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Abstract

Aim

Pulsatile flow left ventricular assist devices (pf-LVADs) are being replaced by continuous
flow LVADs (cf-LVADSs) in patients with end-stage heart failure (HF). MicroRNAs (miRs)
play an important role in the onset and progression of HF. Our aim was to analyze cardiac
miR expression patterns associated with each type of device, to analyze differences in the
regulation of the induced cardiac changes.

Methods and Results

Twenty-six miRs were selected (based on micro-array data and literature studies) and vali-
dated in myocardial tissue before and after pf- (n = 17) and cf-LVAD (n = 17) support. Of
these, 5 miRs displayed a similar expression pattern among the devices (miR-129%, miR-
146a, miR-155, miR-221, miR-222), whereas others only changed significantly during pf-
LVAD (miR-let-7i, miR-21, miR-378, miR-378%) or cf-LVAD support (miR-137). In addition,
4 miRs were investigated in plasma of cf-LVAD supported patients (n = 18) and healthy con-
trols (n = 10). Circulating miR-21 decreased at 1, 3, and 6 months after LVAD implantation.
MiR-146a, miR-221 and miR-222 showed a fluctuating time pattern post-LVAD.

Conclusion

Our data show a different miR expression pattern after LVAD support, suggesting that differ-
entially expressed miRs are partially responsible for the cardiac morphological and func-
tional changes observed after support. However, the miR expression patterns do not seem
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to significantly differ between pf- and cf-LVAD implying that most cardiac changes or clinical
outcomes specific to each device do not relate to differences in miR expression levels.

Introduction

Heart transplantation (HTX) is the ultimate therapy for patients with end-stage heart failure
(HF), despite the discrepancy between the number of donor hearts available and the number of
patients awaiting HTx. Left ventricular assist devices (LVADs) were introduced as a bridge to
transplantation in order to reduce mortality and improve quality of life while waiting for HTx.
LVADs provide volume and pressure unloading of the left ventricle, reversing the compensa-
tory responses of the overloaded myocardium, resulting in partial “reverse remodeling” [1-4].
Clinical experience with LVAD support has shown that a subset of patients could be weaned
from the device after restoration of basic cardiac function, so called bridge to recovery [1-6]. A
lot of knowledge has emerged from studies on pulsatile flow LVADs (pf-LVADs), providing
insights into the basic mechanisms and limitations of ventricular recovery [3,7]. Long-term
LVAD support reduces cardiomyocyte size [8-10], decreases extracellular matrix volume
[11,12]. Moreover, fibrillar collagen structure, f-adrenergic responsiveness and receptor den-
sity [13] and mitochondrial function improve [14]. These changes are paralleled by changes in
the calcium handling properties of the cardiomyocytes, resulting in faster calcium entry via sar-
colemmal calcium channels, higher sarcoplasmic reticulum calcium content and shorter action
potential durations [15,16]. Currently, pf-LVADs have been replaced by continuous flow
LVADs (cf-LVAD). Although many studies showed that cf-LVADs are as effective or even bet-
ter in transplant rate and post-transplant outcomes [8,17,18], differences in left ventricular
unloading between the devices may result in differences between “reverse remodeling” and the
experience with pf-LVADs may no longer apply [19-21]. In addition, the lack of validated bio-
markers for recovery aggravates uncertainties about ideal timing for potential LVAD explan-
tation. A hallmark of HF mRNA signatures is that more transcripts are down regulated then
up regulated, suggesting the importance of molecular mechanisms that suppress mRNA steady
state levels. MicroRNAs (miRs) are small, non-coding RNAs that bind mRNAs at their 3’-
untranslated regions, stimulating mRNA degradation or inhibiting protein translation [22].
MiRs are important hallmarks for recovery or deterioration and might be used as a therapeutic
target in HF [23-25]. Therefore, delineating their role in posttranscriptional gene regulation
offers new insight into the mechanisms how the heart adapts to mechanical support. Because
in cf-LVAD, the left ventricle is constantly unloaded throughout the complete cardiac cycle
and in pf-LVAD this occurs only at specific time points in the cycle, it is important to compare
the physiological effects of such differences. In this context, our goal was to identify changes in
miR expression during LVAD support and to investigate whether these expression patterns dif-
fer between pf-LVAD and cf-LVAD support, both at tissue and plasma levels. Assessing these
differences can help identifying new regulatory players and mechanisms in reverse remodeling
during mechanical support.

