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1. Introduction

We study the Fourier coefficients of Eisenstein series formed with modular symbols, 
and give a description in terms of the spectral decomposition of certain shifted convolu-
tion sums.

Let f be a weight 2 cuspidal eigenform

f(z) =
∞∑

n=1
a(n)e2πinz
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for Γ0(N), and consider the Eisenstein series formed with modular symbols given (for 
Re(s) � 0) by

E(z, s; f, χ) :=
∑

γ∈Γ∞\Γ0(N)

χ(γ)Im(γz)s
γi∞∫
i∞

f(w)dw

where Γ∞ is the group of γ ∈ Γ0(N) fixing ∞. Whereas the Fourier coefficients of 
the usual Eisenstein series (without the integral) have a relatively simple description in 
terms of divisor sums and L-functions, the n-th Fourier coefficient of E(z, s; f, χ) has 
a more complicated description. This is given in Theorem 2.4 and involves the analytic 
continuation of the following shifted convolution sum:

∑
l≥1,m=l−n �=0

a(l)σχ
2s−1(|m|)

lt|m|2s−1 .

We denote the value at t = 1 of this analytic continuation by L(n, χ; s). The existence of 
the analytic continuation along with that of a weighted version, denoted by L(n, s, x; χ)
(x ∈ R) is proved in Section 2. With this notation, Theorem 2.4 can be summarized 
as:

Theorem 1.1. For Re(s) > 2 and n �= 0, the n-th coefficient in the Fourier expansion of 
E(z, s; f, χ) is

iW (χ̄)(π|n|)s−1

2Γ(s)N2sL(χ̄, 2s)L(n, χ; s)

where W (χ) is a Gauss sum and L(χ̄, 2s) a Dirichlet L-function. The coefficient of y1−s

in the same expansion is

iW (χ)Γ(s− 1
2 )

2π1/2N2sΓ(s)
L(f ⊗ χ, 1)L(f, 2s)
L(χ, 2s)L(χ, 2s)

where L(f, s) is the L-function of f and L(f ⊗ χ, s) its twisted counterpart.

Shifted convolution sums have been the focus of intense attention, especially because of 
their applications to subconvexity problems and to estimates for averages of L-functions. 
In many of the various approaches to such sums, a key tool is their spectral decomposi-
tion. Establishing such decompositions can be a difficult problem and various methods 
have been adopted to resolve it, each time introducing an additional important aspect, 
e.g. estimates of triple products [18], the spectral structure of L2(Γ\G) (Γ = PSL2(Z), 
G = PSL2(R)) [2], Sobolev norms and Kirillov models [1], multiple Dirichlet series [7–9], 
etc.
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Here we obtain the spectral decomposition by using a combination of those approaches 
together with a new element. The new element is a “completion” technique which can 
be summarized as follows: The function E(z, s; f, χ) is a second order Maass form. It is 
an eigenfunction of the Laplace operator, but it is not invariant under the group Γ0(N). 
By subtracting a more simple function with the same transformation behavior we arrive 
at a Γ0(N)-invariant function, which we view as the “completion” of E(z, s; f, χ). This 
completion turns out to be in L2(Γ0(N)\H, χ

)
, and can hence be analyzed by spectral 

methods along the lines of [19] and [1]. From this we obtain the spectral expansion of 
L(n, s, x; χ).

From the point of view of the theory of Eisenstein series with modular symbols 
and, more generally, higher-order forms, the significance of our contribution is that, 
by connecting Fourier coefficients of a higher-order form with shifted convolutions, we 
provide an arithmetic meaning to those coefficients. In contrast to classical modular 
forms, Fourier coefficients of forms of higher order did not have until now an imme-
diate arithmetic interpretation. Their number-theoretic applications originated in their 
expression as Poincaré series ([5,16] etc.) Here we give an arithmetic description of those 
coefficients.

The structure of the note is as follows: In Section 2, we compute the Fourier coefficients 
of E(z, s; f, χ) modified with modular symbols in terms of a shifted convolution sum 
L(n, s; χ). In Proposition 2.1, we discuss how this shifted convolution sum can be defined 
as the analytic continuation of the double Dirichlet series (8).

In Section 3 we use the constructions of the previous section to establish, in 
Theorem 3.2, the spectral decomposition of the weighted shifted convolution sum 
L(n, s, x; χ):

Theorem 1.2. Fix n < 0 and Re(s) > 2. For x > Re(s) + 5/2 we have

|n|s−1L(n, χ, x; s)

= −
(
N

2π

)2s 2πL(χ̄, 2s)
W (χ̄)Γ(s− 1 + x)Γ(x− s)

×
( ∞∑

j=1
Γ(s− 1

2 ± irj)Γ(x− 1
2 ± irj)bj(n, χ)L(f ⊗ ηj , s) + cont. part

)
. (1)

Here W (χ) is a Gauss sum, L(χ̄, 2s) a Dirichlet L-function, bj(n, χ) the n-th Fourier 
coefficient of the j-th element of a complete orthonormal basis of Maass cusp forms and 
L(f ⊗ ηj , s) a Rankin–Selberg zeta function (all will be defined in detail in Section 3). 
“cont. part” stands for the contribution of the continuous spectrum.

