
Holographic Equilibration of Nonrelativistic Plasmas

Umut Gürsoy, Aron Jansen, Watse Sybesma, and Stefan Vandoren
Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University,

Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
(Received 23 February 2016; revised manuscript received 25 May 2016; published 25 July 2016)

We study far-from-equilibrium physics of strongly interacting plasmas at criticality and zero charge
density for a wide range of dynamical scaling exponents z in d dimensions using holographic methods.
In particular, we consider homogeneous isotropization of asymptotically Lifshitz black branes with full
backreaction. We find stable evolution and equilibration times that exhibit small dependence of z and are of
the order of the inverse temperature. Performing a quasinormal mode analysis, we find a corresponding
narrow range of relaxation times, fully characterized by the fraction z=ðd − 1Þ. For z ≥ d − 1, equilibration
is overdamped, whereas for z < d − 1, we find oscillatory behavior. Finally, and most interestingly,
we observe that also the nonlinear evolution, although differing significantly from a quasinormal mode fit,
is to a high degree of precision characterized by the fraction z=ðd − 1Þ.
DOI: 10.1103/PhysRevLett.117.051601

Introduction.—Quantum criticality has been a focus of
interest both in theoretical and experimental physics over
the past few decades. It is believed to be a key ingredient
in the solution to the various yet unsolved problems such
as the high Tc superconductivity [1]. In particular, the
dynamics of a system near a continuous quantum phase
transition is governed by a universal, scale invariant theory
characterized by the dimensionality d, the dynamical
scaling exponent z, and the various other critical exponents
that are independent of the microscopic Hamiltonian of the
system. In these systems, the characteristic energy scale Δ,
such as the gap separating the first excited state from the
ground state, vanishes as the correlation length ξ diverges
as Δ ∼ ξ−z. For instance, z ¼ 1 occurs at the touching
points of the band structure of monolayer graphene, z ¼ 2
can describe the case of bilayer graphene, and z ¼ 2, 3
occur in heavy fermion systems; see, e.g., Refs. [2–6].
The existence of a quantum critical point at vanishing

temperature determines the behavior of observables also
at finite temperature, and even beyond the thermal equi-
librium, in the so-called quantum critical region of the
parameter space. In fact, a basic way to characterize this
quantum critical region is to consider the response of the
system to a small disturbance, determined by the equili-
bration time τeq [7]. The quantum critical region corre-
sponds to short relaxation times τeq ∼ 1=T [8], whereas
local equilibrium is reached much more slowly as
τeq ≫ 1=T outside the quantum critical region [1].
In this Letter, we want to go one step further and ask

the question, what happens when such a quantum
critical system is taken completely out of equilibrium,
when the perturbation is not small, but of the same order
as the Hamiltonian? We answer this question partially in
the particular situation when the collective excitations of
the system are characterized by global, hydrodynamic

quantities such as energy and pressure gradients at any
time during the evolution. In this case, an example of such a
large perturbation would be to consider a homogeneous,
isotropic system with average pressure P and create an
initial anisotropy in one direction, say ΔPx, that is of the
same order as P. The question then is how to characterize
the evolution of this system towards equilibrium.
We will investigate equilibration processes in strongly

interacting systems that can be modeled by holography
[9–11]. There is a substantial amount of work in the literature
that goes by the name holographic thermalization, concern-
ing this problem in the case of relativistic scaling, z ¼ 1,
following the seminal work of Ref. [12]. The problem of
equilibration is mapped onto the evolution of a black brane
geometry in the dual gravitational description. Thus, we
obtain the fully nonlinear evolution of the black brane
starting from the aforementioned initial conditions that
correspond to anisotropy in pressure and we determine
the isotropization of the system in time. In accordance with
the earlier results for z ¼ 1, e.g., Refs. [13,14], we find that
the system equilibrates quite rapidly, with isotropization
times of the order ∼1=T. At later times, close to global
thermal equilibrium, the evolution of the system is charac-
terized by the quasinormal modes (QNMs) of the black
brane [15]. In particular, the relaxation time τ above is
related to the lowest lying quasinormal frequency as
τ ¼ −1=Imω0. We find that the relaxation times are deter-
mined by the ratio z=ðd − 1Þ and fall in a narrow range. This
agrees with our results of the nonlinear evolution.
Gravitational model.—The holographic description of

