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Crime Risk Estimation with a Commuter-
Harmonized Ambient Population

Lucy W. Mburu* and Marco Helbichy
*GIScience Research Group, Institute of Geography, Heidelberg University

yDepartment of Human Geography and Spatial Planning, Faculty of Geosciences, Utrecht University

Residential population data are frequently employed to link the crime incidence of an area with the number of
residents to estimate the underlying risk. Human mobility patterns cause shifts in the baseline population, how-
ever, that can potentially influence the crime statistics. This study therefore employed an ambient population
that combined residential population data with data depicting the commuting activity in small administrative
areas. The effects of the commuter-harmonized ambient population on crime were then evaluated in a series of
negative binomial regression models. The models also controlled for criminogenic factors and incorporated
eigenvector spatial filtering to adjust for spatial effects. The results show significant effects of commuting pat-
terns on crime outcomes. For certain crimes, such as violence, theft, and disorder, the inbound commuters are
significantly associated with high risk. It was further discovered that an offset variable comprising the com-
muter-harmonized ambient population data models the crime outcomes more reliably than when residential
population data are used. Spatial filtering was found to effectively eradicate residual spatial autocorrelation
after accounting for effects of the predictor variables. We conclude that calculating crime rates using the resi-
dential population does not constitute an accurate risk measure and that the ambient population has crucial
implications for realistic and reliable target representation and crime modeling. Key Words: ambient population,
criminogenic factors, eigenvector spatial filtering, regression.

居住人口数据经常用来连结一地的犯罪事件与常住人口数, 以评估潜在的风险。但人类的移动模式, 导
致可能会影响犯罪统计的基线人口的转移。本研究因此运用结合小型行政区域居住人口数据和描绘通

勤活动数据的周遭人口。本研究接着在负二项迴归模型的系列中, 评估调和勤者的周遭人口对犯罪的影

响。这些模型同时控制犯罪因素, 并纳入特徵向量空间过滤, 以调整空间效应。研究结果显示通勤模式

对于犯罪结果的显着影响。就暴力、偷窃和扰乱等若干犯罪而言, 向内的通勤者与高风险显着相关。本

研究进一步发现, 包含调和通勤者周遭人口数据的偏移变量, 较运用居住人口数据所进行的模型化犯罪

后果更佳可靠。本研究发现, 考量预测变项之后, 空间过滤能有效地根除空间自相关的残馀。我们于结

论中指出, 运用常住人口来计算犯罪率, 无法组成准确的风险评估, 而周遭人口对于实际且可靠的目标再

现与犯罪模式化而言具有重要的意涵。关键词：周遭人口,犯罪因素,特徵向量空间过滤,迴归。

Frecuentemente los datos de poblaci�on residencial se utilizan para conectar la incidencia del crimen sobre un
�area con el n�umero de residentes para calcular el riesgo subyacente. Sin embargo, los patrones de movilidad
humana causan cambios en la poblaci�on de referencia que potencialmente pueden influir las estad�ısticas de la
criminalidad. Es por eso por lo que este estudio utiliz�o una poblaci�on moment�anea que combin�o los datos de
poblaci�on residencial con los datos que representan la actividad de los viajes pendulares en �areas administrati-
vas peque~nas. Los efectos de la poblaci�on moment�anea armonizada por el conmutante sobre el crimen fueron
luego evaluados en una serie de modelos de regresi�on negativa. Los modelos controlaron tambi�en los factores
criminog�enicos e incorporaron el filtrado espacial eigenvector para hacer ajustes en raz�on de efectos espaciales.
Los resultados muestran efectos significativos de los patrones del viaje pendular sobre la criminalidad resultante.
En lo que se refiere a ciertos cr�ımenes, como violencia, robo y alteraciones del orden, los conmutantes o viajeros
pendulares orientados hacia adentro aparecen significativamente asociados con riesgo alto. Se descubri�o adem�as
que una variable compensadora que comprenda los datos de poblaci�on moment�anea armonizada por el conmu-
tante modela los cr�ımenes resultantes de manera m�as fiable que cuando son utilizados los datos de la poblaci�on
residencial. Se hall�o que el filtrado espacial efectivamente erradicaba la autocorrelaci�on espacial residual tras
tomar en cuenta los efectos de las variables predictivas. Concluimos que calcular las tasas de crimen usando la
poblaci�on residencial no constituye una medida exacta de riesgo y que la poblaci�on moment�anea tiene implica-
ciones cruciales para una representaci�on proyectada realista y confiable, y para la modelaci�on criminal�ıstica.
Palabras clave: poblaci�on moment�anea, factores criminog�enicos, filtrado espacial eigenvector, regresi�on.
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A
n essential prerequisite for determining crime-
related hazards is to identify variables that
increase the accuracy for estimating risk

(Chainey and Ratcliffe 2013; Ceccato 2015). Residen-
tial population data are frequently used for target esti-
mation, because these data are usually available from
censuses (e.g., Sampson, Raudenbush, and Earls 1997;
Sutherland, Brunton-Smith, and Jackson 2013; He
et al. 2015). Nevertheless, several reasons make these
data theoretically insufficient for estimating the crime
variation and crime targets or for ranking areas by
criminality (Boggs 1965; Andresen 2011; Andresen,
Jenion, and Reid 2012).