Material and Methods
Study Population

Only patients with end-stage non-ischemic dilated cardiomyopathy that were supported with a
LVAD as bridge to transplantation (BTT) were included. Demographics are summarized in

Tables 1 and 2. Twenty-six miRs were analyzed in myocardial tissue pre- and post-LVAD from
individual pf-LVAD (n = 17) and cf-LVAD patients (n = 17) using a custom made quantitative
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Table 1. Demographics of the patients (n = 15) selected for microarray analysis (pre-screening).

n

Characteristic®
Age, years
Male, %
HF duration (days)
Body Mass Index, kg/m2
Diabetes mellitus, %
Hypertension, %
Hyperlipidemia, %
CVATIA, %
NYHA classification IV, %
Etiology of non-ischemic DCM, %
- |diopathic
- Familial®
- Toxic (drugs)
- Myocarditis
CRTD/ICD before LVAD implant, %
Type of LVAD
- Heart Mate Il
- Heart Mate (X)VE
- Thoratec
- Novacor
Days of LVAD support®

Tissue Plasma
pf-LVAD cf-LVAD cf-LVAD
5 5 5
38+7 49+ 6 42+ 6
5 (100%) 4 (80%) 2 (40%)
261 (26—-1023) 1747 (1531-3316) 1754 (723—-1884)
22.7+1.5 26.2+1.86 24.1+£1.47
0 (0%) 0 (0%) 0 (0%)
0 (0%) 0 (0%) 0 (0%)
0 (0%) 0 (0%) 1 (20%)
1 (20%) 2 (40%) 2 (40%)
5 (100%) 5 (100%) 5 (100%)
2 (40%) 3 (60%) 2 (40%)
1 (20%) 2 (40%) 3 (60%)
1 (20%) 0 (0%) 0 (0%)
1 (20%) 0 (0%) 0 (0%)
2 (40%) 4 (80%) 3 (60%)
0 (0%) 5 (100%) 5 (100%)
3 (60%) 0 (0%) 0 (0%)
1 (20%) 0 (0%) 0 (0%)
1 (20%) 0 (0%) 0 (0%)

204 (180-301)

489 (238-897)

500 (260-1082)

HF, heart failure; CVA, cerebrovascular accident; TIA, transient ischemic attack; NYHA, New York Heart Association; DCM, dilated cardiomyopathy;

CRTD, cardiac resynchronization therapy defibrillator; ICD, implantable cardioverter defibrillator.

@ Categorical data are presented as number (%), continuous data as mean+SEM or median (IQR), respectively.
® Familial DCM is defined if the patient has one or more family members diagnosed with idiopathic DCM or has a first-degree relative with an unexplained

sudden death under the age of 35 years.
¢ Days of LVAD support are based on patients who already underwent HTx.

doi:10.1371/journal.pone.0136404.t001

polymerase chain reaction (Q-PCR)-array from Qiagen. Myocardial tissue was obtained out-

side the suture area of the inflow cannula.

Furthermore, 4 miRs were studied in the plasma of 18 individual cf-LVAD supported
patients prior to and 1, 3, and 6 months after implantation and prior to HTx (using Tagman
Gene Expression Assays from Life Technologies). Control plasma was collected from 10

healthy individuals.

The experimental design of the study is depicted in Fig A in S1 File. The methods are described
in detail in the supplemental data. Our study has been approved by the Institutional Review
Board of the University Medical Center Utrecht, the Netherlands. All subjects included in this

study gave written informed consent for the use of their tissues and plasma for research purposes.

miR Selection Criteria

The selection of the investigated miRs was made based on the results from 2 microarray experi-
ments performed on pf- and cf-LVAD myocardial tissue at Exiqon Services (Copenhagen,
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Q-PCR Array Analysis of miR Expression in Tissue

The expression level of 26 miRs was investigated in 2 patient cohorts; pf-LVAD (n = 17) and
cf-LVAD (n = 17) supported patients. RNA was isolated from 20 snap frozen 10pm sections of
myocardial tissue (pre- and post-LVAD) using the miRNeasy Mini Kit (Qiagen Inc, Austin,
USA) according to the manufacturer’s instructions. For cDNA synthesis and Q-PCR analysis,

Denmark) according to the manufacturer’s protocol (supplemental data), combined with liter-
ature studies [24,26,27].