field theories with Lifshitz scaling at criticality and zero
temperature was initiated in Ref. [16]. To describe non-
relativistic plasmas holographically in the critical region at
nonzero temperature, black brane solutions with Lifshitz
asymptotics can be used [17]. The Hawking temperature
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of the black brane corresponds, via holography, to the
temperature of the dual field theory. The action for this
model is given by

S¼ 1

16πG

Z
ddþ1x

ffiffiffiffiffiffi
−g

p �
R−Λ−

1

2
ð∂ϕÞ2 − eλϕ

4
F2

�
; ð1Þ

where Λ ¼ −ðdþ z − 1Þðdþ z − 2Þ is the cosmological
constant, λ ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ=ðz − 1Þp

, and z is the dynamical
scaling exponent, which is bounded by the null energy
condition to be z ≥ 1 [18]. The scalar field ϕ and the gauge
field F ¼ dA are needed to support the Lifshitz geometry.
We consider an anisotropic but homogeneous system,

which we describe using the following ansatz [19]:

ds2 ¼ −fðt; rÞdt2 þ 2rz−1dtdr

þ Sðt; rÞ2½eðd−2ÞBðt;rÞdx21 þ e−Bðt;rÞd~x2d−2�;
A ¼ aðr; tÞdt; ϕ ¼ ϕðr; tÞ: ð2Þ

We take the gauge Ar ¼ 0, which is essential to obtain the
nested form of the equations (6). The function Bðt; rÞ
expresses the anisotropy of the black brane. The boundary,
where the plasma lives, is at r → ∞, and the horizon is
denoted by rH. From the viewpoint of holography this
setup is dual to a nonrelativistic plasma with a pressure
difference between the longitudinal direction x1 and trans-
versal directions ~xd−2.
By solving the equations of motion near the boundary,

imposing Lifshitz asymptotics, we obtain

fðr; tÞ ¼ r2z þ Erzþ1−d −
5

8

PðtÞ2
r2d−2

þ…; ð3aÞ

Sðr; tÞ ¼ r − nS
PðtÞ2

r2ðdþzÞ−3 þ…; ð3bÞ

ϕðr; tÞ ¼ ϕ0 log
r2ðd−1Þ

2ðz − 1Þðzþ d − 1Þ −
2nSPðtÞ2
r2ðdþz−1Þ þ…;

ð3cÞ

a0ðr; tÞ ¼ rzþd−2 − ðd − 1ÞnS
PðtÞ2
rdþz þ…; ð3dÞ

Bðr; tÞ ¼ PðtÞ
rdþz−1 þ

1

z
∂tPðtÞ
rdþ2z−1 þ…; ð3eÞ

where nS¼½ðd−2Þ=8�ðdþz−1Þ=½2ðd−1Þþz� and ϕ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
ðz − 1Þ=ðd − 1Þ

q
. In contrast to Ref. [12], we do not

quench the system, but consider the equilibration of an out
of equilibrium state, so we do not turn on a source for B.
In this expansion there are two free coefficients E and P.

The E is the normalizable mode of f and it is proportional
to the energy, which is required to be constant by the
equations of motion. The function P is the normalizable

mode of B and will be related to the pressure difference.
For P ¼ 0 we recover the static black brane solution with
E ¼ −rdþzþ1

H [17]. The Hawking temperature is given by
T0 ¼ ½ðdþ z − 1Þ=4π�rzH. We stress that the scalar and
gauge field do not have independent modes; they are
completely determined by the metric and do not have
any intrinsic dynamics.
To obtain vacuum expectation values, we need the

counterterm action on the boundary. For our setup this
can be obtained by generalizing, e.g., the analysis of
Ref. [20] to arbitrary dimensions:

Sct ¼
1

8πG

Z
ddx

ffiffiffiffiffiffi
−γ

p �
z − 2d − 3þ dþ z − 1

2
eλϕA2

�
:

