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CHAPTER 1

Introduction

One of the main objects of study of modern algebraic number theory is the absolute
Galois group GK = Gal(K/K) of a local or global field K with separable closure
K. In particular, one wants to understand the absolute Galois group of the rational
numbers,GQ = Gal(Q/Q). This is a very large group, yet it is compact with respect
to the profinite topology.

One way of gaining insight into GK is by studying its representations. These
may arise in different ways. First of all, through the Langlands correspondence, they
can come from automorphic representations, or equivalently, from representations of
certain Hecke algebras. Secondly, by considering the action of GK on vector spaces
associated to varieties (e.g. the geometric torsion points of an abelian variety), one
finds geometric Galois representations.

This thesis treats three questions related to GK and its representations. The
first of these, which is anabelian in nature, asks to what extent the representation
theory of a Hecke algebra of a field K (which is either a number field or a local
non-archimedean field of characteristic zero) determines K. The second question
concerns Galois representations attached to abelian varieties, and especially those
with surjective image, which realise symplectic groups as Galois groups. The third
question focuses on supersingular abelian varieties over finite fields, and arithmetic
properties of these varieties which are determined by the characteristic polynomial
of the Frobenius endomorphism; the topological Frobenius map is a generator ofGK
for finite fields K.

1.1 Hecke algebras and adelic points

Let K be a field and let GK denote its absolute Galois group. First suppose that
K is a number field. When K is Galois over Q, Neukirch [78] proved that GK
determines K, in the sense that any isomorphism GK ∼= GL (as profinite groups)
induces a unique field isomorphism K ∼= L. Uchida [117] later proved this result
whenK is not necessarily Galois; as Neukirch points out in [79], the same result was
obtained independently by Iwasawa (unpublished), using results by Ikeda [47].
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6 Introduction

By contrast, the abelianisation Gab
K , corresponding to the one-dimensional repre-

sentations of GK , does not determine K, cf. [83] or [3].

Now suppose that K is a non-archimedean local field of characteristic zero. In
this case, Yamagata showed in [129] that the analogous statement of the result by
Neukirch and Uchida is false. Jarden and Ritter [52] prove that GK determines the
absolute field degree [K : Qp] and the maximal abelian subextension of K over Qp.
In addition, Mochizuki [76] proved that the absolute Galois group together with its
ramification filtration does determine a local field of characteristic 0, and Abrashkin
[1], [2] extended this result to any characteristic p > 0.

A couple of natural questions then arise: when K is a number field, do irre-
ducible two-dimensional (being the “lowest-dimensional non-abelian”) representa-
tions of GK determine K? When K is a non-archimedean local field of characteris-
tic zero, to what extent does the representation theory of GK determine K?

By the philosophy of the Langlands programme, n-dimensional irreducible rep-
resentations of GK (or, more generally, of the Weil group WK) should be in cor-
respondence with certain automorphic representations of GLn, while preserving L-
series.

Over non-archimedean local fields of characteristic zero, the local Langlands
correspondence was proven by Harris and Taylor [40] and Henniart [42]. More
precisely, their results state that equivalence classes of admissible irreducible rep-
resentations of GLn(K) are in bijection with equivalence classes of n-dimensional
Frobenius semisimple representation of the Weil-Deligne group W ′K of K, see e.g.
[122]; W ′K is a group extension of the Weil group WK , from which there exists a
continuous homomorphism to GK with dense image.

When K is a number field, no analogous result is known, although various spe-
cial cases have been considered. One believes that irreducible n-dimensional repre-
sentations of GK should correspond to cuspidal representations of GLn(AK) “of
Galois type” [22, p. 244]. Moreover, all cuspidal representations of GLn(AK)
should be in correspondence with irreducible n-dimensional representations of the
so-called Langlands group, which is the conjectural global analogue of the Weil-
Deligne group.

Automorphic (admissible) representations of GLn(AK) in turn correspond to
(admissible) modules over the Hecke algebra HGLn(K). Therefore, our questions
inspire the next question.
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Question 1.1. Let K be either a number field or a non-archimedean local field of
characteristic zero. To what extent does (the representation theory of) the Hecke
algebra HGLn(K) determine K?

For n = 2, the following result (Theorem 4.11) provides a partial answer.

Theorem A (Theorem 4.11). Let K and L be two non-archimedean local fields of
characteristic zero and let G = GL2. Then there is always a Morita equivalence
HG(K) ∼M HG(L).

The Morita equivalence means that the respective categories of modules over the
Hecke algebras ofK and L are isomorphic. That is, the module structure of the com-
plex representations of GL2 over a local field as above does not depend on the local
field. The proof uses the Bernstein decomposition of the Hecke algebra.

Hecke algebras exist for any linear algebraic group G over Q. When K is a
number field, we will work with the finite-adelic real Hecke algebra, and when K is
a non-archimedean local field of characteristic zero, we use the local Hecke algebra.
These are defined as follows:

HG(K) =

{
C∞c (G(AK,f ),R) if K is a number field,
C∞c (G(K),C) if K is non-arch. local of char. 0.

(We could replace R by C in the number fields case; this does not affect our results.)
Such Hecke algebras are equipped with an L1-norm, which is induced from the Haar
measure on the (locally compact) point group; an L1-isomorphism will be an algebra
isomorphism which respects this norm.

Using Stone-Weierstrass and results by Kawada [55] and Wendel [127], we prove
in Theorem 4.6 that there is an L1-isomorphism of finite-adelic Hecke algebras
HG(K) ∼=L1 HG(L) if and only if there is an isomorphism of finite-adelic point
groups G(AK,f ) ∼= G(AL,f ), and that there is an L1-isomorphism of local Hecke
algebras HG(K) ∼=L1 HG(L) if and only if there is an isomorphism of local point
groups G(K) ∼= G(L).

The question whether G(R) ∼= G(S) for algebraic groups G and rings R,S im-
plies a ring isomorphismR ∼= S has been considered before (following seminal work
of van der Waerden and Schreier from 1928 [97]), most notably when G = GLn for
n ≥ 3 or when G is a Chevalley group and R and S are integral domains (see, e.g.,
[31], [88] and the references therein). The methods employed there make extensive
use of root data and Lie algebras.
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When G = GLn for n ≥ 2 and K and L are non-archimedean local of charac-
teristic zero, G(K) ∼= G(L) implies K ∼= L by Theorem 5.6.10 of [82]. That is, the
following result provides another partial answer to Question 1.1.

Theorem B (Corollary 4.9). Let K and L be two non-archimedean local fields of
characteristic zero and let G = GLn, n ≥ 2. Then there is an L1-isomorphism of
local Hecke algebras HG(K) ∼=L1 HG(L) if and only if there is a field isomorphism
K ∼= L.

In the case of number fields, we introduce the following technical condition on
the groups G: we call G fertile for a field K/Q if G contains a Borel group B which
is split over K as B = T n U , such that over K, the split maximal torus T 6= {1}
acts nontrivially by conjugation on the abelianisation of the maximal unipotent group
U 6= {0}. In particular, GLn is fertile for any K and all n ≥ 2.

Now we can state the main result of Chapter 3.

Theorem C (Theorem 3.1). Let K and L be two number fields, and let G denote a
linear algebraic group over Q which is fertile for K and L. There is a topological
group isomorphism of finite-adelic point groups G(AK,f ) ∼= G(AL,f ) if and only
if there is a topological ring isomorphism AK

∼= AL.

Our proof of Theorem C uses number theory in adele rings and, by not passing to
Lie algebras, applies to a more general class of (not necessarily reductive) algebraic
groups. First, we prove in general that maximal divisible subgroups D of G(AK,f )
and maximal unipotent point groups are the same up to conjugacy (Proposition 3.10;
note that this does not apply at the archimedean places). The torus T (as a quotient of
the normaliser N of the unipotent point group D by itself) acts on the abelian group
V = [N,D]/[D,D], that decomposes as a sum of one-dimensional T-modules, on
which T acts by multiplication with powers. Now we use a formula of Siegel, which
allows us to express any adele as a linear combination of fixed powers, to show how
this implies that the centre of the endomorphism ring of the T-module V is a a carte-
sian power of the finite adele ring. We then use the structure of the maximal principal
ideals in the finite adele ring to find from these data the adele ring itself.

For example, consider G = GL(2). Then D =
(

1 AK,f

0 1

)
∼= (AK,f ,+) is

(conjugate to) a group of strictly upper triangular matrices, N =
(

A∗K,f AK,f

0 A∗K,f

)
and

T ∼= (A∗K,f , ·)2 (represented as diagonal matrices) acts on V ∼= D (represented as
upper triangular matrices) by conjugation. Now EndTV ∼= AK,f as (topological)
rings.
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Hence, we have proved the following global version of Theorem B (Theorem 4.7),
providing a partial answer to Question 1.1 for number fields.

Theorem D. Let K and L be two number fields, and let G denote a linear algebraic
group over Q that is fertile for K and L. There is an L1-isomorphism of Hecke
algebras HG(K) ∼=L1 HG(L) if and only if there is a ring isomorphism AK

∼= AL.

It is not clear to us for precisely which (linear) algebraic groups G Theorem C
holds. However, the following example illustrates why a condition like fertility is
needed: if G = Gr

a × Gs
m for integers r, s, then for any two distinct imaginary

quadratic fields K and L of discriminant < −8 we have an isomorphism of topolog-
ical groups G(AK,f ) ∼= G(AL,f ) while AK 6∼= AL.

To prove this, one determines separately the abstract structures of the additive
(Section 2.2) and multiplicative (Section 2.3) groups of the adele ring AK and sees
that they depend on only a few arithmetic invariants, allowing for a lot of freedom in
“exchanging local factors”. In particular, the additive structure depends only on the
field degree [K : Q], and the multiplicative structure on the field degree, the residue
field degrees and the roots of unity in K.

Finally, we make some remarks on the condition AK
∼= AL, cf. Section 2.1.

When such an isomorphism exists, K and L are said to be locally isomorphic. Local
isomorphism implies, but is generally stronger than, arithmetic equivalence ofK and
L. Recall that K and L are arithmetically equivalent if their Dedekind zeta functions
coincide: ζK = ζL. Moreover, if K or L is Galois over Q, both local isomorphism
and arithmetic equivalence imply that K and L are isomorphic as fields.

Therefore, if K and L are Galois over Q, and G is fertile for K and L, Theorem
D shows that there is an L1-isomorphism of Hecke algebras HG(K) ∼=L1 HG(L) if
and only ifK ∼= L. This result can be seen as an automorphic analogue of Neukirch’s
theorem.

Chapter overview

• In Chapter 2, we discuss the notions of arithmetic equivalence and local iso-
morphism between number fields, and we study the additive and multiplicative
structures of the adele ring of a number field.

• In Chapter 3, we consider finite-adelic point groups for number fields K and
L and a fertile linear algebraic group G/Q, and we prove Theorem C.

• In Chapter 4, we introduce Hecke algebras over global and local fields, as well
as the notion of an L1-isomorphism, and prove Theorem B, Theorem D, and
Theorem A.
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1.2 Galois representations

The Inverse Galois Problem asks whether, for a given finite group G, there exists a
Galois extension K/Q with Galois group isomorphic to G. In other words, it asks
whether a finite group G occurs as a quotient of GQ. It is an open problem whether
this holds for any finite group G. The origin of this problem can be traced back to
Hilbert. In 1892, he proved in [44] that the symmetric group Sn and the alternating
group An are Galois groups over Q, for all n. We also have an affirmative answer to
the Inverse Galois Problem for some other families of finite groups. For instance, all
finite solvable groups (Shafarevich, [94]) and all sporadic simple groups, except the
Mathieu group M23, are known to be Galois groups over Q; cf. [53, Section 0.2] for
an overview.

A Galois representation is a continuous homomorphism

ρ : GQ → GLn(R),

where R is a topological ring, e.g. C, Z/nZ or Fq with the discrete topology, or Q`

with the `-adic topology.
Since GQ is compact, the image of ρ is finite when the topology of R is discrete.

As a consequence, images of Galois representations yield Galois realisations over Q
of finite linear groups

Gal(Q
ker ρ

/Q) ' ρ(GQ) ⊆ GLn(R).

This gives us an interesting connection between the Inverse Galois Problem and
Galois representations, and hence a strategy to address the Inverse Galois Problem,
namely, to construct Galois representations with a given image.

This strategy has been employed in the literature, to obtain Galois realisations
of, for instance, GL2(F`) for all ` [102], GSp4(F`) for ` > 3 [10] , PGSp4(F`3)
and PSp4(F`2) for explicit infinite families of primes ` [34], and PGSp2n(F`r) and
PSp2n(F`r) for each n ≥ 2, for either a fixed prime ` and infinitely many positive
integers r [56], or a fixed r and a positive density set of primes ` [5].

IfA is an abelian variety of dimension g defined over Q, and ` is a prime number,
let A[`] = A(Q)[`] denote the `-torsion subgroup of Q-points of A. The natural ac-
tion ofGQ onA[`] gives rise to a continuous Galois representation ρA,` taking values
in GL(A[`]) ' GL2g(F`). If the abelian variety A is moreover principally polarised,
the image of ρA,` lies inside the general symplectic group GSp(A[`]) of A[`] with
respect to the symplectic pairing induced by the Weil pairing and the polarisation
of A; thus, we have a representation

ρA,` : GQ −→ GSp(A[`]) ' GSp2g(F`),
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providing a realisation of GSp2g(F`) as a Galois group over Q, if ρA,` is surjective.

Let us fix a dimension g. The setup above leads to the following questions.

Question 1.2. (a) If we are given a principally polarised g-dimensional abelian
variety A, for which prime numbers ` is the representation ρA,` surjective?

(b) If we are instead given a prime number `, can we always find a principally
polarised g-dimensional abelian variety A such that ρA,` is surjective?

The image of Galois representations attached to the `-torsion points of abelian
varieties has received a lot of attention. Let us briefly mention a few known results.

For an abelian variety A defined over a number field, a classical result by Serre
ensures surjectivity for almost all primes ` when EndQ(A) = Z and the dimension
of A is 2, 6 or odd [105].

More recently, Hall [38] proved a result for any dimension, under some additional
conditions on the abelian variety which are explained below. This result has been
further generalised by Arias-de-Reyna, Gajda, and Petersen, to the case of abelian
varieties over finitely generated fields [7]. Le Duff [60] has also applied it to Jacobian
varieties of genus 2 curves, to obtain realisations of GSp4(F`) for all odd primes
` ≤ 500000.

Arias-de-Reyna and Vila (cf. [9], [10]) have solved the Inverse Galois Problem
for GSp2g(F`) when g = 1, 2 and ` ≥ 5 is any prime number, by constructing a
family of genus g curves C such that the Galois representation ρJac(C),` attached to
the Jacobian variety Jac(C) is surjective. Moreover, these representations are tamely
ramified for every curve in the family.

Suppose that we have a representation ρA,` : GQ → GSp2g(F`) as above. A
transvection T ∈ GSp2g(F`) is an element which acts as the identity on a hyper-
plane H ⊂ A[`]. The structure theory of the general symplectic group (Section 5.1)
gives us that Im(ρA,`) = GSp2g(F`) if Im(ρA,`) contains both a nontrivial transvec-
tion and an element whose characteristic polynomial is irreducible and has a nonzero
trace. Thus, to answer Question 1.2, it suffices to find primes ` (whenA/Q is given),
resp. abelian varieties A/Q (when ` is given), such that Im(ρA,`) contains these two
kinds of elements.

By a result of Hall [38], if there is a finite extension K/Q so that the Néron
model of A/K over the ring of integers OK of K has a semistable fibre at some
prime p with toric dimension 1, then Im(ρA,`) contains a transvection. If this holds,
we say that A satisfies condition (T).
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We prove the following surjectivity result.

Theorem E (Theorem 5.15). Let A/Q be a principally polarised g-dimensional
abelian variety which satisfies condition (T) for some rational prime p. Denote by
Φp the group of connected components of the special fibre of the Néron model of A
over Qp. In addition, let q be a prime of good reduction of A, let Aq be the special
fibre of the Néron model of A over Qq, and let Pq(X) ∈ Z[X] be the characteristic
polynomial of the Frobenius endomorphism of Aq.

Then Im(ρA,`) = GSp2g(F`) for all primes ` which divide neither 6pq|Φp| nor
the coefficient of X2g−1 in Pq(X), and satisfy that the reduction of Pq(X) mod ` is
irreducible in F`.

We now restrict to the case g = 3. Our first main result, answering Question
1.2(a), can be summarised as follows.

Theorem F. Let A = Jac(C) be the Jacobian variety of a hyperelliptic curve
C : Y 2 = f(X) of genus 3 over Q which satisfies condition (T) for some prime
p. Then there exists an algorithm which provides a non-empty list of primes ` for
which ρA,` is surjective.

First, we remark that in this special case where A = Jac(C) is the Jacobian vari-
ety of a hyperelliptic curveC : Y 2 = f(X) of genus g, condition (T) simplifies; now,
A satisfies condition (T) as soon as there is a (rational) prime p such that the coeffi-
cients of f(X) have p-adic valuation greater than or equal to zero, and f(X) mod p
has one double zero and otherwise simple zeroes.

The algorithm uses an auxiliary prime q, which is a prime of good reduction for
A. For each prime `, the algorithm determines whether ` satisfies the conditions of
Theorem E.

Note that the list of primes ` we obtain in this way is not necessarily exhaustive.
However, in Chapter 6, we compute an example, which realises GSp6(F`) as a Ga-
lois group over Q for all ` ∈ [11, 500000].

Our second main result provides an answer to Question 1.2(b) and can be phrased
as follows.

Theorem G (Theorem 7.1). For any prime number ` ≥ 5, there exist infinitely many
curves C/Q of genus 3 defined over Q such that Im(ρJac(C),`) = GSp6(F`).

This theorem provides an explicit and constructive solution to the Inverse Galois
Problem for the symplectic groups GSp6(F`).

The proof again uses two auxiliary primes p and q. Firstly, we construct a curve
Cp/Qp, such that Jac(Cp) satisfies condition (T) for p and such that |Φp| = 2. We
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do this by forcing its defining equation to have a very particular form after reduction
modulo p2. Then, we construct a second curve Cq over Fq, such that the Jacobian
Jac(Cq) has a Frobenius endomorphism whose characteristic polynomial modulo `
is irreducible and has nonzero trace. In fact, we show that for any ` ≥ 3, there
exists a suitable q, by counting Weil q-polynomials. Finally, the defining equation
for the curve C/Q is obtained by lifting that of Cq to Z, and then imposing the same
conditions modulo p2 as for that of Cp. (This is always possible by the Chinese
Remainder Theorem.) The representation ρJac(C),` is therefore immediately seen to
be surjective.

Chapter overview

• In Chapter 5, we introduce Galois representations attached to abelian varieties,
and state results about their surjectivity, including Theorem E.

• In Chapter 6, we explain the algorithm from Theorem F which, for a given
three-dimensional abelian variety A/Q, computes a list of prime numbers `
for which the Galois representation ρA,` is surjective.

• In Chapter 7, we construct, for a given prime number `, a family of three-
dimensional abelian varieties A/Q for which the Galois representations ρA,`
are surjective, proving Theorem G.

1.3 Abelian varieties

Let us fix a finite field K = Fq of characteristic p, i.e., such that q = pr for some r,
and let k = Fp be an algebraic closure.

Let V be a smooth projective g-dimensional variety over K. By the Riemann
hypothesis over function fields [33], the roots of the characteristic polynomial of the
Frobenius endomorphism of V all have absolute value

√
q. These roots are called the

Weil numbers of V ; dividing them by
√
q yields the normalised Weil numbers.

In our situation, V will be either a g-dimensional abelian variety A/K or a
smooth projective connected curve X/K of genus g. For such a curve X/K we
then consider its Jacobian Jac(X); this is a g-dimensional abelian variety, and the
Weil numbers of X are the roots of the characteristic polynomial of the Frobenius
endomorphism of Jac(X).

An abelian variety is determined up to K-isogeny by the characteristic polyno-
mial of its Frobenius endomorphism. Moreover, Honda-Tate theory implies that the
set of K-isogeny classes of simple abelian varieties over K is in bijection with the
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set of K-Weil numbers up to Galois conjugacy.

An elliptic curve E over any field of characteristic p is called supersingular if
E[pr] = 0 for one (hence all) r ≥ 1, cf. [107, Theorem V.3.1]. Equivalently, E is
supersingular if and only if its Weil numbers (α, α) satisfy α =

√
qζ (and α =

√
qζ),

where ζ is some root of unity.
More generally, a principally polarised g-dimensional abelian variety A/K is

called supersingular if its normalised Weil numbers are all roots of unity, and a curve
X/K is supersingular if Jac(X) is supersingular.

Thus, the Weil numbers tell us whether an abelian variety or a curve is supersin-
gular. This part of the thesis studies some other arithmetic properties of supersingular
abelian varieties and (Jacobians of) curves over finite fields, which are determined by
their (normalised) Weil numbers.

First of all, we see that the Riemann hypothesis over function fields has imme-
diate consequences for the number of K-points of an abelian variety or a curve over
K. The Hasse-Weil bound for curves X/K of genus g says that

|X(K)− (q + 1)| ≤ 2g
√
q.

When X reaches the upper bound |X(K)| = (q + 1) + 2g
√
q, we say it is maximal

over K; when it reaches the lower bound, we call it minimal. The normalised Weil
numbers of a maximal (resp. minimal) curveX/K are all−1 (resp. 1). Analogously,
we say an abelian variety A/K is maximal (resp. minimal) if all its normalised Weil
numbers are −1 (resp. 1).

We see that an abelian varietyA/K, or a curveX/K, is supersingular if and only
if it is minimal over some finite field extension of K. Now we would like to study
the following problem.

Question 1.3. When is a supersingular abelian variety A/K or curve X/K maximal
over some finite extension of K?

The (K-)period of an abelian variety A/K or curve X/K is the degree of the
smallest extension of K over which A resp. X is either maximal or minimal. The
(K-)parity is 1 in the first case and −1 in the second case. A quadratic twist of a
maximal abelian variety or curve can be minimal, and this introduces some subtlety
to the problem.

Let Θ(A/K) denote the set of K-twists of A, i.e., the set of abelian varieties
A0/K such that A0 is isomorphic to A over k. We define A to be (i) fundamentally
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maximal or (ii) partially maximal or (iii) fundamentally minimal if A0 has parity 1
for (i) all or (ii) some or (iii) none ofA0 ∈ Θ(A/K). TakingA = Jac(X), we define
the same three types for curves X .

We show how the type of a supersingular abelian variety or curve is related to
its Weil numbers. These Weil numbers {α1, . . . , α2g} are of the form αi =

√
qζjiNi

(where gcd(Ni, ji) = 1), for some Ni = 2eioi with oi odd. We call ei the binary
value of αi.

Proposition H (Propositions 9.11 and 9.12). Let A/K be a supersingular g-dimen-
sional abelian variety.

1. If A/K is fundamentally maximal, then all ei equal the same value e ≥ 2.

2. If A/K is fundamentally minimal, then not all ei are the same.

Conversely, we have:

3. If ei = 0 for all i, or ei = 1 for all i, then A/K is partially maximal.

4. If all ei ≥ 2 are the same, the parity ofA/K is not affected by quadratic twists.

5. If not all ei are the same, the twist by [−1] does not affect the parity of A/K.

When g = 1, we completely analyse the isogeny classes of supersingular elliptic
curves and determine their types. When g = 2, we compute the parities and periods
for each isogeny class of abelian surfaces (in Proposition 9.22).

Secondly, we investigate the relation between Weil numbers and the dimension of
the corresponding abelian variety. Honda-Tate theory yields that for every complex
root of unity z, there exists a simple supersingular abelian variety Az/K whose Weil
numbers are α =

√
qz and its conjugates. We ask the following question.

Question 1.4 (Question 10.1). Suppose that z1, . . . , zs are s randomly chosen roots
of unity and consider the supersingular abelian variety A = Az1 × . . .× Azs . What
is the probability that A has dimension g?

For simplicity, we study the case where {z1, . . . , zs} ⊆ µ2N for some N . Now,
“randomly chosen” means that we equip µ2N with the uniform measure.

Recall thatK = Fq with q = pr. Our answer to question 1.4 depends on whether
r is odd or even, and on whether p = 2 or p > 2. Here we give one case of our main
result.



16 Introduction

Proposition I (Proposition 10.7(1)). Let q = pr with r odd and p > 2, and fix N .
Randomly pick z = ζj2m ∈ µ2N and let A = Az be the corresponding simple super-
singular abelian variety over K. Then

dim(A) =


1

2

2m−2 if 4 ≤ m ≤ N
with probability


1

2N−1

3
2N−1

1
2N+1−m

.

Chapter overview

• In Chapter 8, we collect some results on supersingular abelian varieties and
curves and their Weil numbers. We introduce twists and study how these affect
the Frobenius endomorphism.

• In Chapter 9, we define the period and the parity, as well as the types (fun-
damentally maximal, fundamentally minimal, partially maximal). To provide
answers to Question 1.3, we state and prove some properties of these notions,
including Proposition H. In Section 9.2, we analyse the g = 1 and g = 2
situations.

• In Chapter 10, we consider Question 1.4, and we prove Proposition I.
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CHAPTER 2

Arithmetic equivalence and local isomorphism

In this chapter, we discuss the group structure of the additive and multiplicative
groups of adeles of a number field, and we recall the notions of local isomorphism
of number fields and its relation to isomorphism of adele rings and arithmetic equiv-
alence. We introduce local additive and multiplicative isomorphisms and prove that
their existence implies arithmetic equivalence.

2.1 Arithmetic equivalence and local isomorphism

Notation/Definitions 2.1. If K is a number field with ring of integers OK , let MK

denote the set of all places of K, MK,f the set of non-archimedean places of K,
and MK,∞ the set of archimedean places. If p ∈ MK,f is a prime ideal, then Kp

denotes the completion of K at p, and OK,p its ring of integers. Let e(p) and f(p)
denote the ramification and residue degrees of p over the rational prime p below p,
respectively. The decomposition type of a rational prime p in a fieldK is the sequence
(f(p))p|p of residue degrees of the prime ideals of K above p, in increasing order,
with multiplicities.

For an archimedean place p of K, we have Kp = R or C and we let OK,p = Kp.

Definition 2.2. We use the notation
∏′(Gi, Hi) for the restricted product of the

group Gi with respect to the subgroups Hi. We denote by

AK =
∏

p∈MK

′
(Kp,OK,p)

the adele ring of K, and by

AK,f =
∏

p∈MK,f

′
(Kp,OK,p)

its ring of finite adeles.

This chapter is based on parts of the article [32], joint work with Gunther Cornelissen.
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Two number fields K and L are arithmetically equivalent if for all but finitely
many prime numbers p, the decomposition types of p in K and L coincide.

Two number fields K and L are called locally isomorphic if there is a bijection
ϕ : MK,f → ML,f between their sets of prime ideals such that the corresponding
local fields are topologically isomorphic, i.e. Kp

∼= Lϕ(p) for all p ∈MK,f .
The Dedekind zeta function of a number field K is defined as

ζK(s) =
∑
I⊆OK

1

NK/Q(I)s
,

where the sum ranges over the nonzero ideals of OK .

The main properties are summarised in the following proposition (see e.g. [57,
III.1 and VI.2]):

Proposition 2.3. Let K and L be number fields. Then:

(i) K and L are locally isomorphic if and only if the adele rings AK and AL are
isomorphic as topological rings, if and only if the rings of finite adeles AK,f

and AL,f are isomorphic as topological rings.

(ii) K and L are arithmetically equivalent if and only if ζK = ζL, if and only if
there is a bijection ϕ : MK,f → ML,f such that the local fields Kp

∼= Lϕ(p)

are isomorphic for all but finitely many p ∈MK,f .

(iii) We have K ∼= L ⇒ AK
∼= AL (as topological rings)⇒ ζK = ζL and none

of the implications can be reversed in general, but if K or L is Galois over Q,
then all implications can be reversed.

2.2 The additive group of adeles

Proposition 2.4. If H is a number field, then there are topological isomorphisms of
additive groups

(AH,f ,+) ∼= (A
[H:Q]
Q,f ,+)

and
(AH ,+) ∼= (A

[H:Q]
Q ,+).

Proof. If p is a prime ofH above the rational prime p, then OH,p is a free Zp-module
of rank e(p)f(p) (cf. [30, 5.3-5.4]), and tensoring with Q gives a compatible diagram
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of isomorphisms of additive groups

(OH,p,+) ∼
//

� _

��

(Z
e(p)f(p)
p ,+)� _

��

(Hp,+) ∼
// (Q

e(p)f(p)
p ,+)

which we can sum over all p | p for fixed p, to find

(
⊕
p|p

OH,p,+) ∼
//

� _

��

(Znp ,+)
� _

��
(
⊕
p|p
Hp,+) ∼

// (Qn
p ,+)

for n = [H : Q]; here, we use the fact that
∑

p|p[Hp : Qp] = [H : Q]. It follows that

(AH,f ,+) =
∏

p∈MQ,f

′
(
⊕
p|p

(Hp,+),
⊕
p|p

(OH,p,+))

∼=
∏

p∈MQ,f

′
((Qn

p ,+), (Znp ,+))

∼= (An
Q,f ,+)

and hence

(AH ,+) = (AH,f ,+)× (Rn,+)
∼= (An

Q,f ,+)× (Rn,+) ∼= (An
Q,+).

Corollary 2.5. The additive groups (AK ,+) and (AL,+) are isomorphic (as topo-
logical groups) for two number fields K and L if and only if K and L have have
the same degree over Q. For finite adeles, [K : Q] = [L : Q] implies (AK,f ,+) ∼=
(AL,f ,+).

Proof. By Proposition 2.4, we know that [K : Q] = [L : Q] implies that (AK,f ,+) ∼=
(AL,f ,+) and (AK ,+) ∼= (AL,+).

Conversely, a topological isomorphism (AK ,+) ∼= (AL,+) of additive groups
induces a homeomorphism between their respective connected components of the
identity, i.e.,

R[K:Q] ∼= R[L:Q].
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Since homotopic groups have isomorphic homology [71, Theorem 4.2] and Rn−{0}
is homotopic to the sphere Sn−1 for any n ≥ 1 (e.g. [20, Example 14.7], we find
(e.g. in [126, Lemma 4.1.3]) that

Hk(R
n − {0}) =

{
Z when k = 0, n

0 otherwise
.

In particular, if m 6= n, then Rm − {0} and Rn − {0} have different homology
groups. Hence, we deduce that [K : Q] = [L : Q].

If, additionally, the isomorphism is “local”, i.e. induced by local additive isomor-
phisms, then we have the following result.

Proposition 2.6. Let K and L be number fields such that there is a bijection

ϕ : MK,f →ML,f

with, for almost all places p, isomorphisms of topological groups

Φp : (Kp,+) ∼= (Lϕ(p),+).

Then K and L are arithmetically equivalent.

Proof. We may view each Kp as a [Kp : Qp] = e(p)f(p)-dimensional topological
Qp-vector space, where p ∈ Q is the prime lying below p. Similarly, for q ∈ Q
the prime lying below ϕ(p) ∈ Lϕ(p), we find that Lϕ(p) is a topological Qq-vector
space of dimension [Lϕ(p) : Qq] = e(ϕ(p))f(ϕ(p)). We will write n = e(p)f(p)
and m = e(ϕ(p))f(ϕ(p)). Thus, we have an isomorphism of topological groups

Φp : (Qn
p ,+)

∼→ (Qm
q ,+).

which must map Zn injectively onto a subgroup of Qm
q of the form

⊕n
i=1 νiZ, where

the νi are Z-linearly independent.
We indicate topological closure by a bar. Since the group of integers Z is dense

in both Zp and Zq and Φp is a homeomorphism, we have

Φp(Z
n
p ) = Φp(Z

n
) = Φp(Zn) =

n⊕
i=1

νiZ =
n∑
i=1

νiZq ∼= Zn
′
q ,

where n′ ≤ n. In the last step, we have used that since Zp is a principal ideal
domain, any submodule of the free module Znp is free. Thus, Φp restricts to a group
isomorphism

Φ′p : (Znp ,+)
∼→ (Zn

′
q ,+).
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We know (cf. [95, Lemma 52.6]) that the only p-divisible subgroup of (Znp ,+) is
{0}, whereas for q 6= p, every element of (Znp ,+) is q-divisible. This group theoretic
property ensures that p = q, that is,

Φ′p : (Znp ,+)
∼→ (Zn

′
p ,+) ⊂ (Qm

p ,+).

