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A B S T R A C T

Numerous model studies demonstrate that ecosystems might not shift smoothly with a gradual change

in resource concentration. At specific points, vegetation can suddenly shift from one stable state to

another. To predict such undesirable shifts, statistical indicators are proposed for early warning

prediction. These so-called classical indicators can address whether vegetation state is moving towards

the tipping point of an abrupt transition, however when the transition will occur is hard to predict.

Recent studies suggest that complex network based indicators can improve early warning signals of

abrupt transitions in complex dynamic systems. In this study, both classical and network based

indicators are tested in a coupled land–atmosphere ecological model in which a scale-dependent

hydrology-infiltration feedback and a large scale vegetation–precipitation feedback are represented.

Multiple biomass equilibria are found in the model and abrupt transitions can occur when rainfall

efficiency is decreased. Interaction network based indicators of these transitions are compared with

classical indicators, such as the lag-1 autocorrelation and Moran’s coefficient, with particular focus on

the transition associated with desertification. Two criteria are used to evaluate the quality of these early

warning indicators and several high quality network based indicators are identified.

� 2016 Elsevier B.V. All rights reserved.
1. Introduction

Ecosystems do not necessarily shift gradually with changes in
the amount of resources (Scheffer et al., 2001; Ripple and Beschta,
2006; Móréh et al., 2009; Claussen et al., 2013; Dekker, 2013).
Observed patterns strongly suggest that multiple equilibria exist
under similar climate regimes (Hirota et al., 2011; Staver et al.,
2011b; Scheffer et al., 2012), which implies that ecosystems may
shift from one stable state to another (Rietkerk et al., 2004; Hirota
et al., 2011). More importantly, most of these transitions are
subcritical as the shift is irreversible (Scheffer et al., 2009; Kéfi
et al., 2013). Such critical transitions may lead to catastrophic
changes of the landscape (Staver et al., 2011a) and result in regular
vegetation patterns (Rietkerk et al., 2004), which in turn strongly
affects local climate through biophysical and biochemical feed-
backs (Bonan, 2008; Seneviratne et al., 2010; Dekker et al., 2007).
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To anticipate to potential catastrophic transition of ecosystems,
numerous studies have tried to find early warning indicators of the
transition to desertification (Rietkerk et al., 2004; Kéfi et al., 2007a;
Scheffer et al., 2009; Dakos et al., 2008). The phenomenon of
‘critical slowing down’, expressing that the recovery rate of the
system to perturbations decreases near such a transition, has lead
to useful early warning indicators, such as the lag-1 autocorrela-
tion (van Nes and Scheffer, 2007; Scheffer et al., 2009). Also
indicators based on the changes in spatial correlation of vegetation
patterns have been developed (Dakos et al., 2010). In general,
however, these classical indicators show only irregular monotonic
behaviour and it is difficult to determine how close the system is to
transition and when to give an alarm. Ideally, one likes to have the
availability of indicators which give a sharp peak just before the
transition.

Indicators based on complex interaction networks were shown
to have this desired ‘peaky’ property when applied to a highly
conceptual ecological model, the local positive feedback model
(Tirabassi et al., 2014). Although the network based indicators have
a higher quality factor, for this model also the classical indicators
perform well regarding the desertification transition. A more
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challenging test of the capabilities of network based indicators is
the scale-dependent feedback model suggested in Rietkerk et al.
(2002). For this model, two classical indicators (lag-1 autocorrela-
tion and Moran’s coefficient, see Section 2.2) show unexpected
trends when approaching the critical transition (Dakos et al.,
2011).

As was indicated in Dijkstra (2011), the structure of the multiple
equilibria in a scale-dependent feedback model is complicated
because of the appearance of a multitude of saddle-node bifurca-
tions. Near the transition to the desert state, many other unstable
steady states influence the spatio-temporal behaviour of the
vegetation field. It suggests that the self-organization mechanisms
in such a model increases the complexity of the spatial and temporal
correlations of the vegetation signal, which decreases the perfor-
mance of the classical indicators. It is therefore interesting to
investigate how network based indicators will perform in such a
scale-dependent feedback model. Moreover, the network indicators
will yield more information than looking alone at the patterns
themselves as being possible indicators.

In the present study, the land–atmosphere model as presented
in Konings et al. (2011) is used to test the performance of network
based indicators regarding the desertification transition. This
model couples land surface processes (Rietkerk et al., 2002) and the
dynamics of the atmosphere boundary layer (Konings and Katul,
2010). It captures two important positive feedback mechanisms,
the small-scale biomass-infiltration feedback (Rietkerk et al., 2002)
and the large-scale precipitation-transpiration feedback (Ente-
khabi et al., 1992; Dekker et al., 2007). At small scales, increasing
biomass is able to promote water infiltration rate, which provides
more soil water and in turn maintains more biomass (Rietkerk
et al., 2000). At large scales, increased precipitation leads to more
biomass, which can increase transpiration rate and recharge water
vapour in the atmosphere. Consequently more rainfall events can
occur and increase the amount of precipitation (Entekhabi et al.,
1992). In addition to these feedbacks, also the seasonal variability
of rainfall, which is shown to be important in arid and semi-arid
regions (Baudena and Provenzale, 2008; Good and Caylor, 2011;
Siteur et al., 2014), is represented in the model.

Output from a large number of simulations with this model are
used to reconstruct interaction networks from which early
warning indicators of transitions are derived. The performance
of these indicators is compared with those of classical indicators
with the aim to understand the behaviour of these indicators near
the desertification transition. In Section 2 the essential features of
the land–atmosphere model and the complex network methodol-
ogy are described. Results of the simulations of the land–
atmosphere model are presented in Section 3.1 and the perfor-
mance of the classical and network based early warning indicators
is presented in Section 3.2. A summary and discussion of the results
is given in Section 4.

