Σ, f has arity S]s(f) ×D]d(f) → S, and we
refer to]s(f) ∈ N and]d(f) ∈ N as its stream arity and data arity, respectively. A stream symbol is called a
stream constant if it is a constant of sort S.

In this paper we restrict attention to constructor stream TRSs. The sets Ter(C(Σ))D and Ter∞(C(Σ))S

are the sets of data terms and of stream terms in constructor normal form, respectively. Note that stream
constructor normal forms are inherently infinite. Moreover, we only consider stream TRSs with strict data
symbols: for all m ∈ ΣD we have]s(m) = 0.

Definition 3.1. Let T be a stream TRS. For every t ∈ Ter(Σ)S , we say that T is productive for t if t has
a unique infinite normal form u1 : u2 : u3 : . . . ∈ Ter∞(C(Σ))S , for some u1, u2, u3, . . . ∈ Ter(C(ΣD)).

Definition 3.2. Let T be a stream TRS. The production function ΠT : Ter(Σ)S → N of T is defined for
all t ∈ Ter(Σ)S by ΠT (t) := sup{#:(s) | t �T s }, called the production of t, where #:(t) := sup{n ∈ N |
t = t1 : . . . : tn : t′}, and N := N ∪ {∞} is the set of extended natural numbers.

The following proposition characterises productivity of a stream TRS T for a term t by the unboundedness
of the production of t in T . This is an easy consequence of the fact that orthogonal TRSs are finitary
confluent, and enjoy the property UN∞ [15].

Proposition 3.3. Let T be a stream TRS, and let t ∈ Ter(Σ)S. Then T is productive for t if and only if
ΠT (t) = ∞.

Definition 3.4. A stream function specification (SFS) is a stream TRS T = 〈Σ, R〉 such that:

(i) 〈ΣD, RD〉 is a strongly normalising (finitary SN) TRS in which all ground terms have constructor normal
forms.

(ii) For every stream function symbol f ∈ ΣS \ {:} with stream arity k =]s(f) and data arity l =]d(f)
there is precisely one rule in RS , denoted by ρf , the defining rule for f which has the form:

f((x1 : σ1), . . . , (xk : σk), y1, . . . , yl) → t1 : . . . : tm : u (ρf)

where xi : σi stands for xi,1 : . . . : xi,ni
: σi, the σi are variables of sort S, and u is of one of the forms:

u ≡ g(σφ f(1), . . . , σφ f(k′), t
′
1, . . . , t

′
l′) (a)

u ≡ σi (b)

where g ∈ ΣS with k′ =]s(g) and l′ =]d(g), φf : {1, . . . , k′} → {1, . . . , k} is an injection used to
permute stream arguments, n1, . . . , nk,m ∈ N, and 1 ≤ i ≤ k.

We use out(ρf) := m to denote the production of ρf , and in(ρf , i) := ni to denote the consumption of ρf at
the i-th position.

The SFS T is called weakly guarded if there are no rules `1 → r1, . . . , `n → rn ∈ Rsf such that root(`1) =
root(rn), ∀i.root(ri) 6= ‘:’, and ∀i < n.root(`i+1) = root(ri); that is, there do not exist unproductive rewrite
sequences of the form f(t) →+ f(t′).

Remark 3.5. (i) This definition covers a large class of stream functions including for instance tail, even,
odd, and zip. By the restriction to strict data symbols, we exclude data rules such as head(x : σ) → x,
possibly creating ‘look-ahead’ as in the well-defined example S → 0 : head(tail2(S)) : S from [19].

(ii) For an extension of the format of SFSs we refer to [8], where the conditions on stream functions imposed
here are relaxed in four different ways (while productivity stays decidable for stream specifications built
upon stream functions of the extended class). First, the requirement of right-linearity of stream variables
(a consequence of the permutation function φf for stream arguments being injective) is dropped, allowing
rules like f(σ) → g(σ, σ). Second, ‘additional supply’ to the stream arguments is allowed, in rules like
diff(x : y : σ) → xor(x, y) : diff(y : σ), where the variable y is ‘supplied’ to the recursive call of diff.

8

Third, the use of non-productive stream functions is allowed. Finally, even a restricted form of pattern
matching is allowed in defining rules for stream functions as long as, for every stream function f, the
quantitative (‘data-oblivious’) consumption/production behaviour of all defining rules for f is the same,
see Example 3.9 below. Extending terminology introduced in Definition 3.6 below, stream specifications
built upon stream functions of this enlarged class are also called ‘pure’ in [8].

Definition 3.6. Let T = 〈Σ, R〉 be a stream TRS with an additional partition ΣS = Σsf]Σsc] {:} of the
stream signature and a partition RS = Rsf]Rsc of the set of stream rules. Then T is called a pure stream
constant specification (SCS) if the following conditions hold:
(i) T0 = 〈ΣD] Σsf] {:}, RD]Rsf 〉 is a weakly guarded SFS. We say: T is based on T0.
(ii) Σsc is a set of constant symbols containing a distinguished symbol M0, called the root of T . Rsc is the

set of defining rules ρM: M → t for every M ∈ Σsc .

Given an SCS, we speak of its data, SFS, and SCS layer to mean RD, Rsf , and Rsc , respectively. An SCS T
is called productive if T is productive for its root M0.

In the sequel we restrict to SCSs in which all stream constants in Σsc are reachable from the root:
M ∈ Σsc is reachable if there is a term t such that M0 � t and M occurs in t. Note that reachability of
stream constants is decidable, and that unreachable symbols may be neglected for investigating whether or
not an SCS is productive.

Since every SCS is a stream TRS, Proposition 3.3 entails the following characterisation of productivity
of stream terms, which will be useful in the correctness proof of our method for deciding productivity of
SCSs.

Proposition 3.7. Let T be a SCS. Then T is productive if and only if ΠT (M0) = ∞.

The signature of the SCS given in Figure 1 is partitioned such that ΣD = {0, 1, i}, Σsf = {zip, inv, even, odd,
tail} and Σsc = {M}; the set of rules R is partitioned as indicated.

Example 3.8. Consider the SCS 〈Σ, R〉 with Σ = {0, 1, even, odd, J, :} and where R has the SCS layer
Rsc = {J → 0 : 1 : even(J)}, the SFS layer consisting of the mutual recursive rules for even and odd (see
Figure 1), and the empty data layer RD = ∅. The infinite normal form of J is 0 : 1 : 0 : 0 : even(even(. . .)),
which is not a constructor normal form. Hence J is WN∞ (in fact SN∞), but not productive.

Example 3.9. For an example that (only just) falls outside the format of SCSs, consider the stream TRS
T = 〈Σ, R〉 with Σ = {0, 1, tail, f,T, :} and with R consisting of the stream constant layer rules Rsc = {T →
0:1:f(tail(T))}, the stream function layer rules Rsf = {tail(x:σ) → σ , f(0:σ) → 0:1:f(σ) , f(1:σ) → 1:0:f(σ)},
and an empty set RD = ∅ of data layer rules. T specifies the Thue–Morse stream based on the D0L-system
{0 → 01, 1 → 10}. Now note that T is not an SCS as defined in Definition 3.6 because this specification
uses pattern matching on data symbols for the stream function symbol f, and, in particular, two defining
rules for f rather than just one.