As a group homomorphism, Φ′p preserves the subgroup pZnp , and by considering the
quotient, we find an isomorphism (Fnp ,+) ∼= (Fn

′
p ,+), which, by counting elements,

implies that n = n′. Moreover, we see that n = n′ ≤ m, and since the isomorphism
is invertible, we also obtain m ≤ n, hence n = m.

We conclude that for all non-archimedean places p ∈MK,f , we must have

e(p)f(p) = e(ϕ(p))f(ϕ(p)).

At all but finitely many primes p, both K and L are unramified, so the local maps Φp

will ensure that f(p) = f(ϕ(p)) for all but finitely many residue field degrees f(p).
This implies that K and L are arithmetically equivalent.

Remark 2.7. If all but finitely many residue field degrees of K and L match, then in
fact all residue field degrees match, by a result of Perlis (the equivalence of (b) and
(c) in [87, Theorem 1]). This in turn implies that all ramification degrees match. So
whereas two arithmetically equivalent number fields may have different ramification
degrees at finitely many places, the above isomorphism excludes this possibility.
However, this is still weaker than local isomorphism, since the ramification degree
does not uniquely determine the ramified part of a local field extension.

2.3 The multiplicative group of adeles

Proposition 2.8. If H is a number field with r1 real and r2 complex places, then
there is a topological group isomorphism

(A∗H , ·) ∼= (R∗)r1 × (C∗)r2 ×

(⊕
Z

Z

)
× Ẑ[H:Q] ×

∏
p∈MH,f

(H
∗
p × µp∞(Hp))

where H∗p is the multiplicative group of the residue field of H at p (a cyclic group
of order pf(p) − 1) and µp∞(Hp) is the (finite cyclic p-)group of p-th power roots of
unity in Hp.

Proof. We have
A∗H
∼= (R∗)r1 × (C∗)r2 ×A∗H,f
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and
A∗H,f

∼= JH × Ô∗H .

Here, JH is the topologically discrete group of fractional ideals of H , so

JH ∼=
⊕
Z

Z,

where the index runs over the set of prime ideals, and the entry of n ∈ JH corre-
sponding to a prime ideal p is given by ordp(n). Furthermore,

Ô∗H =
∏

p∈MH,f

O∗H,p

is the group of finite idelic units. To determine the isomorphism type of the latter,
we quote [41], Kapitel 15: let πp be a local uniformiser at p and let Hp = OH,p/p
denote the residue field; then the unit group is

O∗H,p
∼= H

∗
p × (1 + πpOH,p) (2.1)

and the one-unit group

1 + πpOH,p
∼= Z

[Hp:Qp]
p × µp∞(Hp) (2.2)

where µp∞(Hp) is the group of p-th power roots of unity in Hp.

It remains to determine the exact structure of the p-th power roots of unity, e.g.:

Example 2.9. [3, Lemma 3.1 and Lemma 3.2] If H 6= Q(i) and H 6= Q(
√
−2),

then there is an isomorphism of topological groups∏
p∈MH,f

(H
∗
p × µp∞(Hp)) ∼=

∏
n≥1

Z/nZ.

Hence we conclude: If K and L are two imaginary quadratic number fields different
from Q(i) and Q(

√
−2), then we have a topological group isomorphism A∗K

∼= A∗L.

Combining Proposition 2.4 and Example 2.9, we obtain the following corollary.

Corollary 2.10. For any two imaginary quadratic number fields K and L different
from Q(i) and Q(

√
−2) and for any integers r and s, there are topological group

isomorphisms
(AK,f )r × (A∗K,f )s ∼= (AL,f )r × (A∗L,f )s.

and
(AK)r × (A∗K)s ∼= (AL)r × (A∗L)s.
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On the other hand, we again have a “local” result (and Remark 2.7 also applies
in this case):

Proposition 2.11. Let K and L be number fields such that there is a bijection
ϕ : MK,f →ML,f with, for almost all places p, isomorphisms of topological groups
Φp : (K∗p , ·)

∼→ (L∗ϕ(p), ·). Then K and L are arithmetically equivalent.

Proof. From (2.1) and (2.2), for a given p lying above p ∈ Q, we find that

K∗p
∼= Z×K∗p × Z

[Kp:Qp]
p × µp∞(Kp).

Dividing out by the torsion elements yields

K∗p/K
∗
p,tors

∼= Z× Z
[Kp:Qp]
p .

Hence, Φp will induce a map

Φ′p : K∗p/K
∗
p,tors

∼→ L∗ϕ(p)/L
∗
ϕ(p),tors

which equals
Φ′p : Z× Z

[Kp:Qp]
p

∼→ Z× Z
[Lϕ(p):Qq ]
q

where q ∈ Q is the rational prime below ϕ(p). Now we form the quotient

(Z× Z
[Kp:Qp]
p )/p · (Z× Z

[Kp:Qp]
p ) ∼= Z/pZ× (Z/pZ)[Kp:Qp] (2.3)

which, under Φ′p, will map isomorphically onto

(Z× Z
[Lϕ(p):Qq ]
q )/p · (Z× Z

[Lϕ(p):Qq ]
q ) =

{
Z/pZ× (Z/qZ)[Lϕ(p):Qq ] if p = q

Z/pZ if p 6= q
.

(2.4)
Thus, from comparing the right hand sides of equations (2.3) and (2.4), a counting
argument shows that we must have p = q and [Kp : Qp] = [Lϕ(p) : Qp]. For all but
finitely many primes, the extensions Kp/Qp and Lϕ(p)/Qp are unramified. Hence,
we find that the bijection ϕ matches the decomposition types of all but finitely many
primes. This implies that K and L are arithmetically equivalent.
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CHAPTER 3

Adelic points on algebraic groups

In this chapter, we prove the following theorem.

Theorem 3.1. LetK and L be two number fields, and letG denote a linear algebraic
group over Q which is fertile for K and L. There is a topological group isomor-
phism of finite-adelic point groups G(AK,f ) ∼= G(AL,f ) if and only if there is a
topological ring isomorphism AK

∼= AL.

Fertility for linear algebraic groups over number fields is defined in Definition 3.4,
and discussed further below.

Remark 3.2. Suppose that K and L are Galois over Q. By Proposition 2.3(iii),
Theorem 3.1 then says that there is a topological group isomorphism of finite-adelic
point groups G(AK,f ) ∼= G(AL,f ) if and only if K ∼= L.

3.1 Algebraic groups and fertility

First, we collect some notations and terminology from the theory of algebraic groups,
and we elaborate on the notion of a group being fertile for a pair of number fields.

Algebraic groups

Notation/Definitions 3.3. LetG denote a linear (viz., affine) algebraic group over Q.
We denote the multiplicative group by Gm and the additive group by Ga. An n-
dimensional torus T is a linear algebraic group which is isomorphic, over Q, to Gr

m,
for some integer r, called the rank of T . When T is an algebraic subgroup of G and
moreover a maximal torus inside G, then the rank of G is r as well. Suppose that
a maximal torus splits over a field F/Q, meaning that there exists an isomorphism
T ∼= Gr

m defined over F . All maximal F -split tori ofG areG(F )-conjugate (cf. [17,
Theorem 4.2.1] and [109, Theorem 15.2.6]) and have the same dimension, called
the (F -)rank of G. A subgroup U of G is unipotent if U(Q) consists of unipotent
elements. Every unipotent subgroup of G/Q splits over Q, meaning that it has a

This chapter is based on parts of the article [32], joint work with Gunther Cornelissen.
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composition series over Q in which every successive quotient is isomorphic to Ga.
Alternatively, it is isomorphic over Q to a subgroup of a group of strictly upper
triangular matrices. Any connected groupG that is not unipotent contains a nontrivial
torus. A Borel subgroup B of G is a maximal connected solvable subgroup of G.
If all successive quotients in the composition series of B over F are isomorphic
to Ga or Gm, then B is conjugate, over F , to a subgroup of an upper triangular
matrix group, by the Lie-Kolchin theorem. Moreover, over F , for some split maximal
torus T and maximal unipotent group U , we can write B ∼= T n U as a semi-
direct product induced by the adjoint representation ρ : T → Aut(U) (i.e., by the
conjugation action of T on U ). Furthermore, given U , B is the normaliser of U in
G, and T ∼= B/U .

Definition 3.4. We call a linear algebraic group G over Q fertile for a number field
K if there exists a BorelK-subgroupB ofGwhich is split overK, i.e.,B ∼=K TnU
for T 6= {1} a K-split maximal torus and U 6= {0} a maximal unipotent group, such
that T acts nontrivially (by conjugation) on the abelianisation Uab of U .

The following equivalent definition was pointed out to us by Wilberd van der Kallen:

Proposition 3.5. G is fertile over K if and only if it contains a K-split maximal
torus, and the connected component of the identity G0 is not a direct product of a
torus and a unipotent group.

Proof. Indeed, supposeG is fertile in the sense of Definition 3.4. Since Borel groups
are connected, the identity component G0 contains a Borel group, which is not a di-
rect product of a torus and a unipotent group because all Borel subgroups are conju-
gate over K, hence neither is G0.

Conversely, suppose G0 is not a direct product T × U . There is a short exact
sequence of algebraic groups

1→ Ru(G)→ G0 → S → 1

where Ru(G) is the unipotent radical of G and S is a reductive group. Moreover, we
may assume that S is a torus. Otherwise, S would contain a Borel group B whose
abelian unipotent group Uab contains a nontrivial eigenspace for the maximal torus
T ⊂ B. This eigenspace lifts to a nontrivial eigenspace inside Uab, so G is fertile in
the sense of Definition 3.4.

Thus, we may assume G0 is itself a Borel subgroup (since it is solvable and con-
nected, and maximal for these properties) with torus S = T and unipotent subgroup
U = Ru(G), and consider the short exact sequence

1→ U → B → T → 1. (3.1)
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Now we claim that T acts nontrivially on U if and only if T acts nontrivially on
Uab, which will finish the proof. Necessity is clear. For the converse, let {Ui}i
be the lower central series for U , i.e. U0 = U and Ui = [U,Ui−1] for all i ≥ 1.
Let Un be the last nontrivial subgroup occurring in this series. Then in particular
Un ⊆ Z(U). Since T acts by conjugation, it preserves the lower central series.
Furthermore, suppose that T acts trivially on Uab = U/U1. We will show that T
then acts trivially on U .
In fact, if T acts trivially on some U/Uj−1 with j ≥ 2, then T also acts trivially
on U/Uj . Indeed, T acts trivially on the subgroup Uj−2/Uj−1 ≤ U/Uj−1. The
commutator map [·, ·] : U × Uj−2 → Uj−1 factors through to give a surjective map

[·, ·] : U/Uj−1 × Uj−2/Uj−1 → Uj−1/Uj .

Hence, T acts trivially on Uj−1/Uj . Now consider the short exact sequence

1→ Uj−1/Uj → U/Uj → U/Uj−1 → 1.

Since T acts trivially on both Uj−1/Uj and U/Uj−1, we find that T acts trivially on
U/Uj , as required.
Since Uk = {0} for k > n, we have U/Uk = U for such k. But by the above, T acts
trivially on U/Uk = U , since it acts trivially on U/U1, by assumption.

Examples 3.6.

(i) Tori and unipotent groups are not fertile for any K, and neither are direct
product of such groups.

(ii) The general linear group GL(n) for n ≥ 2 is fertile for any K. Here, T is
the group of diagonal matrices, split over Q, which acts nontrivially on the
group of strictly upper triangular matrices. Similarly, the Borel group of (non-
strictly) upper triangular matrices is fertile.

(iii) Let G = ResFQ(GmnGa) denote the “ax+ b”-group of a number field F , as
an algebraic group over Q. This group is fertile for any number field K that
contains F .

Adelic point groups

Definition 3.7. Let G denote a linear algebraic group over Q and let K a number
field with adele ring AK . As described in [81, Section 3] (compare [67]) we may use
any of the following equivalent definitions for the group of adelic points of G over
K (also called the adelic point group), denoted G(AK):
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1. Since AK is a Q-algebra, G(AK) is its scheme theoretic set of points.

2. Let S be a suitable finite set of places of Q, including the archimedean place,
and let G be a smooth separated group scheme of finite type over the S-integers
ZS , whose generic fibre is G. Then

G(AK) = lim
−→
S′⊃S

∏
p∈S′

G(Kp)×
∏
p/∈S′

G (Op)

where S′ runs over subsets of MK,f that contain divisors of primes in S.

3. Choose a Q-isomorphism ϕ : G ↪→ AN of G onto a closed subvariety of a
suitable affine space AN . For every p ∈ MK,f , we define G(Op) to be the set
of points x ∈ G(Kp) for which ϕ(x) ∈ ON

p . Then G(AK) is the restricted
product

G(AK) =
∏

p∈MK,f

′
(G(Kp), G(Op)))×

∏
p∈MK,∞

G(Kp).

The second and third definitions immediately provide G(AK) with a topology in-
duced from the p-adic topologies. Also, the algebraic group law on G induces a
topological group structure on G(AK). The definitions are, up to isomorphism, in-
dependent of the choices of S, G and ϕ.

We define the finite-adelic point group G(AK,f ) completely analogously.

Remark 3.8. In Chapter 2, we considered the group of adelic points on Ga and Gm.

3.2 Divisibility and unipotency

In this section, we show how to characterise maximal unipotent point groups inside
finite-adelic point groups in a purely group theoretic fashion, using divisibility. This
is used later to deduce an isomorphism of unipotent point groups from an isomor-
phism of ambient point groups.

Definition 3.9. If H is a subgroup of a group G, an element h ∈ H is called divisible
in G if for every integer n ∈ Z>0, there exists an element g ∈ G such that h = gn.
The subgroup H ≤ G is called divisible (in G) if all of its elements are divisible in
G.

Proposition 3.10. Suppose that G is fertile for K. Let U be a maximal unipotent
algebraic subgroup of G. Then any maximal divisible subgroup of G(AK,f ) is con-
jugate to U(AK,f ) in G(AK,f ).
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Proof. We fix an embedding G ↪→ GLN throughout, and consider elements of G as
matrices. We start the proof with a sequence of lemmas about the local case. Fix a
place p ∈MK,f .

Lemma 3.11. All divisible elements of G(Kp) are unipotent.

Proof. Let v denote a divisible element of G(Kp), and, for each n ∈ Z>0, let wn ∈
G(Kp) satisfy wnn = v for n ∈ Z>0. The splitting field Ln of the characteristic
polynomial of wn (seen as N × N -matrix) has bounded degree [Ln : K] ≤ N !.
Since by Krasner’s Lemma (e.g. [80, 8.1.6]), there are only finitely many extensions
of Kp of bounded degree, the compositum L of all Ln is a discretely valued field, in
which all the eigenvalues λi of v are n-th powers (namely, of eigenvalues of wn) for
all integers n. Since L is non-archimedean,⋂

n≥1

Ln = {1},

by discreteness of the absolute value and the structure of O∗H as described in the proof
of Proposition 2.8. We conclude that all eigenvalues of v are 1 and v is unipotent.

Remark 3.12. The lemma (and hence the proposition) is not true for archimedean
places. To give an example at a real place, the rotation group SO(2,R) ⊆ SL(2,R)
is divisible but contains non-unipotent elements.

Lemma 3.13. The group U(Kp) is divisible in G(Kp).

Proof. Since all Kp are fields of characteristic zero, the exponential map

exp: N→ U(Kp)

from the nilpotent Lie algebra N of U(Kp) to U(Kp) is an isomorphism (cf. [75,
Theorem 6.5]). For an integer n ∈ Z>0 and an element n ∈ N,

exp(nn) = exp(n)n

by the Baker-Campbell-Hausdorff formula, since multiples of the same n commute,
so that (multiplicative) divisibility in the unipotent algebraic group corresponds to
(additive) divisibility in the nilpotent Lie algebra N. Since the latter is a Kp-vector
space and any integer n is invertible in Kp, we find the result.

We will also need the following global version:

Lemma 3.14. The group U(AK,f ) is divisible in G(AK,f ).
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Proof. Let v = (vp)p ∈ U(AK,f ), n ∈ Z≥0, and for every p ∈ MK,f , let wp ∈
U(Kp) be such that wnp = vp (which exists by the previous lemma). We claim that
wp ∈ U(Op) for all but finitely many p, which shows that w = (wp)p ∈ U(AK,f )
and proves the lemma. Indeed, it suffices to prove that wp ∈ GLN (Op) for all but
finitely many p. This follows from the Taylor series

wp = n

√
1 + (vp − 1) =

∞∑
k=0

(
1/n

k

)
(vp − 1)k,

which is a finite sum since vp−1 is nilpotent, by noting that for fixed n, the binomial
coefficients introduce denominators at only finitely many places.

Lemma 3.15. Any maximal divisible subgroup of G(Kp) is conjugate to U(Kp) in
G(Kp).

Proof. Let D denote a maximal divisible subgroup of G(Kp). By Lemma 3.11, it
consists of unipotent elements. Since unipotency is defined by polynomial equations
in the affine space of N ×N matrices, the Zariski closure of D in GKp is a unipotent
algebraic subgroup U ′ of GKp . Moreover, Lemma 3.13 implies that U(Kp) consists
of divisible elements, so by maximality of D, we find that U ′ is a maximal unipotent
algebraic subgroup of GKp . Theorem 8.2 of Borel-Tits [17] implies that there exists
an element γp ∈ G(Kp) such that γpU ′γ−1

p = U , for U any chosen maximal unipo-
tent subgroup of G. Hence, γpDγ−1

p ⊆ U(Kp). Since γ−1
p U(Kp)γp is maximal

divisible, the result follows.

We could not find a proof for the following result in the literature, so we include
one inspired by an answer by Bhargav Bhatt on mathoverflow.net/a/2231:

Lemma 3.16. Let B ⊂ G denote a K-split Borel subgroup of G and let B ⊂ G
denote any corresponding inclusion of smooth finite-type separated group schemes
over the ring of S-integers ZS for a suitable finite set of primes S, so that the generic
fibre of B is B and that of G is G. Then for p ∈MK,f not dividing any prime in S,
we have

G(Kp) = B(Kp)G (Op).

Proof. It suffices to show that

G(Kp)/B(Kp) = G (Op)/B(Op). (3.2)

We will prove this by arguing that both sides of (3.2) equal (G /B)(Op).
First consider the long exact sequence in fppf-cohomology associated to the exact

sequence
1→ B → G → G /B → 1
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of smooth group schemes (cf. [90, p. 151-152 and Theorem 6.5.10]), over M = Kp

or M = Op:

1→ B(M)→ G (M)→ (G /B)(M)→ H1(M,B)→ . . .

To rewrite the left hand side of (3.2), we take M = Kp, so we are dealing with
Gal(Kp/Kp)-cohomology. Recall from equation (3.1) that we have a short exact
sequence

1→ U → B → T → 1,

for U a unipotent group and T a maximal K-split torus. This induces a long exact
sequence

1→ U(Kp)→ B(Kp)→ T (Kp)→ H1(Kp, U)→ H1(Kp, B)→ H1(Kp, T )

→ . . . .

Since T is split over K, hence split (and a fortiori quasisplit) over Kp, and Kp is a
perfect field, applying [89, Lemma 2.4] yields H1(Kp, T ) = 1. Moreover, since
Kp has characteristic zero, H1(Kp, U) = 1 by [89, Lemma 2.7]. Thus, we find that

H1(Kp, B) = 1.

Hence,
G(Kp)/B(Kp) = (G/B)(Kp).

Since G/B is projective, it follows from the valuative criterion of properness that

(G/B)(Kp) = (G /B)(Op).

For the right hand side of (3.2), we set M = Op and argue as in Step 3 of
[90, Theorem 6.5.12]: H1(Op,B) classifies B-torsors over Op; let T → Spec Op

denote such a torsor. By Lang’s theorem, its special fibre Tp → SpecFp over the
finite residue field Fp has a rational point. Since B smooth, so is T , so we can lift
the rational point by Hensel’s Lemma. Hence, T is also trivial. We conclude that
H1(Op,B) = 1, so

(G /B)(Op) = G (Op)/B(Op)

as claimed.

To finish the proof of the proposition, let D denote a maximal divisible subgroup
of G(AK,f ) and let Dp = D ∩ G(Kp) be its local component for p ∈ MK,f . Let
γp ∈ G(Kp) be as in Lemma 3.16, i.e., such that γpDpγ

−1
p = U(Kp). Let B =

NG(U) be a Borel subgroup containing U ; we may choose these such that B is a
split Borel K-subgroup of G. Lemma 3.16 implies that for all but finitely many p,
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we may replace γp by an element in G (Op), which we again denote by γp for ease of
notation. This way, we find γ =

∏
p∈MK,f

γp ∈ G(AK,f ) with

D ⊆ γ−1
∏

U(Kp)γ ∩G(AK,f ) = γ−1U(AK,f )γ ⊆ D,

where the last inclusion holds by Lemma 3.14.

3.3 Proof of Theorem 3.1

We now turn to the proof of Theorem 3.1.

Proof. Let G := G(AK,f ) as a topological group. We will apply a purely group
theoretic construction to G, to end up with the adele ring AK ; this shows that the
isomorphism type of the adele ring is determined by the topological group G. Let
D denote a maximal divisible subgroup of G. Consider the normaliser N := NGD
of D in G. Let V := [N,D]/[D,D] ≤ Dab, and let T := N/D. Note that T acts
naturally on V by conjugation. Since V is locally compact Hausdorff, we can give
EndV, the endomorphisms of the abelian group V, the compact-open topology.

Proposition 3.17. There exists an integer ` ≥ 1 such that there is a topological ring
isomorphism

Z(EndTV) ∼= A`
K,f ,

where the left hand side is the centre of the ring of continuous endomorphisms of the
T-module V.

Proof of Proposition 3.17. First, we relate the subgroups of G to points groups of al-
gebraic subgroups of G. From Proposition 3.10, we may assume that D = U(AK,f )
for a fixed maximal unipotent algebraic subgroup of G. The normaliser of U in G as
an algebraic group is a Borel groupB inside the fertile groupG (Theorem of Cheval-
ley, e.g. [16], 11.16); again, we choose U such that B is split over K. Since taking
points and taking normalisers commute ([74], Proposition 6.3), we obtain that

N = NGD = NG(AK,f )U(AK,f ) = (NGU)(AK,f ) = B(AK,f ).

and T ∼= T (AK,f ) for T any maximal torus in B, which is K-split by assumption.
Next, we analyse the action of T on V, knowing the action of T on U . The

hypothesis that T splits over K implies that T ∼= Gr
m over K for some r. The

adjoint action of T by conjugation on U maps commutators to commutators, so it
induces an action on the abelianisation Uab, and we can consider the linear adjoint
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action ρ : T → Aut(Uab) over K. Note that Uab ∼= Gk
a for some integer k, so we

have an action over K

ρ : T (∼= Gr
m)→ Aut(Gk

a) = GL(k), (3.3)

which is diagonalisable over K as a direct sum ρ = ⊕χi of k characters χi ∈
HomK(T,Gm) of algebraic groups. In coordinates t = (t1, . . . , tr) ∈ Gr

m = T ,
any such character is of the form

χ(t) = χ(t1, . . . , tr) = tn1
1 · . . . · t

nr
r (3.4)

for some n1, . . . , nr ∈ Z. Since the action of T on V is given by specialisation from
the action of T on a subspace of Uab, we find an isomorphism of T-modules

V ∼=
⊕̀
i=1

Aµi
K,f,χi

,

where χi (i = 1, . . . `) are the distinct nontrivial characters that occur in V, µi is
the multiplicity of χi in V, and AK,f,χi is the T-module AK,f where T acts via χi.
Hence,

EndTV =
∏̀
i=1

∏̀
j=1

Matµj×µi
(
HomT(AK,f,χi ,AK,f,χj )

)
. (3.5)

The assumption of fertility means precisely that ` ≥ 1.

Lemma 3.18. If χi and χj are nontrivial characters occurring in the above decom-
position, then there is a topological ring isomorphism

HomT(AK,f,χi ,AK,f,χj )
∼=

{
AK,f if χi = χj

{0} otherwise .

Proof. A homomorphism between additive groups f : (AK,f,χi ,+)→ (AK,f,χj ,+)
is T-equivariant precisely if f(χi(t)(u)) = χj(t)f(u) for all t ∈ T and u ∈ AK,f .
The χ are specialisations of algebraic characters as in (3.4), and some powers are
nonzero by the assumption of fertility. If χi 6= χj , this means that

f(tnu) = tmf(u), ∀t ∈ A∗K,f , ∀u ∈ AK,f (3.6)

for some n,m > 0, n 6= m, which is impossible unless f = 0: indeed, choose
t ∈ Z>0; then the equation says that tnf(u) = tmf(u) for any u, so m = n. So we
must have χi = χj , and we find that

f(tnu) = tnf(u),∀t ∈ A∗K,f , ∀u ∈ AK,f (3.7)
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for some n > 0.
We now reinterpret a formula of Siegel [106, p. 134] as saying the following:

Let R denote a ring and n a positive integer such that n! is invertible in R. Then any
element of R belongs to the Z-linear span of the n-th powers in R. In particular, we
have the following explicit formula for any z ∈ R:

z =
n−1∑
k=0

(−1)n−k−1

(
n− 1

k

){( z
n!

+ k
)n
− kn

}
.

Applied to R = AK,f , in which n! is invertible, Siegel’s formula expresses any
element of AK,f as Z-linear combination of n-th powers in AK,f . We conclude
from (3.7) and additivity of f that

f(tu) = tf(u),∀t ∈ A∗K,f , ∀u ∈ AK,f . (3.8)

Hence, f(t) = tf(1) is completely determined by specifying a value for f(1) ∈
AK,f , and

EndT(AK,f,χ)→ AK,f : f 7→ f(1)

is the required ring isomorphism. It is continuous, since evaluation maps (such as this
one) are continuous in the compact-open topology on EndT(AK,f,χ). The inverse
map is α 7→ (x 7→ αx), which is also continuous in the finite-adelic topology on
AK,f . Hence, we find an isomorphism of topological groups, as required.

To finish the proof of Proposition 3.17, combine Lemma 3.18 with equation (3.5)
and construct the centre:

Z (EndTV) = Z

(∏̀
i=0

Mµi (AK,f )

)
= A`

K,f .

If R is a ring, let M (R) denote its set of principal maximal ideals. Observe that
M (R`) = M (R)×Z/`Z, since a maximal ideal inR` is of the formR`1×m×R`2
for some maximal ideal m of R and a decomposition ` = `1 + `2 + 1. Now we
recall the description of the principal maximal ideals in an adele ring AK,f as given
by Iwasawa and Lochter ([65, Satz 8.6] and [48, p. 340–342], cf. [57, VI.2.4]):

M (AK,f ) = {mp = ker (AK,f → Kp)}.

Note that AK,f/mp
∼= Kp. Hence the multiset

{A`
K,f/m : m ∈M (A`

K,f )}
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contains a copy of the local field Kp exactly `rp times, where rp is the number of
local fields of K isomorphic to Kp. Thus, we have constructed the multiset of local
fields

{Kp : p ∈MK,f}

of K, up to isomorphism of local fields.
Now ifK and L are two number fields withG(AK,f ) ∼= G(AL,f ) as topological

groups, then these multisets are in bijection, i.e., there exists a bijection of places
ϕ : MK,f → ML,f such that Kp

∼= Lϕ(p) for all p ∈ MK,f . Hence K and L
are locally isomorphic (in the sense of Section 2.1), and we find ring isomorphisms
AK,f

∼= AL,f and AK
∼= AL, by Proposition 2.3.

For the reverse implication AK
∼= AL ⇒ G(AK,f ) ∼= G(AL,f ), we use that

a topological ring isomorphism AK
∼= AL implies the existence of topological iso-

morphisms Φp : Kp
∼= Lϕ(p) of local fields for some bijection of places ϕ : MK,f →

ML,f (again by Proposition 2.3). The fact that all Φp are homeomorphisms implies
in particular that Φp(OK,p) = OL,ϕ(p) for all p. Now G(AK,f ) ∼= G(AL,f ) is im-
mediate from the definition of finite-adelic point groups (with topology) in 3.7(2) or,
equivalently, 3.7(3). This finishes the proof of Theorem 3.1.

3.4 Discussion

One may wonder in what exact generality Theorem 3.1 holds.

1. The theorem does not hold for all linear algebraic groups; e.g., it does not hold
for G = Gr

a ×Gs
m. Is it possible to characterise precisely the linear algebraic

groups for which G(AK) ∼= G(AL) implies AK
∼= AL?

2. What happens if G is not a linear algebraic group, but any algebraic group? It
follows from Chevalley’s structure theorem that such G have a unique maxi-
mal linear subgroup H; can we deduce H(AK) ∼= H(AL) from G(AK) ∼=
G(AL)?

3. What happens if there is no linear part, i.e., G is an abelian variety, e.g., an
elliptic curve? For every number field, is there a sufficiently interesting elliptic
curve E/Q such that E(AK) determines all localisations of K?

4. Is the theorem true without imposing that a maximal torus T of G splits over
K and L?

5. What happens over global fields of positive characteristic?
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CHAPTER 4

Hecke algebras over global and local fields

Throughout this chapter, G/Q will denote a linear algebraic group. Moreover, K
will be either a number field, or a non-archimedean local field of characteristic zero.

4.1 Hecke algebras

Finite-adelic Hecke algebras

Let K/Q be a number field. Recall that we defined the adelic (resp. finite-adelic)
point groups G(AK) (resp. G(AK,f )) in Definition 3.7.

Definition 4.1. Because AK,f is locally compact, GK := G(AK,f ) is a locally
compact topological group for the topology described in Definition 3.7. Hence, it is
equipped with a (left) invariant Haar measure µGK

. The finite-adelic (real) Hecke
algebra HG(K) = C∞c (GK ,R) ofG overK is the algebra of all real-valued locally
constant compactly supported functions Φ : GK → R with the convolution product

Φ1 ∗ Φ2 : g 7→
∫
GK

Φ1(gh−1)Φ2(h)dµGK
(h).

(Replacing R by C yields the finite-adelic complex Hecke algebra; the results in this
section also hold in the complex setting.)

Every element of HG(K) is a finite linear combination of characteristic functions
on double cosets KhK, for h ∈ GK and K a compact open subgroup of GK .
Alternatively, we may write

HG(K) = lim−→
K

H (GK//K),

where H (GK//K) is the Hecke algebra of K-biinvariant smooth functions on GK

(for example, if K is maximally compact, this is the spherical Hecke algebra).

This chapter is based on parts of the articles [54] and [32], the latter being joint work with Gunther
Cornelissen.

41



42 Hecke algebras over global and local fields

Local Hecke algebras

Now, let K a non-archimedean local field of characteristic zero, whose ring of inte-
gers is denoted by OK .

Definition 4.2. Since K is locally compact, G(K) is a locally compact topological
group, whose topology is induced by the topology of K. Its group structure is in-
duced by that of G. Moreover, it is equipped with a (left) invariant Haar measure
µG(K) which satisfies µG(K)(G(OK)) = 1.

Definition 4.3. The (local) Hecke algebra HG(K) = C∞c (G(K),C) of G over K
is the algebra of locally constant compactly supported complex-valued functions on
G(K), with the convolution product

Φ1 ∗ Φ2 : g 7→
∫
G(K)

Φ1(gh−1)Φ2(h)dµG(K)(h) (4.1)

for Φ1, Φ2 ∈HG(K).

4.2 L1-isomorphisms

Definition 4.4. Let G be a locally compact topological group equipped with a Haar
measure µG. We define an L1-norm on functions on G, through

||f ||1 =

∫
G
|f |dµG.

Then letL1(G) denote the group algebra, i.e., the algebra of real-valuedL1-functions
on G with respect to the Haar measure µG, under convolution.