2. Model and methodology

2.1. The land–atmosphere model

The land–atmosphere model (Konings et al., 2011) couples a
one-column atmospheric boundary layer (ABL) model (Konings
and Katul, 2010) with a scale dependent feedback vegetation
model (Rietkerk et al., 2002). The ABL model is seasonally forced to
capture the African monsoon variability (Konings et al., 2011). The
vegetation model considers the interactions among surface water,
biomass dynamics and soil moisture (Rietkerk et al., 2002). The
surface energy balance contains the turbulent momentum and
moisture exchange between the land and atmosphere (Konings
et al., 2011). In this study, state-dependent stochastic noise is
included for biomass, surface water and soil moisture to represent
unresolved processes (Dakos et al., 2011; Tirabassi et al., 2014); the
detailed equations of the model are presented in Appendix A. A full
description of the model can be found in Konings et al. (2011).

The fundamental characteristic of the land–atmosphere cou-
pling is the water and energy exchange between the land surface
and the ABL. The vegetation model simulates the biomass
dynamics and determines the sensible and latent heat fluxes.
The sensible heat flux (H) changes the boundary layer height (h)
while the latent heat flux (LE) affects the specific humidity (q) of
the atmosphere. Convective rainfall occurs when h crosses the
Level of Free Convection (LFC) and the Lifting Condensation Level
(LCL). The LFC is the altitude where the lifted parcels become
buoyant, while the LCL is the height where the condensation starts.
When rainfall occurs, the amount of rainfall is determined by the
total moisture content in the atmosphere and a rainfall efficiency
(h, Eq. (A.7)). The parameter h will be the main control parameter
in the model and controls (together with other processes as
transpiration, etc.) the total amount of annual precipitation
(Konings et al., 2011). When h =1, the simulated mean annual
precipitation is approximately 365 mm yr�1. Note that the mean
annual precipitation (P) is dependent on the strength of the
vegetation–precipitation feedback. Thus h is used as an index to
represent the dryness of climate.

The model was applied on 75 � 75 grid cells. Surface runoff, soil
water spread and biomass colonization were considered as main
land surface processes (Eqs. (A.8), (A.9) and (A.15)). The energy
balance was calculated for each grid cell. However, spatial
averaged sensible and latent heat fluxes were used to estimate
water and energy exchanges between the land and atmosphere. To
extract biomass equilibria under specific climate, the simulation
started with a relative high initial biomass. The time step for
atmospheric convection was 150 s, while biomass was updated
once per day. The model was run until the biomass state reached
equilibrium. As a criterion for reaching the equilibrium, we
required that the maximum (over the whole grid) relative
difference of the annual mean values of the biomass field between
two neighbouring years was less than 0.5%.

The land–atmosphere model accounts for the annual cycle of
solar radiation. Moreover, the observed climate forcing data (slope
g and intercept f of the free atmosphere for specific humidity q and
potential temperature u, see Appendix A) contains seasonal
atmospheric variability. To remove strong seasonal correlations
due to forcing in the biomass time series B̂n

i , where i refers to a
location in space (i.e., a specific grid cell) and n to the time index,
the average over M years (M = 5 in this paper) is removed for each
day of the year. More specifically, for daily data with n(j,
k) = 365 � (j � 1) + k (leap years ignored), the detrended time
series Bn

i is determined from

Bnðj;kÞ
i ¼ B̂nðj;kÞ

i � 1

M

XM
j¼1

B̂nðj;kÞ
i : (1)

The correlation coefficient between Bn
i and B̂n

i is less than 0.2 in
all randomly selected values of i, implying that the annual cycle is
successfully removed from each time series. Note that the
detrended biomass Bn

i can have negative values as it is an anomaly
with respect to the seasonal cycle. All biomass time series referred
to below in this paper are seasonally detrended.

2.2. Early warning indicators

‘Critical slowing down’ is demonstrated as the essential
character of dynamic systems approaching a critical transition
(Scheffer et al., 2009). This theory focuses on the recovery rate of a
system when it turns back to the equilibrium state from a small
perturbation. If the system state is far from the tipping point, the



Fig. 1. Diagram to illustrate a complex network and its properties (from Tirabassi

et al., 2014). Circles indicate the grid cells of B and form the nodes of the network.

Solid lines indicate the links between the nodes. Node i has degree di = 3, clustering

coefficient ci = 0.33 and assortativity ai = 2. (For interpretation of the references to

colour in this sentence, the reader is referred to the web version of the article.)
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attractor that drags the system back to its equilibrium state is
strong and leads to a short recovery time. Once the system shifts to
the bifurcation threshold, the recovery rate declines as the
attractor becomes weak. One significant consequence is that both
the variance and the lag-1 autocorrelation coefficient of the system
time series increase dramatically when the system moves towards
the tipping point.

Theoretical model studies reveal that both variance and lag-1
autocorrelation coefficient are ideal statistical indicators to grasp
the ‘critical slowing down’ of a system before critical transition
occurs (Dakos et al., 2008, 2011; Scheffer et al., 2009). More
convincing evidences are from an aquatic food web experiment
(Carpenter et al., 2011), where both variance and recovery rate of
daily chlorophyll are found to increase significantly before the
upcoming critical transition.

In this study, we only use the lag-1 autocorrelation coefficient
to represent the ‘critical slowing down’ in the ecosystem. For a
specific grid cell i (i 2 75 � 75), we select the last 5-year time series
of daily biomass after annual cycle detrending (see Section 2.1).
The lag-m autocorrelation function Ri(m) of grid cell i is given by

RiðmÞ ¼
PN�m

n¼1 ðBn
i �BiÞðBnþm

i �BiÞPN
n¼1ðBn

i �BiÞ
2

; (2)

where N = 365M is the total length of the time series and Bi is the
mean of the time series. Critical slowdown is associated with an
increase in the lag-1 autocorrelation Ri(1).

