CAN WE MAKE THE SECOND INCOMPLETENESS THEOREM
COORDINATE FREE?

ALBERT VISSER

ABSTRACT. Is it possible to give a coordinate free formulation of the Second
Incompleteness Theorem? We pursue one possible approach to this question.
We show that (i) cutfree consistency for finitely axiomatized theories can be
uniquely characterized modulo EA-provable equivalence, (ii) consistency for
finitely axiomatized sequential theories can be uniquely characterized modulo
EA-provable equivalence. The case of infinitely axiomatized ce theories is more
delicate. We carefully discuss this in the paper.

1. INTRODUCTION

What does the Second Incompleteness Theorem say? Well, it tells us that a
sufficiently strong consistent theory does not prove its own consistency. Clearly,
this statement leaves much to be desired, but we can at least take some steps
to improve upon it. First, a theory is a first-order theory with a ce axiom set.
Secondly, the theory should contain Robinson’s Arithmetic Q, a very weak and
finitely axiomatized theory. ‘Contain’ is still too vague here. A theory like ZF
does not contain Q in the strict sense, simply because it has a signature that
differs from the signature of arithmetic. However, by translating the signature
of arithmetic, say, via the von Neumann interpretation, we can make sense of Q
occurring in ZF. Thus, we can replace ‘contains’ by ‘interprets’.’ But what if there
is more than one interpretation of Q7 (There always is.) It does not matter: the
Second Incompleteness Theorem works for them all. Thus, we may rephrase the
Second Incompleteness Theorem as: no ce theory U (in predicate logic) interprets
Q-+con(U), where con(U) is a sentence expressing the consistency of U. In symbols:

U §#(Q+ con(U)).

Let us for a moment postpone the discussion of the crucial question what is con(U) 2,
and pause to marvel at the beautiful statement of the theorem. In this strong
form, the result is due to Pavel Pudldk. See [Pud85], [HP91]. Pudldk’s own proof
of the theorem uses some trickery, but this is really unnecessary. One shows that
Q-+con(U) interprets S} +con(U) on a definable cut,? where S} is a weak arithmetic
invented by Sam Buss to study polynomial time computability. See [Bus86]. Now,
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2The important point is to take care that the cut is initial w.r.t. the original ordering relation
provided by the theory.
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Buss’ theory gives us what we need to formalize the proof of the Second Incom-
pleteness Theorem in a natural and effortless way.? In fact, it is easier to do it in
Buss’ theory than in full Peano Arithmetic PA, since the restrictions present in S3
prevent one from making wrong turns and inefficient choices.

Remark 1.1. Is this version the best and most general version of the Second Incom-
pleteness Theorem? I guess there is not really such a thing as the best and most general
version. There are always improvements that one tends to view as better versions of the
same theorem. E.g., we can replace Q in the statement of the theorem by a weaker theory
Q™ in which addition and multiplication are partial. See, e.g. [Sve07]. I think this point
was first seen by Robert Solovay.

Along a different line: there are versions of the result where we replace provability in
PA by provability in PA that can call on an oracle for £2-truth, or by provability in second
order logic with the w-rule, or by truth in all transitive models in set theory. Etc.

Along yet another line: the statement of the theorem still holds when we replace Q by
its constructive counterpart ¢{Q and allow U to be a constructive theory. Here one axiom
of Q has to be rephrased as: every number is either zero or a successor. d

We return to our reflection on the statement of the theorem. We still have to
explicate the meaning of con(U). It is the statement of the consistency of U, but
which one? There are three sources of indeterminacy.

I. We have to choose a proof system.
II. We have to choose a coding scheme.
III. We have to choose a specific formula representing the axiom set of U.

Note that (III) presupposes (II). We can escape (III) in special cases where the
axiomatization has a special form, e.g. if is is finite. Feferman’s solution ([Fef60])
to deal with the indeterminacy is to employ a fixed choice for (I) and (II) and
to make (III) part of the individuation of the theory. Just choose your favorite
proof system and coding scheme. Of course, this does give the theorem a definite
meaning, but it does not very well represent the generality of the insight we feel
we have. We believe that for all reasonable choices we have the theorem. However,
the quantifier over reasonable choices, is ‘unmathematical’. We must articulate just
what a reasonable choice is, and this seems scarcely possible.

