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An algebraic construction of an abelian variety

with a given Weil number
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Dedicated to the memory of Taira Honda

Abstract

A classical theorem of Honda and Tate asserts that for every Weil q-number π, there
exists an abelian variety over the finite field Fq, unique up to Fq-isogeny. The standard
proof (of the existence part in the Honda–Weil theorem) uses the the fact that for a
given CM field L and a given CM type Φ for L, there exists a CM abelian variety with
CM type (L,Φ) over a field of characteristic 0. The usual proof of the last statement
uses complex uniformization of (the set of C-points of) abelian varieties over C. In this
short note we provide an algebraic proof of the existence of a CM abelian variety over
an integral domain of characteristic 0 with a given CM type, resulting in an algebraic
proof of the existence part of the Honda–Tate theorem which does not use complex
uniformization.

1. Introduction

Throughout this note p is a fixed prime number, and the symbol q stands for some positive
power of p, that is, q ∈ pN>0 . Recall that an algebraic integer π is a said to be a Weil q-number
if |ψ(π)| = √q for every complex embedding ψ : Q(π) ↪→ C.

A celebrated theorem of Weil, which was the starting point of new developments in arithmetic
algebraic geometry, states that for any abelian variety A over the finite field Fq its associated
q-Frobenius morphism πA = FrA,q : A → A(q) = A is a Weil q-number, in the sense that πA is a
root of a monic irreducible polynomial in Z[T ] all of whose roots are Weil q-numbers; see [Wei48,
Chapitre 3, X, No 70], [WM71, Theorem 8, p. 58] and [Mum70, IV.21, Theorem 4, p. 206]. Honda
and Tate went further; they proved that the map A 7→ πA defines a bijection

{simple abelian variety over Fq}/(modFq-isogeny)
∼−→ {Weil q-numbers}/ ∼ (1)

from the set of isogeny classes of simple abelian varieties over Fq to the set of Weil q-numbers up
to equivalence, where two Weil numbers π and π′ are said to be equivalent (or conjugate) if there
exists a field isomorphism Q(π) ∼= Q(π′) which sends π to π′. This map is well defined because
of the above theorem of Weil, and because isogenous abelian varieties have conjugate Frobenius
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Algebraic construction of an abelian variety

endomorphisms. The injectivity was proved by Tate in [Tat66], and the surjectivity was proved
by Honda [Hon68] and Tate [Tat71].

The purpose of this note is to provide a new, algebraic proof of the surjectivity of (1),
formulated below.

Theorem I. For any Weil q-number π there exists a simple abelian variety A over Fq (unique
up to Fq-isogeny) such that π is conjugate to πA.

In [Tat71] a Weil q-number is said to effective if it is conjugate to the q-Frobenius of an
abelian variety over Fq. Theorem I asserts that every Weil number is effective.

Remarks. (1) In the course of the proof of Theorem I we will show, in Theorem II in Step 5,
that every CM type for a CM field L is realized by an abelian variety of dimension [L : Q]/2
with complex multiplication by L in characteristic 0. Recall that number field L is a CM field if
there exists a subfield L0 ⊂ L with [L : L0] = 2 such that L0 is totally real (every embedding of
L0 into C lands into R) and L is totally complex (no embedding of L into C lands into R). A
CM type of a CM field L as above with values in a field E of characteristic 0 is a subset Φ of
embeddings of L into E such that card(Φ) = [L0 : Q] and Φ◦ρ∩Φ = ∅, where ρ is the non-trivial
automorphism of L/L0 (the “complex conjugation” for L/L0).

(2) Proofs of Theorems I and II have been given by constructing a CM abelian variety over
C (using complex uniformization and GAGA) with properties which ensure that the reduction
modulo p of this CM abelian variety gives a Weil number which is a power of πA. We construct
such a CM abelian variety by algebraic methods, without using complex uniformization. The
remark in Step 8 gives this proof in the special case when the dimension g of the abelian variety
is 1; that proof is a guideline for the proof below for arbitrary g. In a sense this algebraic proof
answers a question posed in [Oor08, 22.4].