Early warning signals also can be captured from the spatial
correlations of system units (Scheffer et al., 2009; Dakos et al.,
2010), which raise significantly when the state approaches to the
tipping point (Dakos et al., 2011; Tirabassi et al., 2014). For a
special group of dynamic systems (e.g., activator–inhibitor system
(Turing, 1952; Rietkerk and van de Koppel, 2008) and cyclic
dominated system (Szolnoki et al., 2014)) regular spatial patterns
are formed under the impact of specific feedback mechanisms
(Klausmeier, 1999; Caldarelli, 2007; Rietkerk et al., 2002; Kéfi et al.,
2007a,b; Siteur et al., 2014b). Kéfi et al. (2007a) demonstrated that
the distribution of vegetation patches obeyed the power law in the
arid ecosystems of Mediterranean, which can extend to a vast
group of dynamics systems governed by the Matthew effect
(Clauset et al., 2009; Perc, 2014). The number and size of
vegetation patches are proposed as ideal indicators for critical
transitions, however this approach is not universally applicable to
all dynamic systems (Pascual and Guichard, 2005; Dakos et al.,
2010).

To determine changes in spatial correlation of the biomass often
Moran’s coefficient is used (Dakos et al., 2011). As shown in
Appendix A, the total number of locations in the vegetation model
K = 75 � 75; Moran’s coefficient at time n is then given by

In ¼ KP
ijgij

P
ijgijðBn

i �B
nÞðBn

j �B
nÞ

P
iðBn

i �B
nÞ

2
; (3)

where gij = 1 if node i and j (i, j 2 [1, 75 � 75]) are neighbours and
gij = 0 otherwise. Furthermore, B

n
is the spatial averaged biomass B

at time index n. Here we only use the spatial distribution of the
biomass at the last time step of the simulation (i.e., n = N).

The new element in this paper is to consider early warning
indicators based on complex networks (Caldarelli, 2007), which
are composed of nodes and links (or edges). In this study, the nodes
are the K = 75 � 75 grid cells of the vegetation model. To determine
the links between two nodes i and j, we calculate the lag-0 Pearson
cross correlation coefficients Cij of the biomass time series at these
nodes. Only the last 5-year daily biomass values are used for the
calculation of Cij. The nodes i and j are considered to be linked if the
correlation jCijj is higher than a certain threshold value t > 0. This
threshold is determined by a significance analysis and for all the
results below, t = 0.7 guarantees significant correlations with a
p-value smaller than 0.05.

The network is next represented as a graph having
K = 75 � 75 nodes where the links are described by an adjacency
matrix A. This is a K � K symmetric matrix where the element Aij is
given by

Aij ¼ HðjCijj�tÞ: (4)

The quantity H is the Heaviside step function. Here Aij = 1 (= 0)
indicates that nodes i and j are linked (not linked). Fig. 1 provides
an example of small network where the circles represent the (12)
nodes and the red solid curves represent the links between the
nodes.

By the network reconstruction, the analysis of spatio-temporal
correlations in the biomass field is transformed into the analysis of
topological properties of the graph (such as in Fig. 1) of the
network. In this study, we focus on three topological properties:
degree, assortativity and clustering.

The degree, denoted by di (i2[1,K]), is the number of nodes that
are linked with the specific node i, as:

di ¼
XK

j¼1

Aij: (5)

For instance, in Fig. 1 the degree of node i is 3. Note that the self
correlation is ignored, thus the value of di varies from 0 to
K � 1. The maximum value occurs when all nodes are significantly
correlated.

The assortativity (ai) is the average degree of the neighbours of
node i and given by

ai ¼
1

di

XK

j¼1

Aijdj: (6)

In Fig. 1, node i has three neighbours, the degree of each
neighbour is 2 and hence the assortativity of node i is 2. The
assortativity measures the second stage relations of the specific
node in the network and values of ai vary between 0 and K � 1.

The clustering coefficient (ci) of node i is the ratio of the number
of links among the neighbours of node i to the number of possible
[(Fig._1)TD$FIG]
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links among its neighbours. The formula for ci is:

ci ¼
1

diðdi�1Þ
XK

j¼1

XK

l¼1

AijAjlAli: (7)

For example in Fig. 1, node i has three neighbours. Two of its
neighbours are linked but there are three possible links among
these neighbours. Thus the clustering coefficient is 1/3 =0.33.
Values of ci vary between 0 and 1 and the maximum value occurs
when all neighbours of node i are linked.

3. Results

Before any early warning indicator can be applied, the different
equilibrium states of the model and how simulated precipitation and
biomass equilibrium fields change with the rainfall efficiency (h)
have to be determined; this is presented in Section 3.1. Subsequently,
the classical and network based indicators are applied to the
simulated biomass time series in Section 3.2 and we next investigate
their capabilities to serve as early warning signals of transitions
between equilibria in the model (Section 3.3).

3.1. Equilibria in the land–atmosphere model

In the land–atmosphere model, the frequency and intensity of
rainfall is determined by the water and energy transported from
the land surface processes. As mentioned above, we use the rainfall
efficiency h as the measure of the dryness of the climate (Konings
et al., 2011). For values of h in the range from 0.7 to 1.0, branches of
equilibrium solutions of the model were computed. By taking
different initial conditions for similar values of h, different multiple
equilibria were found. For instance, in the case of h = 0.84, a desert
equilibrium is found from a high biomass initial condition.
However, an equilibrium state with vegetation cover can be
reached from the equilibrium state obtained with h = 0.85. As our
main aim is to determine the performance of the early warning
indicators near the desertification transition, it is not necessary to
reveal all branches of equilibria in the model.

In Fig. 2, part of the bifurcation diagram of the model is plotted,
showing the relation between rainfall efficiency h and the mean
daily rainfall P and the equilibrium mean biomass B of the
equilibria. The values of P and B are both spatially and temporally
averaged using the data of the last five years of each model
simulation. The dots in Fig. 2 indicate the actual values of h used
and branches of equilibria are labelled L1–L7. Along each branch,
[(Fig._2)TD$FIG]

Fig. 2. The relation between the rainfall efficiency h, the mean biomass B (panel A) and th

equilibria of the model and the dots indicate the actual values found in the model sim
B decreases with h and branches overlap for certain intervals of
h. The desertification transition appears near h = 0.79, at the left
end of branch L2, from where the equilibrium biomass shifts
considerably from approximately 1 g m�2 to zero.