An application of this decomposition is the meromorphic continuation of the convo-
lution sums (Theorem 3.3). As a further example of a direct implication of the spectral 
expansion we derive some bounds for our convolution sums. We should stress that it is
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not our aim to obtain the best possible bounds and it does not seem possible to compare 
them with previously established bounds. Indeed, to our knowledge, shifted convolu-
tion sums that are most comparable to ours have previously been considered in [7,8]. 
However, in contrast to our shifted convolution sums, the shift in [7,8] occurs in the 
Fourier coefficient of the cusp form. As J. Hoffstein pointed out to us, L(n, s; χ) could be 
expressed in terms of the shifted convolution sum D′(w, v, m) studied in [7], but the in-
sufficiently uniform convergence of the infinite sums involved prevents us from comparing 
the bounds established in [7] (or [8]) with ours. It appears that the shifted convolution 
sums appearing as Fourier coefficients of Eisenstein series with modular symbols are new 
objects.

2. Eisenstein series formed with modular symbols

Let

f(z) =
∞∑

n=1
a(n)e2πinz

be a cusp form of weight 2 for Γ0(N), with a positive integer N . The modular symbols 
can be described with additive twists of L-functions. For every c, d ∈ Z (c �= 0) we 
consider for Re(t) > 3/2 the following function:

L(f, t;−d/c) =
∞∑

n=1

a(n)e−2πind/c

nt
.

We then set

Λ(f, t,−d/c) :=
( c

2π

)t

Γ(t)L(f, t;−d/c) = ct
∞∫
0

f(−d/c + ix)xt dx

x
.

The last expression can be used to give the analytic continuation of Λ(f, t, −d/c) to 
the entire t-plane for each γ =

(
a b
c d

)
∈ Γ0(N). The function has a functional equation 

Λ(f, t, −d/c) = −Λ(f, 2 − t, a/c), where ad ≡ 1 mod c (see, e.g. [13, A.3]) which implies 
the convexity bound

Λ(f, t,−d/c) � c3/2+ε for 3/2 + ε > Re(t) > 1 − δ for some δ > 0 (2)

with the implied constant independent of c and of t.
The modular symbol associated to the cusp form f is:

< f, γ >:=
γi∞∫

f(w)dw for all γ ∈ Γ0(N).

i∞
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For each γ =
(
a b
c d

)
∈ Γ0(N) it satisfies

− < f, γ−1 >= −
−d/c∫
i∞

f(w)dw = i

∞∫
0

f(−d/c + iy)dy = i

c
Λ(f, 1,−d/c). (3)

With this notation we introduce the Eisenstein series at the cusp ∞ with modu-
lar symbols. We first define it generally, and then specialize to characters induced by 
primitive Dirichlet characters modN .

Let χ be a character on Γ = Γ0(N) which is trivial on the stabilizer of ∞. We set

E(z, s; f, χ) :=
∑

γ∈Γ∞\Γ
χ(γ) < f, γ > Im(γz)s (4)

where, as usual, Γ∞ =
{(±1 ∗

0 ±1
)}

is the group of elements of Γ fixing ∞.
An explicit Fourier expansion of E(z, s; f, χ), and of more general Eisenstein series 

with modular symbols, is essentially given in [15, (1.1)–(1.3)]: Let for c > 0, c ≡ 0 mod N ,

S(n,m, f, χ; c) :=
∑

γ=
( a ∗
c d

)
∈Γ∞\Γ/Γ∞

χ(γ) < f, γ > e2πi(n d
c +m a

c )

be the twisted Kloosterman sum. Then,

E(z, s; f, χ) = φ(s, f, χ)y1−s +
∑
n �=0

φ(n, s, f, χ)Ws(nz)

with

Ws(nz) =
√
|n|yKs− 1

2
(2π|n|y)e2πinx

φ(s, f, χ) =
√
π

Γ(s− 1
2 )

Γ(s)
∑

c>0, c≡0(N)

c−2sS∗(0, 0, f, χ; c) (5)

φ(n, s, f, χ) = πs

Γ(s) |n|
s−1

∑
c>0, c≡0(N)

c−2sS∗(n, 0, f, χ; c). (6)

Here Ks(y) denotes the modified Bessel function normalized as:

Ks(y) =
∞∫
0

e−
y
2 (t+ 1

t )ts
dt

t
.

For the rest of the paper we consider a character induced by a Dirichlet character. 
Specifically, we take as χ a character of Γ0(N) induced by a primitive Dirichlet character
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modN such that χ(−1) = 1. (Such a character is trivial on the stabilizers of ∞ and 0). 
To χ we associate

σχ
t (m) :=

∑
d|m

χ(d)dt for each m and W (χ) :=
∑

a mod N

χ(a)e2πia/N .

We also consider the Dirichlet L-function given for Re(s) > 1 by

L(χ, s) =
∑

n≥1,(n,N)=1

χ(n)
ns

=
∏

p�N ; prime

(
1 − χ(p)

p2s

)−1

. (7)

Since the cusp form f we will be working with is fixed we omit it from the notation, 
and write E∗(z, s; χ) = E(z, s; f, χ), and analogously S∗(n, m, χ; c), φ∗(s, χ), φ∗(n, s, χ)
etc.

To express the Fourier coefficients of E∗ in terms of more familiar objects we will first 
need the analytic continuation of the double Dirichlet series in (8) below.

Proposition 2.1. Fix an integer n and an s with Re(s) > 2.