2. Proof of two theorems

The rest of this article is devoted to the proof of Theorems I and II, separated into a number
of steps. We will follow the general strategy in [Tat71]. Only Steps 3–5 are new, where complex
uniformization is replaced by algebraic methods in the construction of CM abelian varieties with
a given CM type (Theorem II). Steps 1 and 2 are preparatory in nature, recalling some general
facts and notation for the rest of the proof. Steps 6–8, already in [Tat71], are included for the
convenience of the readers.

Step 1. Notation

A Weil q-number π has exactly one of the following three properties:

– (Q) We have ψ(π) ∈ Q. In this case q = pn = p2m and π = ±√q = ±pm.

– (R) We have ψ(π) 6∈ Q and ψ(π) ∈ R. In this case q = pn = p2m+1 and π = ±√q = ±pm·√p.
Moreover, every embedding of Q(π) into C lands into R.

– ( 6∈ R) If there is one embedding ψ′ : Q(π) ↪→ C such that ψ′(π) 6∈ R, then for every
embedding ψ : Q(π) ↪→ C we have ψ(π) 6∈ R and in this case Q(π) is a CM field.

As we know from [Tat71, § 1, Exemple a)], every real Weil q-number comes from an abelian variety
over Fq, so the first two cases have been taken care of. Therefore in order to prove Theorem I,
we may and do assume that we are in the third case, that is, π 6∈ R.
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Following [Tat71, Théorème 1], let M be a finite-dimensional central division algebra1 over
Q(π), uniquely determined (up to non-unique isomorphism) by the following local conditions:

(i) The central division algebra M is ramified at all real places of Q(π).

(ii) The algebra M is split at all finite places of W(π) which are prime to p.

(iii) For every place ν of Q(π) above p, the arithmetically normalized local Brauer invariant of
M at ν is

invν(M) ≡ ν(π)

ν(q)
[Q(π)ν : Qp] (mod Z) .

Let g := [Q(π) : Q]·
√

[M : Q(π)]/2, a positive integer. According to [Tat71, Lemme 2] there
exists a CM field L with Q(π) ⊂ L ⊂ M and [L : Q] = 2g. Let L0 be the maximal totally real
subfield of L.

Step 2. Choosing a CM type for L

We follow the way a suitable p-adic CM type is chosen on pages 103–105 of [Tat71]; however,
our notation will be slightly different, and we will not use Lemma 4 nor Lemma 5 of [Tat71]. A
prime above p in Q(π) will be denoted by u. A prime in L0 above p will be denoted by w, and a
prime in L above p will be denoted by v. We write ρ for the involution of the quadratic extension
L/L0 (which “is” the complex conjugation). Following Tate, we write

Hv = Hom(Lv,Cp) and Hom(L,Cp) =
∐
v|p

Hv ,

where Cp is the p-adic completion of an algebraic closure of Qp. Let

nv :=
v(π)

v(q))
·#(Hv) ∈ N

for each place v of L above p. Using properties of π, we choose a suitable p-adic CM type for L
by choosing a subset

∐
v|wΦv ⊂

∐
v|wHv for each place w of L0 above p, as follows.

– (v = ρ(v)) For any v with v = ρ(v) the map ρ gives a fixed-point-free involution on Hv; in
this case (once π and L are fixed and v is chosen) we choose a subset Φv ⊂ Hv with

#(Φv) =
1

2
·#(Hv) .

Note that v(π) = 1
2v(q) in this case and we have

nv =
1

2
·#(Hv) = (v(π)/v(q)) ·#(Hv) .

– (v 6= ρ(v)) For any pair v1, v2 above a place w of L0 dividing p with v1 6= ρ(v1) = v2, the
complex conjugation ρ defines a bijective map

ψ 7−→ ψ ◦ ρ

from Hv1 to Hv2 , through composition with ρ. We choose a subset Φv1 ⊂ Hv1 with

#(Φv1) = nv1 and we define Φv2 := Hv2 − Φv1◦ρ .

Observe that indeed nvi + nρ(vi) = [Lv : Qp] = #(Hvi) for i = 1, 2. We could as well have
first chosen Φv2 of the right size and then defined Φv1 as Φv1 := Hv1 − Φv2◦ρ.