A different view on the properties of the solutions on the
branches is obtained from Fig. 2B where P is plotted versus h. The
positive vegetation–precipitation feedback leads to a high
correlation between B and P. However, P does not drop to zero
at branch L1 as soil evaporation exists and maintains a weak
precipitation feedback. The correlation between P and B along the
branches can also be clearly seen in the P–B diagram (Fig. 2C). By
comparing this to the same diagram without land–atmosphere
coupling (Dakos et al., 2011), we deduce that the ‘gaps’ in the P–B

relation are caused by the vegetation–precipitation feedback. This
suggests that abrupt shifts of the hydrological processes (i.e.,
precipitation and evapotranspiration) might be hidden in the
smooth curve found between mean annual precipitation and
maximum woody cover in Sankaran et al. (2005). Note that all
abrupt transitions found in the model are subcritical (so-called
catastrophic transitions or critical transitions), implying that such
state transitions cannot be recovered simply by changing h back to
the original value.

The only overlap of branches in Fig. 2C is that of the branches L5
and L7 where the different solutions are associated with slightly
different rainfall rates (Fig. 2B). At the beginning of the simulation,
biomass dynamics, transpiration amount and rainfall frequency
are almost the same (see Fig. B.1 in Appendix B). However, more
water vapour is stored in the atmosphere in the lower h case
(branch L5) as less precipitation is generated but the water vapour
recharge from transpiration is almost the same as the higher h case
(branch L7). Such water vapour accumulation process lasts until an
extra precipitation occurs (Fig. B.1B), which leads to a huge
difference of the simulated B (Fig. B.1A). It means that with the
similar P, a lower h in L5 has higher rainfall frequency and yields
higher B than higher h in L7. The results agree with other findings
about the effect of rainfall frequency on biomass dynamics
(Baudena and Provenzale, 2008; Siteur et al., 2014). Moreover,
the range of P (0.6 < P< 1.0 mm d�1) where patterned biomass
exists in Fig. 2C is narrower than in the vegetation model without
land–atmosphere coupling (0.3 < P< 1.3 mm d�1), which coin-
cides with the findings from Dijkstra (2011).

Typical vegetation patterns on each branch are shown in Fig. 3
and most overlap between branches occurs (between L2 and L4)
when vegetation patterns are spots. For h in the interval [0.85–0.9],
the environment can sustain numerous equilibria with a wide
e mean precipitation P (panel B), with a P–B diagram in panel C. Solid lines indicate

ulations.
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Fig. 3. Equilibrium biomass patterns at different branches shown in Fig. 2. The plots are based on the biomass at the last time step of the simulation. The specific rainfall

efficiency values h are: L2:0.79; L3:0.857; L4:0.87; L5:0.92; L6:0.962; L7:0.98. (For interpretation of the references to colour in this figure legend, the reader is referred to the

web version of the article.)
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range in spot numbers. Along a branch the spot number remains
constant but different branches are associated with different spot
numbers. Qualitatively similar behaviour was found by (Dijkstra,
2011) in another coupled land–atmosphere model (Dekker et al.,
2007). Siteur et al. (2014b) revealed that vegetation can adjust to
the environment by changing biomass of patches or by shifting
wavelength. The change of wavelength is associated with a jump
between the branches. Only spots at the border of the domain
survive along branch L2, which is different to the spot patterns on
other branches. This is consistent with the results in Dijkstra
(2011), where also patterns with only border spots can be
sustained under low rainfall.

3.2. Early warning indicators

Fig. 4 shows the two classical indicators, the lag-1 autocorrela-
tion and Moran’s coefficient versus P (using the values in Fig. 2B)
and the behaviour of the two indicators is similar. A sharp increase
with decreasing h occurs along branch L6, implying that the
[(Fig._4)TD$FIG]
Fig. 4. The behaviour of the classical indicators versus P with in the left panel the lag-1 a

coefficient is based on the spatial distribution of biomass at the last time step of the simu

interpretation of the references to colour in this figure legend, the reader is referred to
indicators are sensitive to the shift of biomass from a homoge-
neous distribution to a labyrinth patterns (Figs. 2 and 3). The
indicators drop sharply from L6 to L5 and then gradually increase
until L2. When the state is approaching the desertification
transition along L2, the value of indicators drops considerably.
The trend coincides with the results from Dakos et al. (2011) where
both the classical indicators do not smoothly increase with the
decrease in rainfall and a sharp drop occur before the upcoming
desertification. Even though the sharp decrease of the indicators is
a clear early warning signal of the upcoming critical transition,
their behaviour is quite irregular and can easily lead to a false
alarm.

We now turn to the network based indicators and show in
Fig. 5A the distribution of the degree of a network determined for a
value of h along the different branches (Fig. 3). Two values of h
(0.79 and 0.85) are chosen along the branch L2 to illustrate the
large change in the degree distribution before the desertification
transition. All distributions are bimodal with the first peak fixed at
zero while the second peak increases from approximately 500 (L6)
utocorrelation (Eq. (2)) and in the right panel Moran’s coefficient (Eq. (3)). Moran’s

lation. Red dashed lines reveal the regions of different branches shown in Fig. 2. (For

the web version of the article.)



[(Fig._5)TD$FIG]

Fig. 5. The distribution of the network properties (A) degree, (B) assortativity and (C) clustering coefficient along the different branches (distinguished by the colours).

The solid and dashed curves represent the two samples from L2. The specific h of the samples are: L2:0.79 (dashed) and 0.85 (solid); L3:0.869; L4:0.87; L5:0.883; L6:0.968.

