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Although allogeneic hematopoietic stem cell transplantation (HSCT) is a curative approach for many pediatric
patients with hematologic malignancies and some nonmalignant disorders, some critical obstacles remain to
be overcome, including relapse, engraftment failure, graft-versus-host disease (GVHD), and infection. Har-
nessing the immune system to induce a graft-versus-tumor effect or rapidly restore antiviral immunity
through the use of donor lymphocyte infusion (DLI) has been remarkably successful in some settings. Un-
fortunately, however, the responses to DLI can be variable, and GVHD is common. Thus, manipulations to
minimize GVHD while restoring antiviral immunity and enhancing the graft-versus-tumor effect are needed
to improve outcomes after allogeneic HSCT. Cellular therapies, defined as treatment modalities in which
hematopoietic or nonhematopoietic cells are used as therapeutic agents, offer this promise for improving
outcomes post-HSCT. This review presents an overview of the field for pediatric cell therapies in the trans-
plant setting and discusses how we can broaden applicability beyond phase I.

� 2015 American Society for Blood and Marrow Transplantation.
INTRODUCTION
Cellular therapies have been developed primarily as ther-

apeutic agents to treat malignancies, infections in immuno-
compromised hosts, and inflammatory disorders. Minimally
manipulated products, such as donor lymphocyte infusion
(DLI), involve a manufacturing process that does not alter the
original relevant characteristics of the tissue relating to the
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tissue’s utility for reconstruction, repair, or replacement. In
contrast, if the biological characteristics of the cells change
during the processing, then the cells are more than minimally
manipulated. In this review, we focus on complex cellular
therapies that require more than minimal manipulation. To
date, the clinical experience with novel cell therapeutics to
treat pediatric patients after allogeneic hematopoietic stem
cell transplantation (HSCT) generally has been restricted to
phase I/II pediatric or combined studies (Table 1). This review
presents an overview of the field in pediatric cell therapies
after HSCT and then discusses how we can move these ther-
apies from investigational status to the standard of care by
moving beyond phase I to more definitive clinical trials.
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Table 1
Adoptive Cellular Therapy Studies after HSCT in Pediatric Patients

Cellular Therapy References Pediatric or
Combined Study

Key Findings

Virus-specific CTLs
EBV Doubrinova et al. [8] Combined Efficacy of donor EBV CTLs in EBV-LPD

Comoli et al. [10] Pediatric Efficacy of donor EBV CTLs in CD19þ/CD20- EBV-LPD after rituximab
Icheva et al. [11] Combined Efficacy of EBNA1-specific donor CTLs in EBV-LPD

CMV Feuchtinger et al. [18] Pediatric Safety and efficacy of donor CMV CTLs using pp65 protein stimulation/IFN-g
selection

Meij et al. [20] Combined Safety and efficacy of donor CMV CTLs using pp65 peptide stimulation/IFN-g
selection

AdV Feuchtinger et al. [26] Pediatric Safety and efficacy of AdV-specific CD4/CD8 donor T cells using protein
stimulation/IFN-g selection

Multivirus Leen et al. [28] Pediatric Safety and in vivo persistence of EBV- and AdV-bispecific donor CTLs after
HLA-mismatched HSCT

Gerdemann et al. [19] Combined Safety and efficacy of trivirus-specific CTLs generated using DC nucleofection
technology

Papadopoulou
et al. [29]

Combined Safety and efficacy of single-culture virus-specific T cells recognizing 12
immunogenic antigens from AdV, CMV, AdV, BK and HHV6

Third-party Leen et al. [33] Combined Multicenter study demonstrating the feasibility and efficacy of banked
third-party virus-specific CTLs

NK cells Stern et al. [55] Combined Feasibility and safety of purified (CD3-/CD56þ) donor NK cell infusions after
haploidentical HSCT

Rubnitz et al. [58] Pediatric Safety and engraftment of KIR ligand-mismatched haploidentical purified
(CD3-/CD56þ) NK cells in AML

Brehm et al. [59] Pediatric Difference in efficacy of nonstimulated versus IL-2estimulated purified
(CD3-/CD56þ) NK cells after haploidentical HSCT

Kloess et al. [56] Pediatric Efficacy of IL-2estimulated NK cells after haploidentical HSCT in neuroblastoma
and role of soluble MICA

CIK cells Rettinger et al. [68] Pediatric Safety and feasibility of IL-15estimulated donor CIK cells after haploidentical
HSCT

CAR T cells Grupp et al. [91] Pediatric First report on safety and remission induction of autologous CD19.CAR
T cells in ALL