Table 2. Baseline demographics of the patients supported with a pulsatile flow LVAD (pf-LVAD) and continuous flow LVAD (cf-LVAD) (validation).

n

Characteristic®
Age, years
Male, %
Body Mass Index, kg/m2
HF duration (days)
Smoking
- No
-Yes
- Former
Diabetes mellitus, %
Hypertension, %
Hyperlipidemia, %
CVA/TIA before LVAD, %
NYHA classification IV, %
Etiology of non-ischemic DCM, %
- |diopathic
- Familial®
- Myocarditis
- Toxic
- Peripartum cardiomyopathy
- Systemic disease
CRTD/ICD before implantation, %
Type of LVAD
- HeartMate-II
- HeartMate-(X)VE
- Thoractec
- Novacor
- HeartMate-IP
Days of LVAD support®

pf-LVAD
17

45+3
14 (82%)
257+18

1754 (750-2489)

9 (53%)
3 (18%)
5 (29%)

1 (6%)

1 (6%)
2 (12%)
6 (35%)

17 (100%)

8 (47%)
6 (35%)
2 (12%)
0 (0%)
0 (0%)
1 (6%)
13 (76%)
0 (0%)
12 (70%)
3 (18%)
1 (6%)
1 (6%)
282 (197-512)

Tissue

cf-LVAD
17

39+3
16 (94%)
22.8 +0.87
398 (49-1344)

13 (76%)
2 (12%)
2 (12%)
0 (0%)
0 (0%)
1 (6%)
1 (6%)
17 (100%)

10 (59%)
4 (24%)
1 (6%)
1 (6%)
1 (6%)
0 (0%)
8 (47%)

17 (100%)
0 (0%)
0 (0%)

0 (0%)

0 (0%)

206 (190-317)

Plasma
cf-LVAD
18

45+3
14 (78%)
243+13
1872 (424-2343)

11 (61%)
2 (11%)
5 (28%)
2 (11%)
0 (0%)
2 (11%)
5 (28%)

18 (100%)

6 (33%)
7 (39%)
3 (17%)
1 (6%)
0 (0%)
1 (6%)
11 (61%)

18 (100%)

0 (0%)

0 (0%)

0 (0%)

0 (0%)
386 (227-510)

HF, heart failure; CVA, cerebrovascular accident; TIA, transient ischemic attack; NYHA, New York Heart Association; DCM, dilated cardiomyopathy;

CRTD, cardiac resynchronization therapy defibrillator; ICD, implantable cardioverter defibrillator.

8Categorical data are presented as number (%), continuous data as mean+SEM or median (IQR), respectively.
PFamilial DCM is defined if the patient has one or more family members diagnosed with idiopathic DCM or has a first-degree relative with an unexplained

sudden death under the age of 35 years.
°Days of LVAD support are based on patients who already underwent HTx.

doi:10.1371/journal.pone.0136404.t002
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the miScript II RT kit and a custom made miScript PCR Array (based on the 26 selected miRs
and 6 controls in a 96-wells format) were used (Qiagen Inc). In short, 250 ng of total RNA was
converted into cDNA using the 5x miScript HiSpec buffer. Thermal cycling was done using the
ViiA 7 Real-Time PCR system (Life Technologies, USA) and consisted of a 15 minute hot start
at 95°C followed by 40 cycles of 94°C for 15 sec, 55°C for 30 sec and 70°C for 30 sec.

Four of the 6 controls on the custom made array were candidate stable references (miR-340,
miR-664 were selected because of their stable expression in the previously performed Exiqon
array. Also, SNORD68 and RNU6-2 were chosen because these small RNAs have been verified
to have relatively stable expression levels across tissues (miScript Manual). The standard devia-
tion (SD) of the Cq values of all samples was determined for the candidate reference genes (SD
for miR-340 = 0.46, SD for miR-664 = 0.40, SD for RNU6-2 = 0.47, SD for SNORD68 = 0.48).
Expression levels of miR-664 were used for data normalization, because the expression pattern
of this miR was very stable among all samples tested. The other 2 controls were a reverse tran-
scription control (miRTC) and a positive PCR control (PPC). The relative quantity (RQ) was
calculated using the AACq method.

Q-PCR Analysis of miR Expression in Plasma

From the custom array on tissue, 4 miRs were selected to further investigate their expression lev-
els in plasma. RNA was isolated from 500-pl plasma at different time points (pre cf-LVAD sup-
port, 1, 3 and 6 months after cf-LVAD implantation, and pre-HTx) using the miRVana PARIS
kit (part# AM1556, Life Technologies, USA) according to the manufacturer’s instructions. cDNA
synthesis for miRs was performed using the TagMan MicroRNA Reverse Transcription Kit Life
Technologies, USA). Q-PCR was performed using TagMan MicroRNA assays (Life Technolo-
gies, USA). PCR reactions were performed on the ViiA 7Real-Time PCR system (Life Technolo-
gies, USA). Thermal cycling conditions consisted of a denaturation step at 95°C for 10 min,
followed by 40 cycles of 95°C for 15 sec and 60°C for 1 min. Cq values above 35 were defined neg-
ative. A stable miR (miR-148b) from a previously performed Q-PCR array (Exiqon) on plasma
was used as reference and the relative quantity (RQ) was calculated using the AACq method.