(i) Then

∑
l≥1,m�=0;l−m=n

a(l)σχ
2s−1(|m|)

lt|m|2s−1 =
∑

l≥1,l �=n

a(l)σχ
2s−1(|l − n|)

lt(|l − n|)2s−1 (8)

is absolutely convergent for τ := Re(t) > 3/2 and has an analytic continuation to 
Re(t) > 1 − δ for some δ > 0.

(ii) For Re(t) > 3
2 , the quantity in (8) equals

N2sL(χ̄, 2s)
W (χ̄)

(2π)t

Γ(t)
∑

N |c>0

c−2s−t

⎛
⎝ ∑

d mod c,(d,c)=1

χ(d)e2πin d
c Λ(f, t,−d

c
)

⎞
⎠ . (9)

Proof. From d(|a|) = o(|a|ε), |σχ
2s−1(|a|)| ≤ d(|a|)|a|2Re(s)−1 and the Ramanujan bound 

we have
∣∣∣∣a(l)σ

χ
2s−1(|m|)

lt|m|2s−1

∣∣∣∣ �
∣∣∣∣ 1
lt−1/2−εm−ε

∣∣∣∣ � 1
lτ−1/2−2ε . (10)

Therefore the series converges absolutely when τ > 3/2.
To continue meromorphically this function, we will use a formula for the Fourier 

coefficients of the non-holomorphic Eisenstein series. Although this formula is not new 
(e.g. it can be deduced from Section 2 of [10]) we give a direct proof of the exact expression 
we will be using.



R. Bruggeman, N. Diamantis / Journal of Number Theory 167 (2016) 317–335 323
Lemma 2.2. Let N be a positive integer and χ be a primitive character modN . Let 
m ∈ Z � {0} and s with Re(s) > 1. Then, the m-th coefficient φ(m, s; χ) of Ws(mz) in 
the Fourier expansion of

E(z, s;χ) =
∑

γ∈Γ∞\Γ0(N)

χ(γ)Im(γz)s

is

φ(m, s;χ) =
( π

N2

)s W (χ̄)
Γ(s)

1
L(χ̄, 2s)

σχ
2s−1(|m|)
|m|s . (11)

Proof of lemma. It is well-known that the m-th Fourier coefficient of E(z, s; χ) is

πs|m|s−1

Γ(s)N2s

∑
c>0

c−2s
∑

0≤d<Nc, (d,Nc)=1

χ(d) e2πi|m|d/Nc. (12)

To compute the double sum we follow the method of [3] (Section 3):

∑
c>0

∑
0≤d<Nc

∑
δ|(d,Nc)

μ(δ) c−2s χ(d) e2πi|m|d/Nc

=
∑
d≥0

∑
δ|d

μ(δ)
∑

c> d
N , δ|Nc

c−2s χ(d) e2πi|m|d/Nc.

Since δ|Nc if and only if (δ/(N, δ))|c the last sum equals

∑
d≥0

∑
δ|d

μ(δ)
∑

n: nδ/(N,δ)>d/N

(
nδ/(N, δ)

)−2s
χ(d) e2πi|m|d(N,δ)/δnN

=
∑
δ≥1

μ(δ)
( (N, δ)

δ

)2s ∑
l≥0

∑
n>l(N,δ)/N

n−2s χ(δl) e2πi|m|l (N,δ)
Nn .

Since χ(δl) = 0 if (δ, N) �= 1, this becomes

∑
δ≥1,(N,δ)=1

μ(δ)
δ2s

∑
l≥0

∑
n>l/N

n−2s χ(δl) e
2πi|m|l

Nn = L(χ̄, 2s)−1
∑
n≥1

n−2s
Nn−1∑
l=0

χ(l) e2πi|m|l/Nn .

Lemma 3.1.3(1) of [14] implies that

∑
n≥1

n−2s
Nn−1∑
l=0

χ(l) e
2πi|m|l

Nn =
∑
n|m

n−2s
Nn−1∑
l=0

χ(l) e
2πi|m|l

Nn =
∑
n|m

n−2s+1
N−1∑
l=0

χ(l) e
2πil

(
|m|
n

)
N .
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Recall that χ is primitive modN and that we have tacitly used the same notation for the 
character modNn induced by χ. Lemma 3.1.1(1) in [14] implies that the last expression is∑

n|m
n−2s+1W (χ)χ(|m|/n) = W (χ)|m|1−2sσχ

2s−1(|m|). �

We proceed with the proof of the proposition. Lemma 2.2 with m = l − n combined 
with (12) imply that, for Re(s) > 1 and τ > 3/2 the series (8) equals

L(χ, 2s)
W (χ)

∑
l≥1,l �=n

a(l)
lt

∑
c>0

c−2s
∑

d mod Nc, (d,Nc)=1

χ(d)e2πi|n−l| d
Nc .

Since χ(−1) = 1, |n − l| can be replaced by n − l in the sum. Further, the primitive 
character χ modulo N > 1 is not equal to 1 and hence we can omit the condition l �= n. 
Since for Re(s) > 1 and τ > 3/2,

∑
l≥1

|a(l)|
lτ

∑
c>0

c−2Re(s)
∑

d mod Nc, (d,Nc)=1

∣∣∣χ(d)e2πi(n−l) d
Nc

∣∣∣ � ∑
l≥1

l1/2+ε−τ
∑
c>0

c−2Re(s)+1

converges uniformly, we can interchange the order of summation to get

∑
c>0

c−2s
∑

d mod Nc, (d,Nc)=1

χ(d)e2πin d
Nc

∑
l≥1

a(l)
lt

e−2πil d
Nc .