Remark 3.10. (i) However, the two defining rules for f in the stream specification T in Example 3.9 satisfy
the special property that their consumption/production behaviour is the same. This makes it possible
to transform T into the following closely related SCS T ′ that also specifies the Thue–Morse sequence:
let T ′ = 〈Σ′, R′〉 with Σ′ = {0, 1, i, f,T, :} and with R′ consisting of the stream constant layer rules
R′

sc = {T → 0:1:f(tail(T))}, the stream function layer rules R′
sf = {tail(x:σ) → σ , f(x:σ) → x:i(x):f(σ)},

and the data layer rules R′
D = {i(0) → 1, i(1) → 0}.

(ii) Actually all k-automatic streams [2] can be defined as SCSs. In itself this is an immediate consequence
of the fact that every computable stream can be defined as an SCS by simulating the effect of a Turing
machine by data layer rules. However, there is a much more straightforward translation of k-DFAO’s
(see [2]) into a stream specification, resembling the one in Example 3.9, which can be transformed in
an SCS similar as described in (i). We note that the data layer of the SCS after this transformation
consists of rules that can be viewed as a collection of finite substitutions which are trivially terminating.

(iii) The stream specification in Example 3.9 corresponds to a ‘pure stream specification’ as introduced in
subsequent work [8], an extension of the present SCSs framework that admits limited pattern matching
on data (see also Remark 3.5, (ii)), and for which productivity is still decidable.

9

4. Pebbleflow Nets

We introduce pebbleflow nets as a means to model the ‘data-oblivious’ consumption/production be-
haviour of SCSs. That is, we abstract from the actual stream elements (data) in an SCS in favour of
occurrences of the symbol •, which we call ‘pebble’. Thus, a stream term d : s is translated to [d : s] = •([s]).
Pebbleflow nets are inspired by interaction nets [16], and could be implemented in the framework of inter-
action nets with little effort. We give an operational description of pebbleflow nets and define a production
preserving translation of SCSs into ‘rational’ nets.

Pebbleflow nets are networks built of pebble processing units (fans, boxes, meets, sources) connected by
wires. We first introduce a term syntax for nets and the rules governing the flow of pebbles through a net,
and then give an operational meaning of the units a net is built of.

Definition 4.1. Let V be a set of variables. The set N of pebbleflow terms (shortly called nets) is generated
by:

N ::= src(k) | x | •(N) | box(σ,N) | µx.N | 4(N,N)

where x ∈ V, σ ∈ ±ω ⊆ {+,−}ω is defined in Definition 4.3 below, and where, for n ∈ N, n is the numeral
for n that is defined by n := sn(0) if n ∈ N, and ∞ := sω. A net is called closed if it has no free variables.

Definition 4.2. The pebbleflow rewrite relation →P is defined by the following rules which may be applied
in arbitrary contexts:

4(•(N1), •(N2)) → •(4(N1, N2)) (P1)
µx.•(N(x)) → •(µx.N(•(x))) (P2)
box(+σ,N) → •(box(σ,N)) (P3)

box(−σ, •(N)) → box(σ,N) (P4)
src(s(k)) → •(src(k)) (P5)

Wires are unidirectional FIFO communication channels. They are idealised in the sense that there is no
upper bound on the number of pebbles they can store; arbitrarily long queues are allowed. Wires have no
counterpart on the term level; in this sense they are akin to the edges of a term tree. Wires connect boxes,
meets, fans, and sources, that we describe next.

A meet is waiting for a pebble at each of its input ports and only then produces one pebble at its output
port, see Figure 2. Put differently, the number of pebbles a meet produces equals the minimum of the
numbers of pebbles available at each of its input ports. Meets enable explicit branching; they are used to
model stream functions of stream arity > 1, as will be explained below. A meet with an arbitrary number
n ≥ 1 of input ports is implemented by using a single wire in case n = 1, and if n = k + 1 with k ≥ 1, by
connecting the output port of a ‘k-ary meet’ to one of the input ports of a (binary) meet.

N2 N1 N2N1

Figure 2: Rule (P1).

N N

Figure 3: Rule (P2).

The behaviour of a fan is dual to that of a meet: a pebble at its input port is duplicated along its
output ports. A fan can be seen as an explicit sharing device, and thus enables the construction of cyclic
nets. More specifically, we use fans only to implement feedback when drawing nets; there is no explicit term

10

representation for the fan in our term calculus. In Figure 3 a pebble is sent over the output wire of the net
and at the same time is fed back to the ‘recursion wire(s)’. We represent cyclic nets by µ-terms: a fan is
represented by a binder µx, and a recursion wire connected to one of its output ports is represented by a
variable x. In rule (P2) feedback is accomplished by substituting •(x) for all free occurrences x of N .

A source has an output port only, contains a number k ∈ N of pebbles, and can fire if k > 0, see Figure 6.
In Section 6 we show how to reduce closed nets, i.e. nets without free input ports, to sources.

A box consumes pebbles at its input port and produces pebbles at its output port, controlled by an
infinite sequence σ ∈ {+,−}ω associated with the box. For example, consider the unary stream function
dup, defined as follows, and its corresponding ‘I/O sequence’:

dup(x : σ) = x : x : dup(σ) −++−++−++ . . .

which is to be thought of as: for dup to produce two outputs, it first has to consume one input, and this
process repeats indefinitely. Intuitively, the symbol − represents a requirement for one input pebble, and +
represents a ready state for one output pebble. Pebbleflow through boxes is visualised in Figs. 4 and 5.

N N

σ+σ

Figure 4: Rule (P3).

N N

σ−σ

Figure 5: Rule (P4).

ks(k)

Figure 6: Rule (P5).

Definition 4.3. The set ±ω of I/O sequences is defined as the set of infinite sequences over the alpha-
bet {+,−} that contain an infinite number of +’s:

±ω := {σ ∈ {+,−}ω | ∀n. ∃m ≥ n. σ(m) = +}

A sequence σ ∈ ±ω is rational if there exist lists α, β ∈ {+,−}∗ such that σ = αβ, where β is not the empty
list and β denotes the infinite sequence βββ The pair 〈α, β〉 is called a rational representation of σ. The
set of rational I/O sequences is denoted by ±ω

rat . A net is called rational if all its boxes contain rational
I/O sequences; by Nrat we denote the set of rational nets.

In the next section we define a translation from SCSs to rational nets. In Section 6 we introduce a
rewrite system for reducing nets to trivial nets (pebble sources). That system, the kernel of our decision
algorithm, is terminating for rational nets, and enables us to determine the total production of a rational
net. We stress that the restriction to rational nets in our algorithm does not entail a restriction to deal
only with SCSs that define rational streams; actually, the SCS given in Figure 1 defining the Thue–Morse
sequence, an irrational stream, is translated to a rational net.