Cruz et al. [93] Combined Safety and efficacy of allogeneic virus-specific CD19.CAR T cells
Grupp et al. [98] Pediatric Efficacy and management of CRS after treatment with autologous and

allogeneic CD19.CAR T cells
MSCs (acute GVHD) LeBlanc et al. [124] Pediatric First report of successful remission induction by MSC treatment in a child with

refractory GVHD
LeBlanc et al. [125] Combined Multicenter study showing feasibility, safety and efficacy of fetal bovine serum

expanded MSCs in GVHD
Lucchini et al. [126] Pediatric Safety and efficacy using platelet-lysate expanded MSCs in steroid-refractory

GVHD
Ball et al. [127] Pediatric Multicenter study showing feasibility and efficacy of MSCs in

steroid-refractory GVHD grade III-IV
Introna et al. [128] Combined Multicenter study reporting feasibility and efficacy in of MSCs in

steroid-refractory GVHD grade II-IV
Prasad et al. [129] Pediatric Report on clinical outcome using the Prochymal MSC product in

steroid-refractory GVHD grade II-IV
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OVERVIEW OF CURRENT CELLULAR THERAPIES
Virus-Specific T Cells

Viral infections are a major cause of morbidity and mor-
tality after HSCT. Given that the recovery of virus-specific
T cells is clearly associated with protection from viral infec-
tion, adoptive immunotherapy to decrease the time to im-
mune reconstitution or to treat viral reactivations and
infections is an attractive approach. The majority of T cell
studies in pediatrics have focused on cytomegalovirus
(CMV), Epstin-Barr virus (EBV), and adenovirus (AdV) and
trials of donor-derived cytotoxic T lymphocytes (CTLs) spe-
cific for single viruses [1]. Although methodologies have
been developed and clinical trials evaluating T cells specific
for other viral pathogens, such as BK virus, human herpes-
virus 6, and varicella zoster, have shown promising results,
the patient numbers are still relatively small. In contrast,
T cell therapies aimed at reconstituting EBV-specific T cell
immunity have been used for almost 20 years [2-5], In the
first reported studies, unmanipulated DLIs were adminis-
tered to pediatric HSCT recipients with established disease or
falling donor chimerism [6,7]. Although effective in some
patients, this approach has limited efficacy, however, and is
further limited by the presence of alloreactive T cells in the
DLI product and the resultant potential for graft-versus-host
disease (GVHD), which led to the development of donor-
derived EBV-specific T cells for clinical use [7-9]. Although
many of the studies using EBV-specific T cells were con-
ducted during the pre-rituximab era, there are still an
appreciable number of pediatric patients with rituximab-
resistant disease that is responsive to EBV-specific T cells
[10]. The results of these studies confirm that donor-derived
EBV-specific CTL therapy is safe and effective when used
either as prophylaxis or as treatment for EBV-mediated post-
transplantation lymphoproliferative disease after HSCT, and
this approach is now focused on rapid manufacturing using
sorting strategies with HLA-peptide multimers or IFN-g
capture [11-13].

The administration of CMV-specific T cells after HSCT was
first explored byWalter et al. [14] and Riddell et al. [15], who
infused donor-derived CMV-specific CD8þ clones to re-
cipients of matched sibling donor grafts. Numerous groups
have built on these initial studies of CMV-specific T cell
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therapy for pediatric as well as adult patients after HSCT
[16-24]. Overall, the response rates in studies of donor-
derived CMV-specific CTLs to treat CMV reactivation or dis-
ease have been encouraging, ranging from 80% to 100% [1].

Published reports on the use of T cells targeting adeno-
virus are limited, although a case report documented the
successful use of DLI in a patient with hemorrhagic cystitis
due to adenovirus infection [25]. Feuchtinger et al. [26]
reported a study that selected adenovirus-reactive T cells
by stimulation of donor peripheral blood mononuclear cells
with adenoviral antigen followed by IFN-g capture. Because
pediatric patients often develop multiple viral infections
after HSCT, several groups have explored the use of T cells
targeting more than 1 virus (eg, CMV, EBV, and AdV;
EBV and AdV; CMV and AdV; AdV, CMV, EBV, BK, HHV6)
to administer after HSCT as either treatment or prophylaxis
[27,28,29]. In summary, these studies show that virus-
specific T cells targeting 1-5 viruses after HSCT has
efficacy for reconstituting immunity and clearing viral
reactivation and disease. Although the potential for de novo
alloreactivity is a concern in all these approaches, the
incidence of GVHD does not appear to be increased over
what would be expected in this patient population. There
was a particular concern in the HLA-mismatched transplant
setting, given that in vitro studies have shown that that a
majority of virus-specific CTL lines have cross-reactivity
against allogeneic HLA molecules [30]; however, such
alloreactivity was not observed among 153 recipients who
received virus-specific CTLs, including 73 in whom there
was an donorerecipient HLA mismatch [31].