In the present paper, we describe one possible solution strategy to the problem for
the finitely axiomatized case. The consistency statement can be pinned down as the
unique solution of a certain equation modulo a suitable equivalence relation. The
diverse ingredients of the equation are not dependent upon conventional choices.
Our solution is in a sense not quite satisfactory, since the equivalence relation is
EA-provable equivalence, where one would have liked something like Si-provable
equivalence. Also, in the case of consistency (as opposed to cutfree-consistency) we
only have a solution for sequential theories. But, I guess, to adapt a quote from dr.
Johnson, even if it is not quite as desired, it surprising that such a result is possible
at all. In the infinitely axiomatized case, we can characterize the set of restricted
consistency statements of all finite subtheories of the theory modulo EA-provable
equivalence. Similarly, we can characterize the set of consistency statements of
finite subtheories of a sequential theory modulo EA-provable equivalence. Finally,

3We can formalize the Second Incompleteness Theorem for a certain finitely axiomatized frag-
ment of IAg in that same fragment. However, to do this is far from effortless and requires the
development of alternative methods.
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we show how to characterize the full consistency statement of the theory modulo
EA-provable equivalence in a way that is independent of (I), but does not eliminate
the dependency on (II) and (III).

Remark 1.2. I feel that it is important to clearly separate the demands of philosophical
understanding from the demands of mathematical understanding. From the philosophical
point of view, one asks what it means to say that a formal theory cannot prove its own
consistency. How do we know that the statements not proved are consistency statements,
How do we know that there are not entirely different statements, that are consistency
statements and provable? Etc. Philosophical reflection may lead one to deny that the
Second Incompleteness Theorem for Q is about consistency at all.

The demands of mathematical understanding, on the other hand, are about finding
the proper level of generality for the Second Incompleteness Theorem. We want to find
a representation independent of arbitrary choices. The present paper is clearly concerned
with the quest for mathematical understanding. d

About the Paper. In Section 3, we study how cutfree-consistency can be given as
unique solution modulo EA-provable equivalence. We also show how to characterize
the set of restricted consistency statements of finite subtheories of a ce axiomatized
theory. In Section 4, we do the same for consistency statements, restricting our-
selves to sequential theories. Some technical preliminaries are in Section 2 and in
Appendix A.

Many of the results employed in this paper have been known for a long time, even
if, perhaps, not precisely in the form I gave them. What is new is the arrangement of
the technical material around the theme of characterizing a consistency statement.
This arrangement is inspired by some FOM postings in 2006 by Harvey Friedman,
I think the idea of uniquely characterizing the consistency statements is original in
this paper.

I wrote the paper as a presentation of ideas. This means that much of the tech-
nical background is only sketched with references to locations where more details
are given. I always did provide the basic idea of a proof.

The book [HP91] is the locus classicus for most of the background material
needed.

2. PRELIMINARIES

In the body of the paper, we consider theories in one-sorted first order predicate
logic. The results of the paper also work in the many-sorted case, however this
would make our treatment more complicated. In Appendix A, we give some defini-
tions for the many-sorted case. In Remark A.2; we point out that every many-sorted
theory U is mutually interpretable with its one-sorted flattening U”. Many of our
results can be induced via the (-) functor from the one-sorted to the many-sorted
world.

We assume that theories have officially a relational signature. Unofficially, we
use function symbols, but these can be eliminated using a well-known unwinding
procedure.

The axiom set of a theory is supposed to be given by a X9-formula . We consider
« to be part of the data for the theory. Here is a list of the most important theories
we will meet in the paper.

e Q, or Robinson’s Arithmetic: this is a very weak arithmetical theory intro-
duced in [TMR53]
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e SI: this is a theory introduced by Sam Buss to study polynomial time
computability. See [Bus86].

e EA, or Elementary Arithmetic: this is IAg + exp. The theory is also called
EFA, Elementary Function Arithmetic, by Harvey Friedman. It is also
known as Kalmar Arithmetic or Kalméar Elementary Arithmetic.

Our notion of reduction of theories is piecewise, more-dimensional, relative inter-
pretation with parameters, where identity is not necessarily translated as identity.
This notion is explained in Appendix A. We write:

e K:U<xVor K:Vp>U,for: K is an interpretation of U in V.

e VDU UV :&dK K:U<xV. Weread U <V as: U is interpretable
in V. Weread V > U as: V interprets U.

e U=V:ieUpVand Vi>U. Weread U =V as: U and V are mutually
interpretable.

We will sometimes view the structure of theories preordered by <1 as a preorder
category.

A theory U is locally interpretable in V, if every finitely axiomatized subtheory
Up of U is interpretable in V. We write U <o V, etc.

An important notion is direct interpretability. An interpretation is direct if it is
one-dimensional, non-piecewise, unrelativized and sends identity to identity (i.0.w.,
identity is absolute for this interpretation).

We will use a fundamental theorem.

Theorem 2.1. For any I19-sentences P, P', we have:
Q+P)>(Q+P) & EAFP—P.

This theorem is due to Wilkie and Paris. See [WP87]. For a generalization, see:
[Vis92].