A stream function f with a stream arity n is modelled by a gate: an n-ary component 4n composed
with n boxes expressing the contribution of each individual stream argument to the total production of f,
see Figure 8. We define gates as n-ary contexts:

gate(σ1, . . . , σn) := 4n(box(σ1, []1), . . . , box(σn, []n))

and by writing gate(σ1, . . . , σn)(N1, . . . , Nn) for context filling we deviate from the standard notation to
mean 4n(box(σ1, N1), . . . , box(σn, Nn)).

Definition 4.4. The production function πσ : N → N of (a box containing) a sequence σ ∈ ±ω is corecur-
sively defined, for all n ∈ N, by πσ(n) := π(σ, n):

π(+σ, n) = s(π(σ, n)) π(−σ, 0) = 0 π(−σ, s(n)) = π(σ, n)

11

N N

}
n

σ′

πσ(n)
{

σ

Figure 7: box(σ, •n(N)) → •πσ(n)(box(σ′, N))

σnσ1

Figure 8: A gate with n input ports.

Intuitively, πσ(n) is the number of outputs of a box containing sequence σ when fed with n inputs, see
Figure 7. Notice that πσ is well-defined because σ contains infinitely many +’s by definition.

Lemma 4.5. The pebbleflow rewrite relation →P is confluent.

Proof. The rules of →P can be viewed as a higher-order rewriting system (HRS) that is orthogonal. Applying
Theorem 11.6.9 in [22] then establishes the lemma.

Definition 4.6. The production function ΠP : N → N of nets is defined for all N ∈ N by ΠP(N) :=
sup {n ∈ N | N �P •n(N ′)}, called the production of N . Moreover, for a net N and an assignment α : V → N,
let ΠP(N,α) := ΠP(Nα) where Nα denotes the net obtained by replacing each free variable x of N with
•α(x)(x). We will employ the notation α[x 7→ n] to denote an update of α, defined by α[x 7→ n](y) = n if
y = x, and α[x 7→ n](y) = α(y) otherwise.

Note that for closed nets N we have Nα = N and therefore ΠP(N,α) = ΠP(N), for all assignments α.
We define an alternative net production function ΠN (equivalent to ΠP) that provides some useful

intuition and will allow us to get a handle on proving that production is preserved by the net reduction
relation introduced in Section 6.

Definition 4.7. The mapping ΠN : N × (V → N) → N is defined inductively by:

ΠN (src(k), α) = k ΠN (box(σ,N), α) = πσ(ΠN (N,α))
ΠN (•(N), α) = 1 + ΠN (N,α) ΠN (µx.N, α) = lfp(λn.ΠN (N,α[x 7→ n]))

ΠN (x, α) = α(x) ΠN (4(N1, N2), α) = min(ΠN (N1, α),ΠN (N2, α))

Notice that ΠN is monotonic in its second argument. The net production functions ΠP and ΠN coincide
(see the appendix for a proof):

Lemma 4.8. For all nets N and assignments α, we have ΠP(N,α) = ΠN (N,α).

5. Translating Stream Specifications into Nets

In this section we define a ‘production preserving’ translation from stream constants M in an SCS to
rational nets [M]. In particular, the root M0 of an SCS T will be mapped to a net [M0] ∈ Nrat with the
property that its production equals the production of M0 in T .

As a first step, we give a translation of the stream function symbols in an SFS into rational gates
(gates with boxes containing rational I/O sequences) that precisely model their quantitative consump-
tion/production behaviour. The idea is to define, for a stream function symbol f, a rational gate by keeping
track of the ‘production’ (the guards encountered) and the ‘consumption’ of the rules applied, during the
finite or eventually periodic dependency sequence on f.

Definition 5.1. Let T = 〈ΣD] Σsf] {:}, RD]Rsf 〉 be an SFS. Then, for each f ∈ Σsf with stream arity
k =]s(f) and data arity l =]d(f) the translation of f is a rational gate [f] : N k → N defined by:

[f] = gate([f]1, . . . , [f]k)
12

where [f]i ∈ ±ω
rat is defined as follows. We distinguish the two formats a rule ρf ∈ Rsf can have. Let xi : σi

stand for xi,1 : . . . : xi,ni : σi. If ρf has the form: f(x1 : σ1, . . . ,xk : σk, y1, . . . , yl) → t1 : . . . : tm : u, where:

(a) u ≡ g(σφ f(1), . . . , σφ f(]s(g)), t
′
1, . . . , t

′
]d(g)), then (b) u ≡ σj , then

[f]i =

{
−ni+m[g]j if φf(j) = i

−ni+ if ¬∃j. φf(j) = i
[f]i =

{
−ni+m−+ if i = j

−ni+ if i 6= j

In the second step, we now define the translation of the stream constants in an SCS into rational nets.
Here the idea is that the recursive definition of a stream constant M is unfolded step by step; the terms thus
arising are translated according to their structure by making use of the translation of the stream function
symbols encountered; whenever a stream constant is met that has been unfolded before, the translation
stops after establishing a binding to a µ-binder created earlier.

Definition 5.2. Let T = 〈ΣD] Σsf] Σsc] {:}, RD]Rsf]Rsc〉 be an SCS. Then, for each M ∈ Σsc with
rule ρM ≡ M → rhsM the translation [M] := [M]∅ of M to a closed pebbleflow net is recursively defined by
(α a set of stream constant symbols):

[M]α =

{
µM.[rhsM]α∪{M} if M 6∈ α

M if M ∈ α

[t : u]α = •([u]α)
[f(u1, . . . , u]s(f), t1, . . . , t]d(f))]α = [f]([u1]α, . . . , [u]s(f)]α)

Example 5.3. Reconsider the SCS given in Figure 1. The translation of the stream constant M and of the
stream functions involved, is illustrated in Figure 9. (Note that to obtain rational representations of the
translated stream functions we use loop checking on top of Definition 5.1.)

[zip]1 [zip]2

[zip]

[inv]1

[even]1 [tail]1

[zip] = gate([zip]1, [zip]2)
[zip]1 = −+[zip]2 = −++[zip]1 = −++
[zip]2 = +[zip]1 = +−+[zip]2 = +−+
[inv] = gate([inv]1)

[inv]1 = −+[inv]1 = −+
[even] = gate([even]1)

[even]1 = −+[odd]1 = −+−[even]1 = −+−
[odd]1 = −[even]1 = −−+[odd]1 = −−+

[tail] = gate([tail]1)
[tail]1 = −−+

Figure 9: The net translation [M] = µM.•([zip]([inv]([even](M)), [tail](M))) of M.

The root of the SCS of Example 3.8 is translated by: µJ.•(•([even](J))).

By stating that the translation of the root of an SCS into a pebbleflow net is ‘production preserving’,
the theorem below will provide the basis for our decision algorithm for productivity of SCSs, which will be
detailed in the next section. A proof of this theorem is given in Section A.2.

Theorem 5.4. For every SCS T : ΠT (M0) = ΠP([M0]) holds.
13

6. Deciding Productivity

We define a rewriting system for pebbleflow nets that, for every net N , allows us to reduce N to a single
source while preserving the production of N .