(For example, G = G(K) for a linear algebraic group G and a non-archimedean
local field K of characteristic zero, or G = GK = G(AK,f ) for a linear algebraic
group G and a number field K/Q.)

Definition 4.5. Let K and L be either both number fields, or both non-archimedean
local fields of characteristic zero.

An isomorphism of Hecke algebras Ψ: HG(K)
∼→HG(L) which is an isometry

for the L1-norms arising from the Haar measures (i.e., which satisfies ||Ψ(f)||1 =
||f ||1 for all f ∈HG(K)) is called an L1-isomorphism. We will denote this by

HG(K) ∼=L1 HG(L).

The first main result in this section is the following theorem.
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Theorem 4.6. Let K and L be either both number fields, or both non-archimedean
local fields of characteristic zero.

Then there is an L1-isomorphism of finite-adelic, resp. local Hecke algebras
HG(K) ∼=L1 HG(L) if and only if there is an isomorphism{

G(AK,f ) ∼= G(AL,f ) if K,L are number fields
G(K) ∼= G(L) if K,L are local fields.

Proof. We will first prove the theorem for K and L number fields, and again write
GK = G(AK,f ) and GL = G(AL,f ).

The proof consists of two steps: first we show, using the Stone-Weierstrass theo-
rem, that the Hecke algebras are dense in the group algebras, and then we use results
on reconstructing a locally compact group from its group algebra due to Wendel.

Step 1: An isomorphism HG(K) ∼=L1 HG(L) implies thatL1(GK) ∼=L1 L1(GL).

By the locally compact real version of the Stone-Weierstrass theorem [43, 7.37(b)],
HG(K) is dense inC0(GK) for the sup-norm, whereC0(GK) denotes the functions
that vanish at infinity, i.e., such that |f(x)| < ε outside a compact subset of GK .
Indeed, one needs to check the nowhere vanishing and point separation properties
of the algebra. Since HG(K) contains the characteristic function of any compact
subset K ⊆ GK , the algebra vanishes nowhere, and the point separating property
follows since GK is Hausdorff.

A fortiori, HG(K) is dense in the compactly supported functions Cc(GK) for
the sup-norm, and hence also in the L1-norm. Now Cc(GK) is dense in L1(GK),
and the claim follows.

Step 2: An isometry L1(GK) ∼=L1 L1(GL) implies an isomorphism GK
∼= GL

Indeed, an L1-isometry HG(K) ∼=L1 HG(L) implies an L1-isometry of group alge-
bras L1(GK) ∼=L1 L1(GL). Hence the result follows from a theorem due to Wen-
del [127, Theorem 1], which says that an L1-isometry of group algebras of locally
compact topological groups is always induced by an isomorphism of the topological
groups.

The proof for local non-archimedean fields of characteristic zero is analogous, once
one replaces the real Stone-Weierstrass theorem by the complex version [43, 7.37(c)].
Moreover, both Step 1 and Step 2 of the proof go through for complex (finite-adelic)
Hecke algebras.

When K and L are number fields, and G is fertile for K and L (cf. Definition
3.4), Theorem 3.1 and Theorem 4.6 combine to prove the following result.
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Theorem 4.7. LetK and L be two number fields, and letG denote a linear algebraic
group over Q that is fertile for K and L. There is an L1-isomorphism of Hecke
algebras HG(K) ∼=L1 HG(L) if and only if there is a ring isomorphism AK

∼= AL.

Remark 4.8. When K and L are Galois over Q, Theorem 4.7 holds if and only if
K ∼= L, cf. Remark 3.2.

When K and L are local non-archimedean fields of characteristic zero, we only
consider G = GLn for some n ≥ 2. In this case, [82, Theorem 5.6.10] shows that
G(K) ∼= G(L) implies that K ∼= L. Hence, we immediately obtain the following
corollary of Theorem 4.6.

Corollary 4.9. Let K and L be two non-archimedean local fields of characteristic
zero and let G = GLn, n ≥ 2. Then there is an L1-isomorphism of local Hecke
algebras HG(K) ∼=L1 HG(L) if and only if there is a field isomorphismK ∼= L.

Remark 4.10. Instead of citing [82], we could also adapt the proof of Theorem 4.7
to local fields - note that GLn is fertile for all n ≥ 2.

4.3 Morita equivalences

In this section, let K and L be local non-archimedean fields of characteristic zero
and let G = GL2. We prove the following theorem.

Theorem 4.11. Let K and L be two non-archimedean local fields of characteristic
zero and let G = GL2. Then there is a Morita equivalence

HG(K) ∼M HG(L).

Remark 4.12. The Morita equivalence in Theorem 4.11 implies that the module
category of a Hecke algebra over a local field K is independent of K (up to iso-
morphism). By contrast, as soon as we impose the analytic condition of an L1-
isomorphism, Corollary 4.9 shows that the Hecke algebra for a local fieldK uniquely
determines K.

The proof of Theorem 4.11 will make use of the representation theory of p-adic
reductive groups, and the decomposition of the Hecke algebra into Bernstein blocks.
We start by collecting some preliminaries on these topics.
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Representation theory of GLn

We will write G = G(K) from now on, and study and classify representations
π : G→ V where V is a (possibly infinite-dimensional) complex vector space. More
details can be found in e.g. [13], [15].

Definition 4.13. The representation π : G→ V is called admissible if it satisfies the
following two conditions:

1. the stabiliser StabG(v) of any v ∈ V is an open subgroup of G,

2. for any open subgroup G′ ⊂ G(OK), the space

{v ∈ V : π(g′)v = v for all g′ ∈ G′}

is finite-dimensional.

Remark 4.14. A representation π as in Definition 4.13 is called smooth if it sat-
isfies only the first condition. Clearly, every admissible representations is smooth.
Proposition 2 of [15] (due to M.-F. Vignéras) shows that any smooth irreducible
complex representation is admissible. Hence, “smooth irreducible” and “admissible
irreducible” will be used interchangeably.

Definition 4.15. A representation π′ : HG(K)→ V is called admissible if it satisfies
the following two conditions:

1. for every v ∈ V , there is an element f ∈HG(K) such that π(f)v = v,

2. for every f ∈HG(K), we have dim(π(f)V ) <∞.

Smooth representations of G correspond to representations π′ for which V is a
nondegenerate HG(K)-module [12]. Analogously, admissible representations of G
correspond to admissible representations of HG(K) and vice-versa, see e.g. [122,
2.1.13].

Definition 4.16. A quasicharacter χ of K× is a continuous homomorphism

χ : K× → C∗.

It is called unramified if it is trivial on O×K . Any unramified quasicharacter is of the
form | · |z for some z ∈ C.

Lemma 4.17. [122, 2.1.18] Every irreducible admissible representation π which is
finite-dimensional is in fact one-dimensional and there exists a quasicharacter χ such
that π(g) = χ(det g) for all g ∈ G.
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Now we turn our attention to the infinite-dimensional representations.

Definition/Proposition 4.18. A parabolic subgroup P of G is such that G/P is
complete. Equivalently, P contains a Borel subgroup B. Parabolic subgroups are the
normalisers of their unipotent radicals, and every P is the semidirect product of this
unipotent radical and aK-closed reductive group L. This L is called a Levi subgroup
of P.

Remark 4.19. The proper parabolic subgroups of GLn(K) are the block upper tri-
angular matrices and their conjugates. For instance, when n = 2, these are precisely
the Borel subgroups, which are T n U with T a maximal torus and U a maximal
unipotent subgroup. That is, all the Levi subgroups in GL2(K) are the maximal tori,
i.e., the diagonal 2× 2 matrices.

Definition 4.20. Let τ be a smooth representation of a Levi subgroup L of a parabolic
subgroup P of G. After inflation, we may assume that τ is a representation of P.
The parabolic induction indG

P (τ), also denoted ρ(τ), is the space of locally constant
functions φ on G which satisfy

φ(pg) = δP (p)
1
2 τ(p)φ(g)

for all g ∈ G and p ∈ P. The normalising factor δP = ∆−1
P is the inverse of the

modular character ∆P which satisfies

∆P (diag(a1, . . . , an)) = |a1|1−n|a2|3−n . . . |an|n−1,

cf. [91, Ex. 2.6]. Parabolic induction preserves smoothness and admissibility but not
necessarily irreducibility.

Definition 4.21. We call an infinite-dimensional irreducible admissible representa-
tion π : G→ V (absolutely) cuspidal or supercuspidal if it is not a subquotient of a
representation that is parabolically induced from a proper parabolic subgroup of G.

Definition 4.22. Using the notation of [13], a partition (n1, . . . , nr) of n means a
partition of {1, 2, . . . , n} into segments

(1, . . . , n1), (n1 + 1, . . . , n1 + n2), . . . , (n1 + n2 + . . .+ nr−1 + 1, . . . , n)

of respective lengths ni. We will write (n1, . . . , nr) ⊥ n for such a partition.
For any ni appearing in a partition of n, write ∆i = {σi, σi| · |, . . . , σi| · |ni−1} for

i = 1, . . . , r and σi an irreducible supercuspidal representation of GLni(K). The ∆i

are also called segments, and we say that ∆i precedes ∆j if ∆i 6⊂ ∆j and ∆j 6⊂ ∆i,
if ∆i ∪∆j is also a segment, and σi = σj | · |k for some k > 0.



Morita equivalences 47

Now compare Definition 4.21 with the following result (cf. [132, Theorem 6.1],
[13, Corollary 3.27] and [91, pp. 189-190]).

Theorem 4.23. For any partition (n1, . . . , nr) of n and a choice of segments so that
∆i and ∆i+1 (i = 1, . . . , r) do not precede each other, there exists a corresponding
induced representation, denoted indG

P (σ1 . . . ⊗ σr), whose unique irreducible quo-
tient is an irreducible admissible representation of G. Any irreducible admissible
representation of G is equivalent to such a quotient representation.

Hence, supercuspidal representations can be viewed as the building blocks of
admissible representations of G. This concludes the classification of admissible rep-
resentations of G.

Remark 4.24. Let now n = 2, so that G = GL2 and G = GL2(K). Every infinite-
dimensional irreducible admissible representation π which is not supercuspidal is
then contained in ρ(µ1, µ2) for some quasicharacters µ1, µ2 of K. If µ1µ

−1
2 6= | · |±1

then ρ(µ1, µ2) and ρ(µ2, µ1) are equivalent and irreducible. We call a representation
of this kind a (non-special) principal series representation.

If ρ(µ1, µ2) is reducible, it has a unique finite-dimensional constituent, and a
unique infinite-dimensional constituent Bs(µ1, µ2), also called a special represen-
tation. For special representations, there exists a quasicharacter χ such that µ1 =

χ| · |−
1
2 and µ2 = χ| · |

1
2 . Moreover, all special representations are twists of the

so-called Steinberg representation StG of G by quasicharacters χ ◦ det.
Summarising, any irreducible admissible representation π : G→ V satisfies one

of the following:

(1): it is absolutely cuspidal;

(2): it is a principal series representation π(µ1, µ2) for some quasicharacters µ1, µ2;

(3): it is a special representation σ(µ1, µ2) for some quasicharacters µ1, µ2;

(4): it is finite-dimensional and of the form π = χ ◦det for some quasicharacter χ.

More details on GL2 can be found in e.g. [50], [23].

Bernstein decomposition

We will introduce the Bernstein decomposition, using [25] and [12] as our main
references. Let G = GLn(K) as before.

Definition 4.25. Let L be a Levi subgroup of some parabolic P inside G and let σ
be an irreducible cuspidal representation of L. We define the inertial class [L, σ]L of
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(L, σ) in L to be all the cuspidal representations σ′ of L such that σ ∼= σ′χ for χ an
unramified character of L. Similarly, the inertial equivalence class [L, σ]G consists
of all pairs (L′, σ′) which are G-conjugate to (L, σ), meaning that there exist g ∈ G
and an unramified character χ of L′ such that L′ = g−1 L g and σg ∼= σ′χ, [25, p.
588]. Let B(G) be the set of all inertial equivalence classes in G.

We need the following refinement of Theorem 4.23.

Theorem 4.26. For every smooth irreducible representation (π, V ) of G there exists
a parabolic P in G with Levi subgroup L, and an irreducible supercuspidal represen-
tation σ of L, such that (π, V ) is equivalent to a subquotient of the parabolic induc-
tion IndG

P (σ) [49]. The pair (L, σ) is determined up to conjugacy; the corresponding
inertial class s = [L, σ]G is unique ([12, Le “centre” de Bernstein, 2.6-2.10], cf. also
[29]).

Definition 4.27. The pair (L, σ) in the previous theorem is called the cuspidal sup-
port of (π, V ); the corresponding inertial class s = [L, σ]G is called the inertial
support of (π, V ).

Lemma 4.28. [12, Le “centre” de Bernstein, Prop. 2.10] Denote by R(G) the
category of smooth representations (π, V ) of G and by Rs(G) the full subcategory,
whose objects are such that the inertial support of all their respective irreducible G-
subquotients is s. Then there is a direct product decomposition of categories

R(G) =
∏

s∈B(G)

Rs(G).

Corollary 4.29. Let H s
G(K) be the two-sided ideal of HG(K) corresponding to all

smooth representations (π, V ) of G of inertial support s = [L, σ]G. That is, H s
G(K)

is the unique and maximal G-subspace of HG(K) lying in Rs(G). We call H s
G(K)

a Bernstein block.

Definition 4.30. The Hecke algebra HG(K) has a Bernstein decomposition

HG(K) =
⊕

s∈B(G)

H s
G(K).

Definition 4.31. Let (ρ,W ) be a smooth representation of a compact open subgroup
K of G, whose contragredient representation is denoted (ρ̌, W̌ ).
The ρ-spherical Hecke algebra H (G, ρ) is the unital associative C-algebra of finite
type, consisting of compactly supported functions f : G → EndC(W̌ ) satisfying
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f(k1gk2) = ρ̌(k1)f(g)ρ̌(k2) for all g ∈ G, k1, k2 ∈ K. It is also called the inter-
twining algebra, since

H (G, ρ) ∼= EndG(indG
K(ρ))

by [25, 2.6], where ind denotes compact induction.

Proposition 4.32. [25, Prop. 5.6] Every H s
G(K) is a non-commutative, non-unital,

non-finitely generated non-reduced C-algebra, which is Morita equivalent to some
intertwining algebra H (G, ρ).

Sketch of proof. For every equivalence class s there exist a compact open subgroup
K of G, a smooth representation (ρ,W ) of K and an idempotent element eρ ∈
HG(K) (cf. (2.9) of [25]) which satisfies

eρ(x) =

{
dim(ρ)
µG(K)trW (ρ(x−1)) if x ∈ K

0 if x ∈ G, x 6∈ K
,

such that
H s
G(K) = HG(K) ∗ eρ ∗HG(K).

There is a Morita equivalence (cf. [11, Lemma 2])

HG(K) ∗ eρ ∗HG(K) ∼M eρ ∗HG(K) ∗ eρ

and the latter is proven in [25, 2.12] to be isomorphic as a unital C-algebra to

eρ ∗HG(K) ∗ eρ ∼= H (G, ρ)⊗C EndC(W ) (4.2)

where H (G, ρ) is as in Definition 4.31. In particular, there is a Morita equivalence

H s
G(K) ∼M H (G, ρ), (4.3)

i.e., the categories of modules over the left resp. right hand side of (4.3) are equiva-
lent.

Proof of Theorem 4.11

Definition 4.33. The (extended) affine Weyl group of GLn is W̃n
∼= Sn nZn, where

the symmetric group Sn acts by permuting the factors of Zn. We denote its group
algebra by

C[W̃n] = C[Sn n Zn].
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In this section, we will prove the following result, which immediately implies Theo-
rem 4.11.

Theorem 4.34. Let K be a non-archimedean local field of characteristic zero and
G = GL2. Then up to Morita equivalence, the Bernstein decomposition of HG(K)
is always of the form

HGL2(K) ∼M
⊕
N

(
C[T, T−1]⊕C[X,X−1, Y, Y −1]⊕ C[S, T, T−1]

〈S2 − 1, T 2S − ST 2〉

)
.

(4.4)
In particular, if K and L are any two non-archimedean local fields of characteristic
zero, then

HG(K) ∼M HG(L).

Proof. By Theorem 4.23, every irreducible representation of G is a subquotient of a
parabolically induced representation indG

P (σ1 . . .⊗ σr), where the σi are irreducible
supercuspidal representations of GLni and (n1, . . . , nr) is a partition of n, so that
consecutive segments do not precede each other. Note that ni is the multiplicity of
σi in the tensor product, so that ni = 1 or 2 always.

Proposition 4.32 implies that to determine the corresponding Bernstein blocks
H s
G(K) of the Hecke algebra up to Morita equivalence, it suffices to determine all

intertwining algebras H (G, ρ) that occur. To do this, we need the following defini-
tion.

Definition 4.35. [24, 5.4.6] Let m ∈ Z>0 and r ∈ C×. The affine Hecke algebra
H (m, r) is the associative unital C-algebra generated by elements Si (for 1 ≤ i ≤
m− 1), T , T−1, satisfying the following relations:

1. (Si + 1)(Si − r) = 0 for 1 ≤ i ≤ m− 1,

2. T 2S1 = Sm−1T
2,

3. TSi = Si−1T for 2 ≤ i ≤ m− 1,

4. SiSi+1Si = Si+1SiSi+1 for 1 ≤ i ≤ m− 2,

5. SiSj = SjSi for 1 ≤ i, j ≤ m− 1 such that |i− j| ≥ 2.

Note that whenm = 1, we have H (1, r) ∼= C[T, T−1] for any value of r. Moreover,
note that when m ≤ 2, relations (3),(4) and (5) are vacuous.

By the Main Theorem of [26], the intertwining algebra corresponding to
indG

P (σ1⊗ . . . ⊗ σr) is isomorphic to the tensor product ⊗ri=1H (ni, q
ki) of affine

Hecke algebras, where ni ≤ 2 since n = 2. Here, q is the size of the residue field
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of K, while ki is the so-called torsion number of σi, cf. [11, p.22]. In particular,
qki 6= −1 always. A priori, the Hecke algebra H (2, qki) depends on qki . However,
we now prove the following.

Lemma 4.36. For any r 6= −1, there is an algebra isomorphism H (2, r) ∼= C[W̃2].

Proof. First let r = 1. Let $ be a uniformiser of K. Since $ is not a root of unity,
we may alternatively (cf. [24, pp. 177–178]) write W̃2 = 〈Π〉nW , where

Π =

(
0 1
$ 0

)
,

and W is generated by

s1 =

(
0 1
1 0

)
.

We may check that s1 has order 2 and that sending S1 7→ s1, and T 7→ Π (and
T−1 7→ Π−1) yields an algebra isomorphism H (2, 1)→ C[W̃2].

Now let r ∈ C× \ {−1} and let (cf. [128, p. 113])

s1 =

(
q + 1

2
s1 +

q − 1

2

)
∈ C[W̃2].

Then relation (2),
Π2s1 = s1Π2

still holds. Hence, the map S1 7→ s1, and T 7→ Π (and T−1 7→ Π−1) determines an
algebra isomorphism H (2, q)→ C[W̃2], for any r other than r = −1.

It follows that the intertwining algebra for the partition (n1, . . . , nr) of n, corre-
sponding to the representation indG

P (σ1⊗ . . . ⊗ σr), is isomorphic to the C-algebra
⊗ri=1C[W̃ni ].

Finally, we show that any such algebra ⊗ri=1C[W̃ni ] occurs countably infinitely
many times in the Bernstein decomposition. For this, we use the classification of
Remark 4.24. The reader may compare this to the explicit description of the inter-
twining algebras in [98, Example 3.13].

(1): A supercuspidal representation (π, V ) corresponds to an inertial class s =
[G, ρ]G where ρ is itself an irreducible supercuspidal representation. The cor-
responding intertwining algebra is H (G, ρ) ∼= H (1, q) ∼= C[T, T−1], for
q some power of p. The uncountably infinitely many equivalence classes in
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G of supercuspidal representations are indexed by characters of quadratic ex-
tensions of K, cf. [23, Theorem 20.2], so after dividing out by unramified
characters, we find uncountably many inertial equivalence classes.

(2): The principal series representations are constituents of representations of the
form indG

B(χ1, χ2) for a choice of Borel subgroup B of G and characters χ1

and χ2. Therefore, up to inertial equivalence, we find ρ(χ1| · |z, χ2| · |z
′
) =

indGB(χ1| · |z, χ2| · |z
′
) for some characters χ1 and χ2, and some values z, z′.

Non-special representations then correspond to a choice of χ1, χ2 such that
χ1χ

−1
2 6= | · |±1 (i.e. χ1 and χ2 are not inertially equivalent), or a choice of χ,

z, z′ such that |z − z′| 6= 1. The corresponding inertial class is s = [T, ρ]G,
where T is a maximal torus in B. For such ρ, we have H (G, ρ) ∼= H (1, q)⊗
H (1, q′) ∼= C[X,X−1, Y, Y −1], for q and q′ some powers of p.

We also see that the equivalence classes of these representations are indexed by
the characters of (O×K)2 modulo the action of S2, which is a countably infinite
group.

(3/4): A special representation is the infinite-dimensional irreducible subquotient
StGχ| · |z+

1
2 of the reducible representation ρ = ρ(χ| · |z+1, χ| · |z) for some χ

and z, and corresponds to s = [T, ρ]G. The finite-dimensional representations
appear as the finite-dimensional irreducible subquotients of the same ρ.

Hence, the corresponding inertial equivalence classes s are indexed by the
character group of O×K , which is countably infinite. The corresponding in-
tertwining algebras for both special and finite-dimensional representations are

H (2, q) ∼= C[W̃2] ∼= C[S, T, T−1]/〈S2 − 1, T 2S − ST 2〉.

This finishes the proof of Theorem 4.34 and hence of Theorem 4.11.

Discussion

The results in this section naturally inspire some further questions.

(i) (Generalisations of Theorem 4.11)

1. We have seen that for GL2, up to Morita equivalence, HG(K) does not
depend on K. Does the same hold up to algebra isomorphism?

2. An extension of the proof of Theorem 4.34 to GLn, n > 2, is obstructed
by the braid relations ((4) of Definition 4.35) among the generators of
the affine Hecke algebras. This is pointed out by Xi in [128, 11.7], where
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he proves that H (3, q) 6≡ C[W̃3] for q 6= 1. In fact, Yan proves in [130]
that any two affine Hecke algebras H (n, q) and H (n, q′) of type Ã2 are
not Morita equivalent when q′ 6= q and q′ 6= q−1.

3. One may still ask whether Theorem 4.34 also holds for other reductive
groupsG overK. It is known that the Hecke algebras of such groups also
admit a Bernstein decomposition. However, it is in general much harder
to determine the complex algebras that occur as intertwining algebras and
to show that these are independent of K. We would also want to have a
similar classification of the representation theory of such G.

(ii) (A global version of Theorem 4.34)
In the proof of Theorem 4.34, we have seen that the residual characteristic p of
K does not play a special role. Hence, If K is a number field and G = GLn,
n ≥ 2, we may consider the (adelic) Hecke algebra HG(K) as a restricted
tensor product of local Hecke algebras HG(Kv), with respect to the maximal
open compact subgroups G(Ov):

HG(K) = ⊗vHG(Kv),

cf. [50, Chapter 9] for G = GL2 and [21, p.320] for G = GLn. We know that
the module category of any HGL2(Kv) is independent of Kv (so in particular
independent of the residual characteristic of Kv). Hence, a natural question
would be to ask whether the module category of HGL2(K) is also indepen-
dent of K. We expect however that the restricted tensor product construction,
through the rings of integers Ov, does depend on K.

(iii) (An anabelian question)
Exactly which field invariants of K are determined by HG(K)?

(iv) (The L1-isomorphism condition in Theorem 7.5)
The condition that the isomorphism HG(K) ∼= HG(L) is an isometry for the
L1-norm is one which we would like to understand from a categorial view-
point. Does the L1-isomorphism type of (modules over) a Hecke algebra im-
pose analytic conditions on (certain classes of) the automorphic representa-
tions? Or can we relate the L1-isomorphism type of a Hecke algebra HG(K)
to the ramification filtration of the absolute Galois group GK?
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CHAPTER 5

Galois representations for abelian varieties

In this chapter, we present the structure theory of (general) symplectic groups and the
general theory of Galois representations attached to the `-torsion of abelian varieties,
as well as some results on Galois representations and realisations from the literature,
and geometric preliminaries, which will be used in Chapters 6 and 7.

5.1 Structure theory of GSp

Definition 5.1. Let V be an F`-vector space of dimension 2g, which is endowed
with a symplectic (i.e. skew-symmetric, nondegenerate) pairing 〈·, ·〉 : V ×V → F`.
We consider the symplectic group

Sp(V, 〈·, ·〉) := {M ∈ GL(V ) : ∀v1, v2 ∈ V, 〈Mv1,Mv2〉 = 〈v1, v2〉}

and the general symplectic group

GSp(V, 〈·, ·〉) := {M ∈ GL(V ) :∃m ∈ F×` s.t. ∀v1, v2 ∈ V,
〈Mv1,Mv2〉 = m〈v1, v2〉}.

Definition 5.2. Given a finite-dimensional vector space V over F`, endowed with
a symplectic pairing 〈·, ·〉 : V × V → F`, a transvection is an element T ∈
GSp(V, 〈·, ·〉) such that there exists a hyperplane H ⊂ V satisfying that the restric-
tion T |H is the identity on H . We say that it is a nontrivial transvection if T is not
the identity, but we do call the identity a transvection, so that the set of transvections
for a given hyperplane H is a group.

It turns out that the subgroups of GSp(V, 〈·, ·〉) that contain a nontrivial transvec-
tion can be classified into three categories as follows (for a proof, see e.g. [6, Theo-
rem 1.1]):

This chapter is based on parts of the articles [14] and [4], both joint work with Sara Arias-de-Reyna,
Cécile Armana, Marusia Rebolledo, Lara Thomas and Núria Vila.
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Theorem 5.3. Let ` ≥ 5 be a prime, let V be a finite-dimensional vector space
over F`, endowed with a symplectic pairing 〈·, ·〉 : V × V → F` and let G ⊂
GSp(V, 〈·, ·〉) be a subgroup that contains a nontrivial transvection. Then one of the
following holds:

1. G is reducible, i.e. there is a proper F`-subspace S ⊂ V such that G(S) = S.

2. There exists a proper decomposition V =
⊕

i∈I Vi of V into equidimensional
nonsingular symplectic subspaces Vi such that, for each g ∈ G and each i ∈ I ,
there exists some j ∈ I with g(Vi) ⊆ Vj and such that the resulting action of
G on I is transitive.

3. G contains Sp(V, 〈·, ·〉).

To distinguish between the three cases in Theorem 5.3, we will make use of the
following result [8, Corollary 2.2].

Corollary 5.4. Let ` ≥ 5 be a prime, let V be a finite-dimensional vector space
over F`, endowed with a symplectic pairing 〈·, ·〉 : V × V → F` and let G ⊂
GSp(V, 〈·, ·〉) be a subgroup containing a nontrivial transvection and an element
whose characteristic polynomial is irreducible and which has nonzero trace. Then
G contains Sp(V, 〈·, ·〉).

5.2 Galois representations attached to the `-torsion of abelian varieties

Let A be an abelian variety of dimension g defined over Q. Fix an algebraic closure
Q of Q. The set of Q-points of A admits a group structure. Let ` be a prime number.
Then the subgroup of the Q-points of A consisting of all `-torsion points, which is
denoted by A[`], is isomorphic to (Z/`Z)2g and it is endowed with a natural action
of GQ. Therefore, it gives rise to a (continuous) Galois representation

ρA,` : GQ → GL(A[`]) ' GL2g(F`).

Hence, we obtain a realisation of the image of ρA,` as a Galois group over Q.

In this section, we will consider principally polarised abelian varieties, i.e. we
will consider pairs (A, λ), where A is an abelian variety (defined over Q) and λ :
A → A∨ is an isogeny of degree 1 (that is, an isomorphism between A and the dual
abelian variety A∨), induced from an ample divisor on A. Not every abelian variety
A admits a principal polarisation λ and, when it does, this polarisation causes certain
restrictions: the image of ρA,` then lies inside the general symplectic group of A[`]
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with respect to a certain symplectic pairing. More precisely, let µ`(Q) denote the
group of `-th roots of unity inside a fixed algebraic closure Q of Q. Recall that the
Weil pairing e` is a perfect pairing

e` : A[`]×A∨[`]→ µ`(Q).

If (A, λ) is a principally polarised abelian variety, we can consider the pairing

e`,λ : A[`]×A[`]→ µ`(Q)

(P,Q) 7→ e`(P, λ(Q))

which is a multiplicative symplectic pairing, compatible with the action of GQ. This
last condition means that, for any σ ∈ GQ,

(e`,λ(P,Q))σ = e`,λ(P σ, Qσ).

Note that GQ acts on µ`(Q) via the mod ` cyclotomic character χ`, so that
(e`,λ(P,Q))σ = (e`,λ(P,Q))χ`(σ). If we fix a primitive `-th root of unity ζ`, we
may write the pairing e`,λ(·, ·) additively, i.e. we define

〈·, ·〉 : A[`]×A[`]→ F`

as 〈P,Q〉 := a such that ζa = e`,λ(P,Q).

In other words, we have a symplectic pairing on the F`-vector space A[`] such
that, for all σ ∈ GQ, the linear map ρ(σ) : A[`] → A[`] satisfies that there exists a
scalar, namely χ`(σ), such that

〈ρ(σ)(P ), ρ(σ)(Q)〉 = χ`(σ)〈P,Q〉. (5.1)

That is to say, the image of the representation ρA,` is contained in the general sym-
plectic group GSp(A[`], 〈·, ·〉) ' GSp2g(F`). Therefore, from now on we will con-
sider ρA,` as a map into GSp(A[`], 〈·, ·〉) ' GSp2g(F`) and we will say that it is
surjective if ImρA,` = GSp(A[`]) ' GSp2g(F`).

Lemma 5.5. Assume that V is the `-torsion group of a principally polarised abelian
variety A defined over Q and 〈·, ·〉 is the symplectic pairing coming from the Weil
pairing. If G = ImρA,` satisfies the third condition in Theorem 5.3, then G =
GSp(V, 〈·, ·〉).
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Proof. We have the following exact sequence

1→ Sp(V, 〈·, ·〉)→ GSp(V, 〈·, ·〉)→ F×` → 1,

where the map m : GSp(A[`], 〈·, ·〉) → F×` associates to M the scalar a satisfying
that, for all u, v ∈ V , 〈Mu,Mv〉 = a〈u, v〉. By equation (5.1), the restriction of m
to Im(ρA,`) coincides with the mod ` cyclotomic character χ`. We can now easily
obtain the result, using that χ` is surjective onto F×` .

In other words, ρA,` is surjective as soon as Im(ρA,`) ⊃ Sp2g(F`).

Corollary 5.6. For ` ≥ 5, the representation ρA,` is surjective if Im(ρA,`) contains
both a nontrivial transvection and an element whose characteristic polynomial is ir-
reducible and which has nonzero trace.

Proof. This follows from Corollary 5.4 and Lemma 5.5.

5.3 Surjective Galois representations

The determination of the images of the Galois representations ρA,` attached to the `-
torsion of abelian varieties is a topic that has received a lot of attention. A remarkable
result by Serre quoted in [105, n. 136, Theorem 3] is:

Theorem 5.7 (Serre). Let A be a principally polarised abelian variety of dimension
g, defined over a number field K. Assume that g = 2, 6 or g is odd and furthermore
assume that EndK(A) = Z. Then there exists a bound BA,K such that, for all
` > BA,K ,

ImρA,` = GSp(A[`]) ' GSp2g(F`).

The bound BA,K is not explicit. For arbitrary dimension, the result is not true
(see e.g. [77] for a counterexample in dimension 4). However, one eventually obtains
a full symplectic image by making some extra assumptions. To state these assump-
tions, we first give a few definitions.