3. CUTFREE CONSISTENCY AND RESTRICTED CONSISTENCY

In this section, we study a characterization of cutfree consistency. For our char-
acterization, we need the functor SEQ from theories to theories. We define SEQ(U)
as follows. We first extend the language of U by a new predicate 6. Then, we
relativize all the quantifiers of the axioms of U to §, except the axioms for identity.
We add the axiom that § is non-empty. Say, the resulting theory is U°. Next we
add a good (unrelativized) theory of sequences to U?, obtaining SEQ(U). These se-
quences are not supposed to be ‘extensional’: ‘the same sequence’ can have several
carriers. The necessity of relativization can be seen by contemplating the example
of a theory saying that there are precisely three objects.*

Since (i) writing down the appropriate theory of sequences is somewhat laborious
and (ii) since there is a much simpler characterization of the thing we want (modulo
mutual interpretability), we will not give the theory of sequences here. We will give

4Modulo mutual interpretability, we can also do it a little bit differently. We do not only add
a new domain 4, but we also add a new binary relation symbol E. Now we do not only relativize
but we also replace identity in the axioms of U by E. This time we do include the axioms of
identity. We add a good theory of sequences including the ordinary theory of identity to the
result. To see the equivalence of the notions, first we use of the presence of sequences to make
our class of sequences and the U-objects disjoint. Then, we divide out the equivalence relation on
the U-objects. Note that we do not need to divide out an equivalence relation on the sequences,
since sequences need not be extensional.
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the simpler characterization below. The resulting theory SEQ(U) is sequential in
the sense of Pavel Pudldk. See [Pud83], [HP91]. This notion was independently
invented by Harvey Friedman: see [Smo85]. Friedman calls the notion adequate.
See [Vis07] for a brief history of the concept.

We can view SEQ as the left adjoint of the embedding functor of the degrees of
interpretability of sequential theories into the degrees of interpretability tout court:

U<emb(V) < SEQ(U) <seq V-

Note that it follows that SEQ is a endo-functor of the preorder category of inter-
pretability. Moreover, we have: U <1 SEQ(U), and SEQ(SEQ(U)) = SEQ(U).

A simpler but equivalent way to get the effect of adding sequences is to add
‘adjunctive sets’. Adjunctive set theory AS is the following theory:

AS1. F3JxVy -y € x,
AS2. FVu,v3zVy (y €z« (y € uVy=0)).

This theory has a long history. See [Vis08]. To ‘add’ AS, we first relativize U and
then add AS.

We will use ‘A’ and ‘B’ for sentences, or if you wish finitely axiomatized theories.
We have the following theorem.

Theorem 3.1. We have: SEQ(A) = (Q + cutfreecon(A)).

Proof. From left to right, the proof uses the fact that there is a standard bound on
the complexity of the formulas occurring on any cutfree proof of = A. In SEQ(A)
we can develop a truth predicate for formulas of restricted complexity. We do not
have enough induction to prove the cutfree consistency of A, but we can get the
same effect by going to a definable cut.® Thus, on some definable cut, we have
cutfreecon(A). See, e.g., [Pud85], [HP9I1].

From right to left, we use the fact that we can use a consistency statement for
cutfree provability to produce a model. Since the model is entirely syntactic, on
closer inspection, we have constructed an interpretation. A careful verification can
be found in [Kal89]. This gives us an interpretation of A. The objects of A are
coded on some definable cut of Q + cutfreecon(A). We can choose this cut so deep
that, on it, we interpret a sequential theory like Buss’ Si. The sequences of numbers
on the cut can be used to induce sequences of the objects of the interpretation. Q

Suppose that for T19-sentences P and P’, we have:
SEQ(A) = (Q + P) and SEQ(A) = (Q + P').

It follows that (Q + P) = (Q + P’). Hence, according to Theorem 2.1, we have
EAF P < P’. Combining this insight with Theorem 3.1, we find that, modulo EA-
provable equivalence, there is a unique I19-sentence P, such that SEQ(A) is mutally
interpretable with (Q 4+ P). Thus, we have characterized the cutfree consistency
statement as the unique solution of an equation. We formulate this as a theorem.

Theorem 3.2. The sentence cutfreecon(A) is, modulo EA-provable equivalence, the
unique T19-sentence P, such that SEQ(A) = (Q + P).

Here is the well known Friedman characterization of interpretability.

5The awkwardness of the presence of two different meanings of ‘cut’ seems to be unavoidable
here. Caveat lector!



6 ALBERT VISSER

Theorem 3.3. Suppose A is sequential. We have:
A> B < EAFL cutfreecon(A) — cutfreecon(B).

Proof. Since SEQ is a functor, A > B implies SEQ(A) > SEQ(B). We also have the
converse of this fact: suppose (i) SEQ(A) > SEQ(B). Since A is sequential, we have
(ii) A> SEQ(A). On general grounds, we have (iii) SEQ(B) > B. Combining (ii),
(i) and (iii), we find: A > B. We have:

A>B < SEQ(A)>SEQ(B)
< (Q+ cutfreecon(A)) > (Q + cutfreecon(B))
<  EAF cutfreecon(A) — cutfreecon(B). a

The following theorem is in Harvey Friedman’s Tarski lectures.

