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Abstract

Extracellular vesicles (EVs) are natural nanoparticles that mediate intercellular transfer of RNA and proteins and are of great medical interest;
serving as novel biomarkers and potential therapeutic agents. However, there is little consensus on the most appropriate method to isolate high-yield
and high-purity EVs from various biological fluids. Here, we describe a systematic comparison between two protocols for EV purification:
ultrafiltration with subsequent liquid chromatography (UF-LC) and differential ultracentrifugation (UC). A significantly higher EV yield resulted from
UF-LC as compared to UC, without affecting vesicle protein composition. Importantly, we provide novel evidence that, in contrast to UC-purified EVs,
the biophysical properties ofUF-LC-purifiedEVs are preserved, leading to a different in vivo biodistribution,with less accumulation in lungs. Finally,we
show that UF-LC is scalable and adaptable for EV isolation from complex media types such as stem cell media, which is of huge significance for future
clinical applications involving EVs.
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Figure 1. Ultrafiltration allows efficient isolation of intact EVs. (A) Chart outlining UF and UC protocols. (B)NTA of UF and UC-purified EVs. (C)WB of UF
and UC-purified EVs. (D) NTA (fluorescence mode) of UF and UC-purified eGFP-positive EVs. (E) TEM of UF and UC-purified EVs. Arrows 1a:
fragmentation, 1b: fusion and 2: intact. (F) Absolute concentrations of CD63-eGFP molecules (left y-axis) and percentage of intact vesicles (right y-axis)
according to FCS (SN=supernatant, FT=flow-through). (G) Molecular brightness for each particle (counts per particle)(CPP) (n=3). *Indicates pb0.05, results
represent mean+s.d. (H) Fluorescence microscopy of CD63-eGFP-positive EVs.
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From the Clinical Editor: Recent evidence suggests extracellular vesicles (EVs) as another route of cellular communication. These EVs may be
utilized for future therapeutics. In this article, the authors compared ultrafiltration with size-exclusion liquid chromatography (UF-LC) and ultra-
centrifugation (UC) for EV recovery.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Intercellular communication, via paracrine factors, is essential
for survival of all multicellular organisms. Recent evidence
suggests another route of cellular communication: extracellular
vesicles (EVs), comprising of nano-sized exosomes, microve-
sicles and apoptotic bodies.1 Due to their ability to convey
information through RNA and proteins, EVs can influence both
physiological2 and pathophysiology processes.3,4 Moreover,
EVs from mesenchymal stem cells have been exploited for
regeneration of injured tissues.5–7 Hence, EVs are emerging as
disease biomarkers and nanotherapeutics.8
Despite progress in EV research, the challenge of purifying
biologically intact EVs remains. Differential ultracentrifugation
(UC)9 is the classical protocol for EV isolation. However,
problems with UC include low and operator-dependent yields.10

Alternative strategies like immuno-affinity capture,11 polymer-
based precipitation12 and microfluidics13 also present shortcom-
ings, e.g. vesicle disruption and co-purification of non-vesicular
proteins.10 Deriving an EV isolation method that enables high
recovery of functional EVs in a scalable fashion is therefore
essential for EV research.



Figure 2. Size-exclusion chromatography separates EVs from contaminants. (A) TEM of UF-LC fraction 1 shows intact EVs, whereas fraction 2 contains
protein aggregates. (B) Total protein staining of UF and UF-LC fractions. (C)WB of UF-LC and UC-purified EVs. (D)Venn diagram depicting protein overlap
for UF-LC and UC-purified EVs. (E) Gene ontology (GO) enrichment terms for UF-LC and UC-purified EV proteomes.

Table 1
Protein/vesicle ratio of UC and UF-LC-purified EVs.

Protein/vesicle ratio
(x10-15 g/particle)

N2a OptiMEM N2a Prespun iPSCs

UC 0.25 0.25 0.70
UF-LC 0.074 0.059 0.55
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Here, we present a systematic comparison study between a
robust EV purification method, ultrafiltration with size-exclusion
liquid chromatography (UF-LC), adapted from previous
studies,14–16 and UC. We show that UF-LC permits higher EV
recovery with intact biophysical properties.

Methods

EVs were isolated by either UF or UC; UF samples were
subsequently loaded on a Sephacryl column for size-exclusion
fractionation. EV properties were evaluated using molecular
(western blotting (WB), nanoparticle tracking analysis (NTA), LC/
MS/MS) and biophysical (transmission electronmicroscopy (TEM),
fluorescence microscopy, fluorescence correlation spectroscopy
(FCS), total internal reflection fluorescence microscopy (TIRF)
and DiR-imaging) analyses (see supplementary data for details).

Results

UF-LC allows high-yield isolation of biophysically intact EVs

OptiMEM conditioned medium was processed by UC or UF
(Figure 1, A). According to NTA, more particles with similar
size distribution were recovered after UF than after UC.
Correspondingly, levels of vesicle markers (Alix and CD9)
were higher in UF than UC samples. This finding was consistent
across different cell lines and with CD63-eGFP labeled EVs
(Figure 1, B-D and Supplementary figure S1A).