ð4Þ

Note that it breaks gauge invariance, but this is not an issue
since the gauge field is not normalizable and not used to
induce a chemical potential on the boundary [21]. For
z ¼ 1, there is no gauge field, so the first term is enough.
Following Ref. [20], this yields a boundary energy

momentum tensor in the coordinate basis ðt; x1; ~xd−2Þ,

Tμν ¼
N2

2π2
diagðE;PL; PT;…; PTÞ; ð5Þ

where E¼ −½ðd− 1Þ=2�E andΔP≡ PL − PT ¼ ½ðd − 1Þ×
ðdþ z − 1Þ=2�PðtÞ. It satisfies the Ward identity
zE ¼ PL þ ðd − 2ÞPT . In equilibrium, the pressure
P0 ¼ −ðz=2ÞE. Furthermore, we abbreviated N2=ð2π2Þ ¼
1=ð8πGÞ.
Numerical methods.—The numerical method we use

to obtain solutions is an adaptation of Ref. [12] to
asymptotically Lifshitz spacetimes. Using the ansatz in
Eq. (2) and working with null derivatives h0 ≡ ∂rh and
_h≡ ∂thþ 1

2
r1−zf∂rh, the equations of motion can be put

in a nested structure of linear ordinary differential equations
(ODEs):
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4
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S
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�
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S
_Sþ Λrz−1S
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2

S0

S
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S
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0 ¼ f00 þ 1 − z
r
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2
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2
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S
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�
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0 ¼ S̈þ 1

2ðd − 1Þ S
_ϕ2 −

1

2
r1−z _Sf0 þ d − 2

4
S _B2: ð6hÞ

Given initial profiles Bðt ¼ 0; rÞ and ϕðt ¼ 0; rÞ, the first
equation is an ODE for S. Having solved this, the second
becomes an ODE for a0, and so we solve for the full
geometry at t ¼ 0 by solving linear ODEs. In these
equations we consider _S independent of S, and similarly
for the other functions. Numerically, we use pseudospectral
methods [22] to solve these equations. All plots were
generated with a grid of 40 points. After solving one time
step, we can use B, _B, and f to find ∂tB from the definition
of the dot. We use a fourth-order Adams-Bashforth stepper
to evolve this to the next time step. We do the same for ϕ,
and then start the procedure again [23].
For the numerics, we change the radial coordinate to

u ¼ r−z. One computes the event horizon by solving
the equation ∂tuHðtÞ=uHðtÞ2 ¼ −ðz=2Þf(uHðtÞ; t), arising
from ds2 ¼ 0, with the boundary condition at late times
f(uHðtÞ; t)jt→∞ ¼ 0. We also have an apparent horizon,
defined as the location of the largest trapped surface, given
by _S(uAHðtÞ; t) ¼ 0. Using the Lifshitz scaling symmetry,
we set E ¼ −1, so that at equilibrium rH ¼ uH ¼ 1.
Results.—We analyze the nonlinear evolution for the cases

3 ≤ d ≤ 5 and 1 ≤ z ≤ 4. For the initial profiles we take the
pressure to be ΔPðt ¼ 0Þ=P0 ¼ 1. This defines P (we set
time derivatives to 0), and to obtain consistent profiles we
plug this into the near boundary expansion Eq. (3a).
We highlight the case d ¼ 4 and z ¼ 2, which is

physically the most interesting. In Fig. 1(a) the evolution

of the anisotropy function B over the whole bulk spacetime
is plotted. We checked that the entropy, as defined by the
area density of either the event horizon or the apparent
horizon, strictly increases during the evolution, as required
by the area theorems. This is a consistency check of our
numerics [24]. In all cases considered, the above consis-
tency checks are valid.
ThebulkevolutionofBdescribes theevolutionofapressure

difference of the boundary theory through the function P,
whichwe turn to now. In Fig. 1(b) we show the time evolution
of the pressure difference. The system isotropizes on a time
scale of the order of the inverse temperature. Note first that
for the cases where z ≥ d − 1, there are no oscillations, the
system is overdamped. This will be more clear when we look
at the QNMs, and is in agreement with [25].
The anisotropy B obeys the massless Klein-Gordon

equation at zero momentum. After redefining ~t ¼ zt, this
equation only depends on d and z through the ratio
α≡ z=ðd − 1Þ, as