Theorem 3.4. The degrees of interpretability of sequential sentences are isomor-
phic to the degrees of provability of 119-sentences over EA.

Proof. We consider the mapping A — cutfreecon(A). By Theorem 3.3, this mapping
is an embedding. It is surjective since:

(Q+ P) =SEQ(Q + P) = (Q + cutfreecon(Q + P)),
and, hence EA F P « cutfreecon(Q + P). a

We can reproduce the above results employing various other kinds of consistency:
Herbrand consistency, tableaux consistency and restricted consistency. For re-
stricted consistency we employ ordinary provability but restrict the complexity
of the formulas occurring in the proof. Let’s take as measure of complexity p:
depth of quantifier alternations. We say that a proof is an n-proof if it contains
only formulas of complexity less than or equal to n. (We will employ a slightly
modified notion of n-proof, when dealing with infinitely axiomatized theories.) We
write ‘con,,(A)’ for: there is no n-proof of absurdum from A. We can now repeat
the above development for con,(4)(A). E.g., we have:

A> B < EAF conya)(A) — con,py(B).

We can formulate an alternative Friedman style characterization for restricted con-
sistency. This characterization avoids exponentiation at the cost of raising one of
the bounds.

Theorem 3.5. Suppose A is sequential. Then:
A B < 3m Syt cony(A) — con,p)(B).

Proof. Suppose A is sequential. Suppose K : A> B. In S}, we can use K to
transform a p(B)-proof of L from B into an m-proof of L from A, for sufficiently
large m. This uses essentially the fact that we choose p to be: depth of quantifier
alternations. Note that this direction does not use that A is sequential.
Conversely, suppose Si - con,,(4) — con,(p)(B), for some m. Since A is se-
quential, we have A > (S} 4 cony,(A)). Hence, A > (S + con,p)(B)). It follows
that A> B. Q

What can we say in the infinite case? To answer this question we need the functor
U. We also introduce the functor U that will play a role in the next section.
Consider a theory U where the set of Godelnumbers of axioms is represented by a
Y-formula ax. We may assume that ax is of the form Jy gy, where aq is Ag.
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Wlog, we may assume that agry implies x < y. Let U [ n be the theory with
axioms witnessed below n. We write con;t (U) for con(U [ n).

We redefine restricted provability as follows. 7 is an n-proof from U if 7 is an
n-proof in the original sense from U [ n. So we both restrict the axioms used and
the complexity of the formulas in the proof. We write con, (U) for: there is no
n-proof of L from U. We define:

O(U) := S} + {con, (U) | n € w}.

Ut (U) := S+ {con(U) | n € w}.

U is reflexive if U > G(U).

U is strongly reflexive if U > UV (U).

We pronounce ‘G(U)’ as: mho U, where ‘mho’ rhymes with ‘Joe’. It is easy to see
that G(U) is, modulo provable equivalence, independent of the choice of a.. Instead
of Si, we could have used e.g., Q or IAg + ;. The theory S} is convenient since
unlike Q we can formalize many intuitive arguments. Specifically, unlike Q, the
theory Si is sequential. Unlike IAq + Q;, the theory Si is known to be finitely
axiomatizable. In fact we will assume that it is finitely axiomatized.

Remark 3.6. Since, originally reflexivity was studied in the context of strong the-
ories containing superexponentiation, without the relativization to some choice of
the natural numbers, the notions of reflexive and strongly reflexive were not clearly
distinguished. My choice of terminology reflects my conviction that reflexivity is
the more fundamental notion.

An example of a reflexive theory is 1Ay + Q1 + Q9 + ... Examples of strongly
reflexive theories are PRA, PA, ZF.

Pavel Pudlék has shown, using an adaptation of the proof of the First Incom-
pleteness Theorem, that reflexive theories are not finitely axiomatizable. One can
easily see, that no theory that is mutually locally interpretable with a strongly re-
flexive theory can be finitely axiomatized. I.o.w., the degree of local interpretability
of a strongly reflexive theory does not contain a finitely axiomatizable theory. As
we will see this is not true for reflexive theories. Q

Here is the central insight concerning the relationship between U and G(U).

Theorem 3.7. We have: (a) SEQ(U)>10c B(U) and (b) B(U)>SEQ(U). It follows
that SEQ(U) =ioc B(U).

Proof. The proof is a strengthening of the proof of Theorem 3.1. For (a), we
build partial truth predicates and prove the restricted consistency statements by
compensating the lack of induction by going to a definable cut. Note that as n
grows, we need deeper and deeper cuts to prove con,,(U). Thus, we only construct
local interpretations.