With the definition of Λ(f, t, −d/c) this implies (9).
To prove the analytic continuation of (8) we note that each Λ(f, t, −d/c) has an 

analytic continuation to the entire plane. Since it further satisfies (2), the double sum of 
(9) is uniformly convergent for 3/2 + ε > Re(t) > 1 − δ (and our fixed s with Re(s) > 2) 
giving an analytic function there. In the region Re(t) > 3/2 + ε, our series is already 
analytic because it is absolutely convergent there by the first part of the assertion. �

With (10) we notice that, for x > Re(s) + 1/2, the series

∑
l≥1,m=l−n �=0

a(l)σχ
2s−1(|m|)

l|m|s+x−1

is absolutely convergent. In view of this remark and Proposition 2.1 we can define the 
two shifted convolution sums we will be using in this paper. The first one has a weight 
which allows for the spectral expansion to have a more symmetric form.

Definition 2.3. Let n �= 0 and consider a cusp form of weight 2 for Γ0(N)

f(z) =
∞∑

a(l)e2πilz.

l=1
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For each s with Re(s) > 2 and x > Re(s) + 1/2 we define L(n, χ, x; s) to be the value at 
t = 1 of the analytic continuation of

∑
l≥1,m=l−n �=0

a(l)
lt

σχ
2s−1(|m|)
|m|2s−1

(
1 −

∣∣∣m
n

∣∣∣s−x
)
.

We also denote by L(n, χ; s) the value at t = 1 of the analytic continuation of

∑
l≥1,m=l−n �=0

a(l)σχ
2s−1(|m|)

lt|m|2s−1 .

For n < 0, L(n, χ; s) can be thought of as the “value at x = ∞” of L(n, χ, x; s). 
Although the functions L(n, χ, x; s) and L(n, χ; s) depend on the function f , we do not 
include it in the notation to avoid burdening it further.

Theorem 2.4. For Re(s) > 2 and n �= 0, we have

L(n, χ; s) = 2Γ(s)N2sL(χ̄, 2s)
iW (χ̄)(π|n|)s−1 φ∗(n, s, χ).

The coefficient of y1−s in the Fourier expansion of E∗(z, s; χ) is

φ∗(s, χ) =
iW (χ)Γ(s− 1

2 )
2π1/2N2sΓ(s)

L(f ⊗ χ, 1)L(f, 2s)
L(χ, 2s)L(χ, 2s) . (13)

Proof. We first observe that, because of (3),

S∗(n,m, χ; c) = lim
t→1

i

ct

∑
ad≡1 (mod c)

χ(d)Λ(f, t,−d/c) · e2πi(n d
c +m a

c ). (14)

From (6), (ii) of Proposition 2.1 and the definition of L(s, χ, s) we get

φ∗(n, s, χ) = πs

Γ(s) |n|
s−1 lim

t→1

∑
c>0,N |c

ic−2s−t
∑

d mod c,(d,c)=1

χ(d)e2πin d
c Λ(f, t,−d

c
)

= iπs|n|s−1

Γ(s) lim
t→1

W (χ̄)Γ(t)
L(χ̄, 2s)(2π)tN2s

∑
l≥1,m=l−n �=0

a(l)σχ
2s−1(|m|)

lt|m|2s−1 .

This implies the first part of the result.
Now, (ii) of Proposition 2.1 can be applied to yield

φ∗(s, χ) =
iW (χ)N−2sΓ(s− 1

2)
2π1/2Γ(s)L(χ, 2s)

lim
t→1

(∑
l≥1

a(l)σχ
2s−1(l)

lt+2s−1

)
. (15)

Since f is an eigenform of the Hecke operators we have, for each m, n ≥ 1 the identity
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a(mn) =
∑

d|(m,n)

μ(d)da(m/d)a(n/d)

and this implies that the sum in (15)

∑
l,d,m≥1

μ(l)lχ(dl)a(d)a(m)
(dl)t(ml)t+2s−1 = L(f ⊗ χ, t)L(f, t + 2s− 1)

L(χ, 2t + 2s− 2) .

Upon passing to the limit at t = 1 we obtain the result. �
Remark. In some applications of convolution sums, e.g. to second moment problems 
(cf. [7]), it is necessary to consider sums ranging over m, l such that l2l − l1m = n for 
fixed integers n, l1, l2. These more general sums can be also parametrized by Eisenstein 
series with modular symbols as above and they have a spectral expansion. Here, we only 
discuss the simpler case because the notation for general l1, l2 becomes more complicated 
and that would obscure the main point of our construction.

3. Spectral expansions

We will first derive a general decomposition which will then be used to derive spectral 
expansions of shifted convolution sums.

As before, we fix N ∈ N∗ and an even primitive character χ modulo N and a cusp 
form f(z) =

∑∞
n=1 a(n)e2πinz of weight 2 for Γ = Γ0(N). Set

F (z) =
z∫

i∞

f(w)dw

and, for Re(s) � 0

G(z, s;χ) =
∑

γ∈Γ∞\Γ
χ(γ)F (γz)Im(γz)s.