∂u½u−1=α∂~tB − u2−1=αfðuÞ∂uB� þ u−1=α∂~t∂uB ¼ 0; ð7Þ

with fðuÞ ¼ u−2½1 − ðu=uHÞ1þ1=α�. Note that, in contrast,
the nonlinear equations do depend on d and z separately.
Furthermore, turning on either a mass or momentum for
the QNM will also break the dependence on α alone.
To compute QNMs we solve the associated generalized
eigenvalue equation using pseudospectral methods [26].
We compare the nonlinear evolution with the sum of

the first 10 QNMs, BQNMðu; tÞ ¼ Re
P

9
i¼0 cibiðuÞe−iωit.

Here the ci are coefficients that we obtain by fitting to the
initial profile Bðu; t ¼ 0Þ, bi are the eigenmodes, and ωi
the corresponding eigenfrequencies [27]. Dashed lines in
Fig. 1(b) show the fitted QNM evolution. They always lag
behind on the nonlinear evolution a little, but otherwise
give a very good approximation. The late time evolution of
the pressure is well approximated by the lowest QNM.
We check that taking different shapes as the initial

profile, localized more in the UV or in the IR, gives a
result similar to those in relativistic plasmas [in anti–
de Sitter (AdS) space] [27], with profiles localized in the

FIG. 1. (a) Nonlinear evolution of Bðu; tÞ for d ¼ 4, z ¼ 2. The colors indicate equal height. (b) Evolution of the pressure difference
for d ¼ 4 and z from 1 (rightmost) to 4 (leftmost). The inset shows a small oscillation below 0 for z ¼ 2. Dashed lines are the evolution
resulting from a fit of the first 10 QNMs to the initial profile of B. (c) Evolution of pressure difference, comparing cases with the same
α≡ z=ðd − 1Þ but different d, showing close agreement. The initial profile is a factor of 10 bigger than in (b). Dashed lines denote
evolution using the first 10 QNMs.
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UV better approximated by QNMs and those in the IR not
well approximated.
For several cases of ðd; zÞ we were also able to study

significantly larger profiles with ΔPðt ¼ 0Þ=P0 ¼ 10, as
shown in Fig. 1(c). Here we look at cases with the same
value of α but different pairs of ðd; zÞ. As expected, the fit
with the first 10 QNMs is significantly worse than for the
smaller profiles. More interestingly, though, the evolutions
with the same α are very similar, their small difference being
caused purely by the nonlinearities. Finally, we note that the
larger profiles thermalize faster, as was already the case for
AdS, but it is slightly more pronounced for higher α.
Going back to the QNMs, for α ≥ 1 they become

overdamped (purely imaginary) and we observe a bifurca-
tion, see Fig. 2, with one mode branching upwards and the
other downwards, converging as α → ∞ to the first two
modes in AdS2. Note that α → ∞ can be interpreted as
z → ∞ at fixed d, or as d → 1, at, e.g., z ¼ 1, matching
Ref. [28] where it is stated that the z → ∞ limit of Lifshitz
corresponds to AdS2. This behavior is clarified in Fig. 3
where we plot the motion of the lowest QNMs in the
complex plane, as we vary α.
The value α ¼ 1 can be found from AdS3, where one can

show analytically that τ ¼ 1=ð4πT0Þ [25,29,30]. Curiously,
this is not the minimal value of the relaxation time,
which instead sits at α ≈ 0.847 227 and reads τ ≈
0.989 002=ð4πT0Þ. Note that the fact that the relaxation time
increases again for larger α is also visible in the reversing of
the green and orange lines in Fig. 1(c). For α ¼ 1þ ϵ2 with
ϵ ≪ 1, we numerically find that 4πT0τ ≈ 1þ 1

2
ϵ.