First, census data commonly denote the number of
nighttime residents of an area, but this number rises
and falls due to the daily human activity occurring
outside the boundaries of census units (Andresen and
Jenion 2008; Kwan 2012; Stults and Hasbrouck 2015).
The shifts in population arising from the imbalance in
the number of inbound and outbound commuters
might artificially influence the estimation and cause
inferential errors. Second, the theory of routine activ-
ity (Cohen and Felson 1979) holds that crime ema-
nates from offender–target interaction when the
guardians are absent. Thus, commuting affords oppor-
tunities for individuals to interact beyond the bound-
aries of the census areas (Stults and Hasbrouck 2015).
Such interaction allows the perpetrators of certain
crimes (e.g., theft, violence) to discover suitable tar-
gets among the mobile residents. Therefore, the influ-
ence of mobility on risk must not be overlooked.
Third, Malleson, Heppenstall, and See (2010) pro-
posed that the offending group is not necessarily
unemployed. It is further argued that opportunities to
offend will often emerge in the course of traveling to
and from places of daily engagement, such as work
(Brantingham and Brantingham 1981). Finally, work-
ers and criminals both incur costs during travel, costs
that they attempt to minimize (Brantingham and
Brantingham 1984; Carter and Hill 2014; Vandeviver,
Van Daele, and Vander Beken 2014). Employees in
urban areas often live remotely from their places of
work, such as in the immediate city suburbs, to manage
housing expenses (Helbich and Leitner 2009). Simi-
larly, the pursuit of cover and greater opportunities
leads criminals to offend at a distance from their
homes (Mburu and Helbich 2015). Thus, the cost-
avoidance propensity and the interaction of offenders
and commuting workers culminate in increased crime
incidence, particularly in small areas (Farley and Han-
sel 1981; Stults and Hasbrouck 2015).

To circumvent these challenges, early criminologi-
cal researchers made attempts to replace the residen-
tial population data with crime-contextual data. For
example, Boggs (1965) linked the burglary risk with
the business-to-residential land-use ratio, and Cohen,
Kaufman, and Gottfredson (1985) employed the num-
ber of registered vehicles to study vehicle theft. A
more accurate delineation of risk was reported in these
studies as a result of substituting the residential popu-
lation variable with more theoretically relevant ones.
More recent work has involved deriving the ambient
population1 to represent the number of individuals at
risk in an area. Several strategies have been proposed
for generating ambient population data, including sim-
ulations that are based on the available socioeco-
nomic, land use, and mobility data (Bhat et al. 2004);
applying the LandScan data to disaggregate population
counts of areas (Andresen and Jenion 2008, 2010;
Andresen 2011; Andresen, Jenion, and Reid 2012);
employing Twitter data (Malleson and Andresen
2015); using mobility survey data (Felson and Boivin
2015); using and cross-city transit data (Stults and
Hasbrouck 2015).

Consistent with earlier findings (Boggs 1965; Cohen,
Kaufman, and Gottfredson 1985), the later research
demonstrated that ambient population data yield more
accurate crime estimates than residential population
data. Nevertheless, the preceding strategies have sev-
eral limitations. Common to all of the proposed strate-
gies is their limited applicability for small-area crime
analysis (Weisburd, Groff, and Yang 2012). Specific
problems include the lack of clarity about how Land-
Scan estimates of the population were derived, which
makes it difficult to ascertain that the data actually rep-
resent the targets in an accurate manner. Additionally,
the 1 £ 1 km spatial resolution of LandScan data is
deemed too coarse for crime estimation (Malleson and
Andresen 2015). Twitter data have limited usefulness
for spatial crime analysis because they exclusively repre-
sent the active group of social media users and because
a large proportion of the tweets have no address infor-
mation (Xu, Wong, and Yang 2013; Malleson and
Andresen 2015). Transport data (e.g., Felson and Boi-
vin 2015; Stults and Hasbrouck 2015) offer more prom-
ise, except for inadequacies of target representation
within the specific contexts that these data have been
applied. For instance, Felson and Boivin (2015)
restricted their crime analysis to areas within the city
and excluded the offending patterns in the immediate
city suburbs. Similarly, Stults and Hasbrouck (2015)
excluded U.S. cities with fewer than 100,000 residents
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from the sampled data. Such omissions are likely to
generate skewed outcomes that depict relationships
that deviate from the real-world scenario.