Definition 6.1. We define the net reduction relation →R by the compatible closure of the following rule
schemata:

•(N) → box(+−+, N) (R1)
box(σ, box(τ,N)) → box(σ ◦ τ,N) (R2)

box(σ,4(N1, N2)) →4(box(σ,N1), box(σ,N2)) (R3)
µx.4(N1, N2) →4(µx.N1, µx.N2) (R4)

µx.N → N if x 6∈ FV(N) (R5)
µx.box(σ, x) → src(fix(σ)) (R6)

4(src(k1), src(k2)) → src(min(k1, k2)) (R7)

box(σ, src(k)) → src(πσ(k)) (R8)

µx.x → src(0) (R9)

where σ, τ ∈ ±ω, k, k1, k2 ∈ N, and min(n, m), πσ(k) (see Definition 4.4), σ ◦ τ (see Definition 6.2) and fix(σ)
(see Definition 6.4) are term representations of operation results.

Definition 6.2. The operation composition ◦ : ±ω ×±ω → ±ω, 〈σ, τ〉 7→ σ ◦ τ of I/O sequences is defined
corecursively by the following equations:

+σ ◦ τ = +(σ ◦ τ) −σ ◦+τ = σ ◦ τ −σ ◦ −τ = −(−σ ◦ τ)

Composition of sequences σ ◦ τ ∈ ±ω exhibits analogous properties as composition of functions over
natural numbers: it is associative, but not commutative.

Lemma 6.3. For all σ, τ, υ ∈ ±ω: (i) σ ◦ (τ ◦ υ) = (σ ◦ τ) ◦ υ, and (ii) πσ ◦ πτ = πσ◦τ .

Because we formalised the I/O behaviour of boxes by sequences and because we are interested in proving
and disproving productivity, for the formalisation of the pebbleflow rewrite relation in Definition 4.2 the
choice has been made to give output priority over input. This becomes apparent in the definition of com-
position above: the net box(+−+, box(−−+, x)) is able to consume an input pebble at its free input port
x as well as to produce an output pebble, whereas the result box(+−−+, x) of the composition can only
consume input after having fired.

The fixed point of a box is the production of the box when fed its own output.

Definition 6.4. The operations fixed point fix : ±ω → N and requirement removal δ : ±ω → ±ω on I/O se-
quences are corecursively defined as follows:

fix(+σ) = s(fix(δ(σ))) δ(+σ) = +δ(σ)

fix(−σ) = 0 δ(−σ) = σ

Lemma 6.5. For all σ ∈ ±ω, we have lfp(πσ) = fix(σ).

Observe that πσ◦σ◦σ◦... = πσ(πσ(πσ(. . .))) = fix(σ). Therefore, the infinite self-composition of the form
box(σ, box(σ, box(σ, . . .))) is ‘production equivalent’ to src(fix(σ)).

An important property used in the following lemma is that functions of the form λn ∈ N. ΠP(N,α[x 7→ n])
are monotonic functions over N. Every monotonic function f : N → N in the complete chain N has a least

14

fixed point lfp(f) which can be computed by lfp(f) = limn→∞ fn(0). In what follows we employ, for
monotonic f, g : N → N, two basic properties:

∀n, m. f(min(n, m)) = min(f(n), f(m)) (1)
lfp(λn. min(f(n), g(n))) = min(lfp(f), lfp(g)) (2)

Lemma 6.6. Net reduction preserves production: ΠP(N) = ΠP(N ′) if N →R N ′.

Proof. By Lemma 4.8 it suffices to prove:

C[`σ] →R C[rσ] =⇒ ∀α. ΠN (C[`σ], α) = ΠN (C[rσ], α) ,

where ` → r is a rule of the net reduction TRS, and C a unary context over N . We proceed by induction on
C. For the base case, C = [], we give the essential proof steps only (no definition unfoldings): For rule (R1),
observe that π−+ is the identity function on N. For rule (R2), we apply Lemma 6.3 (ii). For rule (R3)
the desired equality follows from (1) above. For rule (R4) we conclude by (2) above. For rule (R6) we use
Lemma 6.5. For the remaining rules the statement trivially holds. For the induction step, the statement
easily follows from the induction hypotheses.

Lemma 6.7. The net reduction relation →R is terminating and confluent, and every closed net normalizes
to a unique normal form, a source.

Proof. To see that →R is terminating, let [[−]] : N → N be defined by:

[[x]] = 1 [[•(N)]] = 2 · [[N]] + 1 [[µx.N]] = 2 · [[N]]
[[src(k)]] = 1 [[box(σ,N)]] = 2 · [[N]] [[4(N1, N2)]] = [[N1]] + [[N2]] + 1 ,

and observe that N →R M implies [[N]] > [[M]].
Some of the rules of →R overlap; e.g. rule (R2) with itself. For each of the five critical pairs we can find

a common reduct (the critical pair 〈σ ◦ (τ ◦ υ), (σ ◦ τ) ◦ υ〉 due to an (R2)/(R2)-overlap can be joined by
Lemma 6.3 (i)), and hence →R is locally confluent, by the Critical Pairs Lemma (cf. [22]). By Newman’s
Lemma, we obtain that →R is confluent. Thus normal forms are unique.

To show that every closed net normalizes to a source, let N be an arbitrary normal form. Note that
the set of free variables of a net is closed under →R, and hence N is a closed net. Clearly, N does not
contain pebbles, otherwise (R1) would be applicable. To see that N contains no subterms of the form µx.M ,
suppose it does and consider the innermost such subterm, viz. M contains no µ. If M ≡ src(k) or M ≡ x,
then (R5), resp. (R9) is applicable. If M ≡ box(σ,M ′), we further distinguish four cases: if M ′ ≡ src(k) or
M ′ ≡ x, then (R8) resp. (R6) is applicable; if the root symbol of M ′ is one of box,4, then M constitutes
a redex with respect to (R2), (R3), respectively. If M ≡ 4(M1,M2), we have a redex with respect to (R4).
Thus, there are no subterms µx.M in N , and therefore, because N is closed, also no variables x. To see
that N has no subterms of the form box(σ,M), suppose it does and consider the innermost such subterm.
Then, if M ≡ src(k) or M ≡ 4(M1,M2) then (R8) resp. (R3) is applicable; other cases have been excluded
above. Finally, N does not contain subterms of the form 4(N1, N2). For if it does, consider the innermost
occurrence and note that, since the other cases have been excluded already, N1 and N2 have to be sources,
and so we have a redex with respect to (R7). We conclude that N ≡ src(k) for some k ∈ N.

Observe that net reduction employs infinitary rewriting for fixed point computation and composition
(Definition 6.2 and 6.4). To compute normal forms in finite time we make use of finite representations of
rational sequences and exchange the numeral sω with a constant ∞.

Lemma 6.8. There is an algorithm that, if N ∈ Nrat and rational representations of the sequences σ ∈ ±ω
rat

in N are given, computes the →R-normal form of N .

Proof. Note that composition preserves rationality, that is, σ ◦ τ ∈ ±ω
rat whenever σ, τ ∈ ±ω

rat . Similarly, it
is straightforward to show that for sequences σ, τ ∈ ±ω

rat with given rational representations the fixed point
fix(σ) and a rational representation of the composition σ ◦ τ can be computed in finite time.

15

Theorem 6.9. Productivity is decidable for pure stream constant specifications.