1This central division algebra M was denoted by E in [Tat71]. If we can find an abelian variety A over Fq with

πA ∼ π, then we will have End0(A) ∼= M and dim(A) = g = [Q(π) : Q]·
√

[M : Q(π)]/2.
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Define a CM type Φp ⊂ Hom(L,Cp) =
∐
v|pHv by setting Φp =

∐
v|p Φv. By construction we

have

Φp ∩ (Φp◦ρ) = ∅ and Φp ∪ (Φp◦ρ) = Hom(L,Cp) ;

that is, Φp is a p-adic CM type for the CM field L. Let jp : Q ↪→ Cp be the algebraic closure of
Q in Cp. The injection jp induces a bijection

ψ 7−→ jp ◦ ψ

from Hom(L,Q) to Hom(L,Cp), through composition with jp. The subset Φ := (jp◦?)−1(Φp) ⊂
Hom(L,Q) is a CM type in the usual sense; that is, Φ∩ (Φ◦ρ) = ∅ and Φ∪ (Φ◦ρ) = Hom(L,Q).

We fix the notation Φp ⊂ Hom(L,Cp) for the p-adic CM type constructed above and the
corresponding CM type Φ ⊂ Hom(L,Q).

Step 3. Choosing a prime number r

Proposition A. For a given CM field L there exists a rational prime number r unramified in
L such that r splits completely in L0 and every place of L0 above r is inert in L/L0.

Proof. Let N be the smallest Galois extension of Q containing L, and let G = Gal(N/Q). Note
that the element ρ ∈ G induced by complex conjugation is a central element of order 2. By
Chebotarev’s theorem the set of rational primes unramified in N whose Frobenius conjugacy
class in G is ρ has Dirichlet density 1/[G : 1] > 0; see [Lan70, VIII.4, Theorem 10]. Any prime
number r in this subset satisfies the required properties.

Step 4. Constructing a supersingular abelian variety with an action by L

We know that for every prime number (r in our case) there exists a supersingular elliptic curve
E in characteristic r. When r > 2 we know that there exist values of the parameter λ such
that corresponding elliptic curves over Fr in the Legendre family Y 2 = X(X − 1)(X − λ) are
supersingular; see [Har77, Chapter 4, Corollary 4.22]. In characteristic 2 the elliptic curve given
by the cubic equation Y 2 + Y = X3 is supersingular. (This cubic equation defines an elliptic
curve with CM by Z[µ3], and 2 is inert in Q(µ3).)

Let E be a supersingular elliptic curve over the base field κ := Fr; we know that End(E) is
non-commutative. Its endomorphism algebra End0(E) is the quaternion division algebra Qr,∞
over Q in the notation of [Deu41], which is ramified exactly at r and ∞.

Proposition B. Let L′ be a totally imaginary quadratic extension of a totally real number field
L′0 such that [L′v : Qr] is even for every place v of L′ above r. Let g′ = [L′0 : Q]. There exist a
positive involution τ on the central simple algebra EndQ(L′0)⊗Q Qr,∞ ∼= Mg′(Qr,∞) over Q and
a ring homomorphism ι : E ↪→ EndQ(L′0)⊗Q Qr,∞ such that ι(L′) is stable under the involution
τ and τ induces the complex conjugation on L′.

Proof. Let EndQ(L′0)
∼= Mg′(Q) be the algebra of all endomorphisms of the Q-vector space

underlying L′0. The trace form (x, y) 7→ TrL′
0/Q(x · y) for x, y ∈ L′0 is a positive definite quadratic

form on (the Q-vector space underlying) L′0, so its associated involution τ1 on EndQ(L′0) is
positive. Multiplication defines a natural embedding L′0 ↪→ EndQ(L′0), and every element of L′0
is fixed by τ1.

Let τ2 be the canonical involution on Qr,∞. The involution τ1 ⊗ τ2 on EndQ(L′0) ⊗Q Qr,∞ is
clearly positive because τ2 is. It is also clear that the subalgebra B := L′0⊗QQr,∞ of EndQ(L′0)⊗Q
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Qr,∞ is stable under τ . Moreover, B is a positive definite quaternion division algebra over L′0, so
the restriction to B of the positive involution τ is the canonical involution on B.