For (b), we work in SEQ(U). We consider the set X of all z, such that con,(U).
We note that conx (U), i.e., U is consistent when we restrict ourselves to proofs that
(i) employ only axioms witnessed in X and (ii) only contain formulas of complexity
in X. We use the Henkin-Feferman construction on conx (U) to build an interpre-
tation Hy of U. We add sequences to Hy as in the proof of Theorem 3.1. Note
that, externally, we can prove: a(A4) = O(U)F X(TA7), and hence U(U) - AHv.

The basic idea of the Feferman style proof comes from Sol Feferman’s classical
paper [Fef60]. The extension to restricted provability was added later. For more
details see [Vis92]. Q
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We can now formulate and prove the analogue of Theorem 3.2.

Theorem 3.8. Let P be a set of 119-sentences. We have:
SEQ(U) = (S +P) iff EA+U(U)) = (EA+P).

In the rest of this section, we will collect some further facts about U. These facts
are only in part relevant for the rest of the paper and could be skipped by the
reader mainly interested in Godel’s Second Incompleteness Theorem.

Theorem 3.9. Suppose U is sequential. The following are equivalent:

a. UV,

b. BU) 20B(V),

c. B(U)>0(V),

d 6(U)>V,

. (EA+0U(U)) 2 (EA+UB(V)),

(e

Proof. (a) = (b): Suppose U >, V, Then, we can use, inside S3, the local inter-
pretations to transform an m-proof (for standard n) of L from V', into an m-proof
of L from U, for sufficiently large standard m.

(b) = (c): Trivial.

(¢) = (d): This follows from the fact that, by the Henkin-Feferman argument, we
have O(V) > V.

(d) = (a): Since U is sequential, we have: U >joc B(U).
(¢) & (e): Immediate by Theorem 2.1. Q

We have a brief look at the meaning of two of the above equivalences. The equiv-
alence between (a) and (b) is a sort of double Orey-Héjek characterization of local
interpretability. The equivalence between (a) and (c¢) can be viewed as follows.
Consider the preorder category of global interpretablity restricted to the the se-
quential theories. We have the projection functor m, which is given by the identical
mapping, from this category to the preorder category of local interpretability, We
have:

(V)< U < VU(U).

Thus, U is right adjoint of m and as such uniquely determined modulo mutual
interpretability. If we consider the theories in the degree of local interpretability of
U, ordered by interpretability, then U(U) is the maximal element.

We end this section by providing another functor that is the same as U modulo
mutual interpretability. We define the first order comprehension functor FOC as
follows. We start with a sequential theory U. We add two unary predicates ob and
class and one binary predicate €* to the language. We relativize U to ob. We write,
e.g., Vz:ob B for Vz (ob(z) — B). Using the sequences of U we can add axioms for
comprehension over ob to the language of the following form:

VZ:0b Jy:class Va:ob (z €* y « A°®z2).

Here A is a formula of the language of U. The superscript ob means that we
relativize all quantifiers in A to ob. Thus we obtain FOC(U).

Theorem 3.10. Suppose U is sequential. Then, FOC(U) = U(U).
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Proof. We will use capitals for variables relativized to class and small letters for
variables relativized to ob.

We start with the left to right direction. Since U is sequential, it contains an
interpretation N of Si. We can find, for every n, a definable cut I of N, such that
U I conl (U). Here we demand that cuts are closed under 0, +, x, # and downwards
closed w.r.t. <. Thus, they preserve S3. We consider, in FOC(U), the cut J with
Jz 1= VX (cuty(X) — x €* X). It is easily seen that:

J : FOC(U) > B(U).

We proceed with the right to left direction. It is clearly sufficient to show that
U6 FOC(U). We enumerate the formulas of U as Ag, A1, .... Let ¢; be the length
of the parameter sequence z; in A;zz;. We show that the comprehension scheme for
the first n formulas is interpretable. We employ the version of sequentiality defined
using Adjunctive Set Theory. We set:
ob(z) = (z = ),
class(x) : (z = z).
n(@) = o Yn-1 (Nicjen Vi #Yi AV2 (z €2 — V., ¥i = 2)).
We define pairs and n-sequences in the usual way (not forgetting the fact
that we do not have extensionality).
r ey =V, (6 +1)-seq(y) A Fu,v (0(u) Ai(v) A proj(w, u,v)) A

Njce, Fw (5 + 1)(w) A proj(w, y, 2i5)) A AixZ). Q

Open Question 3.11. We have seen that, for sequential theories, FOC and U
coincide modulo mutual interpretability. Outside of this range they do not coincide.
Could it be that FOC has some of the good properties of U outside of the range
where U has these properties?

We consider the case of pair-theories. Here is their definition. The theory TP is
axiomatized by:

tpl. F3dxVyy ¢ x,
tp2. FVu,v3zVy (y €z (x =uVx =v)).