The aim of this research was to address the practi-
cal difficulties in using residential population data
(Boivin 2013; Stults and Hasbrouck 2015), as well as
the problems characterizing extant solutions (e.g.,
with LandScan or Twitter data; see Malleson and
Andresen 2015). We developed a novel ambient pop-
ulation measure for small areas that takes the com-
muting patterns of individuals into account,
employing the census administrative areas of Greater
London (UK) as a case study. We also modeled the
effects of known criminogenic factors on crime (e.g.,
deprivation, homeownership; see Sampson, Rauden-
bush, and Earls 1997; Sutherland, Brunton-Smith,
and Jackson 2013) and examined the reliability of
these factors for influencing risk after we adjusted for
commuting patterns. In particular, we addressed the
following three research questions:

1. What relationships exist between crime and the
commuting patterns of individuals?

2. How do variations in the population affect the
crime estimates for small areas?

3. Does substituting the residential population with
the ambient one improve the analysis of crime
risk?

By answering these questions, this research makes
three important contributions to the literature. First,
routinely collected socioeconomic data were com-
bined with traffic flow data collected over small areas
in Greater London, an area with an advanced trans-
port infrastructure and a large population of commut-
ers. Second, a robust ambient population data set was
generated and linked to crime outcomes on a detailed
scale. Third, we fit a series of negative binomial regres-
sion models to the crime outcomes. In response to a
recent call by Bernasco and Elffers (2010), we applied
Griffith’s (2003) eigenvector spatial filtering (ESF) to
obviate model misspecifications that arise from posi-
tive spatial dependence2 of crime observations
(Townsley 2009; Tita and Radil 2010). ESF is often
applied in various domains (e.g., Helbich et al. 2013;
Thayn and Simanis 2013; Liao and Wei 2015) but,
perhaps with a few exceptions (e.g., Chun 2014; Hel-
bich and Jokar Arsanjani 2015), the strategy remains
highly underutilized within criminology.

The rest of this article is organized as follows. We
first introduce the study area, data, and methods and

then present our findings. Thereafter, we discuss the
implications of our findings and put forward sugges-
tions for future research.

Method

Study Area

The area of Greater London (UK) has a population
of approximately 8.3 million (Office for National Sta-
tistics 2014). Apart from the increase in crime rates
(Davenport 2015), London was also selected for this
analysis due to its large proportion of daily commuters
(Office for National Statistics 2011). Commuting
transports 60 percent of London residents away from
their delineated census areas, as shown by the data.
Such extensive human mobility often causes the risk
estimates that depend on residential population data
to become biased.

Observation areas included 983 administrative units
(i.e., super output areas of the middle layer). These are
areas of relatively small extent (minimum D
0.294 km2, M D 1.6 km2, maximum D 22.43 km2,
SD D 1.86 km2). The small spatial scale suited the
analysis because attribute values, such as the socioeco-
nomic status of individuals, are sufficiently homoge-
nous within an area. Both the socioeconomic and
travel flow data were captured at this analytical level.

Data Sets

Crime Data

Crime data recorded by the UK police over a three-
year period (2012–2014) constituted the dependent
variables. The British Transport Police records the
crime events that are reported across rail and tram net-
works, and the events that occur elsewhere in London
are recorded by the Metropolitan Police and the City
of London Police.

Six types of crime were analyzed: violence and sex-
ual crimes, disorder (including all forms of antisocial
behavior), theft and shoplifting, robbery, burglary, and
vehicle crime. These crimes are the most likely to be
influenced by human mobility and the resultant
upward or downward shifts in the residential popula-
tion. Ceccato and Uittenbogaard (2014) attributed
the increased incidence of violence, disorder, and theft
that they observed around transport nodes to inbound
and outbound commuting. We therefore expected to
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find that commuting increased the level of risk, given
that 56 percent of London’s population use public
transport to get to work and 29 percent drive to their
workplaces, as shown by the 2011 census data. Those
commuting by car might not be targets of violence and
theft, but their inbound travel is likely to create suit-
able conditions for disorder and vehicle crime. Com-
muting can also be linked with theft and robbery
through an inherent exposure to potentially hazardous
facilities. For example, a cash dispenser that is
installed near a bus stop for travelers’ convenience
might increase the risk of theft and robbery. Although
our expectations regarding burglary were unclear, prior
evidence suggested that burglary increases with down-
ward shifts in the population (Leitner and Helbich
2011; Zhang and McCord 2014; Stults and Hasbrouck
2015).

Population and Travel Flow

The 2011 census data on the residential population
and the number of daily commuters were obtained
from the UK Office for National Statistics. The com-
muting data were extracted from an origin–destination
matrix of flows across the administrative units. Ele-
ments along the matrix diagonal were set to zero to
exclude the commuting activity within areas. Two off-
set variables were used for the analysis, namely, resi-
dential population and ambient population. The latter
and a third variable, COMMRATE, were based on the
commuting data.

Residential population was employed directly as
extracted from the census data. Ambient population
was based on two inputs: (1) the residential population
data representing the nighttime and weekend residents
and (2) the workday population data representing
nonworking residents, noncommuting workers, and
inbound commuters. Workday population counts were
calculated as the residential population counts plus
counts of inbound residents minus counts of outbound
residents. Instead of treating the residential and work-
day populations equally, a weighting scheme was con-
ceptualized to realistically represent the temporal
aspect of mobility. It was implicitly assumed that
between Monday and Friday, the commuters were
away from their residential administrative units for
twelve hours, namely, from 6:00 to 18:00, 7:00 to
19:00, or 8:00 to 20:00 (Blyton 2014; Stults and Has-
brouck 2015). Thus, each week (i.e., 168 hours),
twelve hours of these five working days (i.e., 60/
168 hours) were accorded to the workday population.