The assumptions on L′ imply that there exists an L′0-linear embedding L′ ↪→ B. From the
elementary fact that every R-linear embedding of C in the Hamiltonian quaternions H is stable
under the canonical involution on H, we deduce that the subalgebra L′⊗Q R ⊂ B ⊗Q R is stable
under the canonical involution of B ⊗Q R, which implies that L′ is stable under τ .

Corollary C. (i) Let B1 := Eg. There exist a polarization µ1 : B1 → Bt
1 and an embedding

L ↪→ End0(B1) = Mg(Qr,∞) such that the image of L is stable under the Rosati involution
attached to µ1.

(ii) There exists an isogeny α : B1 → B0 over Fr such that the embedding L ↪→ End0(B1) =
End0(B0) factors through an action

ι0 : OL ↪→ End(B0)

of OL on B0, where OL is the ring of all algebraic integers in L.

(iii) There exists a positive integer m such that the isogeny

µ0 := m · (αt)−1 ◦ µ1 ◦ α−1 : B0 → Bt
0

is a polarization on B0 and the Rosati involution τµ0 attached to µ0 induces the complex conju-
gation on the image of L in End0(B0).

Proof. Statements (ii) and (iii) follow from statement (i). For the proof statement (i), first recall
from [Mum70, § 21 Application III] that after one has fixed an ample invertible OB1-module L
on the abelian variety B1, say the tensor product of pullbacks of OE(oE) via the g projections
pri : B1 → E, where oE is the zero section of E, the Néron–Severi group NS0(B1) = NS(B1)⊗Q
is identified with the subgroup of End0(B1) fixed under the Rosati involution ∗L and the classes
of ample line bundles in NS(B1) ⊗ Q are exactly the totally positive elements in the formally
real Jordan algebra NS(B1). The Jordan algebra structure here is defined using the class of the
ample line bundle L .

On the other hand, one knows from the Noether–Skolem theorem and basic properties of
positive involutions on semisimple algebras that for every positive involution ∗′ on End0(B1)
there exists an element c ∈ End0(B1)

× such that ∗′(c) = c = ∗L (c) and ∗′(x) = c−1 · ∗L · c for
all x ∈ End0(B1); see for instance [Kot92, Lemma 2.11]. Moreover, the element c is either totally
positive or totally negative because the center of the simple algebra End0(B1) is Q.

Apply Proposition B to the case L′ = L. From the facts recalled in the preceding paragraphs
we see that the positive involution τ constructed in Proposition B has the form τ = Ad(c)−1◦∗L ,
and c can be taken to be a totally positive element in NS(B1). In other words, τ is the Rosati
involution attached to the polarization φL ◦ c, where φL is the polarization on B1 defined by
the ample line bundle L .

From now on we fix (L,Φ) as in Step 1, with r as in Proposition A and

(B0 , ι0 : OL ↪→ End(B0) , µ0 : B0 → Bt
0)

as in Corollary C. We fix an algebraic closure Qr of Qr, an embedding jr : Q ↪→ Qr and an
embedding ir,ur : W (Fr)[1/p] ↪→ Qr. We have bijections

Hom(L,Cp) Hom(L,Q)
jp◦?
∼
oo jr◦?

∼
// Hom(L,Qr) Hom(L,W (Fr)[1/r]) .∼

ir◦?oo
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The last arrow

Hom(L,Qr) Hom(L,W (Fr)[1/r])∼
ir◦?oo

is a bijection because r is unramified in L. We regard the p-adic CM type Φp as an r-adic CM
type Φr ⊂ Hom(L,W (Fr)[1/r]) via the bijection (jr◦?) ◦ (jp◦?)−1; that is,

Φr := (jr◦?) ◦ (jp◦?)−1(Φp) = (jr◦?)(Φ) .

For each place w of L0 above r, the w-adic completion Lw := L⊗L0L0,w of L is an unramified
quadratic extension field of the w-adic completion L0,w

∼= Qr of L0, and the intersection Φw :=
Φr ∩Hom(Lw,W (Fr)[1/r]) is a singleton.