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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to 4000 (L3) and then decreases along the branch L2. Similar
behaviour occurs for the assortativity of the networks (Fig. 5B) and
the clustering coefficient (Fig. 5C). As in Tirabassi et al. (2014), the
network based indicators will be determined from the properties
of the distribution of each network quantity.

Fig. 6 shows these network based indicators as a function of
P. Degree, assortativity and clustering are listed in columns. The
properties of the distributions (mean, standard deviation, skew-
ness and kurtosis) are plotted in rows. All moments are determined
by the shift of the bimodal distribution (Fig. 5A). Both the mean and
variance of the degree distribution how a similar variation with
[(Fig._6)TD$FIG]
Fig. 6. Network based indicators as a function of mean annual rainfall P. Three network va

diagrams are divided by red dashed lines into six regions for different branches. (For inter

web version of the article.)
P as the classical indicators (Fig. 2). However, the relative drop of
the network based indicators near the desertification transition
(e.g., from 2000 to 200 for the mean degree) is much larger than
that for the classical indicators. The skewness (Fig. 6) is influenced
by the areas of the two peaks in the degree distribution (Fig. 5A).
With decreasing P, the skewness degree drops until�1 and sharply
increases before the desertification transition. Although the
skewness degree varies over a small range, the sign change can
be a useful early warning indication for the desertification transition.
Note that such sign change only occurs along branch L2. The kurtosis
of the degree distribution also presents a useful indicator as it is
riables are listed in columns and different statistic indicators are listed in rows. The

pretation of the references to colour in this figure legend, the reader is referred to the



Table 1
Evaluation of the quality of the early warning indicators by the two different

measures Dm and Dv .

Variable Indicators Type Dm Dv

Degree Mean Network 0.871 0.758

SD Network 0.696 0.046

Skewness Network – 0.884

Kurtosis Network 0.653 0.992

Assortativity Mean Network 0.821 0.558

SD Network 0.609 0.124

Skewness Network – 0.345

Kurtosis Network 0.197 0.120

Clustering Mean Network 0.357 0.697

SD Network 0.112 0.592

Skewness Network – 0.591

Kurtosis Network 0.619 0.991

Lag-1 autocorrelation Classic 0.010 0.216

Moran’s coefficient Classic 0.117 0.345
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small and near constant at high P end of branch L2 and then increases
sharply with decreasing P.

In the middle column of Fig. 6 the properties of the distribution
the network assortativity is shown. Bimodality is also found in the
assortativity (Fig. 5B) where the movement of the second peak is
the same as that of the degree distribution. The behaviour of the
mean, standard deviation and skewness of the assortativity
distribution are similar to that of the degree. The kurtosis behaves
different in that it decreases with decreasing P and is not constant
at the high P end of branch L2. It is interesting that the behaviour of
the skewness of the assortativity is similar to that found in the local
positive feedback model (Tirabassi et al., 2014). This suggests that
this indicator might be a more broadly applicable signal for
transitions in a wide range of ecological models.

Finally, in the right column of Fig. 6, the properties of the
distributions of clustering coefficient of the networks are shown.
The behaviour of the mean, skewness and kurtosis of the clustering
coefficient is very similar to that of the assortativity; the standard
deviation, however, increases with decreasing P. The position of
the second peak in the clustering distribution moves only slightly
with P (Fig. 5C), which leads to relatively small changes in mean
and standard deviation (Fig. 6). However, the kurtosis of the
distribution changes dramatically and leads to a sharp peak when
the state shifts from L3 to L2 (Fig. 6).

3.3. Quality measures of the indicators

At first sight, both classical and network indicators could be
used as early warning indicators of the desertification transition.
However, the sensitivities of these indicators to changes in P are
quite different. It is hard to distinguish whether sudden changes in
an indicators contains a ‘real’ early warning signal or is just due to
the strong variation of this quantity. Hence it is important to
determine and evaluate measures of quality of the indicators. We
propose two measures to assess the quality of the indicators. Each
of them can be written in the form

D ¼ jC1�C2j
C1 þC2

; (8)

where C1 and C2 are the two specific quantities that are
compared. A high (low) value of D implies a large (small)
difference between C1 and C2 and vice versa.

The first measure, denoted by Dm, focuses on the sudden change
of an indicators along the L2 branch (cf. Fig. 4). It evaluates the
magnitude of the difference between the mean of the specific
indicator before and after the sudden shift in L2. Points with
h�0.82 are classified as the states after the sudden shift while
points with h� 0.851 are classified as the states before the sudden
shift. For each indicator, the mean values of the two point groups
are set as C1 and C2 in Eq. (8) to calculate Dm. Indicators with a
large shift along L2 will have higher values of Dm. Note that the
mean value of the skewness may be negative, which is not
accounted in this assessment.

The second measure (Dv) considers the difference of variances
before and after the sudden shift in L2. The two point groups are
classified as for the Dm measure. Low values of Dv indicate that the
specific indicator has a significant variation along the branch L2
and hence is less suited as an early warning signal.

Table 1 presents the assessment of all indicators by the two
measures: a good indicator ideally has high values of both Dm and
Dv. The classical indicators have typically much lower values of Dm

than the network indicators. It implies that the abrupt drops of
network indicators are more significant than that of classical ones.
Highest values of Dm are found for the mean degree and the mean
assortativity distribution. Note that although Dm of the skewness is
not available, the sign change is already a significant early alarm
for upcoming desertification. Higher values of network indicators
in the Dv measurements indicate that they have stronger capability
to distinguish the abrupt shift from the local variation. Indicators
with high Dv are the kurtosis of the degree and of the clustering.
The mean and skewness of the degree also show remarkable Dv. In
general, early warning signals of network indicators have a higher
quality than the classical indicators.