The remaining twelve hours of the working days and
twenty-four hours of the two weekend days (i.e., 108/
168 hours) were assigned to the residential population.
Summing up the two populations (each including its
respective weight in hours) generated the variable
ambient population, namely, the number of residents
that one can expect to be present in the administrative
units at any given time.

The third variable, COMMRATE, was a principal
predictor defined as the ratio between the difference
between the ambient population and the residential
population, and the residential population. This is the
proportion of change in the residential population
intended to depict the amount of error in risk calcula-
tion when the number of individuals in an administra-
tive unit increases or decreases. Adjusting for the
commuting rate in the crime models also allowed us to
assess the stability of conventional predictors for influ-
encing crime.

Socioeconomic Data

Several control variables were obtained from the
2011 census (UK Office for National Statistics) in
addition to the primary study variables discussed ear-
lier. The variable selection was guided by theoretical
considerations and previous studies (e.g., Sutherland,
Brunton-Smith, and Jackson 2013; He et al. 2015;
Helbich and Jokar Arsanjani 2015).

Three variables quantified deprivation: DEPRHSE
corresponds to the proportion of households whose heads
are semiskilled, unskilled, or unemployed. This is a house-
hold measure rather than a measure of individuals,
because we expected that some wealthy household mem-
bers would choose not to be in employment. SOCHSE
corresponds to the proportion of households living in
social housing. NOCENTHEAT is the proportion of
households without a central heating system. These
parameters have traditionally been associated with higher
crime risk (Grover 2013; D’Orsogna and Perc 2015).
Affluence in administrative units was similarly character-
ized using three predictors: HOMEOWN is the propor-
tion of outright homeowners; ADVEDUC corresponds to
the proportion of the workday population with at least a
bachelor’s degree or an equivalent qualification; and
3CCARS measures the proportion of households with
three or more cars or vans. These attributes correspond
with safe areas (Sampson, Raudenbush, and Earls 1997;
Grover 2013; Stenson 2013; Sutherland, Brunton-Smith,
and Jackson 2013). Finally, the variable YMALES is the
proportion of males aged between sixteen and thirty-four
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years. The perpetrators and targets of crime, such as theft
and violence, are most likely to be men in this age group,
as proposed in previous studies (e.g., Grover 2013; Le
Blanc and Frechette 2013; Sutherland, Brunton-Smith,
and Jackson 2013; DeLisi 2015).

Methods

Negative Binomial Regression

The analysis examined the associations of socio-
economic characteristics of areas with six types of
crime. Because the response variables comprised the
number of offenses per spatial unit, count regression
was required (Cameron and Trivedi 1990). Osgood
(2000), however, proposed that the assumption of
equidispersion (i.e., the mean–variance equivalence)
often makes the basic Poisson model too restrictive
for crime data. We therefore applied the negative
binomial model (NBM) to relax the mean–variance
relationship in overdispersed data, incorporating a
dispersion parameter, theta, to adjust for overdispersed
data (Hilbe 2014).

Two comparative offset terms were used to adjust
for different at-risk population sizes within each spatial
unit, namely, residential population and ambient pop-
ulation. The intention was to examine how the popu-
lation distribution affects small-area crime outcomes
and thus to determine how adequately the population
data model the influence of contextual factors on the
crime risk. Even though the NBM estimation assumes
independently distributed residuals, spatial observa-
tions in essence cluster across space and violate model
assumptions (Griffith and Haining 2006). Therefore,
consistent with previous research (e.g., Helbich and
Jokar Arsanjani 2015), we linked the NBMs with ESF
to efficiently model the spatial patterns of residuals
and increase the model fit.

Eigenvector Spatial Filtering

ESF extracts eigenvectors from a transformed neigh-
borhood matrix corresponding to the spatial arrange-
ment of areas (Griffith 2000, 2012). Although there
are several ways of defining neighbors (see, e.g., Getis
2009; Tita and Radil 2010), the first-order queen con-
tiguity without a weighting schema (i.e., a binary
matrix) is often employed for ESF (e.g., Griffith 2003;
Thayn and Simanis 2013; Helbich and Jokar Arsan-
jani 2015). ESF decomposes the Moran’s I coefficient
(Cliff and Ord 1973) for the neighborhood matrix to

extract N (i.e., the number of spatial units) orthogonal
and independent eigenvectors (Griffith 2000). Each
eigenvector portrays a certain degree of latent spatial
autocorrelation. The first eigenvector represents the
largest possible value of the Moran’s I statistic, whereas
the second expresses the largest Moran’s I value
obtainable from any possible set of eigenvectors that is
not correlated with the first eigenvector (Griffith
2000). This continues for all the remaining eigenvec-
tors for each spatial unit. Griffith (2003, 2012) pro-
vided a comprehensive discussion of the eigenvector
decomposition process.