Definition 5.8. [18, Definition 1.2.1] Let A be an abelian variety over a number field
K with ring of integers OK . The Néron model of A/K is a smooth commutative
group scheme A /OK satisfying the Néron mapping property: for each smooth OK-
scheme B and each K-morphism uK : BK → A there is a unique OK-morphism
u : B → A extending uK .

This model exists and is unique up to (unique) isomorphism.
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For any prime p of OK , we can consider the fibre Ap of A . Let A0
p be the

connected component of the identity of Ap.

Definition 5.9. The group of connected components of Ap is Φp = Ap/A
0
p. This is a

finite group.

Definition 5.10. When A has semistable (also called semi-abelian) reduction at p,
then A0

p is an extension
1→ T → A0

p → A′′ → 1

of an abelian variety A′′ by a (possibly trivial) affine torus T . The dimension of T
(as a group scheme) is the toric dimension of the fibre Ap.

By [18, Theorem 7.4.1], every abelian variety A/K has potential semi-abelian
reduction at all closed points of OK ; this means that there is a finite Galois exten-
sion L/K such that the fibres A′p′ of the Néron model A ′ of AL have semi-abelian
reduction at all primes p′ of OL lying above a closed point p of OK .

Semistable reductions of curves are treated in more detail in Section 5.4.

Now we can state the following result of C. Hall (cf. [38]).

Theorem 5.11 (Hall). LetA be a principally polarised abelian variety of dimension g
defined over a number fieldK, such that EndK(A) = Z, and satisfying the following
property:

(T) There is a finite extension L/K so that the Néron model ofA/L over
the ring of integers of L has a semistable fibre with toric dimension 1.

Then there is an (explicit) finite constant BA,K such that, for all ` ≥ BA,K ,

ImρA,` = GSp(A[`]) ' GSp2g(F`).

Proposition 5.12. [38, p. 704] Suppose that A = Jac(C) is the Jacobian of a
hyperelliptic curve C of genus g, say defined by an equation Y 2 = f(X) with
f(X) ∈ K[X] a polynomial of degree 2g + 1. Then Condition (T) is satisfied at
the fibre corresponding to a prime p of the ring of integers of K, if the coefficients of
f(X) have p-adic valuation greater than or equal to zero and the reduction of f(X)
mod p has one double zero in a fixed algebraic closure of the residue field, while all
the other zeroes are simple.

As Kowalski points out in [38, Appendix], for every g and any number field K,
we can find an abelian variety A over K (which is the Jacobian of a hyperelliptic
curve) satisfying the conditions of Theorem 5.11. In particular, applying Theorem
5.11 with K = Q yields the following partial answer to the Inverse Galois Problem.
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Corollary 5.13 (Hall/Kowalski). Let g ∈ N be any natural number. Then for all
sufficiently large primes `, the group GSp2g(F`) can be realised as a Galois group
over Q.

Although it should be possible to find an upper bound for the constant BA,Q, cf.
[38, Lemma 4] and [70], it would be far from optimal.

A key point in Theorem 5.11 is the fact that the image under ρA,` of the inertia
subgroup at the place p of L which provides the semistable fibre with toric dimen-
sion 1 is generated by a nontrivial transvection (whenever ` does not divide p nor
the cardinality of the group Φp of connected components of the special fibre of the
Néron model at p). A detailed proof of this fact can be found in Proposition 1.3 of
[60].

Suppose then that we have ensured thatA satisfies Condition (T), so that Im(ρA,`)
contains a nontrivial transvection. In order to apply Corollary 5.6, i.e. in order to find
an element of Im(ρA,`) whose characteristic polynomial is irreducible and which has
nonzero trace, we need some more information on the image of ρA,`, which we will
obtain by looking at the images of the Frobenius elements FrFq (also denoted Frq)
for primes q of good reduction of A.

More generally, let A be an abelian variety defined over a field K and assume
that ` is a prime different from the characteristic of K. Any endomorphism α of A
induces an endomorphism of A[`], in such a way that the characteristic polynomial
of α (which is a monic polynomial in Z[X], cf. e.g. [58, IV.3, Theorem 8]) coin-
cides, after reduction mod `, with the characteristic polynomial of the corresponding
endomorphism of A[`]. In the case when K is a finite field (say of cardinality q),
we can consider the (relative) Frobenius endomorphism πA/K ∈ EndK(A), induced
by the action of the (topological) Frobenius element Frq ∈ Gal(K/K). Then the
reduction mod ` of the characteristic polynomial of πA/K coincides with the char-
acteristic polynomial of ρA,`(Frq) (cf. [58, VII.2, Theorem 3]). This will turn out
to be particularly useful in the case when A = Jac(C) is the Jacobian of a curve C
of genus g defined over K, since one can determine the characteristic polynomial of
ρJac(C),`(Frq) by counting the Fqr -valued points of C, for r = 1, . . . , g.

In the case of curves C of genus 2, Le Duff has, using the strategy outlined
above, studied the image of the Galois representations attached to the `-torsion of
Jac(C), when Condition (T) in Theorem 5.11 is satisfied. The main result in [60] is
the following:
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Theorem 5.14 (Le Duff). Let C be a genus 2 curve defined over Q, with bad re-
duction of type (II) or (IV) at a prime p (according to the notation in [63]). Let
Φp be the group of connected components of the special fibre of the Néron model
of Jac(C) at p. For each prime ` and each prime q of good reduction of C, let
Pq,`(X) = X4 + aX3 + bX2 + qaX + q2 ∈ F`[X] be the characteristic polynomial
of the image under ρJ(C),` of the Frobenius element Frq at q and let Qq,`(X) =

X2 + aX + b− 2q ∈ F`[X], with discriminants ∆P and ∆Q respectively.
Then for all primes ` not dividing 2pq|Φp| and such that ∆P and ∆Q are not

squares in F`, the image of ρJ(C),` coincides with GSp4(F`).

Using this result, Le Duff obtains a realisation of GSp4(F`) as Galois group over
Q for all odd primes ` smaller than 500000.

In the more general setting of principally polarised g-dimensional abelian varieties,
we state the following result, which will be used in the next chapters.

Theorem 5.15. Let A be a principally polarised g-dimensional abelian variety de-
fined over Q. Assume that there exists a prime p such that the following condition
holds:

(Tp) The special fibre of the Néron model of A over Qp is semistable
with toric dimension 1.

Denote by Φp the group of connected components of the special fibre of the Néron
model at p. Let q be a prime of good reduction of A, let Aq be the special fibre of the
Néron model of A over Qq and let Pq(X) = X2g + aX2g−1 + · · ·+ qg ∈ Z[X] be
the characteristic polynomial of the Frobenius endomorphism Frq acting on Aq.

Then for all primes ` which do not divide 6pq|Φp|a and such that the reduction
of Pq(X) mod ` is irreducible in F`, the image of ρA,` coincides with GSp2g(F`).

Proof. Since A satisfies (T) at p 6= `, and ` - |Φp|, Theorem 5.11 (or alternatively,
[60, Proposition 1.3]) implies that Im(ρA,`) contains a nontrivial transvection.

From the fact that ` - a and Pq(X) is irreducible modulo ` (and ` 6= q), we
see that ρA,`(Frq) is an element whose characteristic polynomial is irreducible and
which has nonzero trace.

Moreover, since ` 6= 6, we must have ` ≥ 5. Therefore, we may apply Corollary
5.6 and conclude that ρA,` is surjective.

Remark 5.16. The condition that ` does not divide a corresponds to the Frobenius
element having nonzero trace modulo `. The theorem is vacuous when a = 0.
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Remark 5.17. Consider a family of genus g hyperelliptic curves Ct defined over
Q(t) with big monodromy at `, meaning that the image of the Galois representa-
tion attached to the `-torsion of a generic point of the family is GSp2g(F`). Then
Hilbert’s Irreducibility Theorem provides us with infinitely many specialisations t =
t0 ∈ Q such that the Jacobian Jact0 of the corresponding curve Ct0 satisfies that
ImρJact0 ,`

' GSp2g(F`). Such families of curves Ct0 exist for any odd ` (see
e.g. [37] or [131]). In particular, for any g ∈ N and any odd `, the Inverse Ga-
lois Problem has an affirmative answer for the group GSp2g(F`). Although ensuring
the existence of the desired curve, this fact does not tell us how to find such a curve
explicitly.

5.4 Semistable curves and their generalised Jacobians

In this section we recall some geometric notions that will be used in Chapter 7.
A curve C over a field k is said to be semistable if the curve Ck = C ×k k is re-

duced and has at most ordinary double points as singularities. It is said to be stable if
moreover Ck is connected, projective of arithmetic genus ≥ 2, and if any irreducible
component of Ck isomorphic to P1

k
intersects the other irreducible components in at

least three points. A proper flat morphism of schemes C → S is said to be semistable
(resp. stable) if it has semistable (resp. stable) geometric fibres.

Let R be a discrete valuation ring with fraction field K and residue field k. Let
C be a smooth projective geometrically connected curve over K. A model of C
over R is a normal scheme C /R such that C ×R K ∼= C. We say that C has
semistable reduction (resp. stable reduction) if C has a model C over R which is a
semistable (resp. stable) scheme over R. If such a stable model exists, it is unique
up to isomorphism and we call it the stable model of C over R (cf. [64, Chap.10,
Definition 3.27 and Theorem 3.34]). If the curve C has genus g ≥ 1, then it admits
a minimal regular model Cmin over R, unique up to unique isomorphism. Moreover,
Cmin is semistable if and only if C has semistable reduction, and if g ≥ 2, this is
equivalent to C having stable reduction (cf. [64, Chap. 10, Theorem 3.34], or [93,
Theorem 3.1.1] when R is strictly henselian).

Assume that C is a smooth projective geometrically connected curve of genus
g ≥ 2 overK with semistable reduction. Denote by C its stable model overR and by
Cmin its minimal regular model overR. We know that the Jacobian variety Jac(C) of
C admits a Néron model J over R and the canonical morphism Pic0

C /R →J 0 is
an isomorphism (cf. [18, §9.7, Corollary 2]). Note that since Cmin is also semistable,
we have Pic0

Cmin/R
∼= J 0. Moreover, the abelian variety Jac(C) has semistable

reduction, that is to say, J 0
k
∼= Pic0

Ck/k
is canonically an extension of an abelian
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variety by a torus T . As we will see, the structure of the algebraic group J 0
k (by

which we mean the toric dimension and the order of the component group of its
geometric special fibre) is related to the intersection graphs of Ck and Cmin,k.

Let X be a curve over k. Consider the intersection graph (or dual graph) Γ(X),
defined as the graph whose vertices are the irreducible components of X , where
two irreducible components Xi and Xj are connected by as many edges as there
are irreducible components in the intersection Xi ∩ Xj . In particular, if the curve
X is semistable, two components Xi and Xj are connected by one edge if there is a
singular point lying on bothXi andXj . HereXi = Xj is allowed. The (intersection)
graph without loops, denoted by Γ′(X), is the graph obtained by removing from
Γ(X) the edges corresponding to Xi = Xj .

Next, we paraphrase [18, §9.2, Example 8], which gives the toric rank in terms
of the cohomology of the graph Γ(Ck).

Proposition 5.18. [18, §9.2, Ex. 8] The Néron model J 0
k of the Jacobian of the

curve Ck has semistable reduction. More precisely, let X1, . . . , Xr be the irreducible
components of Ck, and let X̃1, . . . , X̃r be their respective normalisations. Then the
canonical extension associated to Pic0

Ck/k
is given by the exact sequence

1 −→ T ↪→ Pic0
Ck/k

π∗−→
r∏
i=1

Pic0
X̃i/k

−→ 1

where the morphism π∗ is induced by the morphisms πi : X̃i −→ Xi. The dimension
of the torus T is equal to the rank of the cohomology group H1(Γ(Ck),Z).

We will use the preceding result in Sections 7.3 and 7.4. Note that the toric rank
does not change if we replace C by Cmin.

The intersection graph of Cmin,k also determines the order of the component
group of the geometric special fibre Jk. Indeed, the scheme Cmin×Rsh, where Rsh

is the strict henselisation ofR, fits the hypotheses of [18, §9.6, Proposition 10] which
gives the order of the component group in terms of the graph of Cmin,k; we will use
this result in the proof of Proposition 7.4.

Proposition 5.19. [18, §9.6, Prop. 10] LetX be a proper and flat curve over a strictly
henselian discrete valuation ringRwith algebraically closed residue field k. Suppose
that X is regular and has a geometrically irreducible generic fibre as well as a ge-
ometrically reduced special fibre Xk. Assume that Xk consists of the irreducible
components X1, . . . , Xr and that the local intersection numbers of the Xi are 0 or
1 (the latter is the case if different components intersect at ordinary double points).
Furthermore, assume that the intersection graph Γ′(Xk) consists of l arcs of edges
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λ1, . . . , λl, starting at X1 and ending at Xr, each arc λi consisting of mi edges, as in
the example depicted in Figure 5.1. Then the component group J (Rsh)/J 0(Rsh)

has order
∑l

i=1

∏
j 6=imj .

Figure 5.1: Intersection graph Γ′(Xk) with 5 arcs and {mi} = {2, 3, 3, 4, 5}.



CHAPTER 6

Algorithm for Galois realisations of GSp2n(F`)

Let C be a hyperelliptic curve of genus g over Q, defined by an equation Y 2 = f(X)
where f(X) ∈ Q[X] is a polynomial of degree 2g + 1. Let A = Jac(C) be its
Jacobian variety. We assume that A satisfies condition (Tp) from Theorem 5.11 for
some prime p.

In this chapter we present an algorithm, based on Theorem 5.15, which computes
a finite set of prime numbers ` for which the Galois representation ρA,` has image
GSp2g(F`). We apply this procedure to an example of a genus 3 a curve using a
computer algebra system.

6.1 Strategy

First, to apply Theorem 5.15, we restrict ourselves to hyperelliptic curves of genus g
whose Jacobian varieties satisfy Condition (Tp) for some p. Namely, we fix a prime
number p and then choose f(X) ∈ Z[X] monic of degree 2g + 1 such that both of
the following conditions hold:

1. The polynomial f(X) only has simple roots over Q, so that Y 2 = f(X) is the
equation of an hyperelliptic curve C over Q.

2. All coefficients of f(X) have p-adic valuation greater than or equal to zero,
and the reduction f(X) mod p has one double root in Fp, and its other zeroes
are simple.

This ensures that A = Jac(C) satisfies Condition (Tp), by Proposition 5.12.

Any prime of good reduction for C is also a prime of good reduction for its
Jacobian A. Primes of good reduction for the hyperelliptic curve can be computed
using the discriminant of Weierstrass equations for C (see [66]). In our case, any
prime not dividing the discriminant of f(X) is of good reduction for C, hence for A.

This chapter is based on results from the article [14], joint work with Sara Arias-de-Reyna, Cécile
Armana, Marusia Rebolledo, Lara Thomas and Núria Vila.
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We take such a prime number q of good reduction for A. Recall that Pq(X) ∈
Z[X] is the characteristic polynomial of the Frobenius endomorphism acting on the
fibre Aq.

Let Sq denote the set of prime numbers ` satisfying the following conditions:

(i) ` divides neither 6pq|Φp| nor the coefficient of X2g−1 in Pq(X),

(ii) the reduction of Pq(X) modulo ` is irreducible in F`.

Note that if the coefficient of X2g−1 in Pq(X) is nonzero, condition (i) rules out
only finitely many prime numbers `, whereas if it vanishes, condition (i) rules out
all prime numbers `. By Theorem 5.15, for each ` ∈ Sq the representation ρA,` is
surjective with image GSp2g(F`). Also, primes in Sq can be computed effectively
up to a given fixed bound.

Since we want the polynomial Pq(X) (of degree 2g) to be irreducible modulo
`, its Galois group G over Q must be a transitive subgroup of S2g with a 2g-cycle.
Therefore, by an application of a weaker version of the Chebotarev density theorem
due to Frobenius ([111], “Theorem of Frobenius”, p. 32), the density of Sq is

#{σ ∈ G ⊂ S2g : σ is a 2n-cycle}
#G

.

This estimate is far from what Theorem 5.11 provides us, namely that the density of
primes ` with Im(ρA,`) = GSp2g(F`) is 1.

This leads us to discuss the role of the prime q. First of all, we can see that⋃
q

Sq = {` prime : ` - 6p|Φp| and ρA,` surjective},

where the union is taken over all primes q of good reduction for A. Note that the
inclusion ⊂ follows directly from Theorem 5.15. To show the other inclusion ⊃,
suppose now that ` - 6p|Φp| and that the representation at ` is surjective. Its im-
age GSp2g(F`) contains an element with irreducible characteristic polynomial and
nonzero trace (see for instance Proposition A.2 of [8]). This element defines a con-
jugacy class C ⊂ GSp2g(F`) and the Chebotarev density theorem ensures that there
exists q such that ρA,`(Frq) ∈ C, hence ` ∈ Sq.

Moreover, if, for some fixed `, the events “` belongs to Sq” are independent as
q varies, the density of primes ` for which ρA,` is surjective will increase when we
take several different primes q. A sufficient condition for this density to tend to 1 is
that there exists an infinite family of primes q for which the splitting fields of Pq(X)
are pairwise linearly disjoint over Q.
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Therefore, it seems reasonable to expect that computing the sets Sq for several
values of q increases the density of primes ` for which we know the surjectivity of
ρA,`. This is what we observe numerically in the next example.

6.2 A numerical example in genus 3

All computations in this section were done in MAGMA [19].
We consider the hyperelliptic genus 3 curveC over Q defined by Y 2 = f(X), where

f(X) = X2(X − 1)(X + 1)(X − 2)(X + 2)(X − 3) + 7(X − 28) ∈ Z[X].

This is a Weierstrass equation, which is minimal at all primes ` different from 2
(see [66, Lemma 2.3]), with discriminant−212 ·7 ·73 ·1069421 ·11735871491. Thus,
C has good reduction away from the primes appearing in this factorization. Clearly,
p = 7 is a prime for which the reduction of f(X) modulo 7 has one double zero in F7

and otherwise only simple zeroes. Therefore, its Jacobian Jac(C) satisfies Condition
(T7). The order of the component group Φ7 is 2. Recall that Pq(X) coincides with
the characteristic polynomial of the Frobenius endomorphism of the reduced curve
C modulo q over Fq.

Our method provides no significant result for q ∈ {3, 5} because for q = 3 the
characteristic polynomial Pq(X) is not irreducible in Z[X] and for q = 5 it has zero
trace in Z. So in this example, we first take q = 11. The curve has 11, 135 and 1247
points over F11, F112 and F113 , respectively. The characteristic polynomial P11(X)
is

P11(X) = X6 −X5 + 7X4 − 35X3 + 77X2 − 121X + 1331

and it is irreducible over Q. Its Galois group G has order 48 and is isomorphic
to the wreath product S2 o S3. This group is the direct product of 3 copies of S2,
on which S3 acts by permutation (see [51, Chapter 4]): an element of S2 o S3 can
be written as ((a1, a2, a3), σ), where (a1, a2, a3) denotes an element of the direct
product S2 × S2 × S2 and σ an element of S3. The group law is defined as follows:

((a1, a2, a3), σ)((a′1, a
′
2, a
′
3), σ′) = ((a1, a2, a3)(a′1, a

′
2, a
′
3)σ, σσ′),

where (a′1, a
′
2, a
′
3)σ = (a′σ(1), a

′
σ(2), a

′
σ(3)). One can also view the wreath product S2o

S3 as the centralizer of (12)(34)(56) in S6, through an embedding ψ : S2 o S3 → S6

whose image is isomorphic to the so-called Weyl group of type B3 ([51, 4.1.18 and
4.1.33]). More precisely, under ψ, the image of an element ((a1, a2, a3), σ) ∈ S2 oS3

is the permutation of S6 that acts on {1, 2, ..., 6} as follows: it first permutes the
elements of the setsE1 = {1, 2},E2 = {3, 4} andE3 = {5, 6} separately, according
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to a1, a2 and a3 respectively (identifying E2, E3 with {1, 2} in an obvious way) and
then permutes the pairs E1, E2, E3 according to the action of σ on the indices. For
example, denoting S2 = {id, τ}, the image under ψ of ((τ, id, id), (123)) is the
6-cycle (135246).

Let us now determine the elements of S2 oS3 which map to 6-cycles in S6 through
the embedding ψ. For an element in S2 o S3 to be of order 6, it has to be of the form
((a1, a2, a3), γ) with γ a 3-cycle in S3. Now, ψ sends an element ((a1, a2, a3), γ)
where either one or three ai’s are id, to a product of two disjoint 3-cycles in S6.
So the elements of S2 o S3 which are 6-cycles in S6 are among the eight elements
((id, id, τ), γ), ((id, τ, id), γ), ((τ, id, id), γ) and ((τ, τ, τ), γ) with γ = (123) or
γ = (132). Moreover, [51, Theorem 4.2.8] (see also [36, Lemma 3.1] or [116])
ensures that these 8 elements are conjugate. Since ψ((τ, id, id), (123)) = (135246)
is a 6-cycle, we deduce that the 8 elements listed above are exactly the elements of
S2 o S3 which are 6-cycles in S6.

To conclude, the Galois group G, viewed as a subgroup of S6, contains exactly 8
elements that are 6-cycles. Therefore, the density of S11 is 8/48 = 1/6.

We can compute Pq(X) using efficient algorithms available in MAGMA [19] or
SAGE [110], which are based on p-adic methods. We found that there are 6891 prime
numbers 11 ≤ ` ≤ 500000 that belong to S11. For these `, we know that the image
of ρA,` is GSp6(F`), so the groups GSp6(F`) are realised as Galois groups arising
from the `-torsion of the Jacobian of the hyperelliptic curve C. For instance, the first
ten elements of S11 are

47, 71, 79, 83, 101, 113, 137, 251, 269, 271.

Also, the proportion of prime numbers 11 ≤ ` ≤ 500000 in S11 is about 0.1659,
which is quite in accordance with the density obtained from the Chebotarev density
theorem.

By looking at polynomials Pq(X) for several primes q of good reduction, we are
able to significantly improve the known proportion of primes `, up to a given bound,
for which the Galois representation is surjective. Namely, we computed that

{` prime, 11 ≤ ` ≤ 500000} ⊆
⋃

11≤q≤571

Sq.

As a consequence, for any prime 11 ≤ ` ≤ 500000, the group GSp6(F`) is re-
alised as a Galois group arising from the `-torsion of the Jacobian of the hyperel-
liptic curve C. This is reminiscent of Le Duff’s numerical data for GSp4(Fl) (see
Theorem 5.14).

Combining all of the above suggests that the single hyperelliptic curve C might
provide a positive answer to the inverse Galois problem for GSp6(F`) for any prime
` ≥ 11.



CHAPTER 7

Constructing Jacobians with large Galois images

In this chapter, our aim is to find auxiliary primes p and q (depending on `), and
explicit congruence conditions on polynomials defining genus 3 curves, which ensure
that any curve C, defined by an equation over Z satisfying these congruences, will
have the property that the image of ρJac(C),` coincides with GSp6(F`). In this way
we obtain many realisations of GSp6(F`) as a Galois group over Q.

7.1 Hyperelliptic curves and curves of genus 3

In this chapter, a curve over a field K will be an algebraic variety over K whose
irreducible components are of dimension 1. In particular, a curve can be singular. A
smooth geometrically connected projective curve C of genus g ≥ 1 over a field K is
hyperelliptic if there exists a degree 2 finite separable morphism fromCK = C×KK
to P1

K
. If K is algebraically closed or a finite field, then such a curve C has a

hyperelliptic equation defined over K. (When K is not algebraically closed nor a
finite field, the situation can be more complicated,cf. [61, Section 4.1].) That is to
say, the function field of C is K(x)[y] under the relation y2 + h(x)y = g(x) with
g(x), h(x) ∈ K[x], deg(g(x)) ∈ {2g + 1, 2g + 2}, and deg(h(x)) ≤ g. Moreover,
if char(K) 6= 2, we can take h(x) = 0. Indeed, in that case, the conic defined as the
quotient of C by the group generated by the hyperelliptic involution has aK-rational
point, hence is isomorphic to P1

K (see e.g. [61, Section 1.3] for more details). The
curve C is the union of the two affine open schemes

U = Spec
(
K[x, y]/(y2 + h(x)y − g(x))

)
and

V = Spec
(
K[t, w]/(w2 + tg+1h(1/t)y − t2g+2g(1/t))

)
glued along Spec(K[x, y, 1/x]/(y2 + h(x)y − g(x))) via the identifications x =
1/t, y = t−g−1w.

If char(K) 6= 2, then any separable polynomial g(x) ∈ K[x] of degree 2g + 1
or 2g + 2 gives rise to a hyperelliptic curve C of genus g defined over K by glueing

This chapter is based on results from the article [4], joint work with Sara Arias-de-Reyna, Cécile
Armana, Marusia Rebolledo, Lara Thomas and Núria Vila.
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the open affine schemes U and V (with h(x) = 0) as above. We will say that C is
given by the hyperelliptic equation y2 = g(x). We will also say that a polynomial
in two variables is of g-hyperelliptic type if it is of the form y2 − g(x) with g(x) a
polynomial of degree 2g + 1 or 2g + 2.

If C is a smooth geometrically connected projective non-hyperelliptic curve of
genus 3 defined over a field K, then its canonical embedding C ↪→ P2

K identifies
C with a smooth plane quartic curve defined over K. This means that the curve C
has a model over K given by Proj(K[X,Y, Z]/F (X,Y, Z)) where F (X,Y, Z) is a
degree 4 homogeneous polynomial with coefficients in K. Conversely, any smooth
plane quartic curve is the image by a canonical embedding of a non-hyperelliptic
curve of genus 3. If this curve is Proj(K[X,Y, Z]/F (X,Y, Z)) where F (X,Y, Z)
is the homogenisation of a degree 4 polynomial f(x, y) ∈ K[x, y], we will say that
C is the quartic plane curve defined by the affine equation f(x, y) = 0. We will say
that a polynomial in two variables is of quartic type if its total degree is 4.

7.2 Statement of main result

We now use the notation from Section 7.1 to state the main theorem of this chapter.

Theorem 7.1. Let ` ≥ 13 be a prime number. For all odd distinct prime numbers
p, q 6= `, with q > 1.82`2, there exist polynomials fp(x, y), fq(x, y) ∈ Z[x, y], both
of the same type (3-hyperelliptic or quartic), such that for any f(x, y) ∈ Z[x, y] of
the same type as fp(x, y) and fq(x, y) and satisfying

f(x, y) ≡ fq(x, y) (mod q) and f(x, y) ≡ fp(x, y) (mod p3),

the image of the Galois representation ρJac(C),` attached to the `-torsion points of the
Jacobian of the smooth projective genus 3 curve C defined over Q by the equation
f(x, y) = 0 is GSp6(F`).

Moreover, for ` ∈ {5, 7, 11} there exists a prime number q 6= ` for which the
same statement holds for each odd prime number p 6= q, `.

In Section 7.5 we state and prove a refinement of this Theorem (cf. Theorem
7.12). In fact, the polynomial fp(x, y) will be of a very specific form. In general
we can say little about fq(x, y), but for any fixed ` ≥ 13 and any fixed q ≥ 1.82`2

we can find suitable polynomials fq(x, y) by an exhaustive search as follows: there
exist only finitely many polynomials f q(x, y) ∈ Fq[x, y] of 3-hyperelliptic or quartic
type with nonzero discriminant. For each of these, we can compute the characteristic
polynomial of the action of the Frobenius endomorphism on the Jacobian of the curve
defined by f q(x, y) = 0 by counting the Fqr -points of this curve, for r = 1, 2, 3, and
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check whether this polynomial is an ordinary q-Weil polynomial with nonzero middle
coefficient, nonzero trace modulo `, and which is irreducible modulo `. Proposition
7.9 ensures that for one of the finitely many f q(x, y) this is indeed the case. Then,
any lift of f q(x, y), of the same type (since we lift the coefficients of the polynomial),
gives us a suitable polynomial fq(x, y) ∈ Z[x, y].

Note that the above result constitutes an explicit version (for 3-dimensional vari-
eties) of Proposition 4.6 of [8], which proves the existence of a bound `0 such that for
all ` ≥ `0 there exists a principally polarised abelian variety with surjective `-torsion
Galois representation. We can explicitly give the size of the p-adic and q-adic neigh-
bourhoods where surjectivity of ρA,` is preserved; in other words, we can give the
powers of the auxiliary primes p and q such that any other curve defined by congru-
ence conditions modulo these powers gives rise to a Jacobian variety with surjective
`-torsion representation.

7.3 Local conditions at p

Let p > 2 be a prime number.

Definition 7.2. Let f(x, y) ∈ Zp[x, y] be a polynomial with f(0, 0) = 0 or
vp(f(0, 0)) > 2. We say that f(x, y) is of type:

(H) if f(x, y) = y2 − g(x), where g(x) ∈ Zp[x] is of degree 7 or 8 and such that

g(x) ≡ x(x− p)m(x) mod p2Zp[x],

with m(x) ∈ Zp[x] such that its mod p reduction has simple nonzero roots in
Fp;

(Q) if f(x, y) is of total degree 4 and such that

f(x, y) ≡ px+ x2 − y2 + x4 + y4 mod p2Zp[x, y].

For f(x, y) ∈ Zp[x, y] a polynomial of type (H) or (Q), we will consider the projec-
tive curve C defined by f(x, y) = 0 as explained in Section 7.1 and the scheme C
over Zp defined, for each case of Definition 7.2 respectively, as follows:

(H) the union of the two affine subschemes

U = Spec(Zp[x, y]/(y2 − g(x))) and V = Spec(Zp[t, w]/(w2 − g(1/t)t8))

glued along Spec(Zp[x, y, 1/x]/(y2 − g(x)) via x = 1/t, y = t−4w;
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(Q) the scheme Proj(Zp[X,Y, Z]/(F (X,Y, Z))), where F (X,Y, Z) is the ho-
mogenisation of f(x, y).

This scheme has generic fibre C.

Proposition 7.3. Let f(x, y) ∈ Zp[x, y] be a polynomial of type (H) or (Q) and let
C be the projective curve defined by f(x, y) = 0. The curve C is a smooth pro-
jective and geometrically connected curve of genus 3 over Qp with stable reduction.
Moreover, the scheme C is the stable model of C over Zp and the stable reduction
is geometrically integral with exactly one singularity, which is an ordinary double
point.

Proof. With the description we gave in Section 7.1 of what we called the projective
curve defined by f , smoothness over Qp follows from the Jacobian criterion. This
implies that C is a projective curve of genus 3.

The polynomials defining the affine schemesU and V and the quartic polynomial
F (X,Y, Z) are all irreducible over Qp, hence over Zp. So the curve C is geometri-
cally integral (hence geometrically irreducible and geometrically connected) and C
is integral as a scheme over Zp. It follows in particular that C is flat over Zp (cf. [64,
Chap. 4, Corollary 3.10]). Hence, C is a model of C over Zp.

We will show that CFp is semistable (i.e. reduced with only ordinary double
points as singularities) with exactly one singularity.

Combined with flatness, semistability will imply that the scheme C is semistable
over Zp. Since C has genus greater than 2, and C = CQp is smooth and geometri-
cally connected, this is then equivalent to saying that C has stable reduction at p with
stable model C , as required (cf. [93, Theorem 3.1.1]).

In what follows, we denote by . the reduction modulo p of any polynomial with
coefficient in Zp. In Case (H), CFp

is the union of the two affine subschemes

U ′ = Spec(Fp[x, y]/(y2 − x2m(x))) and V ′ = Spec(Fp[t, w]/(w2 −m(1/t)t6)),

glued along Spec(Fp[x, y, 1/x]/(y2 − g(x)) via x = 1/t and y = t−4w (cf. [64,
Chap. 10, Example 3.5]). In Case (Q), the geometric special fibre is

Proj(Fp[X,Y, Z]/(F (X,Y, Z))).