Statistical Analysis

Categorical and continuous data are presented by number (%) and by mean (SD) or median
(interquartile range IQR, i.e. 25th- 75th percentile), where appropriate. Independent-samples
t-tests were used for comparing miR expression arrays (Exiqon). Due to the high number of
miRs being tested in parallel, micro-arrays are prone to give false positive results. The false pos-
itive rate is controlled by multiple testing corrections that adjust p-values derived from multi-
ple statistical tests. Therefore, p-values were calculated with and without the Benjamin and
Hochberg multiple testing adjustment method [28]. For miR Q-PCR array (Qiagen) data, the
groups were compared using paired-samples t-test and Wilcoxon signed rank test, where
appropriate. For miR expression profiling in plasma, the longitudinal detection pattern of cir-
culating miRs (from pre-LVAD until pre-Htx) was evaluated using the mixed model analysis
with a random intercept to account for the correlation between repeated measurements within
the same person. The data from this model are presented by estimated mean + standard error.
The miR expression pre-LVAD was compared with healthy controls using Mann-Whitney U
test. Furthermore, also the changes in miR-expression between individual patients pre/post pf-
LVAD and pre/post cf-LVAD were calculated by using Mann-Whitney U test. P-values < 0.05
were considered statistically significant. Mixed model analysis was applied using SPSS, version
20 (SPSS, Inc., Chicago, Illinois, USA). All other analyses were performed using GraphPad
Prism version 5.0 (GraphPad Software Inc., La Jolla, CA, USA).
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Fig 1. Similar changes in miR expression in pulsatile flow (pf-LVAD) and continuous flow LVAD (cf-LVAD). The alteration in miR-expression in
myocardial tissue of both pf-LVAD (n = 17) and cf-LVAD (n = 17) patients. miR-129* (a) and miR-146a (b) are up-regulated in post-LVAD in comparison to
pre-LVAD, whereas miR- 155 (c), miR-221 (d) and miR-222 (e) are down-regulated in both devices. The asterisk (*) represents p<0.05.

doi:10.1371/journal.pone.0136404.g001

Results
Patient Demographics

Patients supported with a pf-LVAD (n = 17) had a mean age of 45 years, 82% (n = 14) were
male, with a median HF duration of 1754 days (IQR 750-2489) and LVAD duration of 282
(IQR 197-512) days (Tables 1 and 2). The majority of the patients (70%) was supported with a
HeartMate (X)VE. The cf-LVAD supported group (n = 17) consisted of patients with a mean
age of 39 years and 94% (n = 16) were male. The median duration of HF was 398 days (IQR
49-1344) and the LVAD duration was 206 (IQR 190-317) days. In the cf-LVAD group, all
patients were supported with a HeartMate II device (Table 2).

Out of the 26 selected miRs (Table A in S1 File), 5 miRs showed a similar pattern during pf-
LVAD and cf-LVAD support (tables A-C in S2 File and S3 File). MiR-129* and miR-146a
were down-regulated in pre-LVAD supported patients and increased during mechanical sup-
port (Fig 1A and 1B). In contrast, miR-155, miR-221 and miR-222 were up-regulated in pre-
LVAD and decreased upon implantation (Fig 1C-1E).
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Fig 2. Device specific changes in miR expression. Selection of myocardial miRs that changed only in pulsatile flow (pf-LVAD) or continuous flow LVAD
(cf- LVAD), respectively. During pf-LVAD support, miR-let-7i (a), miR-21 (b), miR-378 (c) and miR-378* (d) changed significantly post LVAD, whereas in cf-
LVAD these miRs did not differ significantly. In cf-LVAD, only miR-137 (e) changed significantly post-LVAD. The asterisk (*) represents p<0.05.