As α is taken to zero, the relaxation time diverges.
However, we observe that with d ≤ 5, which covers all
physically relevant cases and implies that α ≥ 1

4
, we have a

range of relaxation times 0.989 002 ≤ 4πT0τ ≤ 2.
From the nonlinear evolution we obtain an isotropization

time, defined as jΔPðt ≥ tisoÞ=P0j ≤ ϵ, for some choice of
ϵ. To compare this with the relaxation time from the QNMs,

we define ~τ≡ tiso= log½c0b0ð0Þ=ϵ�. When applied to a
single QNM decaying as B0ðtÞ ¼ c0b0ð0Þe−t=τ, ~τ becomes
equivalent to τ.
Along with the relaxation times in Fig. 2, we plot 4πT0~τ,

with c0 and b0ð0Þ obtained from the QNM fit to the
nonlinear evolution, taking ϵ ¼ 0.1. We checked that
choosing a smaller ϵ brings the nonlinear evolution closer
to the evolution dictated by the QNMs, as expected, since
smaller ϵ corresponds to later times. These have qualita-
tively the same dependence on α, but generally lie just
below τ due to the presence of higher order modes. As
expected, the larger initial profiles deviate more from the
QNM relaxation. There can be some noise due to oscil-
lations, which are not accounted for in the definition of ~τ,
as seen in the point at α ¼ 1=4 and α ¼ 1=2.
Note also that at α ¼ 1 we have the three cases

ðd; zÞ ¼ ð3; 2Þ, (4,3), and (5,4), which are very close to
each other in the plot, and for α ¼ 1=2 the cases ðd; zÞ ¼
ð3; 1Þ and (5,2) nearly overlap, even for the large profiles.
Discussion.—We find that for physically relevant dimen-

sions the relaxation time is roughly of the order 1=ð4πT0Þ,
with only mild z dependence. We note that this universal
behavior only applies to critical theories with no mass gap.
Holographic equilibration in gapped theories such as QCD
has also been studied in the literature [14,26,31], where the
approach to equilibrium may be qualitatively different [14].
Our results are valid for large N2 ∼ 1=G and strong

coupling, but are consistent with the general arguments
about equilibration times for general strongly coupled
quantum critical systems (see, e.g., Ref. [1]). This seems
to indicate that our results are quite robust and the large N
limit does not affect this behavior qualitatively.
We compared full nonlinear evolutions for different

cases of ðd; zÞ, which nevertheless have identical QNM
spectra (the same α), finding a remarkable agreement. So
the fact that only the ratio α characterizes the evolution is

FIG. 2. Relaxation times from QNMs (blue points) as a
function of α≡ z=ðd − 1Þ. At α ¼ 1 the modes bifurcate, with
the second lowest shown in red. Also shown are relaxation times
4πT0 ~τ obtained from the nonlinear evolution for d ¼ 3 (black
squares), d ¼ 4 (green circles), and d ¼ 5 (orange diamonds).
The hollow markers denote larger initial profiles.

FIG. 3. We display the lowest modes found from Eq. (7), using
numerics. Following the flow of the arrows corresponds to
increasing α. For α > 1, one mode moves up and asymptotes
towards ωIm=ð4πTÞ ¼ −0.5 as α → ∞. The other mode moves
down, initially, but at some point reverses and for α → ∞
asymptotes towards the α ¼ 1 location. Dots denote points with
α corresponding to an AdS space.
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even true to a high precision for the nonlinear evolution of
large initial conditions. This stands in contrast with the fact
that these evolutions are not approximated well by a QNM
fit (the fit we perform with the first 10 modes has already
converged; i.e., adding 10 more modes does not change
the resulting evolution). Taken seriously, this suggests that
isotropization in, e.g., heavy fermion systems [5,6] in
d ¼ 4, z ¼ 3 behaves similarly to isotropization in heavy
fermion systems in d ¼ 3, z ¼ 2, up to finite order coupling
corrections. It would be very interesting to perform a
similar analysis in different Lifshitz models (see, e.g.,
Ref. [32]) to see if this is a common feature to all.
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