We note that, for each γ ∈ Γ0(N) the modular symbol satisfies

< f, γ−1 >= − < f, γ > and < f, γ >= F (γz) − F (z). (16)

Therefore,

E∗(z, s;χ) = G(z, s;χ) − F (z)E(z, s;χ). (17)

The function G has been studied in [5] and shown to be absolutely convergent for 
Re(s) > 2 and to belong to L2(Γ\H; χ). As such, it is amenable to a spectral expansion. 
Relation (17) represents the basis of the “completion” mentioned in the introduction: 
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Adding the more explicit term F (z)E(z, s; χ) to E∗(z, s; χ), we obtain an element of 
L2(Γ\H; χ).

We next consider a generalized Poincaré series which will allow us to retrieve weighted 
shifted convolutions. Let h be an element of C∞(0, ∞) which is � y1/2−ε, as y → ∞
and � y1+ε as y → 0 for some ε > 0. For n �= 0, set

P (n, h, χ; z) :=
∑

γ∈Γ∞\Γ
χ(γ)e2πinRe(γz)h(2π|n|Im(γz)).

A comparison with E(z, s; χ) shows that this is absolutely convergent and that it belongs 
to L2(Γ\H; χ).

Let k ∈ L2(Γ\H, χ) have a Fourier expansion

k(z) =
∑
m∈Z

cm(y)e2πimx with cm(y) = O
y→0

(yA),= O
y→∞

(yB) (−A,B < ε).

Then, by unfolding the integral in the Petersson scalar product we obtain:

〈k, P (n, h, χ)〉 =
∞∫
0

cn(y)h(2π|n|y)dy
y2 . (18)

Parseval’s formula Since both series G and P defined above are in L2(Γ\H, χ), we have

〈G,P (n, h, χ)〉

=
∞∑
j=1

〈G, ηj〉〈ηj , P (n, h, χ)〉

+ 1
4π

∑
a

∞∫
−∞

〈G,Ea(·, 1/2 + ir, χ)〉〈Ea(z, 1/2 + ir, χ), P (n, h, χ)〉dr (19)

where

ηj(z) =
∑
n �=0

bj(n, χ)Wsj (nz) (20)

form a complete orthonormal basis of Maass cusp forms with character χ, with corre-
sponding positive eigenvalues sj(1 − sj) → ∞. We write sj = 1/2 + irj . For almost all j, 
rj ≥ 0. For at most finitely many of them we have irj ∈ (0, 1). The last sum ranges over 
a set of singular inequivalent cusps and

Ea(z, s, χ) = δa∞ys + φa(s, χ)y1−s +
∑
n �=0

φa(n, s;χ)Ws(nz) (21)

denotes the weight 0 non-holomorphic Eisenstein series at the cusp a.
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For simplicity, we sometimes write φa(s), φa(n, s) and bj(n) instead of φa(s, χ), 
φa(n, s; χ) and bj(n; χ).

The first inner products in the series (resp. integral) are computed essentially in [5]. 
Let L(f ⊗ ηj , s) and L(f ⊗ Ea(·, 12 + ir, χ), s) denote the Rankin–Selberg zeta function 
defined, for Re(s) � 0 by

2
∞∑

n=1

a(n)bj(n)
ns

and 2
∞∑

n=1

a(n)φa(n, 1
2 + ir)

ns

respectively. With this notation, we have

〈G(·, s;χ), ηj〉 =
Γ(s− 1

2 + irj)Γ(s− 1
2 − irj)

(4π)siΓ(s) L(f ⊗ ηj , s) (22)

and

〈G(·, s;χ), Ea(·,
1
2 + ir, χ)〉 =

Γ(s− 1
2 + ir)Γ(s− 1

2 − ir)
(4π)siΓ(s) L(f ⊗Ea(·,

1
2 + ir, χ), s). (23)

The remaining inner products in the series are computed with (18):

〈ηj , P (n, h, χ)〉 =
√

2π|n|bj(n)(K(h̄))(irj)

where

K(h)(s) :=
∞∫
0

Ks(y)h(y) dy

y3/2 .

Fourier coefficients By (17) and Lemma 2.2 we see that the Fourier coefficient of e2πinx

in the expansion of G(z, s; χ) equals

φ∗(n, s;χ)
√

|n|yKs− 1
2
(2π|n|y) + δn>0

a(n)(ys + φ(s, χ)y1−s)
2πine2πny

+
W (χ̄)πs−1√y

2iN2sL(χ̄, 2s)Γ(s)
∑

1≤l �=n

a(l)
l

Ks−1/2(2π|n− l|y)
e2πly

σχ
2s−1(|n− l|)
|n− l|s−1/2 . (24)

Theorem 2.4 implies that this Fourier coefficient equals

iW (χ̄)(π|n|)s−1

2
√

2πΓ(s)N2sL(χ̄, 2s)

(
L(n, χ; s)

√
2π|n|yKs− 1

2
(2π|n|y)

− δn>0
2Γ(s)N2sL(χ̄, 2s)√
2πW (χ̄)(π|n|)s−1

a(n)
n

(ys + φ(s, χ)y1−s)
e2πny

−
√

2π|n|y
|n|s−1/2

∑ a(l)
l

Ks−1/2(2π|n− l|y)
e2πly

σχ
2s−1(|n− l|)
|n− l|s−1/2

)
. (25)
1≤l �=n
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Thus, integrating against h̄(2π|n|y)/y2, we obtain with (18),