doi:10.1371/journal.pone.0136404.g002

Several miRs showed a significant change in either pf-LVAD or cf-LVAD support. Four
miRs changed in expression after pf-LVAD (miR-let-7i, miR-21, miR-378 and miR-378", Fig
2A-2D), whereas the expression of miR-137 only changed significantly during cf-LVAD sup-
port (Fig 2E). Of note, let-7i and miR-21 changed non-significantly in cf-LVAD tissue, but
showed the same trend as in pf-LVAD. In fact, statistical analysis to investigate whether the dif-
ference in expression of these four microRNAs really differ between pf-LVAD and cf-LVAD
support revealed that the effects were not significant when comparing the change pre- and
post-LVAD within individuals (Fig B in S1 File). Interestingly, several miRs that have previ-
ously been reported to be differentially expressed between pre- and post pf-LVAD [7], did not
significantly change in cf-LVAD. This was the case for miR-133a, miR-133b, miR-1, miR-151,
miR-7a and miR-378 (Fig C in S1 File).

4 miRs that changed significantly in cf-LVAD supported patients were selected for further
validation in plasma by Q-PCR: miR-21, miR-146a, miR-221 and miR-222. Prior to cf-LVAD
implantation, levels of miR-21 were doubled compared to controls, decreased significantly dur-
ing support, but did not normalize (Fig 3A). Levels of miR-146a were also increased in pre-
LVAD compared to controls, but revealed a fluctuating expression pattern during support with
a tendency to decrease (Fig 3B). The expression patterns for miR-221 and miR-222 were alike,

PLOS ONE | DOI:10.1371/journal.pone.0136404 October 2,2015
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doi:10.1371/journal.pone.0136404.g003

with both miRs up-regulated after 1 month followed by down-regulation (Fig 3C and 3D).
While for miR-21 the time response in expression levels was homogeneous between the differ-
ent patients, for the other three microRNAs, the expression levels determined in a few patients
(outliers, non-responders) are very discrepant from the rest of the group (Fig 3A-3D).

Discussion

In the present study, we compare the miR expression patterns in pulsatile flow (pf-) versus con-
tinuous flow (cf-) LVAD-supported myocardium.

The use of cf-LVADs has been increasing over the last years and this is mostly related to its
many advantages over pf-LVADs: smaller size, reducing surgical trauma, higher mechanical
reliability, limited-blood containing surfaces, better energy efficiency and decreased risk of
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device-related infections [8,10]. Nevertheless, because cf-LVADs generate less pulsatile hemo-
dynamics, there are still some reservations regarding the effect of long-term continuous blood
flow mainly regarding cardiovascular remodeling, perfusion of end organs and long-term
patient outcome. Accordingly, it has been suggested that bridge to recovery is more likely in pf-
LVAD support than in cf-LVAD support [11]. Whereas, most studies, so far, have compared
the myocardial contractile profiles and cellular/hemodynamic responses of the failing myocar-
dium in pf-LVAD versus cf-LVADs, the exact biochemical and molecular changes related to
each type of device are still unclear. This study applies a miR expression profiling strategy to
evaluate the molecular regulatory role of miRs during long-term LVAD support and to provide
more insight in the molecular mechanisms that are affected by each type of device. miRs are
established main players in the pathological cardiac remodeling process leading to HF [23,29-
31]. LVAD support is able to partially reverse structural and mechanistic changes and this may
be related to changes in miR expression patterns. To date, few studies have addressed changes
in miRs during LVAD support [7,26,27,32-34]. Ramani et al examined the expression levels of
376 miRs in myocardial tissue of 28 patients to determine whether there was an association
between the expression levels at the time of LVAD implantation and the ability of the heart to
recover during support [33]. In addition, 7 non-failing hearts were investigated. Fourteen of
the patients underwent removal of their LVAD. The level of miR-15b, miR-23a, miR-26a and
miR-195 were significantly decreased in the left ventricle of the recovery hearts when compared
to LVAD dependent hearts. Remarkably, LVAD support did not alter the expression of any of
these miRs. Moreover, the expression levels of miR-23a and miR-195 in the recovery group
were similar to those of non-failing hearts. An editorial comment of Mann and Burkhoff sug-
gests therefore, that degree of recovery may relate more to the severity and nature of the under-
lying HF at the time of LVAD implantation, rather than to the effect of mechanical unloading
[35]. Matkovich et al performed a parallel miR and mRNA micro-array profiling on myocar-
dial tissue from non-failing hearts, failing hearts, and failing hearts supported with a LVAD
[32]. They showed that 28 miRs were 2-fold increased in failing hearts, and there was near
complete normalization of the miR signature in the LVAD supported hearts. By contrast, 444
mRNAs were altered by 1.3 fold in failing hearts, and only 29 of these normalized by 25% in
the LVAD supported hearts. This suggests that miRs may be more sensitive than mRNAs to
functional changes related to end-stage HF. In fact, previous work from our group [7] focusing
on the differential expression of four specific miRs known to be expressed in the heart and to
have functional roles in progression of HF (miR-1, miR-133a, miR-133b and miR-208),
showed that expression of these miRs is restored during pf-LVAD support. However, this was
only observed in ischemic heart disease patients and not in patients with dilated cardiomyopa-
thy. Similarly, in the present study, we showed that expression of these miRs did not change
significantly in cf-LVAD supported myocardial tissue of patients with dilated cardiomyopathy
(fig Cin S1 File).