It would have been inefficient to include all N
eigenvectors in the model because of the need to pre-
serve a balance of model parsimony, statistical signifi-
cance, and the coexistence of model predictors (Chun
and Griffith 2013; He et al. 2015). For this analysis, a
smaller subset of candidate eigenvectors was identified
based on the Moran’s I value of the NBM deviance
residuals while incorporating the effect of predictor
variables. The eigenvector selection employed a mini-
mum threshold value of 0.5 for the Moran’s I statistic,
consistent with previous research (e.g., Liao and Wei
2015). Finally, a spatial filter derived from a linear
combination of the identified eigenvectors was
included in the NBM as an additional predictor to
absorb the residual spatial autocorrelation (see, e.g.,
Chun and Griffith 2013; Helbich and Jokar Arsanjani
2015).

Results

We performed a descriptive analysis to characterize
the effects of inbound–outbound commuting patterns
on the residential population and crime estimation.
We then assessed two offset terms (residential popula-
tion and ambient population) in the NBMs for crime
while controlling for area-level socioeconomic
characteristics.

Descriptive Statistics

The descriptives of the crime data in Table 1 depict
violence, disorder, and theft as the most commonplace
crimes, and robbery as the most infrequent crime.
Deviation is nevertheless high for all crimes (SD D
33–437 crimes). Both Table 1 and Figure 1 show that
residential population and ambient population counts
are not equivalently distributed. Although the two
counts have the same sum and mean, the variation in

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 L

ib
ra

ry
 U

tr
ec

ht
] 

at
 0

3:
40

 1
1 

Ju
ly

 2
01

6 



ambient population (SD D 3,919) is nearly three times
greater than residential population variation (SD D
1,448). Moreover, they are only slightly correlated
(Pearson’s r D 0.385, p < 0.001) and results would cer-
tainly differ if one population replaced the other for
crime estimation.

The residential and ambient populations were clus-
tered identically in the southern, eastern, and north-
ern areas, but the ambient population was denser in
the central and western areas (Figure 1). Also pro-
found is the upper extremity of the range depicting the
ambient population. Areas included up to 93,320 indi-
viduals after accounting for the commuting activity,
whereas the highest count of the residential popula-
tion was only 14,720.

The distributional difference implies that commut-
ing patterns exert uneven effects on the area-based
population distribution. Figure 2 presents the com-
muting rate as upward or downward shifts in the resi-
dential population. Two areas had the most
substantial upward shifts: The residential population
of Hillingdon, in the west of the study area, rose to 10
percent after accounting for commuters, and the City
of London and its neighboring areas in the center
experienced as much as a 12 percent increase. Target
estimates employing the residential population and
those employing the ambient population would not be
consistent for these areas. Similarly, areas near the
periphery of the city center experienced reductions in
counts due to commuting, and crime estimates
employing the residential population data would not
be consistent with ambient population estimates.

We placed violence counts on the numerator as an
example for comparing the crime rankings for author-
ity districts of Greater London (Figure 3). Crimes in
one group were weighted using residential population
counts (R), and those in another group have ambient
population counts (A) on the denominator. Results

Figure 1. (A) The residential population and (B) ambient population of Greater London. Maps employ equal thresholds for classification to
ease comparison.

Table 1. Descriptions and descriptives of the variables
(N D 983)

Variable Minimum Ma Maximum SD

Response variables
Violence 20 151.186 1,747 107.897
Disorder 54 305.502 3,593 219.240
Theft and shoplifting 12 197.664 8,433 436.584
Robbery 1 29.920 568 33.274
Burglary 27 87.766 626 39.276
Vehicle crime 16 90.538 453 43.064

Offset variables
Residential population 5,184 8,315 14,719 1,448
Ambient population 4,626 8,315 94,014 3,989

Predictor variablesb

DEPRHSE 0.042 0.226 0.488 0.097
SOCHSE 0.005 0.237 0.741 0.166
NOCENTHEAT 0.004 0.028 0.079 0.011
HOMEOWN 0.022 0.217 0.534 0.109
ADVEDUC 0.111 0.374 0.714 0.133
3CCARS 0.002 0.041 0.236 0.036
YMALES 0.082 0.160 0.328 0.042
COMMRATEc ¡0.181 0.002 11.654 0.492

aCrime counts are averaged and rounded over three years (2012–2014).
bEach predictor value is calculated as a proportion of the entire population.
cThe commuting rate is the proportion of change in the residential
population.
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show a significant difference in the rankings, particu-
larly on the left side of the scale. The City of Lon-
don, Westminster, and Camden (marked in Figure 2
as 1, 2, and 3, respectively) were ranked the most vio-
lent in the first group, but the same areas took inter-
mediate positions in the group employing the
ambient population data. These areas experienced
substantial inbound commuting. For example, com-
muters caused the residential population of Westmin-
ster and the City of London to rise by 93 percent.
Conversely, Greenwich (marked as 4 in Figure 2)

seemed moderately safe (rank 10) when the residen-
tial population was used and quite unsafe (rank 5)
when the ambient population determined the rank-
ings instead. One notices that this area has a greater
residential than ambient population; that is, it experi-
enced more outbound than inbound commuting.
Because outward commuting reduced the number of
residents, incorporating the absent residents into the
crime statistics appears to have generated the incon-
sistency of the rankings. The areas situated at the
bottom of the ranking experienced negligible com-
muting. Because their residential and ambient popu-
lations remained essentially the same, crime rankings
remained consistent irrespective of which population
was employed on the denominator.