4. Summary and discussion

Abrupt regime shifts are found widely in real ecosystems
(Scheffer et al., 2001; Ripple and Beschta, 2006; Rietkerk et al.,
2004; Kefi et al., 2008; Móréh et al., 2009; Higgins and Scheiter,
2012). These transitions are caused by different biophysical or
biochemical feedback mechanisms (Cochrane et al., 1999; Bonan,
2008; Zeng and Yoon, 2009; Dekker et al., 2010; Dekker, 2013;
Perc, 2014), while the impacts on the local climate are profound
and may lead to unexpected catastrophe. Moreover, observations
provide direct or indirect evidence that multi-equilibria of
ecosystem states exist under similar climate regimes (Scheffer
et al., 1993, 2012, 2014; Hirota et al., 2011; Staver et al., 2011b; Yin
et al., 2014), which reveal the potential occurrence of critical
transitions in current ecosystems. To predict upcoming tipping
points is of large interest, and therefore early warning indicators
should be developed and analysed for different systems.

The ‘critical slowing down’ is demonstrated as the essential
phenomena when a system is approaching the tipping point (van
Nes and Scheffer, 2007; Dakos et al., 2008; Scheffer et al., 2009).
Consequently, numerous statistical indicators based on this theory
are proposed and successfully yield early warning signals for
critical transitions in ecological bifurcation models (Dakos et al.,
2011). But there are still two crucial questions unclear. Firstly,
although these so-called classical indicators successfully predict
whether the system is shifting towards a tipping point, the gradual
increase of classical indicators cannot provide explicit information
about how far the current state is from the tipping point. Thus we
need other indicators that can release strong signals just ahead of
the critical transition (Tirabassi et al., 2014). Secondly, these tested
classical ecological models only represent a few biophysical or
biochemical feedbacks. It is interesting and important to investi-
gate models with multi feedback mechanisms at different spatial
and temporal scales.

In this study, we evaluated the performance of early warning
indicators for the desertification transition in a coupled land–
atmosphere model. In contrast to other ecological models (Dakos
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et al., 2011; Tirabassi et al., 2014), multiple overlapping branches
of equilibria were found in this model. Two criteria were applied to
assess the quality of early warning indicators and the results
showed that the network based indicators had a relatively high
quality compared to the classical ones.

The land–atmosphere coupled model (Konings et al., 2011)
captures two feedback mechanisms. The local infiltration positive
feedback results in regular vegetation patterns (Rietkerk et al.,
2004), which changes with the total amount of precipitation. The
vegetation–precipitation feedback leads to the discrete P–B lines in
Fig. 2C. Multiple stable branches (L2, L3 and L4) are found after
vegetation patterns shift from labyrinth to patches and transitions
are caused by the change of number or position of patches
(Dijkstra, 2011; Siteur et al., 2014b). The catastrophic shift to
desertification (from L2 to L1 in Fig. 2) is associated with the
disappearance of the boundary patches.

This behaviour of the model equilibria explains why most of
indicators increase from L5 to L4, then keep a near constant value
down to L2 and drop sharply before the desertification (Dakos et al.,
2011). The indicators do detect potential critical transitions as they
change substantially when multiple stable states exist (from L5 to
L2). As was found in Dijkstra (2011), all branches of equilibria
already exist with the infiltration feedback. The vegetation–
precipitation feedback only shifts the branches and hence does
not appear to be important for the existence of the desertification
transition, but determines the value of P for which this occurs.

The behaviour of the classical indicators is similar to that of
most network based indicators. However the network based
indicators are more sensitive to upcoming critical transitions and
the signals can be easier distinguished from local variations. This
does not mean that classical indicators can be abandoned as they
provide early warning signals at an very early stage of transition
(Scheffer et al., 2009; Dakos et al., 2011). However, the network
based indicators provide more peaky signals when the critical
transition is approached (Tirabassi et al., 2014) and hence form a
useful addition to the classical indicators.

However it is still unclear if warning signals only associate with
multiple stable states. Kéfi et al. (2013) found that classic
indicators also yielded early warning signals for supercritical
transitions, which is non-catastrophic as abrupt shifts are
reversible. As non-catastrophic transitions are not found in this
study, we cannot confirm whether network indicators can provide
distinct performances to them. In further studies, however, it is
very interesting to examine the network approach in classic
models that contain non-catastrophic transitions (Dakos et al.,
2011; Kéfi et al., 2013).

More importantly, theoretical studies are able to show light on
crucial scientific questions. Although vast fruitful results are
revealed from ecological models (van Nes and Scheffer, 2007;
Scheffer et al., 2009; Dakos et al., 2011; Tirabassi et al., 2014), how to
apply these knowledge on real world systems is still a challenge.
Firstly, field experiments are difficult to implement. Carpenter et al.
(2011) tested classical indicators in a food web experiment, in which
top predators are added artificially to cause a regime shift in a human
manipulated aquatic ecosystem. The success of the experiment
requires a reference ecosystem (similar in climate, food web, etc.) to
split potential effects from external drivers. Long-term measure-
ments with high frequency are also needed to calculate these
indicators. Moreover, the elegance of this experiment is that the
interactions among elements in the food web is relatively simple and
clear. If we extend this experience to an experiment with different
spatial and temporal scales, the complexity in interactions and
feedbacks will increase dramatically.