In both cases, the defining polynomials are irreducible over Fp. Hence, CFp
is inte-

gral, i.e. reduced and irreducible.
Next, we prove that CFp

has only one ordinary double point as singularity. For
Case (H), see e.g. [64, Chap. 10, Examples 3.4, 3.5 and 3.29]. For Case (Q), we
proceed analogously: first consider the open affine subscheme of CFp

defined by
U = Spec(Fp[x, y]/f(x, y)), where f(x, y) = x2− y2 + x4 + y4 ∈ Fp[x, y]. Since
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CFp
\U is smooth, it suffices to prove that U has only ordinary double singularities.

Let u ∈ U . The Jacobian criterion shows that U is smooth at u 6= (0, 0). So suppose
that u = (0, 0), and note that f(x, y) = x2(1 + x2) − y2(1 − y2). Since 2 ∈ F

×
p ,

there exist a(x) = 1 + xc(x) ∈ Fp[[x]] and b(y) = 1 + yd(y) ∈ Fp[[y]] such that
1 + x2 = a(x)2 and 1− y2 = b(y)2, by ([64, Chap. 1, Exercise 3.9]). Then we have

ÔU,u
∼= Fp[[x, y]]/(xa(x) + yb(y))(xa(x)− yb(y)) ∼= Fp[[t, w]]/(tw).

It follows that CFp
has only one singularity (at [0 : 0 : 1]) which is an ordinary

double singularity. We have thus showed that C is the stable model of C over Zp
and that its special fibre is geometrically integral and has only one ordinary double
singularity.

Proposition 7.4. Let f(x, y) ∈ Zp[x, y] be a polynomial of type (H) or (Q) and let
C be the projective curve defined by f(x, y) = 0. The Jacobian variety Jac(C) of
the curve C has a Néron model J over Zp which has semi-abelian reduction of
toric rank 1. The component group of the geometric special fibre of J over Fp has
order 2.

Proof. By Proposition 7.3, the curve C is a smooth projective geometrically con-
nected curve of genus 3 over Qp with stable reduction and stable model C over Zp.
Let Cmin be the minimal regular model of C. As recalled in Section 5.4, Jac(C) ad-
mits a Néron model J over Zp and the canonical morphism Pic0

C /Zp
→ J 0 is an

isomorphism. In particular, J has semi-abelian reduction and J 0
Fp
∼= Pic0

CFp/Fp
.

Since Cmin is also semistable, we have Pic0
Cmin/S

∼= J 0.
By Proposition 5.18, the toric rank of J 0

Fp
is equal to the rank of the cohomology

group of the dual graph of CFp
. Since CFp

is irreducible and has only one ordinary
double point, the dual graph consists of one vertex and one loop, so the rank of J 0

Fp
is 1.

To determine the order of the component group of the geometric special fibre
JFp

, we apply Proposition 5.19 to the minimal regular model Cmin × Zsh
p , where

Zsh
p is the strict henselisation of Zp. This is still regular and semistable over Zsh

p

(cf. [64, Chap. 10, Proposition 3.15-(a)]). Let e denote the thickness of the ordinary
double point of CFp

(as defined in [64, Chap. 10, Definition3.23]). Then by [64,
Chap. 10, Corollary 3.25], the geometric special fibre Cmin,Fp

of Cmin×Zsh
p consists

of a chain of e − 1 projective lines over Fp and one component of genus 2 (where
the latter corresponds to the irreducible component CFp

), which meet transversally
at rational points. It follows from Proposition 5.18 that the order of the component
group J (Zsh

p )/J 0(Zsh
p ) of the geometric special fibre is equal to the thickness e.
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We will now show that in both cases (H) and (Q), the thickness e is equal to 2,
which will conclude the proof of Proposition 7.4. For this, in several places, we will
use the fact that when p 6= 2, every formal power series in Zp[[x]] (resp. Zp[[y]],
Zp[[x, y]]) with constant term 1 (or more generally a unit square in Zp) is a square in
Zp[[x]] (resp. Zp[[y]], Zp[[x, y]]) of some invertible formal power series.

Let U denote the affine subscheme Spec(Zp[x, y]/(f(x, y))) which contains the
ordinary double point P = [0 : 0 : 1]. Firstly, we claim that, possibly after a finite
extension of scalars R/Zp which splits the singularity, in both cases we may write in
R[[x, y]]:

±f(x, y) = x2a(x)2 − y2b(y)2 + pαx+ p2yg(x, y) + prβ (7.1)

where a(x) ∈ R[[x]]×, b(y) ∈ R[[y]]×, g(x, y) ∈ Zp[x, y], α ∈ Z×p , β ∈ Zp. More-
over, from the assumptions on f , it follows that either β = 0, or β ∈ Z×p and
r = vp(f(0, 0)) > 2.

We prove the claim case by case:

(H) We have f(x, y) = y2 − g(x) = y2 − x(x − p)m(x) + p2h(x) for some
h(x) ∈ Zp[x]. Since h(x) = h(0) + xs(x) for some s(x) ∈ Zp[x] and
m(x) + ps(x) = m(0) + ps(0) + xt(x) for some t(x) ∈ Zp[x], we obtain

f(x, y) = y2 − x2m(x) + px(m(x) + ps(x)) + p2h(0)

= y2 − x2(m(x)− pt(x)) + px(m(0) + ps(0)) + p2h(0).

Since m(0) 6= 0 (mod p), we have m(0) − pt(0) ∈ Z×p , hence if we extend
the scalars to some finite extension R over Zp, in which m(0) − pt(0) is a
square, we get that (m(x)− pt(x)) is a square of some a(x) in R[[x]]×. Then
−f(x, y) has the expected form. Note that R/Zp is unramified because p 6= 2
and m(0) 6= 0 (mod p), so we still denote the ideal of R above p ∈ Zp by p.

(Q) We have f(x, y) = x4 + y4 + x2 − y2 + px + p2h(x, y) for some choice of
h(x, y) ∈ Zp[x, y]. We may write h(x, y) = δ + xγ + x2s(x) + yt(x, y) for
some γ, δ ∈ Zp, s(x) ∈ Zp[x] and t(x, y) ∈ Zp[x, y]. We obtain

f(x, y) = x2(1 + x2)− y2(1− y2) + px+ p2(δ + xγ + x2s(x) + yt(x, y))

= x2(1 + x2 + p2s(x))− y2(1− y2) + px(1 + pγ) + p2yt(x, y)

+p2δ.

Since 1 + x2 + p2s(x) and 1 − y2 have constant terms which are squares in
Z×p , the formal power series are squares in Zp[[x]], resp. Zp[[y]]. So f(x, y)
again has the desired form.
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Next, we show that e = 2 for ±f(x, y) of the form (7.1). In R[[x, y]], we have

±f(x, y) =

(
xa(x) + p

α

2a(x)

)2

−
(
yb(y)− p2 g(x, y)

2b(y)

)2

+ p2c(x, y),

where c(x, y) = pr−2β − α2

4a(x)2
+ p2 g(x,y)2

4b(y)2
. Since either β = 0 or r > 2 and

α2

4a(0)2
6≡ 0 (mod p), the constant term γ of the formal power series c(x, y) belongs

to R×. It follows that γ−1c(x, y) is the square of some other formal power series
d(x, y) ∈ R[[x, y]]×. Defining the variables

u =
xa(x)

d(x, y)
+ p

α

2a(x)d(x, y)
− yb(y)

d(x, y)
+ p2 g(x, y)

2b(y)d(x, y)

and

v =
xa(x)

d(x, y)
+ p

α

2a(x)d(x, y)
+

yb(y)

d(x, y)
− p2 g(x, y)

2b(y)d(x, y)
,

we get ÔU×R,P ∼= R[[u, v]]/(uv ± p2γ). Since γ ∈ R×, it follows that e = 2.

7.4 Local conditions at q

This section is devoted to the proof of the following key result. In the statement,
the two conditions on the characteristic polynomial, namely nonzero trace and irre-
ducibility modulo `, are the ones appearing in Theorem 5.15 which is used to prove
the main Theorem 7.1.

For any integer g ≥ 1, a g-dimensional abelian variety over a finite field k with q
elements is called ordinary if its group of char(k)-torsion points has rank g over k.

Theorem 7.5. Let ` ≥ 13 be a prime number. For every prime number q > 1.82`2,
there exists a smooth geometrically connected curveCq of genus 3 over Fq whose Ja-
cobian variety Jac(Cq) is a 3-dimensional ordinary absolutely simple abelian variety
such that the characteristic polynomial of its Frobenius endomorphism is irreducible
modulo ` and has nonzero trace modulo `.

Moreover, for ` ∈ {3, 5, 7, 11}, there exists a prime number q > 1.82`2 such that
the same statement holds.

First, let us briefly sketch the strategy for proving Theorem 7.5. Honda-Tate
theory relates abelian varieties to Weil polynomials (cf. Definition 7.6). Hence, it
suffices to prove the existence of an irreducible ordinary Weil q-polynomial of degree
6 (cf. Proposition 7.9), which gives rise to an isogeny class of simple ordinary abelian



78 Constructing Jacobians with large Galois images

varieties of dimension 3. By a result of E. Howe (cf. [45, Theorem 1.2]), such an
isogeny class contains a principally polarised abelian variety A over Fq, which is the
Jacobian variety of some curve Cq defined over Fq by results due to Oort and Ueno.
If this abelian variety A is moreover absolutely simple (cf. Proposition 7.7 and 7.8),
the curve is geometrically irreducible and we conclude by a Galois descent argument.

Proof of Theorem 7.5.

Step 1: Weil polynomials and Honda-Tate theory

Definition 7.6. A Weil q-polynomial, or simply a Weil polynomial, is a monic polyno-
mial Pq(X) ∈ Z[X] of even degree 2g whose complex roots are all Weil q-numbers,
i.e., algebraic integers with absolute value

√
q under all of their complex embed-

dings. Moreover, a Weil q-polynomial is said to be ordinary if its middle coefficient
is coprime to q.

In particular, for g = 3, every Weil q-polynomial of degree 6 is of the form

Pq(X) = X6 + aX5 + bX4 + cX3 + qbX2 + q2aX + q3

for some integers a, b and c (cf. [45, Proposition 3.4]). Such a Weil polynomial is
ordinary if, moreover, c is coprime to q.

Conversely, not every polynomial of this form is a Weil polynomial. However,
we will prove in Proposition 7.14 that for q > 1.82`2, every polynomial as above
with |a|, |b|, |c| < ` is a Weil q-polynomial.

As an important example, the characteristic polynomial of the Frobenius endo-
morphism πA of an abelian varietyA over Fq is a Weil q-polynomial, by the Riemann
hypothesis for abelian varieties as proven by Weil [124], or more generally for vari-
eties over finite fields as proven by Deligne [33].

A variant of the Honda-Tate Theorem (cf. [45, Theorem 3.3]) states that the map
which sends an ordinary abelian variety over Fq to the characteristic polynomial of
its Frobenius endomorphism induces a bijection between the set of isogeny classes of
ordinary abelian varieties of dimension g ≥ 1 over Fq and the set of ordinary Weil q-
polynomials of degree 2g. Moreover, under this bijection, isogeny classes of simple
ordinary abelian varieties correspond to irreducible ordinary Weil q-polynomials.



Local conditions at q 79

Step 2: Assuring absolute simplicity

We now establish whether the Weil q-polynomial determines if the abelian varieties
in the isogeny class are absolutely simple.

In [46], Howe and Zhu give a sufficient condition for an abelian variety over
a finite field to be absolutely simple; for ordinary varieties, this condition is also
necessary. Let A be a simple abelian variety over a finite field, π = πA its Frobenius
endomorphism andmA(X) ∈ Z[X] the minimal polynomial of π. SinceA is simple,
the subalgebra Q(π) of End(A) ⊗ Q is a field; it contains a filtration of subfields
Q(πd) for d > 1. If moreover A is ordinary, then the fields End(A) ⊗Q = Q(π)
and Q(πd) (d > 1) are all CM-fields, i.e., totally imaginary quadratic extensions of a
totally real field. A slight reformulation of Howe and Zhu’s criterion is the following
(see [46, Proposition 3 and Lemma 5]):

Proposition 7.7 (Howe-Zhu criterion for absolute simplicity). Let A be a simple
abelian variety over a finite field k. If Q(πd) = Q(π) for all integers d > 0, then A
is absolutely simple. If A is ordinary, then the converse is also true, and if Q(πd) 6=
Q(π) for some d > 0, then A splits over the degree d extension of k. Moreover, if
Q(πd) is a proper subfield of Q(π) such that Q(πr) = Q(π) for all r < d, then
either mA(X) ∈ Z[Xd], or Q(π) = Q(πd, ζd) for a primitive d-th root of unity ζd.

From this criterion, Howe and Zhu give elementary conditions for a simple 2-
dimensional abelian variety to be absolutely simple, see [46, Theorem 6]. Elaborat-
ing on their criterion and inspired by [46, Theorem 6], we prove the following for
dimension 3:

Proposition 7.8. Let A be an ordinary simple abelian variety of dimension 3 over a
finite field k of odd cardinality q. Then eitherA is absolutely simple or the character-
istic polynomial of the Frobenius endomorphism of A is of the form X6 + cX3 + q3

with c coprime to q and A splits over the degree 3 extension of k.

Proof. Let A be an ordinary simple but not absolutely simple abelian variety of di-
mension 3 over k. Since A is simple, the characteristic polynomial of π is mA(X).
We apply Proposition 7.7 to A: Let d be the smallest integer such that Q(πd) 6=
Q(π). Either mA(X) ∈ Z[Xd] or there exists a d-th root of unity ζd such that
Q(π) = Q(πd, ζd).

Suppose that mA(X) ∈ Z[Xd]. Since mA(X) is ordinary, the coefficient of
degree 3 is nonzero, and it will follow that d = 3 and that mA(X) has the form
X6 + cX3 + q3, proving the proposition.
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Suppose instead that mA(X) 6∈ Z[Xd]; we will prove that this is impossible.
The field K = Q(π) = Q(πd, ζd) is a CM-field of degree 6 over Q, hence its
proper CM-subfield L = Q(πd) has to be a quadratic imaginary field. It follows that
φ(d) = 3 or 6, where φ denotes the Euler totient function. However, φ(d) = 3 has no
solution, so we must have φ(d) = 6, i.e. d ∈ {7, 9, 14, 18}, and K = Q(ζd). Note
that Q(ζ7) = Q(ζ14) and Q(ζ9) = Q(ζ18), and they contain only one quadratic
imaginary field; namely, Q(

√
−7) for d = 7 (resp. 14), and Q(

√
−3) for d = 9

(resp. d = 18) (cf. [119]). Let σ be a generator of the (cyclic) group Gal(K/L) of
order 3. In their proof of [46, Lemma 5], Howe and Zhu show that we can choose ζd
such that πσ = ζdπ. Moreover, ζσd = ζkd for some integer k (which can be chosen

to lie in [0, d − 1]). Since σ is of order 3, we have π = πσ
3

= ζ
(k2+k+1)
d π, which

gives k2 + k + 1 ≡ 0 (mod d). This rules out the case d = 9 and 18, because −3 is
neither a square modulo 9 nor a square modulo 18. So d = 7 or 14, K = Q(ζ7) and
Q(πd) = Q(

√
−7). It follows that the characteristic polynomial of πd, which is of

the form

X6 + αX5 + βX4 + γX3 + βqdX2 + αq2dX + q3d ∈ Z[X],

is the cube of a quadratic polynomial of discriminant −7. This is true if and only if

α2 − 36qd + 63 = 0, α2 − 3β + 9qd = 0 and α3 − 27γ + 54αqd = 0,

that is,

α2 = 9(4qd − 7), β = 3(5qd − 7) and 3γ = α(10qd − 7).

However, the first equation has no solution in q. Indeed, suppose that 4qd − 7 is a
square, say u2 for some integer u. Then u is odd, say u = 1 + 2t for some integer t,
hence 4qd = 8 + 4t(t+ 1), so 2 divides q, which contradicts the hypothesis.

Hence, we obtain that mA(X) ∈ Z[Xd] and Proposition 7.8 follows.

Step 3: Existence of an irreducible ordinary Weil polynomial

Finally, the proof of Theorem 7.5 further relies on the following proposition, whose
proof consists of counting arguments and is postponed to Section 7.6:

Proposition 7.9. For any prime number ` ≥ 13 and any prime number q > 1.82`2,
there exists an ordinary Weil q-polynomial

Pq(X) = X6 + aX5 + bX4 + cX3 + qbX2 + q2aX + q3,

with a 6≡ 0 (mod `), which is irreducible modulo `. For ` ∈ {3, 5, 7, 11}, there
exists some prime number q > 1.82`2 and an ordinary Weil q-polynomial as above.
Moreover, for all ` ≥ 3, the coefficients can be chosen such that

{a, b, c} ⊂ Z ∩ [−(`− 1)/2, (`− 1)/2].
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Remark 7.10. Computations (in the range 1.82`2 < q < `2 + 50) suggest that for
` ∈ {5, 7, 11} and any prime number q > 1.82`2, there still exist integers a, b, c
such that Proposition 7.9 holds. For ` = 3, this is no longer true: our computations
indicate that if q is such that

( q
`

)
= −1, then there are no suitable a, b, c, while if q

is such that
( q
`

)
= 1, they indicate that there are 4 suitable triples (a, b, c).

Step 4: Finishing the proof

Let ` and q be two distinct prime numbers as in Proposition 7.9 and let Pq(X) be
an ordinary Weil q-polynomial provided by this proposition. Since the polynomial
Pq(X) is irreducible modulo `, it is a fortiori irreducible over Z. It is also ordinary
and of degree 6. Hence, by Honda-Tate theory, it defines an isogeny class A of
ordinary simple abelian varieties of dimension 3 over Fq. By Proposition 7.8, since
a 6= 0, the abelian varieties in A are actually absolutely simple. Moreover, according
to Howe (cf. [45, Theorem 1.2]), A contains a principally polarised abelian variety
(A, λ).

Now, by the results of Oort-Ueno (cf. [86, Theorem 4]), there exists a so-called
good curve C defined over Fq such that (A, λ) is Fq-isomorphic to (Jac(C), µ0),
where µ0 denotes the canonical polarisation on Jac(C). A curve over Fq is a good
curve if it is either irreducible and nonsingular or a non-irreducible stable curve
whose generalised Jacobian variety is an abelian variety (cf. [45, Definition (13.1)]).
In particular, the curve C is stable, and so semistable. Since the generalised Ja-
cobian variety Jac(C) ∼= Pic0

C is an abelian variety, the torus appearing in the
short exact sequence of Proposition 5.18 is trivial. Hence, there is an isomorphism
Jac(C) ∼=

∏r
i=1 Pic0

X̃i
, where X̃1, . . . , X̃r denote the normalisations of the irre-

ducible component of C over Fq. Since Jac(C) is absolutely simple, we conclude
that r = 1, i.e., the curve C is irreducible, hence smooth.

We can therefore apply Theorem 9 of the appendix by Serre in [59] (see also
the reformulation in [92, Theorem 1.1]) and conclude that the curve C descends to
Fq. Indeed, there exists a smooth and geometrically irreducible curve Cq defined
over Fq which is isomorphic to C over Fq. Moreover, either (A, λ) or a quadratic
twist of (A, λ) is isomorphic to (Jac(Cq), µ) over Fq, where µ denotes the canonical
polarisation of Jac(Cq). The characteristic polynomial of the Frobenius endomor-
phism of Jac(Cq) is Pq(X) or Pq(−X), since the twist may replace the Frobenius
endomorphism with its negative.

Note that the polynomial Pq(−X) is still an ordinary Weil polynomial which is
irreducible modulo ` with nonzero trace, and Jac(Cq) is still ordinary and absolutely
simple. This proves Theorem 7.5.



82 Constructing Jacobians with large Galois images

Remark 7.11. In the descent argument above, the existence of a nontrivial quadratic
twist may occur in the non-hyperelliptic case only. This obstruction for an abelian
variety over Fq to be a Jacobian over Fq was first stated by Serre in a Harvard
course [103]; it was derived from a precise reformulation of Torelli’s theorem that
Serre attributes to Weil [125]. Note that Sekiguchi investigated the descent of the
curve in [99] and [100], but, as Serre pointed out to us, the non-hyperelliptic case
was incorrect. According to MathSciNet review MR1002618 (90d:14032), together
with Sekino, Sekiguchi corrected this error in the Japanese article [101].

7.5 Proof of the main theorem

The goal of this section is to prove Theorem 7.1, by collecting together the results
from Sections 7.3 and 7.4. We keep the notation introduced in Section 7.1; in par-
ticular, we will consider genus 3 curves defined by polynomials which are of 3-
hyperelliptic or quartic type. We will prove the following more precise version of
Theorem 7.1:

Theorem 7.12. Let ` ≥ 13 be a prime number. For each prime q > 1.82`2, there
exists f q(x, y) ∈ Fq[x, y] of 3-hyperelliptic or quartic type, for which the following
holds: if f(x, y) ∈ Z[x, y] is a lift of f q(x, y), of the same type, satisfying the
following two conditions for some prime number p 6∈ {2, q, `}:

1. f(0, 0) = 0 or vp(f(0, 0)) > 2;

2. f(x, y) is congruent modulo p2 to:{
y2 − x(x− p)m(x) if f q(x, y) is of hyperelliptic type
x4 + y4 + x2 − y2 + px if f q(x, y) is of quartic type

for some m(x) ∈ Zp[x] of degree 5 or 6 with simple nonzero roots modulo p;

then the projective curve C defined over Q by the equation f(x, y) = 0 is a smooth
projective geometrically irreducible genus 3 curve, such that the image of the Galois
representation ρJac(C),` attached to the `-torsion of Jac(C) coincides with GSp6(F`).

Moreover, if ` ∈ {5, 7, 11}, the statement is true, replacing “For each prime
number q” by “There exists an odd prime number q”.

Remark 7.13. Let ` ≥ 5 be a prime number. Note that it is easy to construct in-
finitely many polynomials f(x, y) satisfying the conclusion of Theorem 7.12: choose
a polynomial fp(x, y) satisfying the conditions in Definition 7.2. Then it suffices to
choose each coefficient of f(x, y) as a lift of the corresponding coefficient of f q(x, y)
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to an element of Z, which is congruent mod p3 to the corresponding coefficient of
fp(x, y). This also proves that Theorem 7.1 follows from Theorem 7.12.

Proof of Theorem 7.12. Fix a prime ` ≥ 5. Let q be a prime and let Cq be a genus 3
curve over Fq, provided by Theorem 7.5. The curve Cq is either a plane quartic or a
hyperelliptic curve. More precisely, it is defined by an equation f q(x, y) = 0, where
f q(x, y) ∈ Fq[x, y] is a quartic type polynomial in the first case and a 3-hyperelliptic
type polynomial otherwise (cf. Section 7.1). Note that if f(x, y) ∈ Z[x, y] is a quartic
(resp. 3-hyperelliptic type) polynomial which reduces to f q(x, y) modulo q, then it
defines a smooth projective genus 3 curve over Q which is geometrically irreducible.

Let now p 6∈ {2, q, `} be a prime. Assume that f(x, y) ∈ Z[x, y] is a polyno-
mial of the same type as f q(x, y) which is congruent to f q(x, y) modulo q and also
satisfies the two conditions of the statement of Theorem 7.12 for this p. We claim
that the curve C defined over Q by the equation f(x, y) = 0 satisfies all the con-
ditions of the explicit surjectivity result of Theorem 5.15. Namely, Proposition 7.3
implies that C is a smooth projective geometrically connected curve of genus 3 with
stable reduction. Moreover, according to Proposition 7.4, the Jacobian Jac(C) is a
principally polarised 3-dimensional abelian variety over Q, and its Néron model has
semistable reduction at p with toric rank equal to 1. Furthermore, the component
group Φp of the Néron model of Jac(C) at p has order 2. Finally, by the choice
of q and Cq provided by Theorem 7.5, q is a prime of good reduction of Jac(C)
such that the Frobenius endomorphism of the special fibre at q has Weil polynomial
Pq(X) = X6 + aX5 + bX4 + cX3 + qbX2 + q2aX + q3, which is irreducible
modulo `.

Since the prime ` does not divide 6pqa|Φp|, we conclude from Theorem 5.15 that
the image of the Galois representation ρJac(C),` attached to the `-torsion of Jac(C)
coincides with GSp6(F`).

7.6 Counting irreducible Weil polynomials of degree 6

In this section, we will prove Proposition 7.9 which was stated in Section 7.4. The
proof is based on Proposition 7.14 as well as Lemmas 7.16 and 7.17 below.

Let ` and q be distinct prime numbers. Consider a polynomial of the form

Pq(X) = X6 + aX5 + bX4 + cX3 + qbX2 + q2aX + q3 ∈ Z[X]. (∗)

Proposition 7.14 ensures that for q > 1.82`2, every polynomial as in (∗) with
coefficients in ]− `, `[ is a Weil polynomial. Because such a polynomial could factor
as Pq(X) = (X − α)(X − q

α)Q(X) where Q(X) is a degree 4 Weil polynomial, in
Proposition 7.14 and below we also study these degree 4 Weil polynomials.
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Then Lemmas 7.16 and 7.17 allow us to show that the number of such degree 6
Weil polynomials which are irreducible modulo ` is strictly positive.

Proposition 7.14. Let ` and q be two prime numbers.

1. Suppose that q > 1.67`2. Then every polynomial

X4 + uX3 + vX2 + uqX + q2 ∈ Z[X]

with integers u, v of absolute value < ` is a Weil q-polynomial.

2. Suppose that q > 1.82`2. Then every polynomial

Pq(X) = X6 + aX5 + bX4 + cX3 + qbX2 + q2aX + q3 ∈ Z[X],

with integers a, b, c of absolute value < `, is a Weil q-polynomial.

Remark 7.15. The proof of Proposition 7.14 given in Section 7.6.1 will show that
the power in ` is optimal, but the constants 1.67 and 1.82 are not.

Let D∗−6 be the number of polynomials of form (∗) with a, c 6= 0, and a, b, c in
[−(`− 1)/2, (`− 1)/2], and whose discriminant ∆Pq is not a square modulo `. Let
R6 the number of such polynomials which are reducible modulo `. Denoting by

(
.
`

)
the Legendre symbol, we have:

Lemma 7.16. Let ` > 3, then

D∗−6 ≥ 1

2
(`− 1)2

(
`− 1−

(q
`

))
+

1

2
(`− 1)

(q
`

)(
1−

(
−1

`

))
− `(`− 1).

Lemma 7.17. Let ` > 3, then

R6 ≤
3

8
`3 − 5

8
`2
(q
`

)
− `2 +

3

2
`
(q
`

)
+

5

8
`− 3

8

(q
`

)
− 1

2
.

We postpone the proofs of Proposition 7.14 as well as those of Lemmas 7.16
and 7.17 to the following subsections but now use those statements to prove Propo-
sition 7.9. First, let us recall a result of Stickelberger, as proven by Carlitz in [28],
which will also be useful for proving Lemmas 7.16 and 7.17: For any monic poly-
nomial P (X) of degree n with coefficients in Z, and any odd prime number ` not
dividing its discriminant ∆P , the number s of irreducible factors of P (X) modulo `
satisfies (

∆P

`

)
= (−1)n−s.
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Proof of Proposition 7.9. Let ` > 3 be a prime number. It follows from Stickel-
berger’s result that if Pq(X) as in (∗) is irreducible modulo `, then

(
∆Pq

`

)
= −1.

Hence by Proposition 7.14, when q > 1.82`2, we find that (D∗−6 −R6) is exactly the
number of degree 6 ordinary Weil polynomials which have nonzero trace modulo `
and are irreducible modulo `.

By Lemmas 7.16 and 7.17, we have

D∗−6 −R6 ≥
1

8
`3 +

1

8
`2
(q
`

)
− 1

2
`

(
−q
`

)
− 3

2
`2 +

1

2

(
−q
`

)
+

15

8
`− 5

8

(q
`

)
,

which is strictly positive for all q, provided that ` ≥ 13.
For ` = 3, 5, 7 or 11, direct computations of (D∗−6 −R6) using SAGE [110] show

that q = 19 for ` = 3, q = 47 for ` = 5, q = 97 for ` = 7, q = 223 for ` = 11 will
satisfy the conditions of Proposition 7.9.

Actually, computations for 1.82`2 < q < `2 + 50 indicate that for ` = 5, 7, 11,
(D∗−6 − R6) should be strictly positive for any prime number q and for ` = 3, it
should be strictly positive for all prime numbers q which are not squares modulo `
(see Remark 7.10).

7.6.1 Proof of Proposition 7.14

Recall that ` and q are two prime numbers.
We first consider degree 4 polynomials. Maisner and Nart prove in [68, Lemma

2.1] that a polynomialX4 +uX3 +vX2 +uqX+q2 ∈ Z[X] is a q-Weil polynomial
if and only if the integers u, v satisfy the following inequalities:

(a) |u| ≤ 4
√
q,

(b) 2|u|√q − 2q ≤ v ≤ u2

4 + 2q.

Let q > 1.67`2 and Q(X) = X4 + uX3 + vX2 + uqX + q2 ∈ Z[X] with
|u| < `, |v| < `. Then q ≥ 1

16`
2 and, since ` ≥ 2, we have q ≥ 1

4`
2 ≥ 1

2` so (a)

and the right hand side inequality in (b) are satisfied. Finally, q ≥
(

1 + 1
2
√

3

)2
`2 so

√
q ≥

(
1 + 1

2
√
q

)
` and the left hand side inequality in (b) is satisfied. This proves

that Q(X) is a Weil polynomial and the first part of the proposition.

Now we turn to degree 6 polynomials. The proof is similar to the degree 4 case.
According to Haloui [39, Theorem 1.1], a degree 6 polynomial of the form (∗) is a
Weil polynomial if its coefficients satisfy the following inequalities:
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(1) |a| < 6
√
q,

(2) 4
√
q|a| − 9q < b ≤ a2

3 + 3q,

(3) −2a3

27 + ab
3 +qa− 2

27(a2−3b2+9q)
3
2 ≤ c ≤ −2a3

27 + ab
3 +qa+ 2

27(a2−3b2+9q)
3
2 ,

(4) −2qa− 2
√
qb− 2q

√
q < c < −2qa+ 2

√
qb+ 2q

√
q.

Let q > 1.82`2 and Pq(X) a polynomial of the form (∗) with |a|, |b|, |c| < `.
Then we note:

• We have q > 1
36`

2, so ` < 6
√
q and (1) is satisfied.

• The right hand side inequality of (2) is satisfied since ` ≤ 3q. Moreover, we
have q > (1 +

√
17/8)`2 ≥ 4`2(1 +

√
1 + 9/4`)2/81. Hence,

9q − 4 `
√
q − ` > 0 and the left hand inequality of (2) is satisfied.

• A sufficient condition to have both inequalities in (3) is

2`3 + 9`2 + 27q`− 2(−3`2 + 9q)3/2 + 27` ≤ 0.

A computation shows that this inequality is equivalent to A ≤ B, with

A = `6
(

28

729
+

1

81`
+

7

108`2
+

1

6`3
+

1

4`4

)
and

B = q3

(
1− 5

4

`2

q
+
`4

q2

(
8

27
− 1

6`
− 1

2`2

))
.

Since ` ≥ 2, we have A ≤ 4537
46656`

6 and B ≥ q3
(

1− 5
4
`2

q + 19
216

`4

q2

)
. Further-

more, since the polynomial

4537

46656
X3 − 19

216
X2 +

5

4
X − 1

has only one real root with approximate value 0.805, we find that A ≤ B,
because q ≥ 1.243`2.

• Since q > 1.82`2 and ` ≥ 2, we have

`

(
1

2q
+

1
√
q

+ 1

)
≤ `

(
1

22
+

1√
11

+ 1

)
<
√
q.

Hence, −2q`− 2
√
q`+ 2q

√
q − ` > 0 and (4) is satisfied.

This proves that Pq(X) is a Weil polynomial and the second part of the proposition.
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7.6.2 Proofs of Lemmas 7.16 and 7.17

In this section, ` > 2, q 6= ` are prime numbers and we, somewhat abusively, denote
with the same letter an integer in [−(`− 1)/2, (`− 1)/2] and its image in F`.

We will use the following elementary lemma.