Adoptive transfer of virus-specific CTLs is more prob-
lematicwhen the donor lacks viral immunity for the infecting
virus or when the recipient has received an umbilical cord
blood (UCB) graft. This is of particular concern in the pediatric
setting, because these patients aremore frequently recipients
of grafts from virus-naïve donors (eg, UCB and seronegative
sibling donors). As a result, there is considerable interest in
modifying culture conditions to reactivate CTLs from virus
naive donors [32]. Finally several studies have evaluated
whether third-party CTLs sharing HLA antigens with HSCT
recipients have activity against viral antigens [1,33].

In summary, the adoptive transfer of virus-specific CTLs
can reconstitute viral immunity and treat viral infections that
have failed to respond to conventional therapies. The overall
response rate in pediatric as well as adult HSCT recipients
with active disease is approximately 80% for those receiving
donor-derived virus-specific CTLs and approximately 70% for
those receiving third-party cells [33]. In most cases, the
responses are durable, and thus this strategy has many ad-
vantages compared with pharmacologic therapies; however,
broader application has been limited by the complexity of
some of the CTL manufacturing methodologies and lengthy
production time. Over the past few years, several groups
have developed more rapid CTL generation protocols that
appear to have equivalent activity and may allow definitive
testing in late-phase trials [1,19]. Furthermore, strategies
using EBV-specific T cells targeting latent membrane pro-
teins are now being used for pediatric and adult patients
with EBV-positive Hodgkin lymphoma and non-Hodgkin
lymphoma, which develop in immunocompetent hosts
[34]. These studies have shown promise both for patients
with active disease (50% event-free survival at 2 years) and as
adjuvant therapy (>80% event-free survival at 2 years) after
autologous and allogeneic HSCT, and multicenter studies are
now underway.
Tumor-Reactive Lymphocytes
Naturally occurring tumor-reactive lymphocytes

Tumor-reactive lymphocytes, which may include ab-T
lymphocytes, gd-T lymphocytes, natural killer (NK) cells, and
NK T cells, have been identified in peripheral blood, bone
marrow and the tumor microenvironment (ie, tumor-
infiltrating lymphocytes [TILs]), in a wide variety of human
cancers. Interactions between cancer cells and host immune
surveillance in the tumor microenvironment are known to
influence tumor growth and clinical outcome [35]. These
naturally occurring cellular immune responses may either
promote or antagonize tumor growth, depending on their
composition and functional properties [36,37]. Although
previous studies have been performed primarily in adults,
studies in childhood tumors have demonstrated that a
proinflammatory, IFN-gerich tumor microenvironment is
linked to the presence of TILs (particularly CD8þ) and is
positively correlated with clinical outcome [38,39]. Exploi-
tation of naturally occurring host antitumor immunity has
been successfully pioneered in patients with melanoma us-
ing ex vivo expanded TILs for adoptive transfer [40]. Simi-
larly, the presence and clinical relevance of leukemia-specific
immunity have proven to be of prognostic significance. Post-
treatment leukemia cytolytic activity by NK cells, as well as
the presence of leukemia-reactive T lymphocytes in pediatric
patients with acute myelogenous leukemia (AML) in first
remission, are correlated with sustained remission [41,42]. In
addition, CTLs directed against leukemia-restricted antigen
WT-1 have been demonstrated in pediatric patients with
postremission acute lymphoblastic leukemia (ALL) [43].

In the setting of allogeneic HSCT, additional and distinct
spontaneous antitumor immune responses may emerge.
Polymorphisms in hematopoietic minor histocompatibility
antigens (mHAgs) serve as leukemia-specific targets and
facilitate T cellemediated graft-versus-tumor effects [44].
Thus, identification of mHAg-specific T cell reactivity in HSCT
recipients has provided the rationale for developing adoptive
immunotherapeutic strategies using ex vivoegenerated
mHAg-specific T cells [45].