Proof. The following steps describe a decision algorithm for productivity of a stream constant M in an
SCS T : First, the translation [M] of M into a pebbleflow net is built according to Definition 5.2. It is easy
to verify that [M] is in fact a rational net. Second, by the algorithm stated by Lemma 6.8, [M] is collapsed
to a source src(n) with n ∈ N. By Theorem 5.4 it follows that [M] has the same production as M in T ,
and by Lemma 6.6 that the production of [M] is n. Consequently, ΠT (M) = n. Hence the answers “T is
productive for M” and “T is not productive for M” are obtained if n = ∞ and if n ∈ N, respectively.

We end this section with showing how our algorithm decides productivity of our running examples, the
SCSs for J and M given in Example 3.8 and Figure 1. Besides, we illustrate that productivity is sensitive
to the precise definitions of the stream functions used by considering a slightly modified version of the SCS
for M.

Example 6.10. For the definition of J from Example 3.8 we obtain:

[J] = µJ.•(•(box(−+−, J))) →2
R1 µJ.box(+−+, box(+−+, box(−+−, J)))

→R2 µJ.box(++−+, box(−+−, J)) →R2 µJ.box(++−+−, J) →R6 src(4) ,

proving that J is not productive (only 4 elements can be evaluated).

Example 6.11. By rewriting [M] from Figure 9 with parallel outermost rewriting (except that composition
of boxes is preferred to reduce the size of the terms) according to →R we get:

[M] = µM.•(4(box(−++, box(−+, box(−+−,M))), box(+−+, box(−−+,M))))

→3
R2 µM.•(4(box(−++−,M), box(+−−++,M)))

→R1·R3 µM.4(box(+−+, box(−++−,M)), box(+−+, box(+−−++,M)))

→2
R2 µM.4(box(+−++−,M), box(++−−++,M))

→R4 4(µM.box(+−++−,M), µM.box(++−−++,M))
→R6 4(src(fix(+−++−)), src(fix(++−−++))) = 4(src(∞), src(∞))
→R7 src(∞) ,

witnessing productivity of the SCS for M. Note that the ‘fine’ definitions of zip and even are crucial in this
setting. If we replace the definition of zip in the SCS for M by the ‘coarser’ one: zip∗(x:σ, y:τ) → x:y:zip∗(σ, τ)
we obtain an SCS T ∗ where:

[M] = µM.•(4(box(−++, box(−+, box(−+−,M))), box(−++, box(−−+,M))))

→3
R2 µM.•(4(box(−++−,M), box(−−++,M)))

→R1·R3 µM.4(box(+−+, box(−++−,M)), box(+−+, box(−−++,M)))

→2
R2 µM.4(box(+−++−,M), box(+−−++,M))

→R4·R6 4(src(fix(+−++−)), src(fix(+−−++))) = 4(src(∞), src(1)) →R7 src(1)

Hence M is not productive in T ∗ (here it produces only one element).

7. Conclusion and Ongoing Research

We have shown that productivity is decidable for stream specifications that belong to the format of
pure SCSs. The class of pure SCSs contains specifications that cannot be recognised automatically to be
productive by the methods of [23, 19, 6, 11, 21, 5] (e.g. the SCS in Figure 1). These previous approaches
established criteria for productivity that are not applicable for disproving productivity; furthermore, these
methods are either applicable to general stream specifications, but cannot be mechanised fully, or can be

16

automated, but give a ‘productive’/‘don’t know’ answer only for a very restricted subclass. Our approach
combines the features of being automatable and of obtaining a definite ‘productive’/‘not productive’ decision
for a rich class of stream specifications.

Note that we obtain decidability of productivity by restricting only the stream function layer of an SCS
(formalised as an orthogonal TRS), while imposing no conditions on how the SCS layer makes use of the
stream functions. The restriction to weakly guarded SFSs in pure SCSs is motivated by the wish to formulate
a format of stream specifications for which productivity is decidable. More general formats to which our
method can be applied are possible. In particular, we refer to [8] where the restrictions imposed on the
stream function layer are relaxed in favour of a single remaining condition: stream function symbols do not
occur nested on either side of their defining rules (again we do not impose any restrictions on the stream
constant layer). In this way we obtain the more general format of ‘flat stream specifications’ which allows for
the use of pattern matching on data for the definitions of stream functions. In [8] we give (i) a computable,
‘data-obliviously optimal’, sufficient condition for productivity of flat stream specifications, and we show
(ii) decidability of productivity for flat stream specifications that are ‘pure’ (see Remark 3.5), a significant
extension of the class of SCSs.

Beyond specific formats of stream specifications, our results can also be used in the following way:
Suppose that a stream specification T has the property that for the stream functions occurring it holds that
their quantitative consumption/production behaviour can be faithfully modelled by rational I/O sequences.
Then the stream specification is productive if and only if the pebbleflow net built for T according to
Definition 5.2, using the assumed modelling I/O sequences, rewrites to src(∞). Hence productivity is still
decidable under the assumption that the user is able to come up with modelling I/O sequences for the stream
functions. Also lower and upper ‘rational’ bounds on the production of stream functions can be considered
to obtain computable criteria for productivity and its complement. This will allow us to deal with stream
functions that depend quantitatively on the value of stream elements and data parameters. Our approach
can also be extended to calculate the precise production modulus of stream functions that are contexts built
up of weakly guarded stream functions only, by reducing nets with free input ports to gates. All of these
extensions of the result presented here are the subject of ongoing research.

The reader may want to visit http://infinity.few.vu.nl/productivity/ for additional material. There,
also two software tools can be found: (i) an applet for the animation of pebbleflow nets, and (ii) an imple-
mentation of the decision algorithm for productivity of SCSs as part of a more powerful tool that automates
a computable criterion for productivity on the substantially larger class of flat stream specifications intro-
duced in [8].We have tested the usefulness and feasibility of the implementation of our decision algorithm
on various pure SCSs from the literature, and so far have not encountered excessive run-times. However, a
precise analysis of the run-time complexity of our algorithm remains to be carried out.

Acknowledgement. For useful discussions we thank Clemens Kupke, Milad Niqui, Vincent van Oostrom,
Femke van Raamsdonk, and Jan Rutten.

References

[1] K. Aehlig. A Finite Semantics of Simply-Typed Lambda Terms For Infinite Runs of Automata. Logical Methods in
Computer Science, 2007.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press,
New York, 2003.

[3] H.P. Barendregt. The Lambda Calculus, its Syntax and Semantics. North-Holland, 1984.
[4] H.P. Barendregt and J.W. Klop. Applications of Infinitary Lambda Calculus. Information of Computation, 2008. Special

Issue on the Occasion of the 60th Birthday of Giuseppe Longo.
[5] W. Buchholz. A Term Calculus for (Co-)Recursive Definitions on Streamlike Data Structures. Annals of Pure and Applied

Logic, 136(1-2):75–90, 2005.
[6] Th. Coquand. Infinite Objects in Type Theory. In H. Barendregt and T. Nipkow, editors, TYPES, volume 806, pages

62–78. Springer-Verlag, Berlin, 1994.
[7] E.W. Dijkstra. On the Productivity of Recursive Definitions, 1980. EWD749.
[8] J. Endrullis, C. Grabmayer, and D. Hendriks. Data-Oblivious Stream Productivity. In Logic for Programming, Artificial

Intelligence, and Reasoning, 15th International Conference, LPAR 2008, Quatar, 2008. To appear. Technical report
available at http://arxiv.org/abs/0806.2680.