Secondly, critical transitions are widely predicted but direct
observations are lacking. Large scale observations via satellite only
last for several decades, which is very short compared to the time
scale of occurred critical transitions (Kröpelin et al., 2008).
Nevertheless, ecologists established models to explain these
observed vegetation patterns and warned for possible critical
transitions (Rietkerk et al., 2004; Kéfi et al., 2007b; Staver et al.,
2011a; Hirota et al., 2011). Thus, in a next step, it is vital to use both
classical and network approaches to estimate how far the current
ecosystem is from its tipping point.
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Appendix A. Model description

A.1. Atmospheric boundary layer model

The potential temperature (u) and the specific humidity (q)
varies with the height of the atmospheric boundary layer (ABL). For
simplicity the model assumes that the energy and water vapour
are well mixed in the ABL. Consequently u and q are constant in the
ABL. On the top of ABL, both u and q are assumed to have a linear
relation with the height above the surface z, as:

uðzÞ ¼ guzþ fu (A.1)

qðzÞ ¼ gqzþ fq; (A.2)

where g and f are slope and intercept, respectively.
The change of the height of the ABL (h) in time t is as a function

of latent heat flux,

dh

dt
¼ ð1þ 2AÞðu0v0Þs

guh
; (A.3)

where ðu0v0Þs is the sensible heat flux from the surface; A is the
ratio of the sensible heat flux at the top of the ABL to the surface
sensible heat flux, which is called Tennekes parameter and
assumed as constant (0.2).

When the ABL grows, the heat and humidity fluxes in the top of
the ABL is proportional to the difference between the value on the
top of the ABL and the value below the fluxes. The temperature and
humidity of the ABL can be estimated by the conservation
equations:

h
du
dt
¼ ðu0v0Þs þ ðguhþ fu�uÞdh

dt
; (A.4)

h
dq

dt
¼ ðq0v0Þs þ ðgqhþ fq�qÞdh

dt
; (A.5)

where ðq0v0Þs is the sensible heat flux at the surface. The ðu0v0Þs and
ðq0v0Þs, which are calculated in the vegetation model, are described
in Appendix A.2.

The precipitation occurs only when h crosses the height of the
Level of Free Convection (LFC) and Lifting Condensation Level
(LCL). Another condition, z/L � 5, is included in the model of
Konings et al. (2011) to make sure that the air parcels are able to
rise from the LFC to the LCL. Here L is the Obukhov length:

L ¼ u3
�u

kvgðu0v0Þs
; (A.6)
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where z = h/2 is the centre of the ABL; kv is von Karman’s constant;
g is the acceleration due to gravity; u* is the friction velocity.

The amount of rainfall is proportional to the total water vapour
in the atmosphere column. The moisture over the height of the free
atmosphere is also taken into account. Following Konings et al.
(2011) to prevent the uncertainties from the free atmosphere, the
model accounts for the water vapour in the atmosphere column
with double height of the ABL, as:

P ¼ hsteadyh
Z 2h

0
q dz; (A.7)

where P is the amount of rainfall and the duration is set at 2 h;
h2[0,1], called rainfall efficiency, is a free parameter to account for
all factors that influences the rainfall process; hsteady (0.33) is a
constant to fix the simulated mean annual precipitation at
approximately 365 mm yr�1 when h =1 (Konings et al., 2011).

A.2. Vegetation dynamics model

The vegetation model (Rietkerk et al., 2002) integrates the
surface energy balance in the vegetation dynamics to simulate the
water and heat feedback to the atmosphere (Konings et al., 2011).
In this study, we consider a lattice with 75 � 75 grid cells. The
dynamics of surface water content (O), soil water content (W) and
biomass (B) are simulated in each cell with stochastic process
(Dakos et al., 2011). The horizontal exchange of water and biomass
are estimated at the boundary of neighbouring cells. The vertical
fluxes of water and energy from the land to the atmosphere (e.g.,
transpiration, sensible heat flux, etc.) are averaged values of all grid
cells.

Precipitation (P) is the only source that can recharge the water
in the vegetation model. The O obtains water from P and re-
distribute it spatially or vertically. The dynamical equation of O is
written as:

@O

@t
¼ P�a0

Bþ k2W0

Bþ k2
Oþ DOrOþ sOOjOðtÞ: (A.8)

O can lose water due to infiltration (the second term in
Eq. (A.8)). The infiltration rate is determined by current O and B

(Rietkerk et al., 2002). a0 is the maximum infiltration rate; k2 is the
saturation constant of infiltration; W0 is the relative infiltration
fraction of bare soil. DOrO is the diffusion of the surface water O

with diffusivity DO. sOOjO(t) is the noise of O. The noise is a
proportional to O. jO(t) is Guassian white noise with standard
deviation sO = 0.01.

The soil water content W is recharged by infiltration of O and
lost by evapotranspiration and deep soil drainage. The governing
equation is:

@W

@t
¼ a0

Bþ k2W0

Bþ k2
O�Et�Es�rwW þ DWrW þ sW WjWðtÞ: (A.9)

The first term is the infiltration rate of O, which is the same as
Eq. (A.8). Et and Es are vegetation transpiration and bare soil
evaporation, respectively. rwW is the deep soil drainage, which is
proportional to W with a constant rate rw. The diffusion and noise
term are similar to Eq. (A.8).

The Et and Es are linearly related with latent heat fluxes of
vegetation and bare soil, respectively, as:

Es ¼
LEs

lrH2O

; (A.10)

Et ¼
LEt

lrH2O

; (A.11)
where rH2O is the water density; LEt and LEs are latent heat fluxes of
vegetation and bare soil, respectively, which are estimated by the
Penman–Monteith equation, as:

LE ¼
DðRn�GÞ þ rcpVPD

ra

Dþ g 1þ rs
ra

� � : (A.12)

LE is the latent heat flux of the bare soil or vegetation, which is
determined by the parameterization of the surface resistance rs. Rn

is the net radiation; G is the soil heat flux; r is the air density; cp is
the specific heat capacity of the air; VPD is the vapour pressure
deficit; D is the slope of the saturated vapour pressure to
temperature; g is the psychrometric constant, which is a function
of the surface pressure and the latent heat of evaporation l, as
g = cpPs/(0.622l). ra is the aerodynamic resistance; rs is the surface
resistance. When calculating vegetation latent heat flux LEt, the
model use the stomatal resistance rEt

s as rs. When rs represents
the bare soil resistance rEs

s , the latent heat flux of the soil LEs will be
calculated.