〈G,P (n, h, χ)〉 = iW (χ̄)πs−1/2
√

2Γ(s)N2sL(χ̄, 2s)

[
|n|sL(n, s;χ)K(h̄)(s− 1/2)

− δn>0

√
2Γ(s)L(χ̄, 2s)

W (χ̄)πs− 1
2N−2s

a(n)

×

⎛
⎝(2π|n|)−s

∞∫
0

ys−1e−yh̄(y)dy
y

+ (2π|n|)s−1φ(s)
∞∫
0

y−se−yh̄(y)dy
y

⎞
⎠

−
∑

l≥1,�=n

a(l)
l

σχ
2s−1(|n− l|)
|n− l|s−1 K

(
h

(∣∣∣∣ n

n− l

∣∣∣∣ ·
)
e

−l
|n−l| ·

)
(s− 1/2)

]
. (26)

The interchange of integration and infinite summation in the last term is justified by the 
asymptotics of Ks−1/2(y): � y1/2−s as y → 0+ and � e−yy−1/2 as y → ∞. Together 
with the growth conditions of h(y) at 0 and ∞ and the bound e−x � x−1−ε, they imply 
that the l-th term of the series is � e−4πlyyAlB � e−4πllC for some A, B, C as y → ∞
and � l−1−εyε as y → 0. Therefore, the series converges uniformly in (1, ∞) and in 
(0, 1).

Multiplying both sides with iΓ(s)22s−1/2πs− 1
2 /|n| and taking into account the defini-

tion of L(n, χ; s) we deduce the following proposition. (We use the following notational 
simplification:

Γ(a± b) := Γ(a + b)Γ(a− b).)

Proposition 3.1. Consider s with Re(s) > 2 and an h ∈ C∞(0, ∞) which is � y1/2−ε, as 
y → ∞ and � yRe(s)+5/2+ε as y → 0 for some ε > 0. If n < 0, we have

−W (χ̄)|n|s−1

N2sL(χ̄, 2s)(2π)1−2s

× lim
t→1

(∑
l>0

a(l)
lt

σχ
2s−1(|n− l|)
|n− l|2s−1 K

(
h̄−

∣∣∣∣n− l

n

∣∣∣∣
s

h̄

(
|n|·

|n− l|

)
e−

l·
|n−l|

)
(s− 1

2)
)

=
∞∑
j=1

Γ(s− 1
2 ± irj)K(h̄)(irj)bj(n, χ)L(f ⊗ ηj , s)

+ 1
4π

∑
a

∞∫
−∞

Γ(s− 1
2 ± ir)K(h̄)(ir)φa(n,

1
2 + ir;χ)L(f ⊗ Ea(·,

1
2 + ir;χ), s)dr.

(27)

If n > 0 then the same identity holds with the term
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√
2Γ(s)a(n)(2π)2s−1

πs−1/2n

⎛
⎝(2π|n|)−s

∞∫
0

e−yys−1h̄(y)dy
y

+ (2π|n|)s−1φ(s)
∞∫
0

y−se−yh̄(y)dy
y

⎞
⎠

subtracted from the left hand side.

This proposition allows us to derive the spectral decomposition for the twisted shifted 
convolution sum we have been studying.

Theorem 3.2. Fix n < 0 and Re(s) > 2. For x > Re(s) + 5/2 we have

|n|s−1L(n, χ, x; s)

= −
(
N

2π

)2s 2πL(χ̄, 2s)
W (χ̄)Γ(s− 1 + x)Γ(x− s)

×
( ∞∑

j=1
Γ(s− 1

2 ± irj)Γ(x− 1
2 ± irj)bj(n, χ)L(f ⊗ ηj , s) + cont. part

)
. (28)

Proof. We apply Proposition 3.1 with the test function h(y) = hx(y) := e−yyx. It has 
the nice property that for h̃(y) = hx

(
|n|y/|n − l|

)
e−ly/n−l| we have

(Kh̃)(y) =
∣∣∣ n

n− l

∣∣∣x Khx(y) .

So the transform K occurring in the left hand side of (27) is equal to 
(
1 −

∣∣∣n−l
n

∣∣∣s−x )
Khx. 

The explicit form of the K-Bessel transforms appearing in the formula are given by [6, 
6.621.3]. �

An implication of this is the meromorphic continuation and bounds of L(n, χ, x; s).

Theorem 3.3. For every integer n < 0, the function L(n, χ, z; s) can be meromorphically 
continued to (s, z) ∈ C2. For each ε > 0 and z = x + iy, s = σ + it such that x, σ ∈
(1/2, θ + 3) and such that L(n, χ, z; s) does not have a pole there, we have

Γ(s− 1 + z)Γ(z − s)L(n, χ, z; s)

� |n|1−σ+ε+θe−π max(|y|,|t|)(1 + max(|y|, |t|))4θ+2σ+2x+6ε+7 (29)

where θ is the best exponent towards the Ramanujan conjecture for Maass cusp forms 
and the implied constant depends on N , f , θ and ε.