NK cells
NK cell function is finely regulated by a large array of re-

ceptors transducing either inhibitory or activating signals [46].
In an allogeneic HSCT setting, donor NK cells can kill recipient
cells through the mechanism of missing self-recognition, pro-
vided that the donor expresses a killer cell immunoglobulin-
like receptor (KIR) ligand that is missing in the recipient HLA
genotype and expresses the specific KIR, leading to a KIReKIR
ligand mismatch in the graft-versus-host direction [47-49].
According to the concept ofmissing self-recognition, donorNK
cell alloreactivity can be predicted to occur in approximately
50% of patients undergoing HSCT [34,50]. In addition, NK cells
are equippedwithvarious triggering receptors thatplaycrucial
roles inNK cell activation and help definewhich tissues theNK
cells attack. In this regard, NK cells offer the unique advantage
of inducing a graft-versus-leukemia effect without necessarily
promoting GVHD. The reasons why NK cells may not cause
GVHD are multifactorial and include the fact that activated NK
cells can directly lyse GVHD-inducing T cells and host antigen-
presenting cells (APCs), and that healthy recipient non-
hematopoietic tissues often lack ligands for activating NK cell
receptors [34,51,52]. The clinical evidence demonstrating the
potential importance of this KIReKIR ligand mismatch in
pediatric cancer has been particularly evident in the setting of
haploidentical HSCT for acute leukemias [53].



Figure 1. A CAR consists of a single chain variable fragment of an antibody
(scFv) that recognizes a protein (such as CD19 on B cells and ALL cells) coupled
to the CD3 z activation domain and costimulatory domains from CD28 and/or
4-1BB. This combines the MHC-independent recognition of a tumor antigen
with the activating potential of T cell receptor signaling, allowing for redi-
rection of T cells to cancer cells and extensive in vivo proliferation. � Sue Seif.
Reproduced with permission.
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Along with spontaneously occurring NK cell reactivity, NK
cells also can be harnessed for adoptive cellular therapy. The
adoptive transfer of unstimulated and ex vivo cytokine-
activated NK cells in pediatric patients has been explored
both in the haploidentical HSCT context [54-56] and as a
strategy for consolidating remission in patients with AML
after a lymphodepleting chemotherapy regimen and IL-2
administration [57,58]. From these initial studies, it may be
concluded that infusion of purified unstimulated NK cells
either immediately after collection or after ex vivo activation
with cytokines (eg, IL-2 or IL-15) is feasible and safe.
Immunologic efficacy appears to be more pronounced with
cytokine-activated NK cells [59]. Nonetheless, although some
encouraging responses have been reported, the actual clin-
ical benefits and antitumor efficacy of NK cell adoptive
therapy await further evaluation in phase II/III studies.

Cytokine-Induced Killer Cells
Cytokine-induced killer (CIK) cells are in vitroeexpanded

effector cells that can be generated from peripheral blood
mononuclear cells, bone marrow mononuclear cells, or UCB
by the timed addition of IFN-g, activating anti-CD3 antibody,
and IL-2 [60-62]. Expanded CIK cells represent a heteroge-
neous population of mainly CD3þ T cells sharing both CD3þ

T cell and CD56þ NK cell phenotypes, as well as low numbers
of CD3�CD56þ NK cells.

CIK cells are known to be capable of eradicating various
hematologic malignancies and solid tumors in a noneMHC-
restricted manner with no significant alloreactive potential.
The molecule that likely plays the most important role in CIK
cellemediated killing is the NKG2D receptor, an activating
NK cell receptor [63-65]. The known ligands of this receptor
are relatively restricted in tumor cells. Although NKG2D
mediates the interaction between CIK cells and malignant
cells, the final execution of apoptosis is mediated through
perforin and granzyme release.

These cells have been tested in the allogeneic HSCT
setting in 3 clinical trials to date. These 3 studies enrolled
adult patients with relapsed hematologic malignancy post-
HSCT. In all patients, CIK cell infusions showed a good
safety profile, with no severe toxicities and a low incidence of
acute GVHD and limited chronic GVHD even in the hap-
loidentical donor setting. Between 30% and 50% of the
treated patients showed transient clinical responses
[61,66,67], suggesting that CIK cells may have antileukemic
activity in vivo; however, long-lasting efficacy has not been
seen, most likely related to a limited persistence of the
infused CIK cells in vivo [68].

Regulatory T Cells
In the last 2 decades, CD4þCD25þ regulatory T cells (Tregs)

have been shown to be potential regulators of the immune
response. These cells have proven crucial in the prevention of
autoimmune diseases and in the blunting of some pathogen-
specific immune responses. CD4þ Tregs are defined according
to their site of development and expression of Foxp3. In ani-
mal models, the adoptive transfer of Tregs can prevent auto-
immune disease, graft rejection, and GVHD [69-72].

Human CD4þCD25þ Treg cells isolated from peripheral
blood can suppress allogeneic responses in mixed lympho-
cyte reactions and have a role in tolerance induction to allo-
antigens [73,74]. To date, all of the clinical data have been
generated exclusively in adults. The first clinical experience
using Tregs in the HSCT setting focused on GVHD prevention
and treatment [75]. Because the Tregs were administered
with standard GVHD prophylaxis strategies, the efficacy of
Tregs for GVHD prevention could not be determined.
Importantly, however, no severe Treg-related acute toxicities
were observed. Furthermore, this study showed that in vitro
expanded Tregs survive in vivo, at least transiently [76].