The stomatal resistance rEt
s is a function of W, VPD and leaf area

index (LAI). The LAI is positive related with the biomass B. For
simplicity Konings et al. (2011) assume a linear function as LAI =
a1B, which holds due to the low values in B in this semi-arid region.
a1 represents the constant ratio of LAI to B. The formula of rEt

s is:

1

rEt
s

¼ 1

rEt

min

W

W þ k1
1�mlogðVPDÞð Þa1B; (A.13)

where rEt
min is the minimum stomatal resistance per unit LAI; k1 is

the saturated water stress; m is a factor used to represent the
increase rate of resistance with decreased VPD.

The soil resistance rEs
s is calculated as:

1

rEs
s

¼ 1

rEs

min

W

W þ k1
1� B

Bþ k3

� �
; (A.14)

where rEs
s is the minimum soil resistance; k3 is the constant used in

the function to estimate the effect of biomass shade to soil
evaporation.

The dynamics of biomass is determined by carbon assimilation
rate and respiration. Carbon assimilation positively relates to the
amount of biomass B and CO2 gradient between inside and outside
of the stomata, while the respiration rate is determined by B and
the air temperature Ta. The formula is given as:

@B

@t
¼ ðgCO2

cC1a1B�ReðTaÞBÞ
1

tðWÞ þ DBrBþ sBBjBðtÞ; (A.15)

where gCO2
is the stomatal conductance of CO2; c is the CO2

gradient between the atmosphere and the internal space of
stomata; C1 is the conversion rate between carbon gain and
biomass growth. Re(Ta) is the respiration rate with specific air
temperature Ta. t(W) indicates the drought adaption of the
vegetation. The diffusion and noise term are similar to Eq. (A.8).

The stomatal conductance gCO2
is determined by the opening of

the stomata, which has a linear positive relation with Et, as:

gCO2
¼ n

Et

q�q�
; (A.16)

where n is the ratio of CO2 stomatal conductance to H2O stomatal
conductance; q is the surface specific humidity; q* is the saturated
specific humidity. The respiration rate is governed by a Q10

function as:

ReðTaÞ ¼ RbQ ððTa�10Þ=10Þ
10 ; (A.17)



Table A.1
Values of parameters in the coupled land–atmosphere model.

Parameter Value Unit Parameter Value Unit

A 0.2 – kv 0.41 –

g 9.81 m s�2 hsteady 0.33 –

a0 0.2 d�1 k2 5 g m�2

W0 0.2 – DO 100 m2 d�1

DW 0.1 m2 d�1 DB 0.1 m2 d�1

sO 0.01 – sW 0.01 –

sB 0.01 – rw 0.08 d�1

rEt
min 100 s m�1 rH2O 1000 kg m�3

a1 0.01 g�1 m�2 c 152 ppm

C1 0.0017 g mol�1 Rb 0.1 d�1

Q10 1.6 – k1 3.3 mm

m 0.6 – k3 2.5 g m�2

n 0.0259 mm m�2 mol�1 f 0.04 –

k4 10 mm s 5.6703�10�8 J s m�2 K�4

es 0.97 – R0 1353 W m�2

hra 25 m
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where Rb is the referred respiration rate at 10 8C. Thet(W) is given as:

tðWÞ ¼ 1

4

W2 þ fk4

W2 þ k4

; (A.18)

where k4 is a constant related to soil water; f is the metabolic rate
without water. Note that the time step of the biomass dynamics is
1 day, which is different with the time interval (2.5 min) of the ABL
and water simulations.

The surface energy budget is composed by net radiation Rn,
sensible heat flux H, latent heat flux LE and soil heat flux G. The net
radiation is calculated by:

Rn ¼ ð1�aÞRs þ essðeaT4
a�T4

s Þ; (A.19)

where a is the surface albedo, which is linearly interpolated
between a = 0.25 when B = 0 g m�1 and a = 0.15 when
B =25 g m�1. s is the Stefan–Boltzmann constant; es and ea are
emissivity of the surface and atmosphere, respectively. Rs is the
incoming shortwave radiation. It is a function of number of day
DOY, hour angle ha and the latitude f. It is given by:

Rs ¼
R0

r2
cosb; (A.20)

where R0 is the solar constant; r is a factor to correct the distance
between the earth and the sun; b is the solar zenith angle. The r is
determined by the DOY as:

r ¼ 1:0þ 0:017cos
2p
365
ð186�DOYÞ: (A.21)

The b is affected by the hour angle and the latitude f, as:

cosb ¼ cosf cosha cosdþ sinf sind; (A.22)

where d is the solar declension.
The sensible heat flux H is a function of surface resistance and the

temperature gradient between the surface and the atmosphere:

H ¼ rcp

ra
ðTa�TsÞ; (A.23)

where ra ¼ hra=ðzokvu�Þ. hra and zo are the height of the surface
layer and the surface roughness, respectively. The zo is determined
by the canopy height hc as zo = 0.1hc and hc = 0.05/(3B).
[(Fig._B.1)TD$FIG]

Fig. B.1. (A) Time series of daily spatial averaged biomass in the first 2-year simulation.

rainfall between h = 0.96 and 0.97. The mean annual precipitation of h =0.96 and 0.97 is

this figure legend, the reader is referred to the web version of the article.)
The land surface energy balance equation is:

Rn�lrEt�lrEs�G�H ¼ 0; (A.24)

where G = 0.15Rn is the soil heat flux. There are three unknowns
(Rn, H and Ts) in Eqs. (A.19), (A.23) and (A.24), from where the
energy balance of the surface can be estimated. The simulated H

and LE are used to determine the surface sensible and latent heat
fluxes in the atmosphere model as:

ðu0v0Þs ¼
H

rcp
; (A.25)

ðq0v0Þs ¼
LE

rcp
: (A.26)

All parameters are listed in Table A.1.
Appendix B. Figure
Red and blue lines represent h =0.96 and 0.97, respectively. (B) Difference of daily

346 mm and 338 mm, respectively. (For interpretation of the references to colour in
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