A pair-theory is a theory that directly interprets TP. It is easy to see that any pair-
theory U locally interprets FOC(U). We would conjecture that, for a pair-theory
U, the theory FOC(U) is maximal in the interpretability ordering among theories
mutually locally interpretable with U. Hence, the following question: Do we have,
for every pair-theory U, that, for every V, U >i,c V < FOC(U) >V ? Q

4. CONSISTENCY

In this section we study consistency statements. We look for an equation with
a consistency statement as its unique solution. Over sequential theories, we can
define a functor U — PC(U) that adds predicative comprehension to U. First we
relativize U to a new predicate ob. We also add a new predicate class of classes and
€* for an object being an element of a class. We add an axiom that x €* y implies
ob(z) and class(y). We say that A is sorted iff there is a function o that assigns to
each variable of A either ob or class in such a way that (i) if = y is a subformula
of A, then o(x) = o(y), (ii) if PZ is a subformula of A, then o(x;) = ob, (iii) if
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x €* y occurs in A, then o(x) = ob and o(y) = class, and (iv) all quantifiers with
variable z are relativized to o(z).6
Predicative comprehension is the principle:
e F Jx:classVy:ob (y € x < AyZ), where, A is sorted, y is assigned ob in the
sorting of A, and all quantifiers in A are relativized to ob.
Since U is sequential, we can find a finite axiomatization for PC(U). See e.g. [Vis06],
for details. It is easy to show that PC is an endofunctor on the preorder category
of interpretability between sequential theories.

Theorem 4.1. Suppose A is sequential. We have: PC(A) = (Q + con(A)).

Proof. Using our classes, we can build a satisfaction predicate for (the relativization
of) the language of A. See e.g. [Vis06], for details. We can use this predicate to
prove the consistency of A on a PC(A)-definable cut.

In the other direction, we make a Henkin-Feferman interpretation in Q+con(A).
This interpretation comes naturally equipped with a truth predicate for the in-
terpretation. We use this truth predicate to define the classes as formulas in the
(internally defined) language of U. See [Vis06], for details. a

Open Question 4.2. Can we lift the restriction to sequential A in the above
theorem. I.o.w., can we find an appropriate ‘coordinate free’ functor F' such that
F(A) = (Q+con(A)), for all A? Q

Open Question 4.3. Suppose A is sequential. Can we prove A ¢ PC(A) directly,
without using the Second Incompleteness Theorem? (Jan Krajicek asked a similar
question in conversation.) Q

Using the same considerations as in the case of cutfree-consistency, we find:

Theorem 4.4. Suppose A is sequential. The statement con(A) is, modulo EA-
provable equivalence, the unique 119-sentence P, such that PC(A) = (Q + P).

There is an alternative characterization of Q 4 con(A).

Theorem 4.5. Suppose A is sequential. Then,
(Q + con(A)) = (EA + cutfreecon(A4)).

Proof. Suppose A is sequential.
From left to right. As a first step, we interpret Si + con(A) in Q + con(A). We
build a Henkin-Feferman interpretation HT := Hj of A in S} + con(A). Since A4 is
sequential, we have in A an interpretation N of Q + cutfreecon(A).

By an argument of Pavel Pudldk in [Pud85], we have:

W) S+ Va (27 | — Oglitexp(x) 1),
where itexp(0) = 0 and itexp(z 4 1) = 2te*P(@),
There is a (S} + con(A))-definable cut J and a standard embedding e of the .J

numbers into an external cut of the H-numbers. By the construction of HT, we
have:

(2) SL+con(A) F ((Z: J ADgBT) — B e).

60f course, the notion of sortedness just says that A is the translation of the more natural
corresponding sorted formula. We are punished for our choice for one-sorted theories. Our PC(U)
is the flattening of the more natural two sorted predicative extension of U. Note, however, that if
we start with a many sorted U, it becomes problematic to define sequentiality.
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(We are not fully precise here: e is really a relation between equivalence classes
of different equivalence relations.) Since we can always shorten J, we may assume
that, for every x in J, S} proves that 2% exists. Combining equations (1) and (2),
we find:

(3) Sk vael (itexp(e(z)) ).
Now we restrict the domain of HT to:
o 0= {z€du+ | IyeJ (z < itexp(e(y))""}.

This restriction evidently gives us an interpretation of EA + cutfreecon(A).” For
more details of this argument, see [Vis92].

From right to left. The theory EA has a cut J, such that EA proves that for all
x in J, the superexponent of x exists. This cut is called the superexponential cut.
We find, by the formalization of cutelimination:

EA + cutfreecon(A) — con” (A).

The desired result is now immediate. Q
It immediately follows that:

Theorem 4.6. Let A be sequential. The sentences cutfreecon(A), con(A) are the

unique pair, modulo EA-provable equivalence, of I1{-sentences P, Q, such that:
A=(Q+P) and (EA+P)=(Q+ Q).