Remark. The presently best known value θ = 7
64 is due to Kim–Sarnak [12]. In Corol-

lary 3.4 we will work with that value.
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Proof. Each of the terms in the RHS of (28) is meromorphic in s and z. To show that 
the convergence of each of the series/integrals is uniform on compacta we recall (A16) 
of [19]

bj(n, χ) � eπrj/2|n|ε+θ (30)

where θ is the best exponent towards the Ramanujan conjecture.
To bound the Rankin–Selberg zeta functions appearing in (28) we first observe that, 

with (30) and the Ramanujan bound we have, for Re(s) > θ + 3

L(f ⊗ ηj , s) �
∞∑

n=1

n1/2+εnε+θeπrj/2

nRe(s) � eπrj/2. (31)

Similarly, L(f ⊗ Ea(·, 1/2 + ir), s) � (1 + |r|)εeπ|r|/2 and thus, for a M > θ + 3 and 
η = ηj or Ea(·, 1/2 + ir), we have

L(χ̄, 2s)L(f ⊗ η, s) � (1 + |r|)εeπ|r|/2 for Re(s) = M.

To obtain the growth at Re(s) = 1 −M we recall the functional equation of L(f ⊗ ηj , s)
(e.g. [4, Lemma 1]) which, in our case can be written as:

Γ(s− 1/2 ± irj)
(4π)sΓ(s)

�L(f ⊗ ηj , s) = Γ(1/2 − s± irj)
(4π)1−sΓ(1 − s) Φ(s, χ)�L(f ⊗ ηj , 1 − s) (32)

where Φ(s, χ) is the scattering matrix of the Eisenstein series and �L(s) is the column 
vector of Rankin–Selberg zeta functions Lai

of f , ηj at the cusp ai, (ranging over a set of 
inequivalent cusps of Γ0(N) in whose stabilizers χ is trivial). For our purposes, the only 
information about Lai

(ai �= ∞) we need is that they are bounded when Re(s) > θ + 3. 
We further use the formula for the ∞b-entry of the scattering matrix for Γ0(N): It is 0, 
unless b = 0 in which case it equals

W (χ̄)N1−3sπ2s−1 Γ(1 − s)
Γ(s)

L(χ, 2 − 2s)
L(χ̄, 2s)

([11], Prop. 13.7). With this formula, (32) implies that

L(χ̄, 2(1 − s))L(f ⊗ η, 1 − s)

= W (χ̄)N3s−2(2π)−2(2s−1) Γ(s− 1/2 ± ir)
Γ(1/2 − s± ir)L(χ, 2s)L0(f ⊗ η, s) (33)

where, as before, η = ηj or Ea(·, 1/2 + ir). Choose M so that M−1/2 ± ir has a distance 
at least δ from Z. Then Stirling’s estimate implies that, for Re(s) = M and r ∈ R

W (χ̄)N3s−2(2π)−2(2s−1) Γ(s− 1/2 ± ir) �M,δ (1 + |t + r|)2M−1(1 + |t− r|)2M−1.
Γ(1/2 − s± ir)
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If ir ∈ (0, 1), the factor is �M,δ (1 + |t|)4M−2.
Then, Phragmén–Lindelöf [17, Th. 12.9] applied to the function L(χ, 2s)L(f ⊗ η, s)

(which is entire by [4, Corollary to Lemma 1]) implies that for r ∈ R and s with Re(s) ∈
[1 −M, M ]

L(χ, 2s)L(f ⊗ η, s) �M,δ (1 + |r|)εeπ|r|/2(1 + |t + r|)2M−1(1 + |t− r|)2M−1

whereas, for ir ∈ (0, 1), it is bounded by (1 + |t|)4M−2.
Since Stirling’s estimate implies:

Γ(s− 1/2 ± ir) �
{
e−π|t|((1 + |t|)2 − |r|2)σ−1, |t| > |r|
e−π|r|((1 + |r|)2 − |t|)σ−1, |t| < |r|

(34)

we deduce that the normalized function

Λ(f ⊗ η, s) := (2π)−2sΓ(s− 1/2 ± ir)L(χ̄, 2s)L(f ⊗ η, s)

is bounded by an constant depending on M , δ, times

(1 + |r|)εeπ|r|/2
{
e−π|t|((1 + |t|)2 − r2)2M+σ−2, |t| > |r|
e−π|r|((1 + |r|)2 − |t|2)2M+σ−2, |t| < |r|

(35)

for 1 −M ≤ Re(s) < M .
We can now rewrite (28) in terms of Λ in order to use the bounds we just established.

L(n, χ, z; s) = −N2s|n|1−s2π
W (χ̄)Γ(s− 1 + z)Γ(z − s)

×
( ∞∑

j=1
Γ(z − 1

2 ± irj)bj(n, χ)Λ(f ⊗ ηj , s) + 1
4π

∑
a

Ia

)

with

Ia(z, s) =
∫
R

Γ(z − 1
2 ± ir)φa(n,

1
2 + ir;χ)Λ(f ⊗ Ea(·,

1
2 + ir;χ), s)dr. (36)

We first show that the sum and the integrals on the right hand side converges uniformly 
in compacta in (s, z) to yield a meromorphic function in C2. Indeed, for (s, z) in a 
compact set S not containing any poles, the bound (35) can be simplified as:

Λ(f ⊗ η, s) �
{
e−π|t|+π|r|/2(1 + |t|)B , |t| > |r|
e−π|r|/2(1 + |r|)B , |t| < |r|

(37)
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with B > 0 depending on S only. Weyl’s law gives for the number of j such that 
rj ≤ T the asymptotic formula cNT 2 +ON (T log T ). So for l ∈ N