Step 5. Lifting to a CM abelian variety in characteristic 0

Theorem II. Let (B0, ι0 : OL ↪→ End(B), µ0 : B0 → Bt
0) be an ([L : Q]/2)-dimensional polarized

supersingular abelian variety with an action by OL such that the subring OL ⊂ End0(B0) is
stable under the Rosati involution τµ0 as in Corollary C. There exists a lifting (B, ι, µ) of the
triple (B, ι0, µ0) to the ring W (Fr) of r-adic Witt vectors with entries in Fr, where B is an
abelian scheme over W (Fr) whose closed fiber is B, the homomorphism ι : OL → End(B) is an
action of OL on B which extends ι0 and µ : B → Bt is a polarization of B which extends µ0, such
that the generic fiber Bη is an abelian variety whose r-adic CM type is equal to Φr.

Proof. The prime number r was chosen such that for every place w of the totally real subfield
L0 ⊂ L, the ring of local integers OL0,w of the w-adic completion of L0 is Zp and OL,w :=
OL⊗OL0

OL0,w
∼= W (Fr2). We have a product decomposition

OL⊗ZZp ∼=
∏
w

OL⊗OL0
OL0,w

∼=
∏
w

OL,w ,

where w runs over the g places of L0 above r. The g idempotents associated with this decompo-
sition of OL⊗ZZp define a decomposition

B0[r
∞] ∼=

∏
w

B0[w
∞]

of the r-divisible group B0[r
∞] into a product of g factors, where each factor B0[w

r] is a height 2
r-divisible group with an action by Ow. Similarly, we have a decomposition

Bt
0[r
∞] ∼=

∏
w

Bt
0[w
∞]

of the r-divisible group attached to the dual Bt
0 of B0. The action of OL on B0 induces an action

of OL on Bt
0 by y 7→ (ι0(ρ(y)))t for every y ∈ OL, so that the polarization µ0 : B0 → Bt

0 is OL-
linear. The polarization µ0 on the abelian variety B0 induces a polarization2 µ0[r

∞] : B0[r
∞]→

Bt
0[r
∞] on the r-divisible group; this polarization µ0[r

∞] decomposes into a product of polariza-
tions µ0[w

∞] : B0[w
∞]→ Bt

0[r
∞] on the OL,w-linear r-divisible groups B0[w

∞] of height 2.

2In this article a polarization Y = (Yn)n>1 → S of a p-divisible group Y over a base scheme S is, by definition,
an isogeny ν : Y → Y t over S from Y to its Serre dual Y t which is symmetric in the sense that νt = ν. Recall
that the Serre dual Y t of Y is the p-divisible group (Y t

n)n>1 whose pn-torsion subgroup is the Cartier dual Y t
n of

Yn = Y [pn]; see [Mes72, Chapter I, Subsection 2.4.4]. The double dual (Y t)t of Y is canonically isomorphic to Y ,
so the dual νt of an S-homomorphism ν : Y → Y t is again an S-homomorphism from Y to Y t.

In the literature the terminology “quasi-polarization” is often used, to distinguish it from the notion of polar-
izations of abelian schemes. Here we have dropped the prefix “quasi” to avoid possible association with the notion
of “quasi-isogeny”.
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It suffices to show that for each place w of L0 above r, the OL,w-linearly polarized r-divisible
group (B0[w

∞], ι0[w
∞], µ0[w

∞]) over Fr can be lifted to W (Fr) with r-adic CM type Φw. For
then the Serre–Tate theorem of deformation of abelian schemes tells us that (B0, ι0, µ0) can be
lifted over W (Fr) to a formal abelian scheme B with an action ι̂ : OL → End(B) whose r-adic
CM type is Φr, together with an OL-linear symmetric isogeny µ̂ : B → Bt from the formal
abelian scheme B to its dual whose closed fiber is the polarization µ0 on B0; see either [Kat81]
or [Mes72, Theorem 2.3] for the Serre–Tate theorem. The pullback by

(idB, µ̂) : B→ B×Spec(W (Fr))
Bt

of the Poincaré line bundle on B×Spec(W (Fr)
Bt is an invertible OB-module on the formal scheme

B whose restriction to the closed fiber B0 is ample. The existence of an ample invertible OB-
module on B implies, by Grothendieck’s algebraization theorem [EGA3, § 5.4], that the formal
abelian scheme B comes from a unique abelian scheme B over W (Fr) and that the CM structure
(B, ι̂) on the formal abelian scheme B descends uniquely to a CM structure (B, ι) on the abelian
scheme B over W (Fr) with r-adic CM type Φr.