What happens in the infinite case? I can see two approaches. The first, extensional
one, employs UT. The other one employs the notion of scheme. Here is the U™-
approach.

Theorem 4.7. Suppose U is sequential. Then, PC(U) = BT (U).

Proof. Suppose U is sequential.

From left to right, we use the truth predicate for the language of U, that we can
build using our classes, to prove the consistency statements on a definable cut. Note
that we have one cut for all consistencies since we have truth for the full language
of U. Note also that we do not get con(U), since we can prove of each axiom that
it is true, but we need not be able to prove that all axioms are true.

From right to left: we use the Henkin-Feferman construction as in the proof of
Theorem 4.1. a

We may conclude:

Theorem 4.8. Let P be a set of I19-sentences. We have:
(Q+P)=PCU) & (EA+P)=(EA+UT(D)).

Here is the analogue of Theorem 4.5.
Theorem 4.9. Suppose U is sequential. Then, U (U) = (EA+ U(U)).
Proof. The proof is an adaptation of the proof of Theorem 4.5. Q

Here is the analogue of Theorem 4.6.

7Our argument would not have worked with Q 4 cutfreecon(A) in the place of Q + con(A) as
the interpreting theory, since the efficient S%-proofs of itexp(z) |, may have non-standard cutrank.



12 ALBERT VISSER

Theorem 4.10. Let U be a sequential theory. The theories B(U), U (U) are the
unique pair, modulo EA-provable equivalence, of classes of I19-sentences P, Q, such
that U = (S} + P) and (EA+P) = (S} + Q).

Proof. The proof is an adaptation of the proof of Theorem 4.6. Q

We end with the schematic approach to the infinitely axiomatized case. Consider
any sequential theory U. By a theorem of Vaught (see [Vau67]), U is axiomatizable
by a scheme.® We can think of a scheme as a sentence containing certain schematic
variables X. Vaught’s theorem works even when we allow just one schematic vari-
able and even if we do not allow parameters.

We consider a slightly more detailed statement, Consider any sequential ce theory
U. Remember that a ¥-sentence « representing the axiom set of U is part of the
data for U. Vaught provides an effective construction transforming « into a scheme
Ya, such that the theory U axiomatized by ¥, is extensionally equal to U. We
take ¥, to be part of the data for U. Inspection of Vaught’s argument shows that
the extensional equality of U and U is EA-verifiable.

Consider any theory V given by a single scheme, which is part of the data of V.
We define PCT (V) as PC(V) plus the universal closure of the scheme treating the
schematic variables as class variables. This is precisely the transformation of PA to
ACA, and of ZF to GB. Note that PCT (V) is finitely axiomatizable. We have:

Theorem 4.11. Suppose V is sequential and given by a finite scheme. Then,
PCT(V) = (Q+ con(V)).

For a proof, see [Vis06]. So we immediately get:

Theorem 4.12. Let U be a sequential theory. Then, con(U) is the unique I19-
sentence P, modulo EA-provable equivalence, such that PCT(U) = (Q + P).

Note that that this construction is intensional —in contrast to the U+-approach—
in the sense that PC+((7 ) is crucially dependent on «. E.g., consider PAZf7 a theory
that is axiomatized as follows. We proceed in stages. At stage n we add the nth
PA-axiom and if n codes an inconsistency-proof of ZF we add L. Clearly, PAT is
extensionally equal to PA. However it is equally clear that con(P/—\Zf) is EA-provably

equivalent to con(ZF). Hence: PCT(PA¥) = (Q+con(ZF)). Thus, the same theory is
axiomatizable by many schemes that are not ‘predicatively second order equivalent’.

Thus, the present construction is dependent on the coding of syntax and on «, but
it is independent of the choice of the proof system.
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APPENDIX A. INTERPRETATIONS

We will give a careful definition of one-dimensional, many-sorted, relative in-
terpretations without parameters, where identity is not necessarily translated as
identity. We will briefly indicate how to extend the framework to being piecewise,
more-dimensionality and parameters.

A.1. Translations. To define an interpretation, we first need the notion of trans-
lation. Let 3 and = be finite signatures for many-sorted predicate logic with finitely
many sorts. We assume that the sorts are specified with the signature. We also
assume that the designated sort is also given by the signature. A relative transla-
tion T : ¥ — Z is given by a triple (o, 0, F). Here o is a mapping of the X-sorts to
the Z-sorts. The mapping ¢ assigns to every Y-sort a a Z-formula §% representing
the domain for sort a of the translation. We demand that 6% contains at most a
designated variable v{® of sort oa free. The mapping F associates to each relation
symbol R of ¥ a E-formula F(R). The relation symbol R comes equipped a se-
quence d of sorts. We demand that F(R) has at most the variables v* free. We
translate Y-formulas to =Z-formulas as follows:
o (R(yp°,+,yn"1" )" = F(R)(yg™ - yny )
(We assume that some mechanism for a-conversion is built into our def-
inition of substitution to avoid variable-clashes.)
e (-)7 commutes with the propositional connectives;
o (VyrA)T =y (0%(y) — AT);
o (Fy* A)™ := Ty (6%(y) N A7).
Suppose 7 is (0,0, F'). Here are some convenient conventions and notations.

e We write ¢, for § and F, for F.
e We write R, for F.(R).
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e We write &' : 6% for: §9 (z5%) A ... A §%-1 (20070,

o We write V& : 6% A for: Va§® ...Val® " (£:0% — A). Similarly for the
existential case.