The main obstacles to broadening the use of Tregs beyond
phase I studies include the difficulties in the isolation and
expansion of these cells. Some groups have explored the
in vitro use of rapamycin to expand Tregs. Rapamycin in-
hibits the proliferation and function of conventional T cells,
thereby allowing the Treg expansion even from a mixed
population [77,78]. Unfortunately, rapamycin also induces
Foxp3 in conventional T cells [79], and this induction is
temporary. In addition, expanding these cells to sufficient
numbers can be difficult.

The target cell dose and optimal timing for Treg infusions
in the HSCT setting remain to be defined. Because Tregs must
be isolated from the stem cell donor and require 2-3 weeks of
in vitro expansion, cell production often may be too slow in
patients with severe and rapidly progressive disease. Thus, to
date the clinical implementation of Tregs as therapy for
tolerance induction beyond the adult phase I setting has
been limited by the lack of a rapidly available clinical-grade
well-defined cell product and uncertainties regarding the
activity and potency of the product in vivo.

Genetically Modified Hematopoietic Cells
T lymphocytes transduced with chimeric antigen receptors

The development of noneHLA-restricted chimeric anti-
gen receptors (CARs) is a strategy for overcoming post-HSCT
tumor immune evasion [80]. CAR technology involves the
genetic reprogramming of T cells through artificial immune
receptors that reproducibly and efficiently redirect the an-
tigen specificity of polyclonal T lymphocytes toward target
antigens expressed by tumor cells. When expressed by
Tcells, CARsmediate antigen recognition and tumor cytolysis
in an MHC-unrestricted fashion and can target any molecule
(protein, carbohydrates, or glycolipids) expressed on the
surface of tumor cells, thus bypassing one of the major tumor
escape mechanisms based on the down regulation of MHC
molecules [81-83].
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CARs combine an extracellular specific antigen-binding
moiety, usually a single-chain antibody (scFv), with intra-
cellular signaling components (Figure 1). First-generation
CARs provided only signal 1 (T cell activation) using a
portion of the z-chain of the TCR/CD3 complex. An important
early pediatric study targeted neuroblastoma with such a
first-generation CAR [84].

The main problem with the approach using first-
generation CARs was a lack of persistence and expansion of
the T cells in vivo, possibly because full activation of T cells
requires additional costimulatory signals. Accordingly, sec-
ond- and third-generation CARs have been generated that
add costimulatory domains, such as 41-BB and CD28. In both
murine models and human studies, the addition of cos-
timulation signals and cytokines promoting T cell expansion
and/or survival has been shown to improve the antitumor
efficiency of the engineered T cells and their survival in the
tumor milieu [81,82,85,86]. Another strategy for optimizing
the survival of genetically modified cells uses virus-specific
CTLs transduced with the tumor-specific CAR [87,88].
Finally, the process bywhichmanufactured Tcells are ex vivo
expanded also may play a key role in these cells’ ability to
expand and persist after infusion. Beads expressing anti-CD3
and anti-CD28 antibodies have been used to create cells using
good manufacturing practices in recent trials at the Univer-
sity of Pennsylvania, Children’s Hospital of Philadelphia,
Baylor College of Medicine, Fred Hutchinson Cancer Research
Center, Seattle, M.D. Anderson Cancer Center, the National
Institutes of Health, and Memorial Sloan-Kettering Hospital,
and these cells have demonstrated significant improvements
over previous results in terms of expansion and efficacy.
Moreover, bead-manufactured T cells have significantly
greater in vivo proliferative capacity and longer telomeres
than T cells expanded using OKT3 and IL-2, as shown in
xenograft models [89].

Gamma retrovirus and lentiviruses have been used to
transduce CARs into T lymphocytes for use in the clinical
setting. These vectors efficiently infect T lymphocytes, inte-
grate into the host genome, and produce robust expression of
the gene in humanTcells and their progeny [81-83,87,90,91];
however, limitations of these vectors include their genetic
capacity and high manufacturing costs. The Sleeping Beauty
(SB) transposon system has been proposed as an alternative
gene transfer method, with the aim of reducing the time and
costs of production and increasing the cargo capacity of the
vector, thereby favoring the inclusion of multiple genes [92].