For any r-adic place w among the g places of L0 above r, the existence of a CM lifting to
W (Fr) of the OL,w-linear polarized r-divisible group (B0[w

∞], ι0[w
∞], µ0[w

∞]) of height 2 goes
back to Deuring, who proved that a supersingular elliptic curve with a given endomorphism can
be lifted to characteristic 0; see [Deu41, Hilfssatz, p. 259] and its proof; the case we need here is
[Oor87, Lemma 14.7]. Below is a proof using Lubin–Tate formal groups.

By [LT65, Theorem 1], there exists a 1-dimensional formal p-divisible group X of height 2
over W (Fr) plus an action β : OL,w → End(X) of OL,w on X whose r-adic CM type is Φw. Let

(X0, β0 : OL,w → End(X0)) := (X,β)×Spec(W (Fr))
Spec(Fr)

be the closed fiber of (X,β). It is well known that the OL,w-linear p-divisible group (X0, β0)
over Fr is isomorphic to (B0[w

∞], ι0[w
∞]). (Let us sketch a proof based on the structure of

the quaternion division algebra End0(X0) over Qp. Both X0 and B0[w
∞] are p-divisible groups

of height 2 and slope 1/2, hence they are isomorphic. After we identify X0 with B0[w
∞], the

CM structure ι0[w
∞] on B0[w

∞] is identified with a homomorphism β′0 : OL,w → End(X0), and
we know that End(X0) is the ring of integral elements in End0(X0). According to the Noether–
Skolem theorem, there exists an element u ∈ End0(X0)

× such that β′0(a) = u·β0(a)·u−1 for every
a ∈ OL,w. Because the two CM structures β′0 and β0 have the same CM type, the normalized
valuation of u in End0(X0) is even. In other words, u is of the form u = pm · u1 with m ∈ Z
and u1 ∈ End(X0)

×, so the automorphism u1 of X0 defines an isomorphism between the two
OL,w-linear p-divisible groups (X0, ι0) and (X0, ι

′
0).)

We choose and fix an isomorphism between (B0[w
∞], ι0[w

∞]) and (X0, β0), and use this
chosen isomorphism to identify these two p-divisible groups over Fr with their CM structures.
The Serre dual Xt of X, with the OL,w-action defined by γ : b 7→ (β(ρ(b)))t for all b ∈ OL,w, also
has CM type Φw. Let (Xt

0, γ0) be the closed fiber of (Xt, γ). The natural map

ξ : Hom
(
(X,β), (Xt, γ)

)
−→ Hom

(
(X0, β0), (X

t
0, γ0)

)
defined by reduction modulo r is a bijection: [LT65, Theorem 1] implies that (Xt, γ) is isomorphic
to (X,β), and after we identify them via a chosen isomorphism both the source and the target
of ξ are isomorphic to OL,w, so that ξ is an OL,w-linear isomorphism.

Under the identification of (X0, β0) with (B0[w
∞], ι0[w

∞]) specified above, the polarization
µ0[w

∞] on B0[w
∞] is identified with a polarization ν0 on X0. The polarization ν0 : X0 → Xt

0
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extends over W (κL,w) to a polarization ν : X → Xt because ξ is a bijection. We have shown
that the triple (B0[w

∞], ι0[w
∞], µ0[w

∞]) can be lifted over W (Fr).

Remark. One can also prove the existence of a lifting of (B0[w
∞], ι0[w

∞], µ0[w
∞]) to W (Fr) using

the Grothendieck–Messing deformation theory for abelian schemes, as documented in [Mes72,
Chapter V, Theorems 1.6 and 2.3]. The point is that the deformation functor for (B0[w

∞], ι0[w
∞])

is represented by Spf(W (Fr)) because OL,w is unramified over Zp.