The difference in crime rankings was more profound
for smaller census administrative areas. For example,
the violence ranking for Tower Hamlets that
employed the residential population was higher than
the ranking based on the ambient population by 860
levels, and for the City of London it was higher by 836
levels. One of the City’s administrative areas regis-
tered a commuting rate of 11,651. In other words, the
residential population increased by 1,165 percent after
accounting for commuting. At the bottom of the rank-
ing scale, the ambient population of Lambeth included
17 percent fewer individuals than the residential popu-
lation, and the residential violence ranking for this
area was registered 130 levels higher than the ranking
that employed ambient population data. Such observa-
tions demonstrate that the manner in which areas are
characterized as being risky depends heavily on the
population distribution that is applied to the crime
outcomes.

Figure 3. Rates and rankings of London’s violent crimes per authority district, derived on the basis of the residential population and the
commuter-harmonized ambient population.

Figure 2. Commuter-induced changes in the residential popula-
tion of Greater London (the classes are based on natural breaks in
the data, and the thicker boundaries demarcate the authority dis-
tricts). The areas marked 1, 2, 3, and 4 denote the City of London,
Westminster, Camden, and Greenwich, respectively.
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The underlying pattern of inbound commuting was
greatly imbalanced (minimum D 94 persons, maximum
D 242,796 persons, SD D 10,306 persons), and most of
the crimes were positively correlated with inbound
commuting (Figure 4). Theft and shoplifting incidents
were the most significantly correlated with inbound

commuting (Pearson’s r D 0.794, p < 0.001), followed
by violence and disorder. Vehicle crime was affected
only moderately by the effects of incomers. Such obser-
vations are consistent with the previous expectation
that inbound commuters tend to cause or become tar-
gets of violence, disorder, and vehicle crimes.

Figure 4. Correlates of commuting patterns and crime in administrative areas of Greater London. All Pearson correlations (r) are significant
at the p D 0.01 level. Regression lines represent generalized additive smoothing functions and the 95 percent confidence intervals.
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Although burglary was also positively correlated with
inbound commuting (Figure 4H), this observation was
unexpected given previous observations (e.g., Stults
and Hasbrouck 2015). Consistent with the expecta-
tion, though, burglary was also positively correlated
with outbound commuting (Figure 4K). With a rela-
tively high coefficient (r D 0.36, p < 0.001), burglary
was in fact the crime the second most closely associ-
ated with outbound commuting, after vehicle crime
(r D 0.44, p < 0.001). Overall, the association between
outbound commuting and other crimes was almost neg-
ligible. Outbound commuters appeared to have little
influence on the criminality level of an area.

Regression Models

The close association of commuting patterns and
crime prevalence made it necessary to assess the com-
parative utility of the residential population data and
the ambient population data for crime estimation.
Table 2 presents a comparison of the NBM3 estimates
obtained using the two populations as alternative off-
sets for different crimes. All of the models were
adjusted for the predictors4 listed in Table 1.
Nagelkerke’s R2 indicated better model fits with the
ambient population offset than with the residential
population one. Furthermore, Akaike’s information
criterion (AIC) scores were lower and likelihood ratio
test statistics were significantly in favor of models
based on the ambient population data.

Table 3 presents the results of the spatially fil-
tered NBMs for six crimes. Estimates of the

dispersion parameter, theta, show that significant
adjustments for overdispersion were made to the
Poisson count models. Moran’s I statistics of the
NBMs were insignificant (p > 0.050), signifying
that the spatial filter effectively absorbed residual
autocorrelation. It is also worth noting that a sensi-
tivity analysis in which the spatial configuration of
the filter was changed (e.g., from queen to rook)
showed no particular differences in the model coef-
ficients or the residual behavior.

After adjusting for the variable COMMRATE, the
model fit (i.e., R2, AIC) showed improvement for all
crime estimates. Similarly, the likelihood ratio statistics
were significant for all crimes except robbery. Overall,
COMMRATE significantly affected all crimes, but it
was positive for violence, disorder, and theft, whereas it
was negative for robbery, burglary, and vehicle crime.
Including the variable COMMRATE resulted in lower
coefficient estimates for eighteen variables between
models. Furthermore, two of these variables—NOCEN-
THEAT for violence and ADVEDUC for disorder—
also became insignificant after this adjustment. In con-
trast, the inclusion of COMMRATE caused the once
positive effect of DEPRHSE to become significant for
theft and vehicle crimes. Themodel of burglary similarly
exhibited an increase in the significance level of three
predictors, namely, DEPRHSE, NOCENTHEAT, and
ADVEDUC.