In terms of clinical efficacy, CAR-modified T cells with
redirected specificity toward CD19þ cells hold promise for
immunotherapy in relapsed ALL. The initial results from the
first trial in pediatric patients treated with CD19-CARþ T cells
were published recently. Two children with relapsed/re-
fractory ALL received T cells transduced with anti-CD19
CARs; in 1 case, the donor-origin T cells were obtained
from the patient after she relapsed after allogeneic HSCT.
Approximately 1 month after adoptive T cell transfer, both
children achieved remission of leukemia, with minimal re-
sidual disease (MRD) levels <0.01%. Both children had a
dramatic expansion and persistence of CARþ T cells, with
33%-70% of T cells expressing CAR at peak expansion,
although only the second patient received lymphodepleting
chemotherapy before T cell infusion. The first patient has
remained in complete remission (CR) more than 18 months
after the CAR T cell infusion, and did not undergo allogeneic
HSCT. In this patient clinical remission was associated with
persistent molecular remission. The second patient relapsed
approximately 2months after treatment, with blast cells that
no longer expressed CD19, emphasizing the emergence of a
novel mechanism of tumor escape [91].

The foregoing findings demonstrate that vigorous in vivo
expansion of CD19-CARþ T cells with persistent B cell
depletion can result in sustained antileukemia activity in
children with advanced ALL. More recently, Cruz et al. [93]
reported on 8 patients given allogeneic (donor-derived)
CD19.CAR-transduced virus-specific T cells between
3 months and 13 years after HSCT. No infusion-related tox-
icities were observed. The CD19.CAR-transduced virus-spe-
cific T cells persisted for a median of 8-9 months. Objective
antitumor activity was evident in 2 of 6 patients with
relapsed disease, whereas 2 patients who received cells
while in remission remained disease-free at the time of the
report [93].

In the era of highly active CAR-modified T cell therapy
with the advent of second- and third-generation CARs, dra-
matic clinical responses have been accompanied by signifi-
cant toxicities [94]. In particular, life-threatening, sometimes
fatal, toxicities owing to the concomitant cytotoxic activity of
CAR-T cells on normal tissues have been reported in clinical
trials [95-97]. Another specific example of “off-tumor/on-
target” toxicity occurs with the prolonged depletion of
normal B cells occurring after the infusion of CD19 CARs,
which causes agammaglobulinemia. A systemic inflamma-
tory response syndrome or cytokine release syndrome (CRS),
or cytokine storm, has been reported in the first two patients
infused with CAR-transduced T cells [91]. Both pediatric pa-
tients experienced dramatic elevations in IL-6 and IFN-g
levels. One patient had severe CRS, accompanied by
biochemical evidence of a macrophage activation syndrome
(MAS), including a rise in serum ferritin level to 45,000 ng/dL
and an elevated d-dimer level. Of note, both CRS and MAS
improved dramatically after administration of the IL-6 re-
ceptor blocking agent tocilizumab, an approach that is
becoming more widely adopted. More recently, in a study of
pediatric patients with relapsed or refractory ALL at Chil-
dren’s Hospital of Philadelphia, 13 of 16 patients (81%) ach-
ieved CR at 1 month post-treatment [98]. Eleven of the 13
patients who achieved CR were also MRD-negative, with 2
showing �0.1% MRD on flow cytometry. Although T cells
collected from the 11 patients who had relapsed after allo-
geneic HSCT were of donor origin, no GVHD occurred, sug-
gesting tolerization of the donor-derived T cells in the HSCT
recipients. Were this to become a problem, the use of suicide
genes in the construct used to transduce cells could reverse
it. Levels of CRS vary among treated patients, ranging from
mild to severe (ie, hypotension requiring intensive care).
Four patients were treated with tocilizumab and demon-
strated prompt resolution of MAS and CRS. The same pattern
of IL-6 elevation and rapid response to tocilizumab has been
reported with use of the bispecific T cell engaging antibody
blinatumomab [99]. This points to CRS/MAS and the key role
of IL-6 in mediating the toxicities of therapies that drive
nonphysiological T cell activation.

In the allogeneic HSCT setting, a specific concern refers to
the potential alloreactivity of CAR-transduced T cells. The
experience at Children’s Hospital of Philadelphia, with two-
thirds of patients receiving allogeneic but tolerized T cells
collected from the recipient without GVHD, demonstrates
the potential efficacy of this approach to treatMRD or relapse
in the post-HSCT setting. This has also been reported by the
National Institutes of Health and M.D. Anderson Cancer
Center groups [100].
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Similar to CAR-transduced T cells, a transgenic approach
introducing human and murine tumor antigen-specific T cell
receptors in patient or donor T cells is currently being
explored in preclinical studies [101,102]. To date, however,
results from phase I/II studies in humans have been reported
solely in adults.