17

http://infinity.few.vu.nl/productivity/
http://arxiv.org/abs/0806.2680

[9] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J.W. Klop. Productivity of Stream Definitions. In Proceedings
of FCT 2007, number 4639 in LNCS, pages 274–287. Springer, 2007.

[10] E. Giménez. Codifying Guarded Definitions with Recursive Schemes. In TYPES, pages 39–59, 1994.
[11] J. Hughes, L. Pareto, and A. Sabry. Proving the Correctness of Reactive Systems Using Sized Types. In POPL ’96, pages

410–423, 1996.
[12] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In Information Processing, pages 471–475,

1974.
[13] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Transfinite Reductions in Orthogonal Term Rewriting Systems.

Inf. and Comput., 119(1):18–38, 1995.
[14] R. Kennaway, J.W. Klop, M.R. Sleep, and F.-J. de Vries. Infinitary Lambda Calculus. TCS, 175(1):93–125, 1997.
[15] J.W. Klop and R. de Vrijer. Infinitary Normalization. In S. Artemov, H. Barringer, A.S. d’Avila Garcez, L.C. Lamb,

and J. Woods, editors, We Will Show Them: Essays in Honour of Dov Gabbay (2), pages 169–192. College Publications,
2005.

[16] Y. Lafont. Interaction Nets. In POPL ’90, pages 95–108. ACM Press, 1990.
[17] S. Peyton Jones. The Implementation of Functional Programming Languages. Prentice-Hall, 1987.
[18] J.J.M.M. Rutten. Behavioural Differential Equations: a Coinductive Calculus of Streams, Automata, and Power Series.

TCS, 308(1-3):1–53, 2003.
[19] B.A. Sijtsma. On the Productivity of Recursive List Definitions. ACM Transactions on Programming Languages and

Systems, 11(4):633–649, 1989.
[20] W.W. Tait. Intentional Interpretations of Functionals of Finite Type I. Journal of Symbolic Logic, 32(2), 1967.
[21] A. Telford and D. Turner. Ensuring the Productivity of Infinite Structures. Technical Report 14-97, The Computing

Laboratory, Univ. of Kent at Canterbury, 1997.
[22] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science. Cambridge University

Press, 2003.
[23] W.W. Wadge. An Extensional Treatment of Dataflow Deadlock. TCS, 13:3–15, 1981.

A. Technical Appendix

In this appendix we provide a proof of Lemma 4.8, and foremost we prove preservation of production for
the translation from SCSs to pebbleflow nets, that is, Theorem 5.4.

A.1. A Proof of Lemma 4.8: ΠN = ΠP

The statement of the lemma, ΠP(N,α) = ΠN (N,α) for all N ∈ N and α : X → N, can be proved by a
straightforward induction on the number of µ-bindings of a net N , with a subinduction on the size of N . In
the cases N ≡ box(σ,N ′) and N ≡ µx.M Lemmas A.1 and A.2 are applied, respectively.

Lemma A.1. For N ∈ N , σ ∈ ±ω, α : V → N: ΠP(box(σ,N), α) = πσ(ΠP(N,α)).

Proof. We show that the relation R ⊆ N× N defined as follows is a bisimulation:

R := {〈ΠP(box(σ,N), α), πσ(ΠP(N,α))〉 | σ ∈ ±ω, N ∈ N , α : V → N} ,

that is, we prove that, for all k1, k2 ∈ N, σ ∈ ±ω, N ∈ N , and α : V → N, if k1 = ΠP(box(σ,N), α) and
k2 = πσ(ΠP(N,α)), then either k1 = k2 = 0 or k1 = 1 + k′1, k2 = 1 + k′2 and 〈k′1, k′2〉 ∈ R. Let k1, k2, σ,
N , α : V → N, be such that k1 = ΠP(box(σ,N), α) and k2 = πσ(ΠP(N,α)). By definition of ±ω, we have
that σ ≡ −n+τ for some n ∈ N and τ ∈ ±ω. We proceed by induction on n. If n = 0, then k1 = 1 + k′1
with k′1 = ΠP(box(τ,N), α) and k2 = 1 + k′2 with k′2 = πτ (ΠP(N,α)), and 〈k′1, k′2〉 ∈ R. If n = n′ + 1, we
distinguish cases: If ΠP(N,α) = 0, then k1 = k2 = 0. If ΠP(N,α) = 1 + m, then N �P •(M) for some
M ∈ N with ΠP(M,α) = m. Thus we get k1 = ΠP(box(−n′+τ,M), α) and k2 = π−n′+τ (ΠP(M,α)), and
〈k1, k2〉 ∈ R by induction hypothesis.

Lemma A.2. For all nets M ∈ N and all assignments α, we have that ΠP(µx.M, α) is the least fixed point
of λn.ΠP(M,α[x 7→ n]).

Proof. Let α : V → N be an arbitrary assignment and M0 := Mα[x7→0]. Observe that ΠP(µx.M, α) =
ΠP(µx.M0) and consider a rewrite sequence of the form

µx.M0 �P . . . �P •ni(µx.Mi) �P •ni(µx.•pi(M ′
i)) �P •ni+pi(µx.Mi+1) �P . . .

18

where pi = ΠP(Mi), n0 = 0, ni+1 = ni + pi, and Mi+1 := M ′
i(•pi(x)). Note that limm→∞ nm = ΠP(µx.M0);

‘≤’ follows from ∀m. µx.M0 �P •nm(µx.Mm), and ‘≥’ since if limm→∞ nm < ∞ then ∃m ∈ N such that
pm := ΠP(Mm) = 0 and therefore ΠP(µx.M0) = ΠP(•nm(µx.Mm)) = nm by confluence.

Let fi = λn.ΠP(Mi(•n(x))), and f ′i = λn.ΠP(M ′
i(•n(x))). We prove

∀k ∈ N. f0(nm + k) = nm + fm(k) (∗)

by induction over m. The base case m = 0 is trivial, we consider the induction step. We have Mm �P

•pm(M ′
m) and by substituting •k(x) for x we get

∀k ∈ N. fm(k) = pm + f ′m(k) (∗∗)

Moreover, since fm+1(k) = f ′m(pm + k), we get nm+1 + fm+1(k) = nm+1 + f ′m(pm + k)

= nm + pm + f ′m(pm + k)
(∗∗)
= nm + fm(pm + k)

(∗)
= f0(nm + pm + k) = f0(nm+1 + k).

Let f := f0. We proceed with showing ∀m. fm(0) = nm by induction over m ∈ N. For the base case

m = 0 we have f0(0) = 0 and n0 = 0, and for the induction step we get fm+1(0) = f(fm(0)) IH= f(nm)
(∗)
=

nm + fm(0) = nm + pm = nm+1.
Hence lfp(f) = limm→∞ fm(0) = limm→∞ nm = ΠP(µx.M0) = ΠP(µx.M, α).