The present study shows that there is a specific set of miRs with the same expression pattern
changes after cf- and pf-LVAD support, with some of them being restored to expression levels
of controls after LVAD support. Curiously, when examining the temporal expression pattern
of circulating miR-21 after implantation and just before HT, it revealed a consistent decreas-
ing pattern until control levels were reached. miR-21 is very abundant in the cardiovascular
system and several studies have revealed that its expression is deregulated in heart and vascula-
ture under cardiovascular disease conditions, such as proliferative vascular disease, cardiac
hypertrophy, HF, and ischemic heart disease [36-38]. There are, however, some miRs that
were further depleted or induced after support and therefore, have an expression behavior very
different from healthy hearts. miR-221 and miR-222, are examples of miRs that are repressed
in HF and this repression is even more accentuated after support. This kind of response may

PLOS ONE | DOI:10.1371/journal.pone.0136404 October 2, 2015 9/13



@’PLOS ‘ ONE

MicroRNA Expression during LVAD Support

reflect the role of these miRs in regulating vascular inflammation and therefore, their function
as mediators of endothelial cell pathophysiology [39,40] may provide clues as to why cardiac
function is not completely normalized in most LVAD patients. The lack of donor hearts as con-
trol myocardial tissue constitutes a limitation. Hence, it is difficult to draw significant conclu-
sions comparing non-failing versus LVAD supported hearts.

At first, our data seems to confirm the hypothesis that different type of support devices
result in different miR expression profiles. From all the differentially expressed miRs in LVAD-
supported myocardium, only 30% are common to both types of devices, suggesting that all oth-
ers are specific for cf- or pf-LVAD. In agreement, as miR-137 seems to be a cf-LVAD-specific
miR, miRs such as miR- let7i, -21, -378 and -378* show a more pronounced change in pf-
LVAD as compared to cf-LVAD. Remarkably, all these miRs are not only implicated in vascu-
lar inflammation but also in cell growth and vascularization in several types of cancer [41,42].
miR-378 and miR-378* have also been implicated in cardiac pathological remodeling as being
negative regulators of cardiac hypertrophic growth [43,44]. In agreement, our results show a
significant increase in miR-378 and miR-378" in post pf-LVAD, indicating that increased
expression levels of these miRs contribute to better cardiac function and therefore positive car-
diac remodeling. Furthermore, we have very recently shown that miR-137 is implicated in
reverse remodeling during cf-LVAD support by directly regulating alpha-1-antichymotrypsin,
a potential new biomarker of HF [25].

These differences between miR expression profiles related to cf- and pf-LVAD could explain
the different patient outcome observed after myocardial support by each type of device. In fact,
previous profiling studies have detected that mRNA signatures do not always reflect the
improvements delivered by biomechanical support such as that provided by LVADs [45,46].
From a total of 3088 mRNA transcripts exhibiting abnormal abundance in HF, only 11% of
these genes exhibit partial recovery and only 5% showed true normalization [45]. These num-
bers may reflect the fact that not all secondary effects of LVAD support are beneficial. In a sim-
ilar way, also the specific miR expression profiles induced by either pulsatile or continuous
flow will affect the clinical outcome of those patients either by restoring protein levels (in some
cases just to a certain extent) or even accentuate the unbalance between pre and post-LVAD.

However, when comparing individual pre- and—-post LVAD differences for some of the
miRs that were differentially expressed after LVAD, we could observe that the differences in
expression change between the two devices were not significant. These results question the rel-
evance of the changes observed within each group. Although future studies including larger
groups of patients and controls are necessary to clarify some remaining questions, altogether,
our data strongly suggests that similar signaling molecules are implied in the reverse remodel-
ing associated to pulsatile- and continuous flow LVAD support, also indicating that further
studies are necessary to understand the molecular and cellular basis of the device-specific clini-
cal outcomes.
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Selected miRs (table A).

(DOC)
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