CAR NK cells and CAR CIK cells
NK cells may be CAR-modified as well. Potential advan-

tages of this approach are the lack of GVHD in the allogeneic
HSCT setting and possibly a reduced risk of eliciting a CRS,
as has been observed with the use of CAR T cells [91].
Disadvantages may include the limited numbers of
ex vivoegenerated NK cells, as well as MK cells’ shorter half-
life than T cells and no memory function. Imai et al. [103]
reported a transduction efficacy of 43%-93% when using
a retrovirus CD19.CAR construct to transduce ex vivo
expanded NK cells. Although several preclinical studies have
explored NK cell engineering with CD19.CAR and CD20.CAR
constructs [104], other preclinical studies have used other
targets, including GD2 [105,106], Her-2 neu [107], EpCam
[108], EBNA [109], and NKG2D [110]. Two clinical studies
exploring the use of NK CAR cells, one at St Jude Children’s
Research Hospital and the other at the National University
Hospital in Singapore, are currently enrolling patients. Both
of these studies involve administering genetically modified
haploidentical NK cells transduced with CD19.CAR to pa-
tients with ALL [111,112].

Finally, recent preclinical studies exploring therapy with
CAR-modified CIK cells (eg, targeting CD123 and CD33
expressed by AML) have provided evidence of both safety
and antitumor efficacy in murine models [113]. The clinical
safety and efficacy of CAR-modified CIK cells remains to be
evaluated in phase I/II studies, however.

Dendritic Cells
Dendritic cells (DCs) are highly specialized antigen-

presenting cells (APCs) that are essential to regulating the
balance between beneficial and detrimental alloreactivity
(graft-versus-leukemia and immune reconstitution versus
GVHD). The flexibility and plasticity of DCs allow in vitro
engineering to prepare DC therapy that favors immune reg-
ulatory or stimulatory responses, which may enable the
prevention of infection and tumor relapse after HSCT
without causing GVHD.

The majority of DC vaccination trials to date have been
performed with patient-derived hematopoietic progenitor
cells or monocytes that when cultured with the appropriate
cytokine cocktails develop into DCs or monocyte-derived
DCs in vitro. These trials have demonstrated that DC-based
vaccines are safe and can elicit the expansion of circulating
tumor-associated antigen-specific CD4þ and CD8þ cells [114].
The overall clinical efficacy of DC vaccination as a single
treatment has been disappointing so far, however. Most of
the clinical trials studying DC vaccination after HSCT have
involved adult patients (eg, patients with myeloma, non-
Hodgkin lymphoma, ALL, AML). Some clinical responses
have been observed, with no evidence of GVHD [115-118].
Preventive CMV peptide-loaded DCs have been associated
with the induction of specific T cell responses against CMV
and the prevention of CMV reactivation [119]. At this time,
phase I/II studies in pediatric patients (without HSCT) have
shown that vaccination with immature or mature DCs
is generally safe, although responses have been limited
[120,121].
Mesenchymal Stromal Cells
Mesenchymal stromal cells (MSCs), first reported in 1968

by Friedenstein et al. [122], have the capacity for multi-
lineage differentiation and are pivotal in regulating hema-
topoiesis in the hematopoietic stem cell niche. Along with
their role in supporting hematopoiesis, MSCs have immu-
nomodulatory properties, as has been shown in numerous
in vitro and in vivo studies [123]. MSCs can be generated
from various human tissues, including bone marrow, amni-
otic fluid, adipose tissue, and UCB, and these cells can be
manufactured and expanded ex vivo and infused safely into
patients. In the pediatric population, clinical experience with
MSCs has been in patients with acute GVHD. In 2004, Le
Blanc et al. [124] reported a seminal case of a 9-year-old child
with steroid- and second-line therapyerefractory grade IV
acute GVHD of the gut and liver whowas treated successfully
with 2 � 106/kg third-party bone marrow-derived MSCs.
Building on this experience, the Developmental Committee
of the European Group for Blood and Marrow Trans-
plantation reported a multicenter experience in 55 adult and
pediatric patients treated with MSCs for grade II-IV acute
GVHD [125]. Bone marrowederived MSCs were obtained
mainly from third-party HLA-mismatched donors. Most pa-
tients had already received 1 or more second-line treat-
ments, and thus there was a variable interval between the
onset of GVHD to the initiation of MSC infusion. No infusion-
related toxicities were reported. CR and partial remission
were documented in 30 and 8 patients, respectively, result-
ing in an overall response rate of 69%. Overall survival (OS) at
2 years post-HSCT was higher in complete responders
compared with partial responders and nonresponders (52%
versus 16%; P ¼ .018) [125]. Lucchini et al. [126] reported
results of MSC treatment in 11 children with steroid-
refractory GVHD, showing complete responses in 4 chil-
dren. In a recent study, Ball et al. [127] reported the outcomes
of 37 children with steroid-refractory grade III-IV acute
GVHD treated with MSCs. The rate of CR was 65%, with a
cumulative incidence of transplantation-related mortality of
17% in patients who achieved CR and 69% in those who did
not achieve CR (P ¼ .001). After a median follow-up of
2.9 years, the OS was 37%; however, OS was 65% in the pa-
tients who achieved CR, compared with 0% in those who did
not achieve CR (P ¼ .001). Furthermore, in a combined adult/
pediatric study including 15 children with grade II-IV acute
GVHD treatedwith amedian of 3MSC infusions, Introna et al.
[128] reported an overall response rate of 67% and a CR rate
of 27%.