TEM revealed EVs with rounded and cup-shaped morphol-
ogy in both samples. Occasionally, UC-purified EVs appeared
disrupted or fused (Figure 1, E), an observation not seen with
UF-purified EVs. FCS was employed for more quantitative
analysis of EV integrity. In FCS, EV hydrodynamic radius,
concentration and changes in biophysical properties (e.g. fusion
or fragmentation) were determined by measuring diffusion and
intensity of CD63-eGFP positive EVs. From these readings, 25%
of the total CD63-eGFP molecules were recovered using UF,
2.5-fold more than using UC, with larger EV radius for UC. The
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Figure 3. Biodistribution ofUF-LC-purifiedEVs. (A)Representative IVIS images of organs fromBalb/cmice 24 hpost injection ofDiR-labeledEVs. (B)Biodistribution
of UC and UF-LC DiR-labeled EVs. ****Indicates pb0.0001% in comparison to the same organ in the corresponding group (n=5), results represent mean+s.d.

Figure 4. UF-LC EV isolation from complex media types. Graph showing the concentration of particles (x108/ml) (left y-axis) and protein concentration (mg/ml)
(right y-axis) across the eluted volume after UF-LC for (A)N2a pre-spun conditionedmedia and (C) iPSC conditionedmedia.WBof (B)N2a and (D) iPSCEVs.
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brightness of individual particles (number of CD63-eGFP
molecules per vesicle) was higher in UC than UF, suggesting
vesicle fusion. Further, disintegration with NP-40 decreased the
diameter of CD63-eGFP-positive material to 2 nm for both UC
and UF-purified EVs, the putative size of free CD63-eGFP.17

After UC, only 10% of total vesicles were recovered in the pellet;
while in the supernatant, only 38% of the vesicles were intact
while the remaining 62% of the eGFP-positive material was
2 nm. This is indicative of vesicle disruption, since disrupted
vesicles release their CD63-eGFP into the supernatant as free
CD63-eGFP (Figure 1, F-G and Supplementary figure S1C).
Moreover, fluorescence microscopy of EVs in suspension
revealed aggregates only in UC samples (Figure 1, H).
Since protein complexes were co-isolated using UF (Supple-
mentary figure S2A-C), size-exclusion LC was used to
fractionate OptiMEM conditioned media. Two distinct fractions
were detected (Supplementary figure S2D-E), with vesicles and
non-vesicular proteins found exclusively in fraction 1 and
fraction 2, respectively (Figure 2, A-B). UF-LC presented with
consistently high EV recovery rates (70% ±19%), along with
higher EV marker expression as compared to UC samples
(Figure 2, C and Supplementary figure S2F-G). LC/MS/MS of
EVs purified by both methods presented a good correlation in
overall protein expression and gene ontology annotations
(Figure 2, D-E, Supplementary figure S3A-E and Supplementary
Table S1), although the protein/vesicle ratio was lower in UF-LC
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than for UC-purified EVs (Table 1). TIRF imaging further
corroborated the presence of aggregates/fusion of EVs only in
UC samples (Supplementary figure S4A-B).

UF-LC-purified EVs demonstrate different in vivo biodistribution
compared to UC-purified EVs

Based on the distinct differences observed in EV integrity, we
speculated that this would influence EV biodistribution.
DiR-labeled EVs were injected intravenously and mice were
imaged 24 h later. UC-purified EVs showed a 4.6 times (pb0.0001)
stronger signal in lungs compared to UF-LC-purified EVs
(Figure 3, A-B) while the reverse was seen in the liver.

UF-LC can be extended to complex biological fluids

After subjecting conditioned pre-spun and stem cell media to
UF-LC, EV markers were again solely detected in fraction 1, which
corresponds to the peak of particles (Figure 4, A-F and
Supplementary figure S5A-D). Moreover, UF-LC samples consis-
tently had a lower protein/vesicle ratio than UC samples (Table 1).

Discussion

Research in EVs has recently received increasing attention,
however, one major roadblock is the lack of a scalable technique
permitting efficient purification of EVs. Here we report the first
systematic comparison study comparing both biochemical and
biophysical aspects of UF-LC and UC-purified EVs. NTA, WB
and state-of-the-art LC/MS/MS demonstrated that UF-LC
generated EVs with the same proteome as UC. Furthermore,
our protein/vesicle ratio was consistently lower in UF-LC than
UC samples, suggesting higher EV purity.18 TEM, FCS, TIRF
and fluorescence microscopy data suggest that EVs fuse, disrupt
and aggregate during the UC isolation process, an aspect that is
circumvented with UF-LC. We postulate that these large EV
aggregates account for the accumulation in the lungs in our in vivo
experiments. Another finding from this study is that UF-LC can be
adapted for EV isolation from stem cell media. We believe that
usingUF-LC for EV isolationwill allow researchers to venture into
new avenues aimed at unraveling EV biological functions.
Appendix A. Supplementary Data

Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.nano.2015.01.003.
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