The variable 3CCARS exerted the least impact on
crimes. Only two crimes were affected by this variable,
albeit moderately (p < 0.050). Robbery was negatively
influenced by 3CCARS, whereas the effect was posi-
tive for burglary. Similarly, HOMEOWN did not

Table 2. Model diagnostics of the negative binomial models using the residential and the ambient populations as offset

Response variablea Offset variable Nagelkerke R2 AIC Likelihood ratio

Violence Residential population 0.654 10,304 —
Ambient population 0.791 9,817 496.582*

Disorder Residential population 0.623 11,723 —
Ambient population 0.742 11,350 372.537*

Theft and shoplifting Residential population 0.560 11,562 —
Ambient population 0.682 11,277 284.974*

Robbery Residential population 0.623 7,617 —
Ambient population 0.671 7,493 124.542*

Burglary Residential population 0.392 9,057 —
Ambient population 0.504 8,856 201.614*

Vehicle crime Residential population 0.280 9,578 —
Ambient population 0.361 9,460 118.397*

Note: AICD Akaike’s information criterion.
aModels control for predictor variables listed in Table 1.
*p < 0.001.
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significantly affect four categories of crime, but its
effect on violence and disorder was negative and
highly significant (p < 0.001). Examining the local
effects (not shown) revealed that HOMEOWN had a
greater impact in the residential areas where inbound
commuting is low. Finally, three variables—namely,
DEPRHSE, NOCENTHEAT, and YMALES—were
consistently associated with a higher crime risk. The
last-mentioned variable, however, was not significant
in its impact on burglary.

Discussion

Although the use of human mobility patterns for
estimating risk is not new, given that the insuffi-
ciency of the residential population data is well
known (see, e.g., Andresen and Jenion 2010;
Andresen 2011; Stults and Hasbrouck 2015), previ-
ous research solutions have not used an established
framework for defining the ambient population.
Thus, inconsistencies in scale and data formation
characterize existent strategies. Implementations of
the ambient population have also focused on large
areas, such as cities in which important human
interactions remain veiled (Weisburd, Groff, and
Yang 2012). This article proposes a new alternative
way to represent targets in a more realistic manner,
particularly when the crime data are not sufficiently
detailed to differentiate between the daytime and
the nighttime offending. In its construction of the
ambient population, the study accounted for the
day-to-day commuting of individuals across small
areas. The results of this research have uncovered
several important findings.

First, on the small spatial scale, the crime risk is
highly influenced by mobility patterns. After comput-
ing crime rates using residential population data and
comparing these rates with those that employed the
ambient population data incorporating human mobil-
ity, neighborhood rankings of criminality differed pro-
foundly between the two strategies. Additionally, in
comparison with established factors underlying the
crime risk, such as deprivation, this study has shown
that the commuting rate is a far more important factor
in explaining levels of crime risk. This evidence
appears to be in agreement with Andresen’s (2011)
suggestion that crime variations are largely influenced
by the mobility of individuals. Indeed, the theory of
routine activity (Cohen and Felson 1979) and other
previous research (e.g., Ceccato and Uittenbogaard

2014; Felson and Boivin 2015) support the notion that
crime risk increases due to the interaction of individu-
als in transit. This contributes important information
for policymakers, namely, that security intervention
strategies should be focused on places where there is a
high level of commuting activity. Increased human
interaction increases offending opportunities during
inbound and outbound travel, and the resultant popu-
lation changes alter the composition of offenders, vic-
tims, and safety guardians within areas. Thus,
contextual influences on an area’s risk can be incor-
rectly assessed if commuting patterns are overlooked.

Second, the relationship between human mobility
and crime appears to be disproportionate, depending
on the type of observed crime. For example, the com-
muting rate was positively linked with crimes that are
purported to occur randomly (e.g., violence, disorder,
theft) and negatively with purposive crimes, such as
burglary and vehicle crimes. These broad patterns can
be interpreted from the theoretical standpoints of rou-
tine activity and rational choice theories (Clarke and
Felson 1993). It can be surmised that mobility facili-
tates both random and purposive behaviors, given the
appropriate motivation and the general lifestyle of
individuals. Nevertheless, the robbery estimates were
largely unaffected by model adjustments for mobility.
Including the commuting rate had the least impact on
robbery, and the robbery model remained unchanged
after substituting the residential population with the
ambient one. This observation is supported by the
goodness-of-fit tests in Table 2.

Third, inconsistent results emerge when studies fail
to incorporate mobility information into the crime
estimation or when such information is aggregated to
large areas. For example, Ward et al. (2014) linked
residential population data with burglary data and dis-
covered that the crime–population relationship is pos-
itive. In contrast, Stults and Hasbrouck (2015) found
that burglary increased when the population shifted
downward due to commuting, whereas less burglary
occurred in the areas experiencing population shifts
upward. It is the latter observation that coincides with
our own. Stults and Hasbrouck (2015), however, also
observed an increased risk for vehicle crime due to
increased commuting, which is contrary to what we
observed. There are two possible reasons for this
inconsistency. First, Stults and Hasbrouck estimated
the crime outcomes as rates calculated from the resi-
dential population. Using the ambient population off-
set for this study might have increased the
representativeness of crime targets, thus properly
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accounting for the guardianship against risk. Second,
because Stults and Hasbrouck (2015) observed crimes
over cities, it is possible that the large size of areas
obscured important crime influences.