Lemma 7.18. Let D ∈ F∗` and ε ∈ {−1, 1}. We have∣∣∣∣{x ∈ F` :

(
x2 −D

`

)
= ε

}∣∣∣∣ =
1

2

(
`− 1− ε−

(
D

`

))
;

and ∣∣∣∣{(x, y) ∈ F2
` :

(
x2 −Dy2

`

)
= ε

}∣∣∣∣ =
1

2
(`− 1)

(
`−

(
D

`

))
.

Estimates on the number of degree 4 Weil polynomials modulo `

Proposition 7.19.

1. For ε ∈ {−1, 1}, we denote by Dε
4 the number of degree 4 polynomials of the

form X4 + uX3 + vX2 + uqX + q2 ∈ F`[X] with discriminant ∆ such that(
∆
`

)
= ε. Then

D−4 =
1

2
(`− 1)

(
`−

(q
`

))
and D+

4 =
1

2
(`− 3)

(
`−

(q
`

))
+ 1.

2. The number N4 of degree 4 Weil polynomials with coefficients in
[−(`− 1)/2, (`− 1)/2] which are irreducible modulo ` satisfies

N4 ≤
1

4
(`+ 1)(`− 1). (7.2)

3. The number T4 of degree 4 Weil polynomials with coefficients in
[−(`− 1)/2, (`− 1)/2] with exactly two irreducible factors modulo ` satisfies

T4 ≤
1

4
(`− 3)

(
`−

(q
`

))
+

1

8
(`− 1)(`+ 1). (7.3)

Moreover, if q > 1.67`2, inequalities (7.2) and (7.3) are equalities.
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Proof. First, we computeDε
4. The polynomialQ(X) = X4+uX3+vX2+uqX+q2

has discriminant

∆ = q2κ2δ where κ = −u2 − 8q + 4v and δ = (v + 2q)2 − 4qu2.

So, since q ∈ F∗` , we have
(

∆
`

)
=
(
κ
`

)2 ( δ
`

)
. Moreover, notice that if κ = 0 then

δ = (v − 6q)2. Hence the set Dε
4 of (u, v) ∈ F2

` such that
(

∆
`

)
= ε is equal to

Dε
4 =

{
(u, v) ∈ F2

` :

(
δ

`

)
= ε

}
\
{

(u, v) ∈ F2
` :

(
δ

`

)
= ε and κ = 0

}
=

{
(u, v) ∈ F2

` :

(
δ

`

)
= ε

}
\

{
(u, v) ∈ F2

` :

(
v − 6q

`

)2

= ε

and u2 = 4(v − 2q)

}
.

It follows that

D−4 =
∣∣D−4 ∣∣ =

∣∣∣∣{(u, v) ∈ F2
` :

(
δ

`

)
= −1

}∣∣∣∣
and

D+
4 =

∣∣D+
4

∣∣ =

∣∣∣∣{(u, v) ∈ F2
` :

(
δ

`

)
= 1

}∣∣∣∣
−

∣∣{(u, v) ∈ F2
` : v 6= 6q and u2 = 4(v − 2q)

}∣∣ .
Since the map (u, v) 7→ (v + 2q, 2u) is a bijection on F2

` (because ` 6= 2), by
Lemma 7.18 we have∣∣∣∣{(u, v) ∈ F2

` :

(
δ

`

)
= ε

}∣∣∣∣ =

∣∣∣∣{(x, y) ∈ F2
` :

(
x2 − qy2

`

)
= ε

}∣∣∣∣
=

(`− 1)

2

(
`−

(q
`

))
for any ε ∈ {±1}. This gives the result for D−4 . Moreover∣∣{(u, v) : v 6= 6q and u2 = 4(v − 2q)

}∣∣
=

∣∣{(u, v) : u2 = 4(v − 2q)
}∣∣− ∣∣{u ∈ F` : u

2 = 16q
}∣∣

= `− 1−
(q
`

)
.

This gives the result for D+
4 .
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Next, we bound the quantity N4. By Stickelberger’s result recalled at the begin-
ning of the section, if a monic polynomial of degree 4 in Z[X] is irreducible modulo
` then it has non-square discriminant modulo `. Conversely, if a monic degree 4
polynomial in Z[X] has non-square discriminant modulo `, then it has one or three
distinct irreducible factors in F`[X]. If the reduction of a degree 4 Weil polyno-
mial with non-square discriminant modulo ` has three distinct irreducible factors in
F`[X], then it has the form

(X − α′)(X − q

α′
)(X2 −B′X + q)

with X2 − B′X + q irreducible in F`[X] and α′ 6= q/α′ in F∗` . By Lemma 7.18,
there are

1

4

(
`− 2−

(q
`

))(
`−

(q
`

))
such polynomials with three irreducible factors. It follows that

N4 ≤ D−4 −
1

4

(
`− 2−

(q
`

))(
`−

(q
`

))
≤ 1

4
(`− 1)(`+ 1).

Finally, we bound the quantity T4. As in the paragraph above, Stickelberger’s
result implies that a degree 4 Weil polynomialQ(X) in Z[X] has exactly two distinct
irreducible factors modulo ` if and only if

(
∆Q

`

)
= 1 and Q(X) (mod `) does not

have four distinct roots in F`. By Lemma 7.18, there are

1

8

(
`−

(q
`

)
− 2
)(

`−
(q
`

)
− 4
)

Weil polynomials with coefficients in [−(`−1)/2, (`−1)/2] whose reduction modulo
` has four distinct roots in F`. It follows that

T4 ≤ D+
4 −

1

8

(
`−

(q
`

)
− 2
)(

`−
(q
`

)
− 4
)

≤ 1

4
(`− 3)

(
`−

(q
`

))
+

1

8
(`− 1)(`+ 1).

When q > 1.67`2, these upper bounds for N4 and T4 are equalities, since in this
case, by Proposition 7.14, every polynomial of the formX4+uX3+vX2+uqX+q2

with |u|, |v| < ` is a Weil polynomial.



90 Constructing Jacobians with large Galois images

Proof of Lemma 7.17

Let Pq(X) be a degree 6 Weil polynomial with coefficients in [−(`−1)/2, (`−1)/2]
and non-square discriminant modulo `. We may drop the conditions a 6= 0, c 6= 0 to
simplify computations for finding an upper bound for R6. By Stickelberger’s result,
Pq(X) has 1, 3 or 5 distinct irreducible factors in F`[X]. Note that a root α of
Pq(X) in F` is in F` if and only q/α is also in F`. So a degree 6 Weil polynomial
Pq(X) with non-square discriminant modulo ` is reducible modulo ` if and only if
its factorisation in F`[X] is of one of the following types:

1. Pq(X) ≡ (X − α)(X − q
α)(X − β)(X − q

β )(X2 − CX + q), with C2 − 4q
non-square modulo ` and α 6= q/α, β 6= q/β and {α, q/α} 6= {β, q/β};
equivalently Pq(X) ≡ (X2−AX+ q)(X2−BX+ q)(X2−CX+ q) where
the first two quadratic polynomials are distinct and both reducible and the third
one is irreducible;

2. Pq(X) ≡ (X − α)(X − q
α)Q(X), where α 6= q/α and the irreducible factor

Q(X) is the reduction of a degree 4 Weil polynomial;

3. Pq(X) is the product of three distinct irreducible quadratic polynomials, i.e.,
Pq(X) ≡ (X2 − CX + q)Q(X) where X2 − CX + q is irreducible and
Q(X) is the reduction of a degree 4 Weil polynomial which has two distinct
irreducible factors, both of which are distinct from X2 − CX + q.

We will count the number of polynomials of each type.
Type 1. By Lemma 7.18, there are 1

2

(
`−

( q
`

))
irreducible quadratic polynomials

X2−CX+q. Also by Lemma 7.18, there are 1
2

(
`− 2−

( q
`

))
choices for reducible

X2 −AX + q without a double root and then there are 1
2

(
`− 2−

( q
`

))
− 1 choices

for reducible X2−BX+q without a double root and distinct from X2−AX+q. It
follows that there are 1

16

(
`−

( q
`

)) (
`−

( q
`

)
− 2
) (
`−

( q
`

)
− 4
)

such polynomials.
Type 2. By Proposition 7.19 and Lemma 7.18, the number of polynomials with
decomposition of this type is

1

2

(
`−

(q
`

)
− 2
)
N4 ≤

1

8
(`+ 1)(`− 1)

(
`−

(q
`

)
− 2
)
.

Type 3. Proposition 7.19 and Lemma 7.18 imply that there are

≤ 1

2

(
`−

(q
`

))
T4 ≤

1

8

(
`−

(q
`

))2
(`− 3) +

1

16
(`− 1)(`+ 1)

(
`−

(q
`

))
polynomials of this type. The first inequality is due to the fact that we do not take
into account that X2 − CX + q has to be distinct from the factors of Q(X).

Summing these three upper bounds yields the lemma.
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Proof of Lemma 7.16

The discriminant of Pq(X) is ∆Pq = q6Γ2δ, where

Γ = 8qa4 + 9q2a2 − 42qa2b+ a2b2 − 4a3c+ 108q3 − 108q2b+ 36qb2 − 4b3

+54qac+ 18abc− 27c2

and δ = (c+ 2aq)2 − 4q(b+ q)2. Hence, we have

D∗−6 =

∣∣∣∣{(a, b, c) : a, c 6= 0,Γ 6≡ 0 mod ` and
(
δ

`

)
= −1

}∣∣∣∣
=

∣∣∣∣{(a, b, c) : a, c 6= 0,

(
δ

`

)
= −1

}∣∣∣∣
−

∣∣∣∣{(a, b, c) : a, c 6= 0,Γ ≡ 0 mod ` and
(
δ

`

)
= −1

}∣∣∣∣
≥ M −W,

for M =
∣∣{(a, b, c) : a, c 6= 0,

(
δ
`

)
= −1

}∣∣ and
W = |{(a, b, c) : a 6= 0,Γ ≡ 0 mod `}|.

Computation of M . Since ` > 2 and q ∈ F∗` , for any fixed c ∈ F×` , the map
(a, b) 7→ (c+ 2aq, b+ q) is a bijection from F∗` ×F` to F`\{c}×F`. From this and
Lemma 7.18 we deduce that

M =
∑
c∈F∗`

∣∣∣∣{(x, y) ∈ F2
` : x 6= c,

(
x2 − 4qy2

`

)
= −1

}∣∣∣∣
=

∑
c∈F∗`

∣∣∣∣{(x, y) ∈ F2
` :

(
x2 − 4qy2

`

)
= −1

}∣∣∣∣
−

∑
c∈F∗`

∣∣∣∣{y ∈ F` :

(
c2 − 4qy2

`

)
= −1

}∣∣∣∣
=

1

2
(`− 1)2

(
`−

(q
`

))
−
∑
c∈F∗`

M ′c,

where

M ′c =

∣∣∣∣{y ∈ F` :

(
c2 − 4qy2

`

)
= −1

}∣∣∣∣
=

∣∣∣∣{y ∈ F` :

(
y2 − (c2/4q)

`

)
= −

(
−q
`

)}∣∣∣∣ .
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By Lemma 7.18, if
(−q
`

)
= −1, then

M ′c =

∣∣∣∣{y ∈ F` :

(
y2 − (c2/4q)

`

)
= 1

}∣∣∣∣ =
1

2

(
`− 2−

(q
`

))
and if

(−q
`

)
= 1, then

M ′c =

∣∣∣∣{y ∈ F` :

(
y2 − (c2/4q)

`

)
= −1

}∣∣∣∣ =
1

2

(
`−

(q
`

))
.

This can be rewritten, for all q and `, as M ′c = 1
2

(
`− 1−

( q
`

)
+
(−q
`

))
. We obtain

M =
1

2
(`− 1)2

(
`− 1−

(q
`

))
+

1

2
(`− 1)

(q
`

)(
1−

(
−1

`

))
.

Computation of W . Note that Γ can be viewed as a degree 2 polynomial in c over
F`[a, b]:

Γ = −27c2 +G1c+G0, where G1(a, b) = −2a(2a2 − 27q − 9b)

and

G0(a, b) = 8qa4 + 9q2a2 − 42qa2b+ a2b2 + 108q3 − 108q2b+ 36qb2 − 4b3.

The discriminant of Γ as a polynomial in c is γ = 16(a2+9q−3b)3. So Γ ≡ 0 mod `
if and only if((γ

`

)
= 1 and c =

−1

54
(−G1 ±

√
γ)

)
or
(
γ = 0 and c =

1

54
G1

)
,

where
√
γ denotes a square root of γ in F`. It follows that

W = 2 ·
∣∣∣{(a, b) ∈ F2

` : a 6= 0,
(γ
`

)
= 1
}∣∣∣+

∣∣{(a, b) ∈ F2
` : a 6= 0, γ = 0

}∣∣
= 2 ·

∣∣∣∣{(a, b) ∈ F2
` : a 6= 0,

(
a2 − 3(b− 3q)

`

)
= 1

}∣∣∣∣
+

∣∣{(a, b) ∈ F2
` : a 6= 0, a2 = 3(b− 3q)

}∣∣ .
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Since ` > 3, the map b 7→ 3(b− 3q) is a bijection on F`, so we have

W = 2 ·
∣∣∣∣{(x, y) ∈ F2

` : x 6= 0,

(
x2 − y
`

)
= 1

}∣∣∣∣
+

∣∣{(x, y) ∈ F2
` : x 6= 0, x2 = y

}∣∣
= 2 ·

∑
y∈F`

∣∣∣∣{x ∈ F` :

(
x2 − y
`

)
= 1

}∣∣∣∣− 2 ·
∣∣∣∣{y ∈ F` :

(
−y
`

)
= 1

}∣∣∣∣
+

∑
y∈F∗`

∣∣{x ∈ F∗` : x2 = y}
∣∣

=
∑
y∈F∗`

(
`− 2−

(y
`

))
+ 2(`− 1)− (`− 1) + (`− 1),

using Lemma 7.18 (the second term is the contribution of y = 0). This yields
W = `(`− 1) and computing M −W concludes the proof.
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CHAPTER 8

Abelian varieties over finite fields and twists

In this chapter, we present some background material on supsersingular abelian va-
rieties over finite fields and their twists, which will be used in subsequent chapters.

Let K = Fq be a finite field of cardinality q = pr, for p a prime number, and let
k = Fp.

8.1 L-polynomials and supersingular abelian varieties

Field of definition

Definition 8.1. Consider the isomorphism class of an abelian variety A over k. Let
K ⊂ k be a finite field. We say that A is defined over K if it has a model over K,
i.e., if there exists a K-variety A′ such that A′ ×K k ∼= A. The field K is then a field
of definition for A.

Definition 8.1 may be adapted to define the field of definition of a (smooth pro-
jective connected) curve X/k.

In this and subsequent chapters, we will assume that the field of definition of an
abelian variety A or a curve X is a finite field K.

The results in this chapter are joint work with Rachel Pries.
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Supersingular abelian varieties

Let A be an abelian variety of dimension g defined over K.

Definition 8.2. An abelian variety A/K is a projective group scheme. Consider an
open affine subscheme U = Spec(R) for some K-algebra R; the map which sends
x 7→ xq for all x ∈ R induces a Frobenius map fU on U . The absolute Frobenius
endomorphism fA : A×K k → A×K k of an abelian variety A/K is defined to be
the glueing of these Frobenius endomorphisms fU over all open subschemes U of A.

The relative Frobenius endomorphism π = πA : A ×K k → A ×K k of A is
defined as the factorisation of fA over the fibre product ofA→ Spec(k)← Spec(k),
where the second map is the absolute Frobenius fSpec(k) [85, 21.2].

Recall that GK denotes the absolute Galois group Gal(k/K) of K. Fix a topo-
logical generator FrK (Frobenius) of GK ; it is also called the topological Frobenius
endomorphism of K.

These three Frobenius maps are related via

πA = fA ⊗ Fr−1
K . (8.1)

Compare Definition 8.2 to the discussion on p. 62 and to Definition 7.6.

The characteristic polynomial P (A/K, T ) of the relative Frobenius endomor-
phism πA of A is a monic polynomial in Z[T ] of degree 2g. Writing

P (A/K, T ) =

2g∏
i=1

(T − αi),

the roots αi ∈ Q all satisfy |αi| =
√
q, by the Riemann hypothesis for abelian

varieties as proven by Weil [124].

Definition 8.3. The roots {α1, . . . , α2g} of P (A/K, T ) are the Weil numbers of A.
The normalised Weil numbers of A/K are {α1/

√
q, . . . , α2g/

√
q} = {z1, . . . , z2g}.

Theorem 8.4. [73, Chapter II, Theorem 1.1],

1. The number of K-points of A is

|A(K)| = deg(πA/K − id) = P (A/K, 1) =

2g∏
i=1

(1− αi). (8.2)

2. Also,
||A(K)| − qg| ≤ 2gq(g− 1

2
) + (22g − 2g − 1)q(g−1).
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Definition 8.5. [73, Chapter II, Section 1] The zeta function of A over K = Fq is

Z(A/K, T ) = exp

∑
m≥1

|A(Fqm)| t
m

m

 .

Theorem 8.6. [33, Theorem 1.6],[124, §IX, 71] The zeta function ofA overK = Fq
from Definition 8.5 satisfies

Z(A/K, T ) =
P1(T ) · . . . · P2g−1(T )

P0(T )P2(T ) · . . . · P2g−2(T )P2g(T )
,

with
Ps(T ) =

∏
(1− αi,sT ),

where the αi,s for a fixed s range over all products of s Weil numbers of A/K, i.e.,

αi,s = αi1αi2 · . . . · αis , 0 < i1 < . . . < is ≤ 2g.

Note that P (A/K, T ) = T 2gP1( 1
T ). The polynomials Pi describe the action of

Frobenius on the i-th (`-adic) cohomology of A. By [115, Theorem 1], two abelian
varietiesA1 andA2 overK have the same zeta function if and only if P (A1/K, T ) =
P (A2/K, T ) if and only if A1 and A2 are isogenous over K.

Definition 8.7. [85, Section 21] Recall that K = Fq for q = pr. We may write
P (A/K, T ) =

∑2g
j=1 bjT

2g−j . Then its Newton polygon is defined as the lower
convex hull of the set of points{(

j,
vp(bj)

r

)
: 0 ≤ j ≤ 2g

}
.

Definition 8.8. If the Newton polygon of P1(T ) is a line segment of slope 1/2 then
A is supersingular.

Definition 8.9. An elliptic curve E/K is supersingular if E[p](k) = {0}. For such
an elliptic curve, we denote the p-divisible group E[p∞] by G1,1.

There are many equivalent formulations of the supersingular property:

Theorem 8.10. Suppose A/K is an abelian variety of dimension g. The following
properties are equivalent:

1. A is supersingular;
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2. A is geometrically isogenous to a product of supersingular elliptic curves [84,
Theorem 4.2], i.e., A×K k ∼ Eg for an elliptic curve E satisfying E[p](k) =
{0}, cf. Definition 8.9;

3. the formal group ofA is geometrically isogenous to (G1,1)g ([62, Section 1.4],
cf. Definition 8.9);

4. the only slope of the p-divisible group A[p∞] is 1
2 ;

5. the complex roots of P (A/K, T ) can be written as ζ
√
q where ζ is a root of

unity [69, Theorem 4.1], [84, p. 116].

Definition 8.11. The abelian variety A/K is maximal (resp. minimal) if its nor-
malised Weil numbers all equal −1 (resp. 1). Since |A(K)| is an integer, equation
(8.2) implies that q is a square (i.e. r = logp q is even) if A/K is maximal (resp.
minimal).

Supersingular curves

Let X be a smooth projective connected curve of genus g defined over K. The curve
X is supersingular if its Jacobian Jac(X) is supersingular.

Theorem 8.12. [123, §IV, 22],[124, §IX, 69] The zeta function of X/K can be
written as

Z(X/K, T ) =
L(X/K, T )

(1− T )(1− qT )
,

where the L-polynomial L(X/K, T ) ∈ Z[T ] of X/K has degree 2g and factors as

L(X/K, T ) =

2g∏
i=1

(1− αiT ).

Then P (X/K, T ) = T 2gL(X/K, T−1) is the characteristic polynomial of the
relative Frobenius endomorphism of Jac(X). The roots {α1, . . . , α2g} ofP (X/K, T )
are the Weil numbers of X . The normalised Weil numbers of X/K are

{α1/
√
q, . . . , α2g/

√
q} = {z1, . . . , z2g}

(note that |αi/
√
q| = 1).

Corollary 8.13 (Hasse-Weil Bound). The number of K-points of X satisfies

|X(K)− (q + 1)| ≤ 2g
√
q. (8.3)
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Definition 8.14. Let X/K be a curve of genus g.

1. The curve X/K is maximal if |X(K)| = q + 1 + 2g
√
q. Equivalently,

L(X/K, T ) = (1 +
√
qT )2g, or the normalised Weil numbers are all −1.

2. The curve X/K is minimal if |X(K)| = q + 1 − 2g
√
q. Equivalently, X has

L(X/K, T ) = (1−√qT )2g, or its normalised Weil numbers are all 1.

Note that if X/K is maximal or minimal, then q is a square (r is even).

Basic properties

The following facts are well-known, follow from the previous results, and hold for
curves as well, cf. [118, Theorem 1.9] and [112, Theorem V.1.15(f)].

Lemma 8.15. If P (A/K, T ) =
∏2g
i=1(T − αi), then

P (A/Fqm , T ) =

2g∏
i=1

(T − αmi ).

Corollary 8.16. IfA/K is minimal or maximal, then it is supersingular. Conversely,
if A/K is supersingular, then it is minimal over some finite extension Fqm .

Corollary 8.17.

1. If A/K is maximal, then A/Fqm is maximal for odd m and minimal for
even m.

2. If A/K is minimal, then A/Fqm is minimal for all m.

8.2 Twists

Let A/K be an abelian variety of dimension g and let X/K be a smooth projective
connected curve of genus g, where we take K to be the minimal field of definition of
A or X .
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Review of twists

We follow the reference [104, Chapter III, §1], which treats the theory of twists (or
forms) of general algebraic varieties.

Definition 8.18. A twist of A/K is an abelian variety A′/K such that A and A′ are
geometrically isomorphic, meaning that there is an isomorphism

φ : A×K k
∼−→ A′ ×K k. (8.4)

The order of a twist A′/K is the degree of the minimal field of definition K ′ of φ
over K. In particular, a twist A′/K is trivial if A ∼=K A′.

Definition 8.19. Let Θ(A/K) denote the set of twists of A/K, modulo K-isomor-
phisms (i.e., modulo trivial twists). For K ′/K a field extension, let Θ(A,K ′/K) ⊂
Θ(A/K) denote the set of twists A′/K of A/K such that A ×K K ′ ∼= A′ ×K K ′,
modulo K ′-isomorphisms.

Proposition 8.20. [104, Proposition III.5] For every finite Galois extension K ′/K,
there is a bijection

θ : Θ(A,K ′/K)→ H1(Gal(K ′/K),AutK′(A)). (8.5)

There is an induced bijection

θ : Θ(A/K)→ H1(GK ,Autk(A)). (8.6)

We give the definition of θ as in equation (8.6) from the proof in [104]. Given
σ ∈ GK and a twist A′/K for φ an isomorphism as above, let σφ : A ×K k →
A′ ×K k be the twisted isomorphism satisfying, for all x ∈ A×K k, that

σφ(x) = σ(φ(σ
−1
x)). (8.7)

This defines a cocycle ξφ : GK → Autk(A) by

ξφ(σ) = φ−1 ◦σ φ. (8.8)

Then θ(A′/K) is the equivalence class of ξφ in H1(GK ,Autk(A)), so we write
A′ = Aξφ .

Given τ ∈ Autk(A), let FrKτ be the twisted automorphism by the topological
Frobenius FrK , satisfying

FrKτ(x) =FrK (τ(Fr
−1
K x))
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for all x ∈ A×K k.
Definition 8.21 and Proposition 8.22 are adaptations of [72, Definition 7 and

Proposition 9].

Definition 8.21. Two elements g, h ∈ Autk(A) are K-Frobenius conjugate if there
is an element τ ∈ Autk(A) such that

τg = h(FrKτ).

Proposition 8.22. There is a bijection

H1(GK ,Autk(A))→ {K-Frobenius conjugacy classes of Autk(A)}.

In particular, the number of twists of A/K is equal to the number of K- Frobenius
conjugacy classes of Autk(A).

Proof. Each cocycle is uniquely determined by its value at FrK . Two cocycles ξ
and ψ are equivalent in H1(GK ,Autk(A)) if there exists an element τ ∈ Autk(A)
such that ξ(FrK) ◦ (FrKτ) = τ ◦ ψ(FrK). By Definition 8.21, this is the same as
saying that ξ(FrK) and ψ(FrK) are K-Frobenius conjugate.

Thus, there are one-to-one correspondences between a twist A′/K of A/K and
a cocycle ξφ such that ξφ(FrK) = g for some g ∈ Autk(A) (so that A′ = Aξφ), as
well as between a cocycle ξφ such that ξφ(FrK) = g and theK-Frobenius conjugacy
class [g]Frob.

Now, we look at the effect of finite extensions on twists, as in [35, Section 2] for
curves.

Remark 8.23. Let K ′ be a finite extension of K of degree [K ′ : K] = n. Then
FrK′ = FrnK . There is a natural map Θ(A/K) → Θ(A/K ′) which sends the K-
isomorphism class of a twist Aξφ/K to the K ′-isomorphism class of Aξφ/K

′. The
equivalent map on cocycles is

H1(GK ,Autk(A))→ H1(Gal(k/K ′),Autk(A)), ξφ 7→ ξφ|Gal(k/K′).

Taking g ∈ Autk(A) to be such that ξφ(FrK) = g, this yields

ξφ|Gal(k/K′) : FrK′ 7→ g(FrKg)(Fr
2
Kg) . . . (Fr

n−1
K g).

Remark 8.24. The field over which the elements Autk(A) are defined plays an im-
portant role, as is made explicit in [27]. Most importantly, if all automorphisms of A
are defined over a finite field K, then GK acts trivially on Autk(A), so that Frobe-
nius conjugacy classes are the same as standard conjugacy classes. In this case, if
a twist Aξφ/K corresponds to the conjugacy class of g ∈ AutK(A), then its base
change Aξφ/K

′ corresponds to the conjugacy class of gn. By [115, Theorem 2(d)],
an abelian variety overK is maximal or minimal if and only if all its endomorphisms
are defined over K.
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Effect of twists on Frobenius endomorphisms

Recall that π = πA ∈ EndK(A) denotes the relative Frobenius endomorphism of A.
By a famous result due to Tate [115], there is a bijection

Q` ⊗ EndK(A)→ EndGK (T`(A)⊗Z` Q`) (8.9)

for any ` 6= p, where T`(A) denotes the `-adic Tate module of A. This bijection
allows us to consider endomorphisms like πA as linear operators on the vector space
T`(A)⊗Z` Q`. Moreover, the characteristic polynomial of an endomorphism (in the
sense of [58, p. 110]) coincides with that of its corresponding linear operator, by e.g.
[58, Chapter VII, Theorem 3].

In this section, we investigate how twisting A affects π and its 2g eigenvalues.
Let [−1] ∈ EndK(A) be the multiplication-by-(−1) map on A. The eigenvalues of
[−1], i.e. of the corresponding linear operator in EndGK (T`(A) ⊗Z` Q`), are then
all −1.

Since π is semisimple (cf. [115, p. 138]), the corresponding linear operator is
diagonalisable over Q`. When A is maximal (resp. minimal) over K, this operator is
already diagonalisable over Q`, and all its eigenvalues equal −1 (resp. 1). Thus, π is
conjugate, hence equal to, the central element [−1] (resp. [1]) of Q` ⊗ EndK(A).

That is, A is maximal over K if and only if π = [−1], and A is minimal over K
if and only if π = [1] = id.

Proposition 8.25. Let Aξφ/K be a twist of A/K and consider the corresponding
cocycle ξφ. Then its relative Frobenius endomorphism π′ = πAξφ satisfies

φ−1 ◦ π′ ◦ φ = π ◦ (ξφ(FrK))−1 .

Proof. By equation (8.1), π = πA satisfies πA = fA ⊗ Fr−1
K , where f = fA

is the absolute Frobenius endomorphism of A, cf. Definition 8.2. Similarly, by
writing f ′ = fAξφ , we have π′ = f ′ ⊗ Fr−1

K . Moreover, the geometric isomorphism

φ : A×K k
∼−→ Aξφ ×K k has the property that

f = φ−1 ◦ f ′ ◦ φ.

Furthermore, by equation (8.8), we have

(ξφ(FrK))−1 = (idA ⊗ FrK) ◦ φ−1 ◦ (idA ⊗ Fr−1
K ) ◦ φ.
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Hence, adapting the proof of [72, Proposition 11], we find that the endomorphism π′

on Aφ ×K k satisfies

φ−1 ◦ π′ ◦ φ = φ−1 ◦
(
f ′ ⊗ Fr−1

K

)
◦ φ

= φ−1 ◦
((
φ ◦ f ◦ φ−1

)
⊗ Fr−1

K

)
◦ φ

=
(
f ⊗ Fr−1

K

)
◦ (idA ⊗ FrK) ◦ φ−1 ◦

(
idA ⊗ Fr−1

K

)
◦ φ

= π ◦ (ξφ(FrK))−1

(8.10)

as required.

Corollary 8.26. Suppose thatA is maximal overK. A twistAξφ/K ofA is minimal
over K if and only if g = ξφ(FrK) = [−1]. If this happens, Aξφ is a nontrivial
quadratic twist of A. The same holds with “maximal” and “minimal” interchanged.

Proof. By Proposition 8.25, if A/K is maximal, then there exists a twist Aξφ/K
which is minimal if and only if πA = −πAξφ . So the first statement follows from the

fact that πA
(

= g ◦ πAξφ
)

= −πAξφ if and only if g = [−1].
For the second part, since A is maximal over K, we have Autk(A) = AutK(A),

by [115, Theorem 2(d)]. In particular, FrKg = g for all g ∈ Autk(A). By Remark
8.23, a nontrivial quadratic twist corresponds precisely to a cocycle ξφ which satisfies
ξφ(FrK) = g 6= id and ξφ|Gal(k/K′)(FrK′) = g(FrKg) = id for the (unique)
quadratic extension K ′/K. So if A is maximal, a nontrivial quadratic twist Aξφ
corresponds precisely to a nontrivial g ∈ Autk(A) such that g2 = id. Then, g = [−1]
is a nontrivial automorphism which satisfies g2 = id, so the result follows.

Twists of Jacobians

Suppose that A = Jac(X) for a curve X/K; then A is canonically principally po-
larised. LetXξφ/K be a twist ofX . Then the isomorphism φ : X×K k

∼→ Xξφ×K k
induces an isomorphism

Jac(φ) : Jac(Xξφ)×K k = Jac(Xξφ ×K k)
∼→ Jac(X ×K k) = Jac(X)×K k.

Let f = fX : X ×K k → X ×K k be the absolute Frobenius morphism of X ,
let F = FX : X ×K k → X ×K k be the relative Frobenius morphism (cf. Def-
inition 8.2), and let π : Jac(X ×K k) → Jac(X ×K k) be the endomorphism
induced by F . Then the characteristic polynomial of π is equal to L(X/K, T ).
Also, ξφ(σ) ∈ Autk(X) induces an automorphism, denoted by Jac(ξφ(σ)), on
Jac(X ×K k).

The analogue of Proposition 8.25 is the following result.
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Proposition 8.27. ([72, Proposition 11]) The relative Frobenius endomorphism π′

of Jac(Xξφ ×K k) satisfies

Jac(φ) ◦ π′ ◦ Jac(φ−1) = π ◦ Jac(ξφ(FrK)).

Now letX/K be a (smooth projective connected) supersingular curve of genus g. Let
Θ(X/K) denote the set of twists ofX/K moduloK-isomorphisms. The normalised
Weil numbers {zi}1≤i≤2g of X are the same as for Jac(X). However, the respective
automorphism groups of X and Jac(X) (as a polarised abelian variety), and hence
the respective sets of their twists, can be different; as a corollary of the arithmetic
Torelli theorem (cf. [125]), Serre [59, Appendice] shows that

Autk(Jac(X)) ∼=

{
Autk(X) if X is hyperelliptic,
{±1} ×Autk(X) if X is not hyperelliptic.