A.2. A Proof of Theorem 5.4: Translating SCSs to Nets Preserves Production
We recall the statement of Theorem 5.4: ΠT (M0) = ΠP([M0]) for all SCSs T . For a given SCS T , the

proof proceeds by making intermediate steps via the production in a rewrite system µT for µ-terms over T
with rewrite relation→µT , and the production with respect to an alternative pebbleflow rewrite relation→P′ .
Using these notions that are defined below together with a translation of stream terms t in T into µ-terms
[t]µT in µT , the proof consists of the following three steps: ΠT (M0) = ΠµT ([M0]µT) = ΠP′([M0]) = ΠP([M0]),
which are justified by Lemmas A.3, A.4, and A.5, respectively.

For the lemmas used in this proof, we introduce the following concepts: For an SCS T , the rewrite
system µT is defined as follows: its objects are µ-terms over the signature Σ of T , and its set of rewrite
steps · →µT · consists of steps C[lσ] → C[rσ] applying rules l → r of T outside of µ-bindings, and of steps
that are applications of unfolding µx.t(x) →unf t(µx.t(x)). We denote by the symbol ΠµT the production
function, and its version relativised to assignments, on µ-terms in µT : these functions are defined analogously
to the definition of ΠT in Definition 3.2 with the difference that →µT is used instead of →T .

We also define a translation of stream terms t in an SCS T into corresponding µ-terms [t]µT in µT that
is very similar to the translation into pebbleflow nets in Definition 5.2. For every t ∈ Ter(ΣS), the µ-term
translation [t]µT of t is defined as [t]µT := [t]µT∅ , based on the following inductive definition of translations
[t]µTα of terms t ∈ Ter(ΣS) with respect to finite sets α of stream constant symbols in Σsc (the clauses below
assume M ∈ Σsc and f ∈ Σsf):

[M]µTα =

{
µM.[rhsM]µTα∪{M} if M /∈ α

M if M ∈ α

[u : s]µTα = u : [s]µTα

[f(s1, . . . , s]s(f), u1, . . . , u]d(f))]µTα = f([s1]µTα , . . . , [s]s(f)]µTα , u1, . . . , u]d(f))

Let the rewrite relation →P′′ be defined by the rules P1, P3–P5 in Definition 4.2 (ignoring P2) and of
the unfolding rule µx.N(x) →unf N(µx.N(x)); all of these rules may be applied in arbitrary contexts.
Using →P′′ , the alternative pebbleflow relation →P′ is defined as the restriction of →P′′ to applications of
pebbleflow rules outside of µ-bindings. By ΠP′ we mean the production function, and its version relativised
to assignments, that are defined analogously to the production functions ΠP in Definition 4.6 with the
difference of using →P′ instead of →P.
We use the following notation: for a binary relation→ ⊆ A×B and A′ ⊆ A let→(A′) := {b | ∃a ∈ A′.a → b};
for a function f : A → B let f(A′) := {f(a) | a ∈ A′}.

19

zip

:

zip

: −++ +−+
−++ +−+

=ΠT (t) = =ΠP′([t])

t′ t′′ N ′ N ′′

ΠP([t])ΠµT ([t]µT)

transformations of rewrite steps
stepwise, production preserving

Lemma A.3 Lemma A.4 Lemma A.5

[t] �P N ′′t �T t′ [t] �P′ N ′[t]µT �µT t′′

ΠµT ([t]) = ΠN ([t]) = ΠP([t])

≤
≥

M1
M3M2

Figure 10: The three steps in the proof of Theorem 5.4

Lemma A.3. For all t ∈ Ter(ΣS) in an SCS T : ΠT (t) = ΠµT ([t]µT) holds.

Proof. For this proof we restrict the unfolding steps in the rewrite relation →µT to outermost-unfolding,
noting that this does not affect the production function. Let Σsc = {M1, . . . ,Mm}. Let s ∈ Ter(µT), let
ς(s) denote the term obtained from s by replacing all subterms Mi and µMi.s

′ with Mi, respectively; we
say that ‘s has the property ℘(s)’ if for all subterms µx.s′ of s: ∃i. x = Mi ∧ ς(s′) ≡ rhsMi . Note that
(i) ℘([u]µT) for every u ∈ Ter(T), and (ii) ℘ is preserved under µT reduction. We show (∗) ∀n ∈ N. ∀s ∈
Ter(µT) with ℘(s). →≤n

T (ς(s)) = ς(→≤n
µT (s)) by induction on the length n of reduction sequences. The

case n = 0 is trivial. For the induction step we employ →n+1 () = →n (→ ()) together with (ii); therefore
it suffices to prove →T (ς(s)) = ς(→µT (s)). The →RS∪RD

steps carry over directly in both directions. From
℘(s) we infer that →Rsc

steps in T can be translated into →unf steps in µT and vice versa. Finally (i) and
(∗) imply ΠT (t) = ΠµT ([t]µT).

Lemma A.4. For all t ∈ Ter(ΣS) in an SCS T : ΠµT ([t]µT) = ΠP′([t]).

Sketch of Proof. The statement of the lemma will ultimately be established by a close correspondence
between µT -steps and →P′ -steps for SCSs in which none of the rules are collapsing, and neither erases nor
permutes stream arguments. In order to use this correspondence, we transform an SCS T in three steps
into this special form in such a way that T -production ΠT (t) and pebbleflow net translation [t] of terms t
are preserved. For the sake of simplicity, we assume that stream function symbols have no data parameters.
First, we eliminate collapsing rules by adding a fresh symbol id to Σsf and the rule id(x : σ) → x : id(σ) to
Rsf , and by replacing all collapsing rules l → σj in Rsf by l → id(σj), respectively.
Second, we transform Rsf to be non-erasing. As a preprocessing, we replace every stream function symbol
f ∈ Σsf by a symbol f]s(f) that carries its stream arity as a subscript. Let m] := max]s(Σsf) the maximum
stream arity in Σsf . For every fr now in Σsf , and every n ∈ N with r < n ≤ m], add an additional stream
function symbol fn. Then replace every stream function rule ρ : fr1(s

r1) → t1 : . . . : tm : gr2(s
′r2) by the

20

following rules:

fr1+n(sr1 , τ1, . . . , τn) → t1 : . . . : tm : gr1+n(s′r2 , σi1 , . . . , σir1−r2
, τ1, . . . , τn)

for n = 0, . . . ,m] − r1 where σi1 , . . . , σir1−r2
are the erased stream variables of ρ and τ1, . . . , τn are stream

variables for matching so-called phantom arguments. As an example, consider Rsf = {f2(σ, x : τ) → x :
g1(σ), g1(x : y : σ) → x + y : g1(σ)}. The first rule is transformed into the non-erasing rule f2(σ, x : τ) →
x : g2(σ, τ), and the second rule gives rise to g1(x : y :σ) → x+ y : g1(σ) and g2(x : y :σ, τ1) → x+ y : g2(σ, τ1).
Third, we remove permutations of stream arguments. We annotate function symbols with permutations
instead of performing the permutation. For every f ∈ Σsf and φ : N]s(f) → N]s(f) a bijection, where
N]s(f) = {1, . . . ,]s(f)}, let fφ be a fresh symbol having the same arity as f. For n ∈ N let sn be shorthand
for s1, . . . , sn and for φ : Nn → Nn let sn(φ) denote the permutation sφ−1(1), . . . , sφ−1(n) w.r.t. φ. We replace

