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Abstract. We wish to decide whether a simply connected flexible polyg-
onal structure can be realized in Euclidean space. Two models are consid-
ered: polygonal linkages (body-and-joint framework) and contact graphs
of unit disks in the plane. (1) We show that it is strongly NP-hard
to decide whether a given polygonal linkage is realizable in the plane
when the bodies are convex polygons and their contact graph is a tree;
the problem is weakly NP-hard already for a chain of rectangles, but
efficiently decidable for a chain of triangles hinged at distinct vertices.
(2) We also show that it is strongly NP-hard to decide whether a given
tree is the contact graph of interior-disjoint unit disks in the plane.

1 Introduction

In this paper, we study the realizability of complex structures that are specified
by their local geometry. The complex structures are represented as graphs with
constraints on the separation between their vertices, and we ask if these graphs
can be embedded in the plane subject to the constraints. We consider two models
in the plane; refer to Fig. 1.

1. A polygonal linkage is a set P of convex polygons, and a set H of hinges,
where each hinge h ∈ H corresponds to two or more points on the bound-
aries of distinct polygons in P. A realization of a polygonal linkage is an
interior-disjoint placement of congruent copies of the polygons in P such that
the points corresponding to each hinge are identified. A realization with
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orientation uses only translated or rotated copies of the polygons in P (no
reflections) and for each hinge, the cyclic order of incident polygons is given.
The topology of a polygonal linkage can be represented by the hinge graph,
a bipartite graph where the vertices correspond to polygons in P and the
hinges in H, and edges represent the polygon-hinge incidences.

2. An (abstract) graph is a coin graph if it is the intersection graph of a set
of interior-disjoint unit disks in the plane (where the vertices correspond to
disks and two vertices are adjacent if and only if the corresponding disks are
in contact). A coin graph with embedding is a coin graph together with
a cyclic order of the neighbors for each vertex (i.e., each disk).
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Fig. 1. (a) A set of convex polygons and hinges. (b) A realization of the polygonal
linkage (with fixed orientation). (c) A graph G with 8 vertices. (d) An arrangement of
interior-disjoint unit disks whose contact graph is G.

The Polygonal Linkage Realizability (PLR) problem asks whether a
given polygonal linkage admits a realization; and PLR with fixed orienta-

tion asks whether it admits a realization with a given orientation. The Coin

Graph Recognition (CGR) problem asks whether a given (abstract) graph G
is the contact graph of interior-disjoint unit disks in the plane; and CGR with

fixed embedding asks whether a given plane graph G is the contact graph of
interior-disjoint unit disks in the plane with the same counterclockwise order of
neighbors at each vertex.

These problems, in general, are known to be NP-hard (see details below).
However, the hardness reductions crucially rely on graphs with a large number
of cycles. We revisit these problems for simply connected topologies, where the
hinge graph and the coin graph are trees.

Summary of Results. Our main result is that the realizability problem remains
NP-hard for simply connected polygonal linkages, the only exceptions are chains
of triangles or rectangles hinged at distinct vertices. In an attempt to identify
the most general problem that is not NP-hard, we considered several variants.
Some variants are always realizable, some have easy hardness reductions, and
some reductions required substantial new machinery. Our most demanding result
is the NP-hardness of the recognition of coin trees with fixed embedding. We
summarize the results here.
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1. We start with chains of polygons, that is, polygonal linkages in which the
hinge graph is a path (Sect. 2). It is easy to see that every chain of triangles
or rectangles hinged together at distinct vertices is realizable and a realization
can be computed efficiently. However, the problem becomes weakly NP-hard
for chains of convex quadrilaterals hinged at distinct vertices or for chains of
triangles where one hinge may be at anywhere on the boundary. Our reduction
uses Partition.

2. We show that PLR (with arbitrary orientation) is strongly NP-hard when
the hinge graph is a tree, using an easy reduction from 3SAT with the classic
logic engine method (the proof is available in the full paper). The reduction
crucially depends on possible reflections of the polygons.

3. We show that PLR with fixed orientation is also strongly NP-hard when the
hinge graph is a tree (Sect. 3), using a significantly more involved reduction
from Planar3SAT. We carefully design gadgets for variables, clauses and a
planar graph to simulate Planar3SAT.

4. We reduce the recognition of coin trees with fixed embedding to the previous
problem (PLR with fixed orientation), by simulating suitable polygons with
an arrangement of unit disks (Sect. 4). It would be easy to model a polygon by
a rigid coin graph (e.g., a section of the triangular grid), but all rigid graphs
induce cycles. The main technical difficulty is that when the coin graph is a
tree, any realization with unit disks is highly flexible, and simulating a rigid
object becomes a challenge. We construct coin trees with “stable” realizations,
which may be of independent interest.