We obtain that there exists an automorphism g of X that acts as [−1] on Jac(X) if
and only if X is hyperelliptic.

As a corollary, we find the analogue of Corollary 8.26 for curves.

Corollary 8.28. Suppose that a curve X is maximal (resp. minimal) over K. There
exists a twist Xξφ/K of X which is minimal (resp. maximal) over K if and only if
X is hyperelliptic, in which caseXξφ is the nontrivial quadratic twist associated with
the cocycle taking FrK to the unique hyperelliptic involution of X .

Proof. By Corollary 8.26, there exists a twist Xξφ/K with π′ = −π, if and only if
Jac(g) = Jac(ξφ(FrK)) = [−1], for some g ∈ Autk(X). Such g exists if and only
if X is hyperelliptic, by the arithmetic Torelli theorem. Moreover, by choosing the
base point of the Abel-Jacobi map X → Jac(X) to be a hyperelliptic Weierstrass
point (i.e. a ramification point of the hyperelliptic involution), we ensure that the re-
striction g of Jac(g) = [−1] to X coincides with the unique hyperelliptic involution
of X . In particular, g has order 2 and Xξφ is a nontrivial quadratic twist of X .

Examples

Elliptic curves with j-invariant 1728

Lemma 8.29. If p ≡ 3 mod 4, then the elliptic curve E : y2 = x3− x (defined over
K = Fp) is supersingular and has j-invariant 1728.
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1. If p > 3, then the only nontrivial twist Eξφ of E has order 2 and the corre-
sponding cocycle satisfies ξφ(FrK) = [−1].

2. If p = 3, then E has three nontrivial twists, one quadratic twist for which
ξφ(FrK) = [−1] and two twists of order 3.

Proof. For all p ≡ 3 mod 4, consider the twistE′ : −y2
1 = x3

1−x1, also defined over
Fp, for which the geometric isomorphism φ : E → E′ is given by φ(x, y) = (x, iy).
This twist has order 2, sinceE andE′ are isomorphic over Fp2 , where−1 is a square.
The corresponding cocycle ξφ sends FrK to the hyperelliptic involution:

ξφ(FrK)(x, y) = φ−1(FrK(φ(Fr−1
K (x, y)))) = φ−1(FrK(φ(x1/p, y1/p)))

= φ−1(FrK(x1/p, iy1/p)) = φ−1(x, ipy) = (x, ip−1y).

Since p ≡ 3 mod 4, then ξφ(FrK)(x, y) = (x,−y) is the hyperelliptic involution.
Thus ξφ(FrK) = [−1].

1. If p > 3, then Autk(A) ' Z/4Z. One computes that the Fp-Frobenius conju-
gacy classes are

• {id, (x 7→ x, y 7→ −y)}
• {(x 7→ −x, y 7→ −iy), (x 7→ −x, y 7→ iy)}.

Thus E/Fp has only one nontrivial twist, which is quadratic by Remark 8.23.

2. If p = 3, then |Autk(A)| = 12 by [107, Appendix A, Proposition 1.2]. The
Fp-Frobenius conjugacy classes are as follows:

• {id, (x 7→ x, y 7→ −y)}
• {(x 7→ x− 1, y 7→ y), (x 7→ x+ 1, y 7→ −y)}
• {(x 7→ x− 1, y 7→ −y), (x 7→ x+ 1, y 7→ y)}
• {(x 7→ −x, y 7→ −iy), (x 7→ −x, y 7→ iy), (x 7→ −x− 1, y 7→ −iy),

(x 7→ −x−1, y 7→ iy), (x 7→ −x+1, y 7→ −iy), (x 7→ −x+1, y 7→ iy)}

The first of these classes corresponds to the trivial twist, and the last class
corresponds to the quadratic twist E′ already described.

Now let α ∈ F27 be an element such that α3 − α = 1. The other two Fp-
Frobenius conjugacy classes then correspond to the twists E′′ : y2 + 1 =
x3 − x and E′′′ : y2 + 2 = x3 − x respectively, where φ′′ : E → E′′ takes
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(x, y) 7→ (x − α, y) and φ′′′ : E → E′′′ takes (x, y) 7→ (x + α, y). One
computes that

ξφ′(FrK)(x, y) = (φ′)−1(FrK(φ′(Fr−1
K (x, y))))

= (φ′)−1(FrK(φ′(x1/p, y1/p)))

= (φ′)−1(FrK(x1/p ± α, y1/p))

= (φ′)−1(x± αp, y)

= (x± (αp − α), y)

= (x± 1, y).

Since the automorphisms g taking (x, y) 7→ (x±1, y) are defined over Fp and
have order 3, the last two twists have order 3 by Remark 8.23.

Elliptic curves with j-invariant 0

Lemma 8.30. If p ≡ 2 mod 3 is odd, then the elliptic curveE : y2 = x3+1 (defined
over K = Fp) is supersingular and has j-invariant 0. The only nontrivial twist Eξφ
of E has order 2 and the corresponding cocycle satisfies ξφ(FrK) = [−1].

Proof. Note that Autk(E) ' Z/6Z, again by [107, Appendix A, Proposition 1.2].
The automorphisms are (x 7→ ζ2k

6 x, y 7→ ζ3k
6 y), 0 ≤ k ≤ 5. The Fp-Frobenius

conjugacy classes are:

• {id, (x 7→ ζ3x, y 7→ y), (x 7→ ζ3x, y 7→ y)}

• {(x 7→ x, y 7→ −y), (x 7→ ζ3x, y 7→ −y), (x 7→ ζ3x, y 7→ −y)}

Choose a ∈ F∗p to be a quadratic non-residue. The nontrivial quadratic twist is E′ :
ay2 = x3 + 1, with φ : E → E′ given by φ(x, y) = (x, y/

√
a). The corresponding

cocycle ξφ sends FrK to the hyperelliptic involution:

ξφ(FrK)(x, y) = φ−1(FrK(φ(Fr−1
K (x, y)))) = φ−1(FrK(φ(x1/p, y1/p)))

= φ−1(FrK(x1/p, y1/p/
√
a)) = φ−1(x, y/

√
a
p
)

= (x, y/a(p−1)/2).

Since a is not a square mod p, then a(p−1)/2 ≡ −1 mod p and then ξφ(FrK)(x, y) =
(x,−y) is the hyperelliptic involution. Thus ξφ(FrK) = [−1].



CHAPTER 9

The period and the parity

In this chapter, we define the period and the parity of a supersingular abelian variety,
and study their properties. We introduce the notion of a type of such a variety and in-
vestigate the relation between the type and the normalised Weil numbers. For elliptic
curves and abelian surfaces, we look at these notions in great detail.

9.1 Definitions and properties of period and parity

In this section, let A denote a supersingular principally polarised abelian variety of
dimension g over K = Fq, and let z1, . . . , z2g denote its normalised Weil numbers,
which are roots of unity. As before, let q = pr and k = Fp = Fq.

Throughout, one may replace A by a smooth projective connected supersingular
curve X/K of genus g and consider the relative Frobenius endomorphism π of its
Jacobian Jac(X).

Arithmetic definition of the period and parity

Definition 9.1.

1. The K-period µ(A) of A is the smallest natural number m such that qm is
square (i.e. rm is even) and

(i) zmi = −1 for all 1 ≤ i ≤ 2g, or

(ii) zmi = 1 for all 1 ≤ i ≤ 2g.

2. The K-parity δ(A) is 1 in case (i) and is −1 in case (ii), for m = µ(A).

These same notions are also (and equivalently) defined in the literature as follows.

Definition 9.2. [113, p. 144] Write P (A/K, T ) =
∏
fdii where the fi are pairwise

relatively prime.

The results in this chapter are joint work with Rachel Pries.

109



110 The period and the parity

1. The K-period of A/K is

µ(A) = min{n ∈ N | qn/2 ∈ Z |
∏

fi divides (Tn+qn/2) or (Tn−qn/2)}.

2. The K-parity of A/K is

δ(A) =

{
1 if

∏
fi divides (Tµ(A) + qµ(A)/2)

−1 if
∏
fi divides (Tµ(A) − qµ(A)/2)

.

It is clear that A is maximal (resp. minimal) over K if and only if µ(A) = 1 and
δ(A) = 1 (resp. δ(A) = −1). In Chapter 10 we study how µ(A) and dim(A) are
related, and in Section 9.2 we compute µ(A) and δ(A) when dim(A) is 1 or 2.

Geometric definition of maximal and minimal types

Suppose that K(= Fq) is the field of definition of A. As in Definition 8.19, let
Θ(A/K) denote the set of abelian varieties A0/K such that A0 ×K k 'k A ×K k,
moduloK-isomorphisms, so that Θ(A/K) consists of all theK-twists ofA, modulo
trivial twists.

Definition 9.3. A supersingular abelian variety A with field of definition K is of one
of the following types:

1. fundamentally maximal if A0/K has K-parity δ = 1 for all A0 ∈ Θ(A/K);

2. fundamentally minimal if A0/K has K-parity δ = −1 for all A0 ∈ Θ(A/K);

3. partially maximal if there existA0, A
′
0 ∈ Θ(A/K) withK-parities δ(A0) = 1

and δ(A′0) = −1.

Some observations about the period and the parity

Suppose from now on that A0/K ∈ Θ(A/K) is a K-twist of A. Let t be the order
of the twist; the possibilities for t are determined by Autk(A). Let Kt be the (unique
up to isomorphism) field extension ofK of degree t. ThenA×KKt

∼=Kt A0×KKt.
Denote the normalised Weil numbers of A/K by {zi} and those of A0/K by {wi}.
After possibly reordering, we have zti = wti and without loss of generality,

zi = wiyi (9.1)

for some (not necessarily primitive) t-th root of unity yi, for every i, such that the
least common multiple of the orders of the yi is t.

In Lemma 9.4 up to Proposition 9.7, we assume the following hypothesis holds:
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Hypothesis: The abelian variety A/K has K-period M and K-parity 1,
and its K-twist A0/K has K-period N and K-parity −1.

Lemma 9.4. If M = N , then t is even.

Proof. This follows immediately from the fact that yMi 6= −1 if t is odd.

In general, A and A0 need not have the same period. However, there is the
following relation between their periods.

Proposition 9.5. Suppose that m and n are the smallest positive numbers such that
{zi} ⊂ µm and {wi} ⊂ µn. (This implies thatM ∈ {m,m/2} andN ∈ {m,m/2}).
Then either gcd(t, n) > 1 or gcd(t,m) > 1.

Proof. By equation (9.1), we can write z1 = ζm, w1 = ζn and y1 = ζt′ as primitive
roots of unity, where t′|t. Hence,

ζm = ζt
′+n
nt′ , (9.2)

where the right hand side is in lowest terms if and only if (t′, n) = 1. It (t′, n) > 1,
then since t = t′u for some u, also (t, n) > 1 and we are done. If (t′, n) = 1, it
follows that m = nt′, so (t′,m) > 1, hence (t,m) > 1, and we are also done.

If A and A0 have the same period but different parities, we obtain the following
result.

Proposition 9.6. Suppose that M = N . Fix a primitive t-th root of unity ζt. Let
g ∈ Autk(A) be the automorphism corresponding to this twist, determined up to
Frobenius conjugacy, and denote by the same letter g its image under the bijec-
tion from Equation (8.9). Now consider the decomposition of T`(A) ⊗ Q` into
eigenspaces Lj where g acts such that the normalised Weil numbers are multiplied
by ζjt , for some 0 ≤ j ≤ t − 1. Let `j = dim(Lj). Then the 2-adic valuation v2(j)
of j is constant over all j for which `j 6= 0.

Proof. By definition, zNi = −1 and wNi = 1 for all i and wi = ζjt zi for exactly `j
choices of i. Hence, ζjNt = −1 for all j such that `j 6= 0. In particular, `0 = 0 since
ζ0
t 6= −1.

From now on, suppose j is such that `j 6= 0. From Lemma 9.4 it follows that t is
even. Write t = 2at1 and N = 2bN1 where t1, N1 are odd and a ≥ 1. Then

−1 = ζjNt = ζj2
bN1

2at1
= (ζU2aζ

V
t1 )j2

bN1 = ζUj2
bN1

2a · ζV j2
bN1

t1
,
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where U and V are such that Ut1 + V 2a = 1. Note that ζV j2
bN1

t1
6= −1 since t1 is

odd, so
ζV j2

bN1
t1

= 1

for each j. Therefore, t1|V N1.
Now consider the term ζUj2

bN1
2a . If b ≥ a, then ζUj2

bN1
2a = 1. So b < a. For each

j, write Uj = 2cjj1 where j1 odd. Then

ζUj2
bN1

2a = (ζ2b+cj
2a )j1N1 = −1

so
ζ2b+cj

2a = −1,

which implies that cj + b ≡ a− 1 mod a. That is,

cj ≡ −(1 + b) mod a

for all j such that `j 6= 0, where the right hand side is constant as j varies. Since
cj < a, and cj = v2(Uj) = v2(U) + v2(j) with v2(U) also constant, the result
follows.

Proposition 9.7. Fix a primitive t-th root of unity ζt. For each 1 ≤ i ≤ 2g, there
exists a 0 ≤ j ≤ t− 1 such that wi = ζjt zi.

1. If M > N , then j 6= 0, t is even, and t|2jM .

2. If M < N and M ≡ N mod 2, then ζjNt = 1, so t|jN .

3. If M < N and M 6≡ N mod 2, then t|2jN .

Proof. This follows from the formula wi = ζjt zi, with the relations wNi = 1 and
zMi = −1 for all i. In cases 1. and 3., note that t = 2 implies that jM is odd
for all j. Moreover, when t 6= 2, either gcd(t, jN) > 1 or gcd(t, jM) > 1, cf.
Proposition 9.5.

Arithmetic definition of maximal and minimal types

The previous section indicates that there is a relation between the type (cf. Definition
9.3) of an abelian variety and arithmetic properties of its normalised Weil numbers.
This will be made explicit below.

As before, let K be the minimal field of definition of A and let {z1, . . . , z2g}
denote the normalised Weil numbers of A/K. Fix an embedding Q ⊂ C. For each
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zi, write zi = ζjiNi , where gcd(Ni, ji) = 1, and where we view ζN as a (fixed)
primitive root of unity. Furthermore, write Ni = 2eioi where oi is odd. Then ei is
the binary value of zi, and we write [zi]2 = v2(Ni) = ei.

Remark 9.8. If ζkn = −1, then n is even. More generally, there exists an integer a
such that zai = (ζjiNi)

a = −1 if and only if 2aji ≡ Ni mod 2Ni.
From this, we see that A has K-parity +1 if and only if all ei = e ≥ 1 for all i,

and K-parity −1 if and only if either ei = 0 for all i, or not all ei are the same.

Remark 9.9. By writing the normalised Weil numbers zi = ζjiNi as above, we ensure
that the binary value of zi is well-defined. Note however that we may also write a
set of Weil numbers as {√qζj1n , . . . ,

√
qζ
j2g
n } for the same integer n, where the ζjin

might no longer be in lowest terms.

The following lemma summarises the relation between [z]2 and [−z]2.

Lemma 9.10. Let z = ζjN be a normalised Weil number, with 0 < j < N coprime
to N . Then [z]2 = 0 if and only if [−z]2 = 1. If [z]2 ≥ 2, then [−z]2 = [z]2.

Proof. If [z]2 = 0, then N is odd and −z = −ζjN = ζN+2j
2N , so [−z]2 = 1.

If [z]2 = 1, then N = 2M where M = 2`+ 1 is odd. Then j must be odd; write
j = 2d+ 1. Hence,

−z = −ζjN = ζM+j
2M = ζ`+d+1

M ,

so [−z]2 = 0.
Finally, if [z]2 ≥ 2, then N = 2M where M = 2` is even. Again j = 2d + 1

must be odd. Then
−z = −ζjN = ζM+j

2M = ζ
2(`+d)+1
4` ,

so [−z]2 = [z]2.

Note that a quadratic twist is precisely a twist which negates some of the (nor-
malised) Weil numbers, and recall that the automorphism [−1] corresponds the only
quadratic twist which negates all (normalised) Weil numbers simultaneously.

Proposition 9.11.

1. If A/K is fundamentally maximal, then all ei equal the same value e ≥ 2.

2. If A/K is fundamentally minimal, then not all ei are the same.

Proof. 1. Suppose that A/K is fundamentally maximal. Then in particular it has
parity +1, so by Remark 9.8, its ei are all the same and≥ 1. However, if ei = 1
for all i, the nontrivial quadratic twist [−1] will make sure that all ei = 0, by
Lemma 9.10; this twist has parity−1, so this cannot happen. (In fact, any twist
negating some of the Weil numbers will have parity −1.) Therefore, all ei are
equal and ≥ 2.
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2. Suppose now that A/K is fundamentally minimal. Then it has parity −1, so
Remark 9.8 implies that either all ei are zero, or the ei are not all the same.
But when all ei are zero, the same twist by [−1] (and no other twist negating
some of the Weil numbers) will have parity +1, contradiction. Therefore, not
all ei are the same.

Proposition 9.12.

1. If ei = 0 for all i, or ei = 1 for all i, then A/K is partially maximal.

2. If all ei ≥ 2 are the same, the parity ofA/K is not affected by quadratic twists.

3. If not all ei are the same, the twist by [−1] does not affect the parity of A/K.

Proof. 1. follows from the proof of Proposition 9.11 and 2. follows from Proposition
9.10, since negation does not affect any ei ≥ 2. For 3., note that the twisted ei will
still not be all the same, so the parity of this twist is still −1.

Types for Jacobians

Let X/K be a (smooth projective connected) supersingular curve of genus g. Recall
that Θ(X/K) denotes the set of twists of X/K modulo K-isomorphisms.

The arithmetic Torelli theorem (see the discussion following Proposition 8.27)
implies that when X is hyperelliptic, then Θ(Jac(X)/K) = Θ(X/K), in particular
X and its Jacobian Jac(X) have the same type. When X is not hyperelliptic, any
twist of the curve still induces a twist of its Jacobian, but the converse no longer
holds. For any curve, we still define the type as follows.

Definition 9.13. A supersingular curve X with field of definition K is of one of the
following types:

1. fundamentally maximal if X/K has K-parity δ = 1 for all X ∈ Θ(X/K);

2. fundamentally minimal if X/K has K-parity δ = −1 for all X ∈ Θ(X/K);

3. partially maximal if there exist X,X ′ ∈ Θ(X/K) with K-parities δ(X) = 1
and δ(X ′) = −1.

Proposition 9.14.

1. IfX/K is fundamentally maximal andX has a nontrivial quadratic twist, then
all ei have the same value e ≥ 2.

2. If X/K is fundamentally minimal and not hyperelliptic, then either all ei are
zero, or not all ei are the same.
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3. If X/K is partially maximal, then Jac(X) is partially maximal.

4. If all ei ≥ 2 are the same, then the parity of X/K is not affected by quadratic
twists.

5. If X is hyperelliptic and not all ei are the same, the twist by [−1] does not
affect the parity of X/K.

Proof. The proof is largely the same as for Propositions 9.11 and 9.12. For 3., note
that if two curves in Θ(X/K) have different parities, then their Jacobians are in
Θ(Jac(X)/K) and have different parities.

IfX is not hyperelliptic, then partially maximal behaviour can still occur, despite
Corollary 8.28, as seen in the example below.

Example of a partially maximal curve

Suppose q is odd and a ∈ K = Fq. Consider the following plane quartic (introduced
by Ciani in 1899 , and studied in [72, Section 4])

Ca : x4 + y4 + z4 = (a+ 1)(x2y2 + y2z2 + x2z2),

which is nonsingular of genus 3 when a 6∈ {1, 0,−3}. The points of Ca in the hy-
perplane z = 0 are the points [x′ : y : 0] where x′ is a root of x4 − (a+ 1)x2 + 1.

Meagher and Top show in [72] that Jac(Ca) ∼K E3
a , where

Ea : (a+ 3)y2 = x(x− 1)(x− a).

As a result, Ca is maximal over K if and only if Ea is maximal over K and Ca is
minimal over K if and only if Ea is minimal over K. Choose a such that Ca is
maximal over K (i.e., it has K-period 1 and K-parity 1).

If a 6= −1 and a2−a+16 6= 0, then AutK(Ca) ' S4. Since the automorphisms
are defined over K, the twists of Ca are in bijection with conjugacy classes in S4.
So there are 5 twists of Ca, each corresponding to a specific cycle type in S4. By
discussing each of these twists, Meagher and Top show that none of the nontrivial
twists of Ca are maximal over K.

We compute the periods and parities of all twists of Ca. In particular, we see that
some of the nontrivial twists of Ca are not maximal over any field extension of K.
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• One 3-cycle corresponds to the automorphism φ taking x 7→ z 7→ y 7→ x. It
acts on Jac(Ca) with eigenvalues ζ3, ζ2

3 , 1. Note that if p > 3, then φ has 2
fixed points [1 : ζ3 : ζ2

3 ] and [1 : ζ2
3 : ζ3] and the quotient of Ca by φ has genus

1. The twist has period 3 and parity 1.

• One 4-cycle corresponds to the automorphism ψ taking x 7→ −y and y 7→ x
and z 7→ z. It acts on Jac(Ca) with eigenvalues i, −i, 1. The twist has period
4 and parity −1.

• The 2-cycle τ1 = ψφ acts on Jac(Ca) with eigenvalues −1, −1, 1. We see
that if [x : y : z] = τ1[x : y : z] = [z : −y : x] then y 6= 0 and z = −x.
There are typically 4 points of this form, so the quotient of Ca by τ2 has genus
1. The twist has period 2 and parity −1.

• The 2 − 2 cycle τ2 = ψ2 acts on Jac(Ca) with eigenvalues −1, −1, 1. If
[x : y : z] = τ2[x : y : z] = [−x : −y : z], then z = 0. Moreover, τ2 fixes
the 4 points with z = 0, so the quotient of Ca by τ2 has genus 1. The twist has
period 2 and parity −1.

The last two cases provide examples of quadratic (i.e. degree 2) twists which act
on part, but not all, of the Jacobian as multiplication by −1.

Note that Ca is partially maximal, since it has twists with parity −1. Hence,
Jac(Ca) is also partially maximal.

9.2 Analysis in low genus

As before, we fix a finite field K = Fq of characteristic p. In this section, we fix a
dimension g and consider all g-dimensional (simple) supersingular abelian varieties
A/K. We ask the following question.

Question 9.15. What are the relative probabilities forA/K being partially maximal,
fundamentally maximal, and fundamentally minimal, respectively?

However, these probabilities do not behave well for simple supersingular abelian
varieties as g tends to infinity. To see this, we make the following observations.
When A is simple, all its Weil numbers are conjugates of

√
±qζn for some n, cf.

Remark 9.9. Lemmas 10.4 and 10.5 imply that, depending on q = pr, the possible
values of n that occur are those in Ã(g) = {n : φ(n) ∈ {g, 2g, 4g}}. In particular,
v2(g) ≤ v2(φ(n)) ≤ v2(g) + 2, where v2 denotes the 2-adic valuation. As is ob-
served in [108, Theorem 13.6], there are infinitely many values of g for which these
sets are empty, in which case no g-dimensional simple A/K exists. Thus, there is no
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well-defined limiting behaviour as g →∞. Furthermore, the value of v2(φ(n)) does
not completely determine the value of v2(n).

In this section, we instead analyse the simple supersingular abelian varieties “by
hand”, for small g.

Remark 9.16. The number of isogeny classes of g-dimensional simple supersingular
abelian varieties A/K has been worked out in [108, Theorems 13.7 and 13.8]. Their
answer is necessarily dependent on |Ã(m)| = |{x : φ(x) = m}| for m = 2g or g.

Elliptic curves (g = 1)

If E/K is an elliptic curve, then its L-polynomial is of the form

L(E/K, T ) = T 2 − βT + q,

for some rational integer β. Note that E is supersingular if and only if p | β. The
L-polynomial is either irreducible over Z or of the form (T − b)2 for some b ∈ Z.

By the Honda-Tate theorem, the K-isogeny class of E is determined by the con-
jugacy class of the Weil numbers, i.e., the roots of L(E/K, T ), and hence by β. Wa-
terhouse [120] determined the possible values of ±β. In the next result, we list the
normalised Weil numbers (“NWN’s”), (K-)periods and (K-)parities for each isogeny
class. The normalised Weil numbers are (primitive) n-th roots of unity for some n;
we also list the 2-adic valuations v2(n), i.e., the binary values [z]2.

Proposition 9.17. Let q = pr. A supersingular elliptic curve E over K = Fq with
L-polynomial L(E/K, T ) = T 2 − βT + q is in one of the following cases.

Case Conditions on (r, p) β NWN’s [z]2 Period Parity
1a r even 2

√
q (1, 1) 0 1 -1

1b r even −2
√
q (−1,−1) 1 1 1

2a r even, p 6≡ 1 (mod 3)
√
q (−ζ3,−ζ3) 1 3 1

2b r even, p 6≡ 1 (mod 3) −√q (ζ3, ζ3) 0 3 -1
3 r even, p ≡ 3 (mod 4)

or r odd
0 (i,−i) 2 2 1

4a r odd, p = 2
√

2q (ζ8, ζ8) 3 4 1
4b r odd, p = 2 −

√
2q (ζ5

8 , ζ
5
8) 3 4 1

4c r odd, p = 3
√

3q (ζ12, ζ12) 2 6 1
4d r odd, p = 3 −

√
3q (ζ7

12, ζ
7
12) 2 6 1
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Using Proposition 9.17 and [107, Appendix A, Proposition 1.1], we further analyse
the situation for p = 2 and 3. In both cases, there is a unique supersingular curve
over k = Fp.

Lemma 9.18.

1. If p = 2, the supersingular elliptic curve over k is fundamentally maximal.

2. If p = 3, the supersingular elliptic curve over k is fundamentally maximal.

Proof. 1. Let E denote the unique supersingular elliptic curve in characteristic 2.
It is defined over F2, with equation y2 + y = x3. We find |E(F2)| = 3, so
β = 0, and E is in case 3 of Proposition 9.17. Since all its F2-twists are by
construction also defined over F2, they are necessarily in one of the cases 3,
4a and 4b, which all have parity +1. Thus, E is fundamentally maximal.

2. Let E denote the unique supersingular elliptic curve in characteristic 3. It is
defined over F3, with equation y2 = x3 − x. Then |E(F3)| = 4, so β = 0,
and E is in case 3 of Proposition 9.17. By Example 8.29, the only nontrivial
twist (of even order) acts as [−1]. Thus, E is fundamentally maximal.

From now on, we suppose p ≥ 5; then, by [107, Chapter V, Theorem 4.1(c)], the
number of isomorphism classes of supersingular elliptic curves is

b p
12
c+


0 if p ≡ 1 mod 12

1 if p ≡ 5 mod 12

1 if p ≡ 7 mod 12

2 if p ≡ 11 mod 12.

All the supersingular j-invariants are in Fp2 . Of these p
12 + O(1) supersingular

j - invariants, O(
√
p) lie in Fp [114, p. 3]. Moreover, the field of definition of the

j-invariant is the field of definition of the elliptic curve.

We now analyse the supersingular elliptic curves with extra automorphisms.

Lemma 9.19. Let p ≥ 5.

1. If p ≡ 3 mod 4, the unique supersingular elliptic curve E over k, for which
Autk(E) ' Z/4Z, is fundamentally maximal.

2. If p ≡ 2 mod 3, the unique supersingular elliptic curve E over k, for which
Autk(E) ' Z/6Z, is fundamentally maximal.
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Proof. 1. The elliptic curve E is defined over Fp with equation y2 = x3 − x. It
is in case 3 of Proposition 9.17, with normalised Weil numbers {i,−i}. By
Example 8.29, the nontrivial twist acts as [−1]. Hence, this curve is funda-
mentally maximal.

2. The elliptic curve E is defined over Fp with equation y2 = x3 +1. It is in case
3 of Proposition 9.17, with normalised Weil numbers {i,−i}. By Example
8.30, its nontrivial twist is ay2 = x3 + 1 for a ∈ F∗p a quadratic non-residue.
This twist is also in case 3. Thus, E is fundamentally maximal.

Lemma 9.20. Let p ≥ 5. Suppose E/k is a supersingular elliptic curve with
Autk(E) ' Z/2Z. Let K be the field of definition of E.

1. If K = Fp, then E is fundamentally maximal.

2. If K = Fp2 , then E is partially maximal.

Proof. The hyperelliptic involution ι acts as [−1] and hence negates the normalised
Weil numbers. If K = Fp, then E and its twist by ι are both in case 3, thus E is
fundamentally maximal. If K = Fp2 , then E and its twist by ι are both in case 1, or
both in case 2, thus E is partially maximal.

In conclusion, for g = 1, we have proved that no supersingular elliptic curve is
fundamentally minimal. This also follows from Proposition 9.11(2): an isogeny
class of elliptic curves is determined by two normalised Weil numbers z and z, which
satisfy [z]2 = [z]2, so all ei are necessarily the same.

Instead, if E has normalised Weil numbers {z, z}, we proved that E is funda-
mentally maximal if [z]2 ≥ 2 and is partially maximal if [z]2 ∈ {0, 1}.

For a given finite field Fq, applying [96, Theorem 4.6], we can count the number
N(β) of Fq-isomorphism classes of elliptic curves in the Fq-isogeny class deter-
mined by β. Since N(β) is independent of the sign of β, it suffices to compute
them simultaneously for the respective subcases of (1) to (3) of Proposition 9.17, as
summarised in the table below.

±β N(β)

1 ±2
√
q 1

12

(
p+ 6− 4

(
−3
p

)
− 3

(
−4
p

))
2 ±√q 1−

(
−3
p

)
3 (r odd) 0 H(−4p)

3 (r even) 0 1−
(
−4
p

)
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Here, H denotes the Kronecker class function, which is defined as a sum of class
numbers (cf. [96, Proposition 2.2]), and some of whose values are tabulated in [96,
page 208]. The function H grows very slowly with p. The number N(β) depends
only on p and not on q. When r is even, almost all of the isomorphism classes belong
to case (1) of Proposition 9.17, since the number of isomorphism classes in the other
isogeny classes is either 0, 1 or 2.

Combining this table with the data from Proposition 9.17, we draw the following
conclusion.

Lemma 9.21. Let p ≥ 5 and q = pr.

1. When r is odd, there areH(−4p) isomorphism classes of supersingular elliptic
curves over Fq and they are all fundamentally maximal.

2. Suppose r is even. When p ≡ 3 mod 4 then, among the isomorphism classes
of supersingular elliptic curves over Fq, there are 2 isomorphism classes which
are fundamentally maximal, and the rest are partially maximal.

When p 6≡ 3 mod 4, all of the isomorphism classes of supersingular elliptic
curves over Fq are partially maximal.

Abelian surfaces (g = 2)

Let A be a supersingular abelian surface over K. Its K-isogeny class is determined
by the conjugacy class of its Weil numbers, or equivalently by (the Galois orbit of) the
coefficients (a1, a2) of the characteristic polynomial of its Frobenius endomorphism,

P (A/K, T ) = T 4 + a1T
3 + a2T

2 + qa1T + q2 ∈ Z[T ].

If A is simple, then P (A/K, T ) = hA(T )e for some irreducible hA(T ) ∈ Z[T ].
We want to classify the isogeny classes of supersingular abelian surfaces. But Corol-
lary 2.8 of [68] shows that there exists a simple abelian surface over K = Fpr with
hA(T ) = T 2 − βT + q if and only if r is even and either β = ±√q (for p ≡ 1
(mod 3)) or β = 0 (for p ≡ 1 (mod 4)), which are not supersingular by Proposi-
tion 9.17. Hence, it suffices to focus on irreducible quartic Weil polynomials.

Proposition 9.22. Let A be a simple supersingular abelian surface defined over
K = Fq = Fpr , with P (A/K, T ) = T 4 + a1T

3 + a2T
2 + qa1T + q2.