Several groups have reported outcome in studies using
the Prochymal MSC product (Osiris Therapeutics, Columbia
MD). Prasad et al. [129] reported on 12 children with grade
III-IV steroid-refractory and second-line agenterefractory
gastrointestinal GVHD who received sequential MSC in-
fusions (2-8 � 106/kg) on a compassionate need basis. The
overall response rate was 75%. Two-year survival was 40% for
the whole cohort and 68% for the 7 patients with CR. In a
large placebo-controlled randomized study in both adults
and children, the Prochymal product was studied in combi-
nation with different agents for patients with steroid-
refractory acute GVHD grade II-IV. Although the final anal-
ysis has not been published, the addition of Prochymal did
not appear to improve CR rates in this cohort [130].

Despite these encouraging results and the apparent
safety of MSC therapy, the heterogeneity of the patient
population and limited size of studies reported to date pre-
cludes any firm conclusions regarding the efficacy of MSCs in
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steroid-refractory GVHD. Thus, evaluation in well-designed,
randomized controlled trials is critical. In particular, these
studies should address the timing, dosing and frequency
of MSC administration. Optimally monitored, randomized
controlled studies in children will be critcially important for
providing convincing evidence of the therapeutic potential of
MSC products for treating of acute GVHD.

HARMONIZING CLINICAL TRIAL DESIGN FOR CELL
THERAPY STUDIES IN PEDIATRICS TO MOVE BEYOND
PHASE I

For complex biological therapies to become the standard
of care for pediatric patients after HSCT, these studies must
first move beyond phase I. The previous phase I/II trials
using these novel cellular therapies generally have different
endpoints and definitions of response, making comparisons
difficult and sometimes impossible. In the past, many early-
phase trials were designed to identify the maximal toler-
ated dose and to address safety issue; however, now it is
critical to use such studies to simultaneously evaluate the
proof of concept, as well as to demonstrate that the strategy
will have broad applications. In this context, harmonizing
clinical trial designs using novel cell therapies for specific
diseases may be better compared with one another, real-
izing of course that a direct comparison in phase III is su-
perior. Organizing well-prepared consensus meetings is
critical to the harmonization of clinical trial design. At such
meetings, achieving a consensus is critical for at least the
following topics:

� Inclusion/eligibility criteria in phase I/II studies
� Disease/complication-specific readouts in phase I/II, for
example, MRD measurements in leukemia patients at
standard time points and biomarker response after
MSC treatment for GVHD

� Standardization of the primary and secondary end-
points, including time points

� Standardized monitoring of clinical and immunologic
markers (humoral, cellular, and functional), preferably
in accredited quality-controlled laboratories

� Biobanking of samples (eg, plasma, cells, tissue, bone
marrow, DNA) at defined time points.

Given the importance of cell expansion and in vivo
persistence, these key outcome measures need to be imple-
mented whenever feasible.

To reach a consensus on harmonizing the clinical trial
design, setting up a technical platformwithin the Westhafen
Intercontinental Group may be of additional value with
regards to state-of-the-art biomonitoring to ensure quality
control among laboratories. Furthermore, the fact that novel
cell therapy trials are often first performed in adults should
be taken into account. Thus, it is important for international
pediatric groups to work with regulatory agencies to advo-
cate the early use of these therapies in children. Consensus
on a harmonized clinical trial design may make it easier for
research groups to obtain ethical approval for specific trial
designs, which ultimately can be used in similar trials
worldwide. The role of the Westhafen Intercontinental
Group will be to plan and prepare these meetings for the
international pediatric community, and to discuss and pub-
lish their consensus recommendations. The goal is to
conduct multicenter, multinational cell therapy trials in the
pediatric population so that ultimately such therapies will
become standard of care for our patients after HSCT.
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