A.2. Interpretations and Interpretability. A translation 7 supports a relative
interpretation of a theory U in a theory V, if, for all axioms A of U, we have
UF A=V FE A". (Note that this automatically takes care of the theory of
identity. Moreover, it follows that V' F Jvy d%vg, for each ¥-sort a.) Thus, an
interpretation has the form: K = (U, 7, V).

Par abus de langage, we write ‘6’ for: &,,.; ‘Pg’ for: P, ; ‘AK’ for: A™% etc.
We define: K : U<V or K : Vi>U, for: K is an interpretation of the form (U, 7, V).

A.3. Local Interpretability. We say that a theory V locally interprets a theory
U if, for any finite subtheory Uy of U, we have V >4y Up. We write V > U for:
V locally interprets U.

A.4. Multidimensionality. We can extend the notion of interpretation to the
case of multidimensional interpretations by sending a sort a of the interpreted
theory via o to a sequence of sorts of the interpreting theory. A domain formula
0% will have a sequence of variables as arguments. These variables have the sorts
given by o(a).

A.5. Parameters. We can extend the notion of interpretation to the case of inter-
pretation with parameters by allowing extra parameters from a given finite sequence
W into the 0, and P;. As extra data we need a fixed formula Aw of the language of
the interpreting theory representing the intended range of the parameters. E.g., in
the Poincaré disk interpretation of the hyperbolic plane in the Euclidean plane, the
parameters could be wq, w1, where wy is the centre of the Poincaré disk and where
wp is a point on the circumference of the disk. The formula A would be wy # w;.
We define: (U, AW, 70, V) is an interpretation iff V + 3@ Aw and, for any axiom
B of U, we have V - Vii (AW — B™%).

A.6. Piecewise Interpretations. The idea of piecewise interpretations’ is that
we can develop the domains for each sort as built up from a finite number of pieces.
These pieces may overlap. The same original object may pose as two different
objects depending on which piece we are considering. The pieces also may be of
different sorts and of different dimensionality.

For example, let us define a one dimensional, parameter free translation from a
one sorted language to a one sorted language with two pieces, for a theory with
just one binary predicate P. Our translation 7 provides two domain pieces §y and
d1. The 6; are formulas of the target language containing just vg free. We have a
function F' that assigns formulas A;;(vo,v1) to P and 0,1-pairs ¢j. Similarly for the
identity. Our translation function has as inputs formulas B of source language and
assignments a of 0 or 1 to the free variables of B. We give the clauses for Pxy,
conjunction and universal quantification.

o (Pxy)™® := Au(z),a(y)(®,y), where a has domain {xz,y};
e (BAC)"® := BTIFV(B) A CmalFV(C) "wwhere o has domain FV(B A O);

91 learned the idea of piecewise interpretability in a slightly less general form from Harvey
Friedman.
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o (Vo B)™® := Va:8y (B) @0 Ayg:5; (B)7 =0} where o has domain
FV(Vz B).
Note that 7 will be the empty assignment for sentences. The rest of the development
is as expected. Note that any theory with a finite model has a piecewise, one-
dimensional, parameter free interpretation in EQ, the one-sorted theory of equality.
A natural example of a piecewise interpretation is ‘adding the unit to the theory
of semigroups’.

Remark A.1l. Prima facie, piecewise translations are rather costly. Translations
that are not piecewise yield p-time transformations of formulas (if we handle the
needed alpha-conversions in a sufficiently smart way). Piecewise translations, on
the other hand may be exponential.

Fortunately, in rather general circumstances piecewise translations can be elim-
inated. E.g., if the target theory T, i.e., the interpreting theory T', does not have
a one-element model, then a piecewise translation can always be replaced by a
multi-dimensional interpretation with parameters that is ‘the same’ in the sense
that there is a T-definable, T-verifiable isomorphism between these translations
(considered as inner model constructions). Q

Remark A.2. Consider the well-known flattening construction, in which we trans-
form a many-sorted theory U into a one-sorted theory U°. We have that U > U,
by a simple one dimensional, non-piecewise, interpretation. We have U > U”, via a
piecewise interpretation. (If U proves that every domain has at least two elements,
we can replace the use of pieces by more dimensionality.) Q
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