∗ the number of j with 
l− 1 ≤ |tj | ≤ l is bounded by l1+ε for each ε > 0. Hence, for (z, s) = (x + iy, σ + it) ∈ S:

∞∑
j=1

Γ(z − 1
2 ± irj)bj(n, χ)Λ(f ⊗ ηj , s)

�
∑

l<max (|t|,|y|)
Γ(z − 1

2 ± il)bj(n, χ)Λ(f ⊗ ηj , s)

+
∑

l>max (|t|,|y|)
e−πl(1 + l)2x−2|n|θ+εe

πl
2 l2e−πl/2(1 + l)B

�
∑

l<max (|t|,|y|)
Γ(z − 1

2 ± il)bj(n, χ)Λ(f ⊗ ηj , s)

+ |n|θ+ε
∞∑
l=1

e−π(l+max (|t|,|y|))(1 + l + max (|t|, |y|))C (38)

where C > 1 is a constant depending only on S. Since max (|t|, |y|) is bounded by a 
constant depending on S only and 

∑∞
l=1 e

−πl(A + l)C is convergent for A > 0, we deduce 
the required uniform convergence.

For Re(z), Re(s) > 1/2, the uniform convergence of the integrals in the continuous 
part of the spectrum is similarly yielding a meromorphic function there. The integral is 
not changed if we deform the path of integration in a compact set. Let s be near the 
line Re(s) = 1

2 . We deform the path of integration so that s is to the left of the path of 
1
2 + ir and 1 − s to the right of it. This involves moving the path over two singularities, 
and we pick up residues that are in general multiples of Eisenstein series. This gives a 
meromorphic continuation of Ia(z, s) to a larger region. When Re(s) < 1

2 in this region 
we can move back the line of integration and we get an expression given by the integral 
in (36) plus terms coming from the residues. For z we get in a similar way meromorphic 
continuation across the line Re(z) = 1

2 and across the lines Re(s) or Re(z) = 1
2 −m with 

m ≥ 1
We now turn to the proof of the estimate (29). Assume first that |t| ≤ |y|. We employ 

(30), (34) and (35) to get for 1 −M < Re(s) < M :

∞∑
j=1

Γ(z − 1
2 ± irj)bj(n, χ)Λ(f ⊗ ηj , s)

� |n|θ+ε
( ∑

l≤|t|≤|y|
l1+εe−π|y|(1 + l)ε(1 + |y|)2x−2eπl/2e−π|t|+πl/2(1 + |t|)2(2M+σ−2)

+
∑

l1+εe−π|y|(1 + l)ε(1 + |y|)2x−2eπl/2e−πl/2(1 + l)2(2M+σ−2)
|t|<l≤|y|
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+
∑

|t|≤|y|<l

l1+εe−πl(1 + l)ε(1 + l)2x−2eπl/2e−πl/2(1 + l)2(2M+σ−2)
)

� |n|θ+ε
(
e−π|y| (1 + |y|

)2x−2 (1 + |t|
)2(2M+σ−2)

e−π|t|
|t|∫

u=0

eπu u1+2ε du

+ e−π|y| (1 + |y|
)2x−2

|y|∫
u=|t|

(1 + u)4M+2σ−3+2εdu

+
∞∫

u=|y|

e−πu (1 + u)4M+2σ+2x+2ε−5 du

)

� |n|θ+ε
(
2 × e−π|y|(1 + |y|

)2x−2(1 + |t|
)4M+2σ+2ε−3

+ 2 × e−π|y| (1 + |y|
)4M+2x+2σ+2ε−5

)
� e−π|y|(1 + |y|)2x−2(1 + |t|)4M+2σ+2ε−3.

Setting M = θ + 3 + ε we get the estimate. Similarly we obtain the same bound for the 
continuous spectrum term, and the bounds for the case |y| ≤ |t|. �
Corollary 3.4. For integer n < 0, s in the strip σ = Re(s) ∈ (1/2, 103/64) outside a 
neighborhood of the exceptional values sj, and ε < 103/64 − σ we have

L(n, χ; s) � |n|71/64−σ+ε(1 + |t|)151/16+2σ+6ε + |n|3/2+ε. (39)

The implied constant depends on N , f and ε.

Proof. Set x := σ + 3/2 + ε ∈ (1/2, 199/64). We can then apply the theorem in this 
range with θ = 7/64, the Kim–Sarnak bound [12]. We first observe that by definition,

L(n, χ; s) = L(n, χ, x; s) + |n|x−s
∑
l≥1

a(l)
l

σχ
2s−1(l − n)

(l − n)s−1+x
.

To estimate the first term note Stirling’s estimate

(Γ(s− 1 + z)Γ(z − s))−1 � eπ max(|t|,|y|)(1 + |t + y|)3/2−σ−x(1 + |t− y|)σ+1/2−x.

Then, with y = 0, the bound (29) in the theorem simplifies as

L(n, χ, x; s) � |n|71/64−σ+ε(1 + |t|)151/16+2σ+6ε.

On the other hand, with d(l) denoting the number of divisors of l,
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∑
l≥1

∣∣∣∣a(l)l σχ
2s−1(l − n)

(l − n)s−1+x

∣∣∣∣ ≤ ∑
l≥1

l1/2+ε

l

d(l − n)(l − n)2σ−1

(l − n)σ−1+x

�
∑
l≥1

1
l1/2−ε

1
(l − n)3/2+ε

= O(1) .

This implies the result. �
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