We fix the generic fiber (Bη, µ, ι) of a lifting as in Theorem II over the fraction field W (Fr)[1/r]
of W (Fr) with an OL-linear action ι : OL ↪→ End(Bη), whose r-adic CM type is Φr.

Step 6. Changing to a number field and reducing modulo p

We have arrived at a situation where we have an abelian variety Bη over a field of characteristic 0
with an action OL ↪→ End(Bη) by OL, whose r-adic CM type with respect to an embedding of
the base field in Qr is equal to the r-adic CM type Φr constructed at the end of Step 4.

We know that any CM abelian variety in characteristic 0 can be defined over a number field K;
see for example [ShT61, Proposition 26] or [CCO14, Proposition 1.5.4.1]. By [SeT68, Theorem 6]
we may assume, after passing to a suitable finite extension of K, that this CM abelian variety
has good reduction at every place of K above p. Again, we may pass to a finite extension of K,
if necessary, to ensure that K has a place with residue field δ of characteristic p with Fq ⊂ δ. We
have arrived at the following situation:

We have a CM abelian variety (C,L ↪→ End0(C)) of dimension g = [L : Q]/2 over a
number field K, of p-adic CM type Φp with respect to an embedding K ↪→ Cp such that
C has good reduction C0 at a p-adic place of K induced by the embedding K ↪→ Cp and
the residue class field of that place contains Fq.

Step 7. Some power of π is effective

Let i ∈ Z>0 be such that δ = Fqi . We have C0 over δ and πi, πC0 ∈ L.

– We know that πi and πC0 are units at all places of L not dividing p.

– We know that these two algebraic numbers have the same absolute value under every em-
bedding into C.

– By the construction of Φ in Step 2 and by [Tat71, Lemme 5], we know that πi and πC0

have the same valuation at every place above p. As remarked in [Tat71, pp. 103–104], the
essence of this step is the “factorization of a Frobenius endomorphism into a product of
prime ideals” in [ShT61, Section 13].

This shows that πi/πC0 is a unit locally everywhere and has absolute value equal to 1 at all
infinite places. This implies, by standard finiteness properties for algebraic number fields, that
πi/πC0 is a root of unity in OL. See for instance [Hec23, § 34, Hilfsatz a)] or [Wei67, Chapter IV,
§ 4, Theorem 8]. We conclude that there exists a positive integer j such that πij = (πC0)j .

Step 8. End of the proof

The previous step shows that πij is effective, because it is (conjugate to) the qij-Frobenius of the
base change of C0 to Fqij . By [Tat71, Lemme 1] this implies that π is effective, and this ends the
proof of Theorem I.
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Remark. When g = 1, the proof of Theorem I is easier. This simple proof, sketched below, was
the starting point of this note.

Suppose that π is a Weil q-number and L = Q(π) is an imaginary quadratic field such that
the positive integer g, defined by p-adic properties of π, is equal to 1. This means that either
(first case) there is an i ∈ Z>0 with πi ∈ Q, or (second case) for every i we have L = Q(πi), with
p split in L/Q and at one place v above p in L we have v(π)/v(q) = 1, while at the other place v′

above p we have v′(π)/v′(q) = 0. If πi ∈ Q, we know that π is the q-Frobenius of a supersingular
elliptic curve over Fq, see Step 1, and π is effective. If the second case occurs, we choose a prime
number r which is inert in L/Q, then choose a supersingular elliptic curve in characteristic r,
lift it to characteristic 0 together with an action of (an order in) L. The reduction modulo p
(over some extension of Fp) gives an elliptic curves whose Frobenius is a power of π; by [Tat71,
Lemme 1] we conclude π is effective.

The idea of the proof of the general case is the same as that of the proof described in the
previous paragraph when g = 1, except that (as we do in Steps 2, 4 and 5) we have to specify
the CM type in order to keep control of the p-adic properties of the abelian variety eventually
constructed. Note that the CM lifting problem treated in the proof of Theorem II is exactly the
same as in the g = 1 case (in view of the Serre–Tate theorem).
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