every stream function rule f(sr) → t1 : . . . : tm : g(s′r(φ−1
f)) by all rules

fφ(sr(φ)) → t1 : . . . : tm : gφ◦φ f
(s′r(φ))

for φ : Nr → Nr a bijection. Note that after the third transformation step all permutation functions φf for
f ∈ Σsf are the identity on N]s(f), respectively.
It is technical but not difficult to prove that T -production ΠT (t) and pebbleflow net translation [t] of terms
t are preserved under these three transformations. Therefore in the sequel we can assume without loss of
generality that none of the rules of T is collapsing, and neither erases nor permutes stream arguments:
∀f ∈ Σsf . φf = idN]s(f) .
To gain control about pebbleflow rewriting, we label gates with the function symbols from which they arise.
In particular the translation [f]` is a labelled gate:

[f] = gatef([f]1, . . . , [f]]s(f)) .

where gatef(. . .) means that the leftmost box is labelled with f. For closed µ-terms v we define [v]`, the
translation of v into a labelled pebbleflow net (using labelled gates), as follows: [µM.t]` = µM.[t]`, [t : u]` =
•([u]`), and [f(u]s(f), t]d(f))]` = [f]`([u]s(f)]`). Moreover, for labelled nets N we use \̀(N) to denote the
pebbleflow net obtained from N by dropping the labels. Note that [u] ≡ \̀([[u]µT]`) for every u ∈ Ter(T).
For every f ∈ Σsf there exists g ∈ Σsf such that for every i ∈ N with 1 ≤ i ≤]s(f) we have [f]i =
−in(f,i)+out(f)[g]i. On labelled pebbleflow nets we define the rewrite system →bP′c to consist of unfolding
µx.t(x) →unf t(µx.t(x)) of µ-bindings and rewrite steps, outside of µ-bindings, with respect to the rules:

[f]`(•in(f,1)(N1), . . . , •in(f,]s(f))(N]s(f))) →bP′c •out(f)([g]`(N1, . . . , N]s(f)))

for every f(. . .) → . . . g(. . .) in Rsf . Note that \̀(→bP′c) ⊆ �P′ and from confluence of �P′ we infer:
ΠP′([t]) = ΠbP′c([[t]µT]`).
We proceed with showing ΠµT ([t]µT) = ΠP′([t]). Employing the above observations it is sufficient to prove
that [�µT ([t]µT)]` = �bP′c([[t]µT]`). The latter is implied by the one-step correspondence: (∗) for all closed
µ-terms s, [→µT (s)]` = →bP′c([s]`), using induction over the length of the reduction sequence. Now we prove
(∗), therefor let s be an arbitrary closed µ-term. We start with ‘⊆’: let s′ with χ : s →µT s′. In case χ is
an unfolding step, we get [s]` →bP′c [s′]` likewise via an unfolding step. Otherwise χ is of the form:

C[f(uin(f,1)
1 : t1, . . . ,u

in(f,]s(f))
]s(f)

: t]s(f))] → C[v1 : . . . : vout(f) : g(t1, . . . , t]s(f))]

due to a stream function rule in Rsf . Then

[s]` ≡ D[[f]`(•in(f,1)([t1]`), . . . , •in(f,]s(f))([t]s(f)]`))]

[s′]` ≡ D[•out(f)([g]`([t1]`, . . . , [t]s(f)]`))]

for some context D and clearly [s]` →bP′c [s′]`. The direction ‘⊇’ is analogous.

Lemma A.5. For all N ∈ N : ΠP′(N) = ΠP(N) .

21

Proof. In view of Lemma 4.8 it suffices to prove that for all nets N ∈ N : ΠP′(N) = ΠN (N) holds, and
moreover, ΠP′(N,α) = ΠN (N,α) for all assignments α. The proof of this statement proceeds by an inductive
proof parallel to that used in the proof of Lemma 4.8, making use of confluence of →P′ and of statements
analogous to that of Lemma A.2, and Lemma A.1. Confluence of →P′ follows easily from the fact that →P′′ ,
which can be viewed as an orthogonal HRS, is confluent. The statement corresponding to Lemma A.1 can
be shown analogously to the proof of that lemma.
It remains to show that (∗) ΠP′(µx.M, α) = lfp(λn.ΠP′(M,α[x 7→ n])), for all assignments α and µx.M ∈ N .
For this, let µx.M(x) ∈ N and let α be an assignment. Furthermore, let us denote by FP the fixed
point in (∗). Then it follows that {ni}i →i→∞ FP where the sequence {ni}i in N is defined as follows:
n0 := ΠP′(M,α[x 7→ 0]), and, for all i ∈ N, ni+1 := ΠP′(M,α[x 7→ ni]). Using confluence of →P′ , it is easy to
show ΠP′(N1(N2(x)), β[x 7→ 0]) = ΠP′(N1(x), β[x 7→ ΠP′(N2(x), β[x 7→ 0])]) holds for all N1(x), N2(x) ∈ N
and assignments β. Using this statement in a proof by induction, (∗∗) nk = ΠP′(Mk+1(x), α[x 7→ 0]) can
be shown for all k ∈ N, where Mk+1 denotes the net M(M(. . .M(x) . . .)) with k + 1 occurrences of M .
Now since µx.M(x) �P′ Mk(µx.M(x)) by k unfolding steps, for all k ∈ N, it follows for all k ∈ N that
ΠP′(µx.M, α) ≥ nk, and hence that “≥” holds in (∗).

For showing “≤” in (∗), let m ∈ N with m ≤ ΠP′(µx.M, α) arbitrary. Then µx.M →P′ •m(M ′) for some
M ′ ∈ N . If k + 1 is the number of unfolding steps applied to a subterm µx.M(x) in this rewrite sequence,
then there also exists a rewrite sequence µx.M(x) �unf Mk+1(µx.M(x)) �P′ •m(M ′) for some M ′ ∈ N ,
where in the �P′ -steps on Mk+1(µx.M(x)) subterms µx.M(x) are not rewritten. It follows that there is also
a rewrite sequence Mk+1(x) �P′ •m(M ′′), for some M ′′ ∈ N . Now by (∗∗) it follows that m ≤ nk ≤ FP.
Since m was assumed arbitrarily with m ≤ ΠP′(µx.M, α), now also “≤” in (∗) follows.

22

	Introduction
	Infinitary Rewriting
	Glossary
	Preliminaries

	Recursive Stream Specifications
	Pebbleflow Nets
	Translating Stream Specifications into Nets
	Deciding Productivity
	Conclusion and Ongoing Research
	Technical Appendix
	A Proof of Lemma 4.8: N= P
	A Proof of Theorem 5.4: Translating SCSs to Nets Preserves Production