Also in discord with previous findings (e.g., Farrell
2013; Sutherland, Brunton-Smith, and Jackson 2013)
is that advanced education and increased car owner-
ship, both of which are popularly linked with crime
reduction, were correlated with high risk for certain
crimes. We propose that educated citizens, who consti-
tute a large proportion of the working population, rep-
resent convenient targets, as advanced education is
depicted in census data that were provided for the
workplace. Perhaps not surprisingly, working individu-
als are usually more at risk than their unemployed
counterparts, and they are also more likely to interact
while commuting. With regard to the positive rela-
tionship that was found between car ownership and
burglary, the indication of affluence might have served
to promote rather than hinder burglary. Because own-
ers of multiple cars tend to leave their other cars
behind, the presence of many cars in these areas might
have attracted the inbound burglars. Thus, overlook-
ing the crucial information that mobility patterns pro-
vide might explain why previous studies have obtained
inconsistent results (Kwan 2012).

Fourth, our findings have shed light on the relative
reliability of spatial crime statistics (e.g., Andresen 2011;
Spielman and Singleton 2015). Profound differences
appeared betweenmodels after adjusting for the commut-
ing activity. On the one hand, the influence of certain
variables increased: Deprivation and higher education
became significant for burglary, and deprivation also
became significant for vehicle theft. On the other hand,
other effects (e.g., lack of central heating for violence,
advanced education for disorder) became less significant.
It appears that the commuting rate had an impact on the
significance of conventional crime-influencing socioeco-
nomic variables. This reduction in robustness for conven-
tional variables after modeling mobility effects was also
noted by Stults andHasbrouck (2015).

Overall, the ambient population was found to be an
efficient proxy for crime and the local census variables,
consistent with other research (e.g., Andresen and
Jenion 2008; Malleson and Andresen 2015). Perhaps
due to the contextual suitability, offsetting the crimes
using the ambient population variable helped to par-
tially absorb the residual spatial autocorrelation pat-
terns. ESF further allowed misspecifications that arise
from spatially autocorrelated residuals to be
completely eradicated from the models.

Conclusion

As has been discussed in this article, residential
population data are often used to derive crime esti-
mates, but these data are insufficient because a signifi-
cant amount of human interaction occurs outside
delineated census areas. Incorporating the commuting
patterns of individuals to model this interaction
among individuals and the resultant opportunities for
crime represents an important solution and a signifi-
cant step forward in reliable risk estimation. It is
expected that the simplicity of the strategy proposed
for deriving the ambient population over small areas
will encourage its widespread use in criminology.

Notwithstanding the promising contributions of
this study, certain challenges and limitations will
need to be addressed in future research. First, the cen-
sus-based commuting patterns register as complete
and accurate accounts of the work locations, but they
do not represent all human activity patterns (Kwan
2012). Individuals also travel to places for leisure and
tourism purposes, for example. As such, even though
the commuting data employed here define a great
part of human interaction and the everyday popula-
tion changes, the missing link to other destinations
can importantly complement the proposed ambient
population data to mitigate the problem of represent-
ing the crime targets. Second, as with all studies deal-
ing with a spatially delimitated area, the results
might be affected by edge effects (Chainey and Rat-
cliffe 2013). This is because the data do not represent
the commuting residents outbound from or inbound
to London. The limitation might not critically affect
the result here, because commuting was the most
intense toward the center of London and we can rea-
sonably assume that edge effects are negligible. Nev-
ertheless, the missing information is equally relevant
for estimating crime risk. Third, the modifiable areal
unit problem (Openshaw 1984; Vogel 2016) might
have artificially influenced the results. Because census
blocks are designed for enumeration purposes, their
delineations are theoretically unrealistic for charac-
terizing the accumulation of risk. Finally, our
approach only serves as an alternative where the day-
time and nighttime crimes cannot be modeled sepa-
rately. Felson and Poulsen (2003) proposed that
crimes aggregate differently by time of the day and,
where available, the time stamps of crimes can pro-
vide more useful insights.

To conclude, this research has demonstrated that a
strong relationship exists between human mobility
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patterns and the amount of small-area crime. Addi-
tionally, as inbound commuting increases in an area,
the level of risk increases for random crimes, such as
theft and violence. Therefore, there is a potential ben-
efit in conceptually and empirically integrating crime
research with research that examines the impact of
human mobility on an area’s risk. It also appears to be
necessary to assess different ways of increasing the rep-
resentativeness of crime targets within small-scale
areas, instead of relying on the residential population
data. Analytical models can incorporate information
about mobility, interaction, and contextual aspects
that characterize the daily activity of individuals
(Kwan 2012). Another promising direction that has
been advanced in the literature (e.g., Schubert 2009;
Lemieux and Felson 2012; Mburu and Helbich 2016)
is to link crime with contextual spatiotemporal
influences.
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Notes
1. The ambient population was adjusted to account for

human mobility across observation areas when depict-
ing the population at risk.

2. Spatial dependency refers to locational and attribu-
tional similarity. Positive spatial dependence, in which
similar values are located close by across space, is the
most prevalent type of dependence in empirical crime
studies (Townsley 2009).

3. Lagrange multiplier tests (Hilbe 2014) were highly signifi-
cant, indicating that the Poisson model was statistically
insufficient for modeling the overdispersed crime data.

4. Condition indexes (Belsley, Kuh, and Welsch 2005)
were used to test for multicollinearity in the predictors
but no problems were found.
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