Let L = Fqt0 be the minimal field of decomposition of A, meaning that there is
an L-isogeny A ∼L E × E, for some supersingular elliptic curve E. Let nE denote
the case from the first column of Table 9.17 in which E appears. The normalised
Weil numbers of A over L will be of the form (z, z, z, z), so we only need to give z
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(denoted by z/L). We can also compute the normalised Weil numbers (z1, z1, z2, z2)
of A over K, of which we show (z1, z2), as well as the K-period (denoted by P ) and
the K-parity (denoted by δ). The following cases occur.

(a1, a2) Conditions on (r, p) t0 nE z/L (z1, z2) P δ

1a (0, 0) r odd, p ≡ 3 (4) or
r even, p 6≡ 1 (4)

2 3 i (ζ8, ζ
3
8 ) 4 1

1b (0, 0) r odd, p ≡ 1 (4) or
r even, p ≡ 5 (8)

4 1 −1 (ζ8, ζ
3
8 ) 4 1

2a (0, q) r odd, p 6≡ 1 (3) 2 2 ζ3 (ζ6, ζ3) 6 −1
2b (0, q) r odd, p ≡ 1 (3) 6 1 −1 (ζ12, ζ

5
12) 6 1

3a (0,−q) r odd, p 6= 3 or
r even, p 6≡ 1 (3)

2 2 −ζ3 (ζ12, ζ
5
12) 6 1

3b (0,−q) r odd, p ≡ 1 (3) or
r even,
p ≡ 4, 7, 10 (12)

3 3 i (ζ12, ζ
5
12) 6 1

4a (
√
q, q) r even, p 6≡ 1 (5) 5 1 1 (ζ5, ζ

2
5 ) 5 −1

4b (−√q, q) r even, p 6≡ 1 (5) 5 1 −1 (ζ10, ζ
3
10) 5 1

5a (
√

5q, 3q) r odd, p = 5 5 1 ±1 (ζ3
10, ζ

2
5 ) 10 −1

5b (−
√

5q, 3q) r odd, p = 5 5 1 ±1 (ζ10, ζ5) 10 −1
6a (

√
2q, q) r odd, p = 2 4 2 −ζ3 (ζ13

24 , ζ
19
24 ) 12 1

6b (−
√

2q, q) r odd, p = 2 4 2 −ζ3 (ζ24, ζ
7
24) 12 1

7a (0,−2q) r odd 2 1 1 (1,−1) 2 −1
7b (0, 2q) r even, p ≡ 1 (4) 2 2 −1 (i, i) 2 1
8a (2

√
q, 3q) r even, p ≡ 1 (3) 3 1 1 (ζ3, ζ3) 3 −1

8b (−2
√
q, 3q) r even, p ≡ 1 (3) 3 1 −1 (ζ6, ζ6) 3 1

Proof. We make use of the computations of Maisner and Nart [68]. In particular,
the first three columns form Table 1 on p. 325 of [68]. We also use their Lemma
2.13, together with the observation at the end of the statement of their Theorem 2.9,
to compute the coefficients of the L-polynomial of A over the extension L = Fqt0
of Fq, and hence to determine nE . From this, z/L can be read off from Table 9.17.
This in turn determines the period P , since P is the product of t0 and the period of
the elliptic curves, while the parity of the surface A ∼ E × E is the same as the
parity of E; both the period and the parity of the elliptic curves are taken from Table
9.17.

To determine the normalised Weil numbers ofA over Fq, denoted (z1, z1, z2, z2)
or (b1, b2, b3, b4), we first computed all the t0-th roots of the normalised Weil num-
bers over L and found the possible conjugate pairs z+ z of these. Then, we checked
whether a combination of two such pairs (z1, z1) and (z2, z2) satisfied the relations
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z1 + z1 + z2 + z2 = −a1 and
∑

1≤i<j≤4 bibj = a2; the unique solution to this pro-
vided the normalised Weil numbers over Fq. Alternatively, we found the roots of the
L-polynomial T 4 + a1T

3 + a2T
2 + qa1T + q2 = 0 directly, using MATHEMATICA.

Case 5 is an interesting one. Maisner and Nart show thatA first decomposes over
Fq5 . We used MATHEMATICA to find the roots of the corresponding Weil polynomial
T 4 +

√
5qT 3 + 3qT 2 +

√
5qqT + q2 over Fq. Raising these normalised Fq-Weil

numbers to the fifth power, we obtain (−1,−1, 1, 1) for the normalised Weil numbers
over L = Fq5 . This is what the ±1 table entry for z/L in this case signifies. We
conclude that A is L-isogenous to E1 ×E2, where E1 has normalised Weil numbers
(−1,−1) and E2 has normalised Weil numbers (1, 1). Note that E1 is in case 1b
and E2 in case 1a of Proposition 9.17. Over Fq10 , both E1 and E2 become minimal;
therefore, A has parity −1.

Remark 9.23. It follows from Proposition 9.12 that Cases (4) and (8) of Proposition
9.22 are partially maximal. To determine the types of the other surfaces, we would
need to know their automorphism groups explicitly.



CHAPTER 10

Arithmetic statistics of dimension

Let us fix a finite field K = Fq of characteristic p. In this chapter, we use (nor-
malised) Weil numbers to determine the expected dimension of a “randomly chosen”
supersingular abelian variety over K.

Given a root of unity z, the Honda-Tate theorem guarantees that there exists a
simple supersingular abelian variety Az over K, unique up to K-isogeny, whose
Weil numbers are

√
qz and its Galois conjugates.

Question 10.1. Suppose z1, . . . , zs are s randomly chosen roots of unity. That is,
all zi are independently picked from a set µ`N of `N -th roots of unity, for some
prime number ` and integer N , equipped with the uniform distribution. Consider the
supersingular abelian variety A = Az1 × · · · × Azs . What is the probability that A
has dimension g?

In Proposition 10.7, we answer this question for ` = 2.

The probabilities

Fix a prime number ` and an integer N . The set µ`N of `N -th roots of unity has
cardinality `N . Assuming that we are equally likely to pick any element of µ`N , we
can compute the following probabilities as relative proportions.

Lemma 10.2. Pick z ∈ µ`N at random. Then

• P(z = 1) = 1
`N

,

• P(z ∈ µ`N−1) = 1
` ,

• P(z ∈ µ`i \ µ`i−1) = `−1
`N+1−i for any 1 ≤ i ≤ N .

The results in this chapter are joint work with Rachel Pries.
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Expected dimension

Recall that πA ∈ End(A) is the relative Frobenius endomorphism of A.
Let E = EndK(A) ⊗Q and let Ψ = Q(πA) be the subalgebra of E generated

by πA. Since E is a division algebra and Ψ is the centre of E , Ψ is a field [121,
Theorem 8.2]. For p a prime of OΨ, consider the local invariant invp(E ), which
satisfies ||πA||p = q−invp(E ). By [121, Theorem 8.4], we have

invp(E ) ≡


1
2 if p is real
0 if p lies above l 6= p
vp(πA)
vp(q) [Ψp : Qp] if p lies above p.

Let e be the smallest positive integer such that e · invp(E ) ∈ Z for all p ∈ OΨ.
The characteristic polynomial P (A/K, T ) of πA satisfies P (A/K, T ) = heA for
some irreducible monic hA ∈ Z[T ].

The relation between the dimension g = dim(A) and the Weil numbers is given
by the following equation, cf. [121, Theorem 8.3]:

2dim(A) = [E : Ψ]
1
2 [Ψ: Q] = e[Ψ: Q]. (10.1)

Now consider the factorisation of P (A/K, T ) in Qp[T ] into a product
∏
i fi(T )

of irreducible polynomials. There is a bijection between the irreducible factors fi
and the primes pi above p. By [108, pp. 2− 3], since A is supersingular,

invpi(E) ≡

{
0 if deg(fi) is even
1
2 if deg(fi) is odd

(mod Z). (10.2)

In particular, e = 1 if deg(fi) is even for all i and e = 2 if either deg(fi) is odd for
some i, or πA = ±√q (since then P (A/K, T ) has only real roots, cf. Lemma 10.3).

Below, let us write a normalised Weil number z = ζn as a primitive n-th root
of unity and a Weil number as α =

√
qz =

√
qζn. We will consider the simple

supersingular abelian variety denoted A or Az over K.
Let Φm(T ) denote the m-th cyclotomic polynomial of degree φ(m) and let

Φ
[
√
q]

m (T ) = (
√
q)φ(m)Φ( T√

q ). Moreover, for any prime number p and integer m,
let

u =

{
order of p in (Z/mZ)∗ if (p,m) = 1

f(pk − pk−1) where f is the order of p in (Z/sZ)∗ if m = pks
. (10.3)
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Lemma 10.3. Let K = Fq = Fpr and suppose that πA = ±√q. Then we have
α = ±√q, so ζn = ±1, i.e. n = 1 or 2.

• When r is odd, Ψ = Q(πA) = Q(±√q), so [Ψ: Q] = 2 and e = 2.
Hence, dim(A) = 2, the normalised Weil numbers are (1, 1,−1,−1), and
P (A/K, T ) = (T 2 − q)2.

• When r is even, Ψ = Q and u = 1 is odd, so e = 2 and dim(A) = 1. Hence,
A is a minimal or maximal elliptic curve with normalised Weil numbers (1, 1)
or (−1,−1). We have P (A/K, T ) = (T ±√q)2.

In particular, πA = ±√q is equivalent to P (A/K, T ) having only real roots.

The first case of Lemma 10.3 occurs in Case 5 of Proposition 9.22.

Lemma 10.4 (Theorems 3.1 and 11.1 of [108]). Let K = Fq = Fpr and suppose
that πA 6= ±

√
q.

• Suppose r is odd. Then P (A/K, T ) is irreducible for any simple supersingular
abelian variety A/K, so e = 1 and 2dim(A) = [Ψ: Q].

• Suppose r is even. Then P (A/K, T ) for any simple supersingular abelian
variety A/K is of the form (Φ

[
√
q]

m (T ))e where φ(m) = 2g for some integer g.
If u is even for m and p, then e = 1, so dim(A) = g; if u is odd, then e = 2
so dim(A) = 2g.

Having determined e for any simple supersingularAz/K, it remains to determine
the possible values for [Ψ: Q] that occur. We note that [Ψ: Q] = deg(hA) is the
degree of the minimal polynomial of

√
qz =

√
qζn. As such, [Ψ: Q] is completely

determined by q = pr (i.e. by p and r) and n. We have the following result (cf. also
[108, Theorem 3.3 and Remark 3.4(1)]).

Lemma 10.5. Consider a Weil number α =
√
qζn, where q = pr and n 6= 1, 2.

If r is even, then α is a primitive n-th root of unity and [Ψ: Q] = φ(n).
Let r be odd.

1. Suppose that p - n. Then

[Ψ: Q] =

{
φ(n) if v2(n) ≥ 2,

2φ(n) if v2(n) ≤ 1.

2. Suppose that p|n and p ≡ 1 mod 4. Then

[Ψ: Q] = φ(n).
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3. Suppose that p|n and p ≡ 3 mod 4. Then

[Ψ: Q] =


φ(n) if v2(n) ≥ 3,
1
2φ(n) if v2(n) = 2,

2φ(n) if v2(n) ≤ 1.

4. Suppose that p|n and p = 2. Then

[Ψ: Q] =


φ(n) if v2(n) ≥ 4,
1
2φ(n) if v2(n) = 3,

φ(n) if v2(n) = 2,

2φ(n) if v2(n) = 1.

Proof. We give the conjugates of α in all cases; some cases were taken from [108,
pp. 5-6].

• When r is even,
√
q ∈ Q, so the conjugates of α are

√
qζjn for j ∈ (Z/nZ)∗,

of which there are φ(n).
So from now on, we will assume r is odd.

• First suppose that p - n so that
√
q 6∈ Q(ζn). When v2(n) ≥ 2, the conju-

gates of α are
√
qζjn for j ∈ (Z/nZ)∗ again. This follows from the fact that

Gal(Q(α)/Q) has index 2 in Gal(Q(ζn,
√
q)/Q), since −ζn = ζ

1+n/2
n is

primitive and hence the automorphism
√
q 7→ −√q, ζn 7→ −ζn fixes α. When

v2(n) ≤ 1 however, −ζn is no longer a primitive n-th root of unity, so the
conjugates of α are ±√qζjn, for j ∈ (Z/nZ)∗, and [Ψ: Q] = 2φ(n).

• Now suppose p|n and p > 2. When p ≡ q ≡ 1 mod 4,
√
q ∈ Q(ζn), so the

conjugates of α are (
j

p

)
√
qζjn,

for j ∈ (Z/nZ)∗, hence [Ψ: Q] = φ(n).

When p ≡ q ≡ 3 mod 4 and v2(n) ≥ 3, the conjugates of α are

(j mod 4)

(
j

p

)
√
qζjn,

for j ∈ (Z/nZ)∗. When v2(n) = 2, n = 4t for t odd, and the conjugates
are (j mod 4)

(
j
p

)√
qζjn, for j ∈ (Z/tZ)∗, since j = 1 + 2t leaves α fixed.

When v2(n) ≤ 1,
√
q 6∈ Q(ζn) and we again find conjugates ±√qζjn, for

j ∈ (Z/nZ)∗.



127

• Finally, suppose that p = 2. When v2(n) ≥ 4, the conjugates of α are
χ(j)
√
qζjn, for j ∈ (Z/nZ)∗, where χ : (Z/8Z)∗ → (Z/4Z)∗ is a charac-

ter satisfying χ(±1) = 1 and χ(±3) = −1. When v2(n) = 3 so n = 8s for s
odd, they are

√
qζ±1

8 ζbs , for b ∈ (Z/sZ)∗, of which there are 2φ(s) = 1
2φ(n).

When v2(n) = 2, they are
√
qζjn for j ∈ (Z/nZ)∗, since

√
2 6∈ Q(ζn).

When v2(n) = 1, −ζn is not primitive, so the conjugates are ±√qζjn, for
j ∈ (Z/nZ)∗; the same is true when v2(n) = 0, which was included in the
p - n case above.

Corollary 10.6. A simple supersingular abelian variety A/K is not fundamentally
minimal when r is even.

Proof. This follows from Lemma 10.5, since the binary values of the normalised
Weil numbers of A are always all the same.

Finally, recall that an integer n = 2kpk11 . . . pkrr (where pi are distinct odd primes)
satisfies

φ(n) = 2k−1pk1−1
1 (p1 − 1) · . . . · pkr−1

r (pr − 1), (10.4)

so that
v2(φ(n)) ≥ k − 1 + r. (10.5)

Now we study the expected dimension of an abelian variety that arises in the
random way explained in Lemma 10.2. We make the simplifying assumption that
z ∈ µ2N . That is, we pick z ∈ µ2N at random and write z = ζj2m (and α =

√
qz),

where gcd(2m, j) = 1. Recall that φ(2m) = 2m−1.

Proposition 10.7. Let q = pr. Pick z = ζj2m ∈ µ2N at random.

1. Let r be odd and p > 2. Then

dim(A) =


1

2

2m−2 for 4 ≤ m ≤ N
with probability


1

2N−1

6
2N

1
2N+1−m

.

2. Let r be odd and p = 2. Then

dim(A) =


1

2

2m−2 for 4 ≤ m ≤ N
with probability


3

2N−1

1
2N−1

1
2N+1−m

.
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3. Let r be even and p > 2. Then u (cf. Lemma 10.4) is odd, so

dim(A) =

{
1

2m−1 for 2 ≤ m ≤ N
with probability

{
1

2N−1

1
2N+1−m

.

4. Let r be even and p = 2. Then u (cf. Lemma 10.4) is even, so

dim(A) =

{
1

2m−2 for 3 ≤ m ≤ N
with probability

{
1

2N−2

1
2N+1−m

.

Proof. Suppose that r is odd and p > 2. Lemma 10.3 implies that dim(A) = 2
when [z]2 = m ≤ 1. When instead m ≥ 2, Lemmas 10.4 and 10.5 show that
2dim(A) = [Ψ: Q] = φ(2m) = 2m−1, i.e. dim(A) = 2m−2. Thus, dim(A) = 1 if
and only if m = 2, which happens with probability 1/2N−1 by Lemma 10.2. Also,
dim(A) = 2 if m = 0, 1 or 3, with probability

1

2N
+

1

2N
+

1

2N−2
=

6

2N
.

Finally, dim(A) = 2m−2 for m ≥ 4 with probability 1/2N+1−m.
The other cases are proven similarly.

Remark 10.8. Using Proposition 10.7, it is straightforward to compute the proba-
bilities for dim(A) when A = Az1 × . . . × Azs corresponds to a choice of several
z1, . . . , zs, since we may consider the probabilities for the dim(Azi) as independent.

Remark 10.9. The simplifying assumption that n = 2m implies we can only obtain
abelian varieties whose dimension is a power of 2. However, Proposition 10.7 shows
that every such dimension is obtained with nonzero probability, if we let N tend
to infinity. Moreover, for any choice of N , a random abelian variety will have the
maximal dimension 2N−2 (or 2N−1) with probability 1

2 .

Remark 10.10. It is an interesting question to ask whether one can put a meaningful
probability distribution on all isogeny classes of simple supersingular abelian vari-
eties, in order to study the distribution of dimensions that occur. In particular, we
would like to understand whether some (normalised) Weil numbers are more likely
to occur than others. At this stage, it is not clear to us which probability distribution
would be most natural.





130 Arithmetic statistics of dimension



HOOFDSTUK 11

Samenvatting

In dit hoofdstuk zullen de resultaten van het tweede deel van dit proefschrift (met de
titel “Galois representations”), worden uitgelegd voor niet-wiskundigen.

Sommige voorwerpen zijn symmetrisch: een wit vel papier bijvoorbeeld, of een
glas, of een frisbee. We kunnen symmetrieën opvatten als handelingen, namelijk,
als dingen die je kunt doen met een voorwerp zonder wezenlijk te veranderen hoe
het eruit ziet. Zo kunnen we het vel papier bijvoorbeeld omdraaien, maar niet op-
vouwen of scheuren. In het bijzonder telt “niks doen” ook als een symmetrie. Alle
symmetrieën van één object vormen een zogeheten groep, omdat we symmetrieën
ongedaan kunnen maken en kunnen samenstellen (dat wil zeggen, de ene symmetrie
na de andere uitvoeren).

Niet alleen fysieke objecten hebben symmetrieën; vergelijkingen kunnen ook
symmetrisch zijn. Als voorbeeld nemen we de vergelijking

x2 + 1 = 0. (11.1)

Aangezien geen enkel reëel getal (dat wil zeggen, een getal dat we op een getallenlijn
kunnen zetten, zoals 23 of π of

√
2) een kwadraat heeft dat negatief is, lijkt het erop

dat vergelijking (11.1) geen oplossing heeft. Maar hiervoor hebben wiskundigen de
complexe getallen bedacht; we gebruiken de letter i voor een (“imaginair”) getal dat
voldoet aan i2 = −1. Omdat dan ook i2 + 1 = −1 + 1 = 0, is i dus een oplossing
voor onze vergelijking. Dan zien we meteen dat −i ook een oplossing is, want ook
(−i)2 = i2 = −1. Merk nu op dat we net zo goed het eerste getal−i hadden kunnen
noemen en het tweede getal i; zolang de symmetrie tussen de oplossingen, die zegt
dat de ene oplossing de negatieve versie van de andere is, maar is behouden.

Door een vergelijking op te vatten als een functie en daar de grafiek van te teke-
nen, vinden we een verband tussen vergelijkingen en fysieke, geometrische objecten.
De grafiek van vergelijking (11.1) zou eruit zien als twee punten (eentje voor i, en
eentje voor −i). Maar nemen we bijvoorbeeld de vergelijking

y = x2 + 1, (11.2)
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dan vinden we een zogenaamde parabool; dit is een één-dimensionaal object, zie
Figuur 11.1. Hierbij tekenen we de reële oplossingen; we zien dus dat y 6= 0, omdat
bij y = 0 de complexe waarden x = i,−i horen.

Figuur 11.1: De grafiek van de parabool y = x2 + 1.

Beschouwen we meerdere vergelijkingen tegelijk, met meer variabelen dan al-
leen x en y, dan vinden we hoger-dimensionale objecten. Hieruit kunnen we conclu-
deren dat er een nauw verband is tussen het bestuderen van geometrische objecten
en vergelijkingen. Een geometrisch object dat wordt beschreven door vergelijkingen
als hierboven heet een algebraïsche variëteit.

Als iemand je een object of een verzameling vergelijkingen geeft, dan is het
een interessant probleem om te bepalen welke symmetrieën het allemaal heeft. De
technieken die wiskundigen hiervoor gebruiken, zijn geïntroduceerd door Évariste
Galois (1811-1832).

Maar het is ook mogelijk om de tegenovergestelde vraag te stellen: als iemand
je een groep symmetrieën geeft, kun je dan een object bedenken, beschreven door
vergelijkingen, wat precies die symmetrieën heeft? Dit heet het Inverse Galois Pro-
bleem. Als een symmetriegroep inderdaad een bijbehorende algebraïsche variëteit
heeft, zeggen we dat die groep realiseerbaar is (“als een Galoisgroep”).

Het Inverse Galois Probleem werd voor het eerste geformuleerd door David Hil-
bert (1862-1943). In 1892 bewees hij dat de zogenaamde permutatiegroepen Sn en
An realiseerbaar zijn (voor alle waarden van n). In 1954 bewees Igor Shafarevich
hetzelfde voor een andere soort symmetriegroepen: de eindige oplosbare groepen.

Of daadwerkelijk alle groepen realiseerbaar zijn, is nog niet opgelost. Tijdens
mijn promotieonderzoek heb ik bewezen dat een bepaalde oneindige familie van
groepen, namelijk de zes-dimensionale symplectische groepen, realiseerbaar zijn.
Hiervóór was realiseerbaarheid alleen bewezen voor vier-dimensionale symplecti-
sche groepen.
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Het idee van het bewijs is als volgt: binnen een zes-dimensionale symplectische
groep vinden we twee symmetrieën die de groep voortbrengen. Dat wil zeggen dat
als we deze twee symmetrieën (en hun inverses, die ze ongedaan maken) maar vaak
genoeg samenstellen, we uiteindelijk alle elementen van de groep zullen vinden.

Nu construeren we twee krommen, laten we ze Cp en Cq noemen. Een kromme
is een één-dimensionale algebraïsche variëteit, zoals de parabool y = x2 + 1. We
doen het zo, dat Cp de ene voortbrengende symmetrie van de symplectische groep
heeft en Cq de andere.

Vervolgens maken we een nieuwe kromme, genaamd C, die informatie onthoudt
over allebei de vorige krommen, en daardoor allebei de symmetrieën heeft. (In wis-
kundetaal: Cp en Cq zijn reducties van C.)

We bekijken een voorbeeld van een kromme en twee van haar reducties. Stel dat
de kromme C wordt beschreven door de vergelijking

y2 = x3 + 2x2 + 3x+ 6. (11.3)

De grafiek van de (reële) oplossingen van deze vergelijking ziet er zo uit:

Figuur 11.2: De grafiek van de kromme C : y2 = x3 + 2x2 + 3x+ 6.

Nu vormen we de eerste reductie van C, als volgt: de coëfficiënten aan de rech-
terkant van vergelijking (11.3) zijn 1, 2, 3 en 6. We rekenen uit wat de waarde van
deze coëfficiënten is, modulo 2. Dat wil zeggen: we delen de getallen door 2, en kij-
ken wat de rest van deze deling is. We vinden achtereenvolgens 1, 0, 1 en 0. Door de
coëfficiënten van C te vervangen door deze nieuwe getallen, vinden we een nieuwe
vergelijking:

y2 = x3 + x. (11.4)



134 Samenvatting

Dit beschrijft ook een kromme, die we C2 noemen. We zeggen dat C2 de reductie
bij 2 is van C. Deze kromme ziet er als volgt uit.

Figuur 11.3: De grafiek van de kromme C2 : y2 = x3 + x.

We kunnen hetzelfde trucje uitvoeren door niet modulo 2, maar modulo 3 te
rekenen. De coëfficiënten 1, 2, 3 en 6 van C1 worden nu 1, 2, 0 en 0. Vergelijking
(11.3) wordt dan:

y2 = x3 + 2x2. (11.5)

De grafiek van vergelijking (11.5) geeft ons een derde kromme C3, die de reductie
van C bij 3 is:

Figuur 11.4: De grafiek van de kromme C3 : y2 = x3 + 2x2.

Voor ieder getal n kunnen we de reductie van C bij n op eenzelfde manier ma-
ken. Het grappige is, dat iedere reductie er weer heel anders uit kan zien, zoals we
ook in de bovenstaande plaatjes zien.

Wiskundige opmerking: we laten in Figuren 11.3 en 11.4 weer de reële oplossingen zien, terwijl
de krommen eigenlijk gedefinieerd zijn over Z/2Z, resp. Z/3Z.
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Terug naar het bewijs van de stelling: stel nu dat we een kromme C hebben, die
twee reducties heeft, Cp en Cq, die zo gekozen zijn, dat ze elk een voortbrengende
symmetrie hebben. We vormen dan de Jacobiaan van deze kromme C; hoe dit in
zijn werk gaat, zou helaas te lang duren om uit te leggen. Terwijl een kromme één-
dimensionaal is, heeft onze Jacobiaan dimensie drie. Daarnaast heeft de Jacobiaan de
eigenschap dat hij niet alleen de twee bijzondere symmetrieën heeft die de kromme
heeft, maar ook alle symmetrieën die daar weer combinaties van zijn. Doordat de
twee bijzondere symmetrieën voortbrengers zijn, vormen deze combinaties precies
de symplectische groep die we wilden realiseren!

De Jacobiaan van C, afgekort tot Jac(C), is dus het object waarmee we de sym-
plectische groep realiseren. In Figuur 11.5 vatten we de constructie nog een keer
samen.

Figuur 11.5: Overzicht van de bewijsconstructie.

Disclaimer voor wiskundigen: C, Cp en Cq uit het voorbeeld en Figuur 11.5 zijn elliptische krom-
men, terwijl de krommen die in het bewijs gebruikt worden, geslacht 3 hebben.
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[94] Igor Šafarevič, Construction of fields of algebraic numbers with given solvable
Galois group, Izv. Akad. Nauk SSSR. Ser. Mat. 18 (1954), 525–578.

[95] Helmut Salzmann, Theo Grundhöfer, Hermann Hähl, and Rainer Löwen, The
classical fields, Encyclopedia of Mathematics and its Applications, vol. 112,
Cambridge University Press, Cambridge, 2007, Structural features of the real
and rational numbers.

[96] René Schoof, Nonsingular plane cubic curves over finite fields, J. Combin.
Theory Ser. A 46 (1987), no. 2, 183–211.



Bibliography 151

[97] Otto Schreier and Bartel van der Waerden, Die Automorphismon der projek-
tiven Gruppen, Abh. Math. Sem. Univ. Hamburg 6 (1928), no. 1, 303–322.

[98] Vincent Sécherre, The Bernstein decomposition for smooth com-
plex representations of GL(n,F), Science Press (2013), Available at
http://lmv.math.cnrs.fr/annuaire/vincent-secherre/.

[99] Tsutomu Sekiguchi, The coincidence of fields of moduli for nonhyperelliptic
curves and for their Jacobian varieties, Nagoya Math. J. 82 (1981), 57–82.

[100] , Erratum: “The coincidence of fields of moduli for nonhyperelliptic
curves and for their Jacobian varieties” [Nagoya Math. J. 82 (1981), 57–82],
Nagoya Math. J. 103 (1986), 161.

[101] Kaoru Sekino and Tsutomu Sekiguchi, On the fields of definition for a curve
and its Jacobian variety, Bull. Fac. Sci. Engrg. Chuo Univ. Ser. I Math. 31
(1988), 29–31 (1989).

[102] Jean-Pierre Serre, Propriétés galoisiennes des points d’ordre fini des courbes
elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.

[103] , Rational points on curves over finite fields, Lectures given at Harvard
University. Notes by F. Q. Gouvêa (1985).

[104] , Galois cohomology, Springer-Verlag, Berlin, 1997, Translated from
the French by Patrick Ion and revised by the author.

[105] , Œuvres. Collected papers. IV, Springer-Verlag, Berlin, 2000, 1985–
1998.

[106] Carl Siegel, Generalization of Waring’s problem to algebraic number fields,
Amer. J. Math. 66 (1944), 122–136.

[107] Joseph Silverman, The arithmetic of elliptic curves, second ed., Graduate
Texts in Mathematics, vol. 106, Springer, Dordrecht, 2009.

[108] Vijaykumar Singh, Gary McGuire, and Alexey Zaytsev, Characteristic poly-
nomial of supersingular abelian varieties over finite fields, Preprint, arXiv:
1110.1116 (2011).

[109] Tonny Springer, Linear algebraic groups, second ed., Progress in Mathemat-
ics, vol. 9, Birkhäuser Boston, Inc., Boston, MA, 1998.

[110] William Stein et al., Sage Mathematics Software (Version 6.0), The Sage De-
velopment Team, 2014, http://www.sagemath.org.



152 Bibliography

[111] Peter Stevenhagen and Hendrik Lenstra Jr., Chebotarëv and his density theo-
rem, Math. Intelligencer 18 (1996), no. 2, 26–37.

[112] Henning Stichtenoth, Algebraic function fields and codes, Universitext,
Springer-Verlag, Berlin, 1993.

[113] Henning Stichtenoth and Chao Ping Xing, On the structure of the divisor class
group of a class of curves over finite fields, Arch. Math. (Basel) 65 (1995),
no. 2, 141–150.

[114] Andrew Sutherland, Identifying supersingular elliptic curves, (2012), Avail-
able at https://math.mit.edu/~drew/AMS2012.pdf.

[115] John Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math.
2 (1966), 134–144.

[116] Jay Taylor, Families of irreducible representations of s2 os3, 2012, Available at
https://documents.epfl.ch/users/j/jt/jtaylor/www/PDF/representations_of_S2-
wrS3.pdf.

[117] Kôji Uchida, Isomorphisms of Galois groups, J. Math. Soc. Japan 28 (1976),
no. 4, 617–620.

[118] Paulo Viana and Jaime Rodriguez, Eventually minimal curves, Bull. Braz.
Math. Soc. (N.S.) 36 (2005), no. 1, 39–58.

[119] Lawrence Washington, Introduction to cyclotomic fields, second ed., Graduate
Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997.

[120] William Waterhouse, Abelian varieties over finite fields, Ann. Sci. École
Norm. Sup. (4) 2 (1969), 521–560.

[121] William Waterhouse and James Milne, Abelian varieties over finite fields,
1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State
Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence,
R.I., 1971, pp. 53–64.

[122] Torsten Wedhorn, The local Langlands correspondence for GL(n) over p-adic
fields, School on Automorphic Forms on GL(n), ICTP Lect. Notes, vol. 21,
Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2008, pp. 237–320.

[123] André Weil, Sur les courbes algébriques et les variétés qui s’en déduisent,
Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945),
Hermann et Cie., Paris, 1948.



Bibliography 153

[124] , Variétés abéliennes et courbes algébriques, Actualités Sci. Ind., no.
1064 = Publ. Inst. Math. Univ. Strasbourg 8 (1946), Hermann & Cie., Paris,
1948.

[125] , Zum Beweis des Torellischen Satzes, Nachr. Akad. Wiss. Göttingen.
Math.-Phys. Kl. IIa. 1957 (1957), 33–53.

[126] Steven Weintraub, Fundamentals of algebraic topology, Graduate Texts in
Mathematics, vol. 270, Springer, New York, 2014.

[127] James Wendel, On isometric isomorphism of group algebras, Pacific J. Math.
1 (1951), 305–311.

[128] Nan Hua Xi, Representations of affine Hecke algebras, Lecture Notes in Math-
ematics, vol. 1587, Springer-Verlag, Berlin, 1994.

[129] Shuji Yamagata, A counterexample for the local analogy of a theorem by Iwa-
sawa and Uchida, Proc. Japan Acad. 52 (1976), no. 6, 276–278.

[130] Rong Yan, Isomorphisms between affine Hecke algebras of type Ã2, J. Algebra
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