Related Previous Work. Previous research has established NP-hardness in sev-
eral easy cases, but realizability for simply connected structures remained open.
Polygonal linkages (or body-and-joint frameworks) are a generalization of clas-
sical linkages (bar-and-joint frameworks) in rigidity theory. A linkage is a graph
G = (V,E) with given edge lengths. A realization of a linkage is a (crossing-free)
straight-line embedding of G in the plane. Based on ideas developed by Bhatt
and Cosmadakis [4], who proved that the realizability of linkages is NP-complete
on the integer grid, the logic engine method [14,15,17,20] has become a stan-
dard tool for proving NP-hardness in graph drawing. The logic engine is a graph
composed of rigid 2-connected components, where two possible realizations of a
2-connected component encode a binary variable.

However, the logic engine method is not applicable to problems with fixed
embedding or orientation, where the circular order of the neighbors of each
vertex is part of the input. Cabello et al. [7,16] used a significantly more elabo-
rate reduction to show that the realizability of 3-connected linkages (where the
orientation is unique by Whitney’s theorem [25]) is NP-hard. This problem is
efficiently decidable, though, for near-triangulations [7,13].

Note that every tree linkage can be realized in R
2 with almost collinear

edges. According to the celebrated Carpenter’s Rule Theorem [10,24], every
realization of a path (or a cycle) linkage can be continuously moved (without
self-intersection) to any other realization. In other words, the realization space
of such a linkage is always connected. However, there are trees of maximum
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degree 3 with as few as 8 edges whose realization space is disconnected [2]; and
deciding whether the realization space of a tree linkage is connected is PSPACE-
complete [1]. (Earlier, Reif [22] showed that it is PSPACE-complete to decide
whether a polygonal linkage can be moved from one realization to another among
polygonal obstacles in R

3.) Cheong et al. [8] consider the “inverse” problems of
introducing the minimum number of point obstacles to reduce the configuration
space of a polygonal linkage to a unique realization.

Connelly et al. [11] showed that the Carpenter’s Rule Theorem generalizes to
certain polygonal linkages obtained by replacing the edges of a path linkage with
special polygons (called slender adornments). Our Theorem 3 indicates that if
we are allowed to replace the edges of a linkage with arbitrary convex polygons,
then deciding whether the realization space is empty or not is already NP-hard.

Recognition problems for intersection graphs of various geometric object have
a rich history [20]. Breu and Kirkpatrick [6] proved that it is NP-hard to decide
whether a graph G is the contact graph of unit disks in the plane, i.e., recognizing
coin graphs is NP-hard; see also [14]. Recognizing outerplanar coin graphs is
already NP-hard, but decidable in linear time for caterpillars [21]. It is also NP-
hard to recognize the contact graphs of pseudo-disks [20] and disks of bounded
radii [5] in the plane, and unit disks in higher dimensions [19,20]. All these
hardness reductions produce graphs with a large number of cycles, and do not
apply to trees. Note that the contact graphs of disks of arbitrary radii are exactly
the planar graphs (by Koebe’s circle packing theorem), and planarity testing is
polynomial. Consequently, every tree is the contact graph of disks of some radii
in the plane. However, deciding whether a given star is realizable as a contact
graph of disks of given radii but arbitrary embedding is already NP-hard [21].

Eades and Wormald [16] showed that it is NP-hard to decide whether a given
tree is a subgraph of a coin graph. Schaefer [23] proved that deciding whether a
graph with given edge lengths can be realized by a straight-line drawing (possibly
with crossing edges) has the same complexity as the existential theory of the
reals. Both reductions crucially rely on a large number of cycles. Our work is
the first to simulate rigid polygons with truly flexible combinatorial structures
that have simply connected topology.

2 Chains of Polygons

In this section, we consider polygonal linkages whose hinge graph is a path. We
call such a linkage a chain of polygons, given by a sequence of convex polygons
(P1, . . . , Pn), and n − 1 hinges, where the ith hinge corresponds to a pair of
points on the boundaries of Pi and Pi+1, for i = 1, . . . , n − 1. Generalizing an
observation by Demaine et al. [12][Lemma 2], we formulate a simple sufficient
condition for the realizability of a chain of polygons.

Proposition 1. Consider a chain of convex polygons (P1, . . . , Pn) with n − 1
hinges. If Pi admits parallel tangent lines through both of its hinges for i =
2, . . . , n − 1, then the chain of polygons is realizable with fixed orientation. Fur-
thermore, a realization can be computed in O(n) time.
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It follows that every chain of triangles (resp., rectangles) hinged at distinct ver-
tices is realizable with fixed orientation. Surprisingly, the realizability of a chain
of arbitrary polygons is already NP-hard, even if the polygons are convex quadri-
laterals hinged at vertices, or triangles hinged at arbitrary boundary points. We
reduce the problem from Partition, which is weakly NP-hard (i.e., NP-hard
when the input is a sequence of n integers between 1 and 2n). We give two NP-
hardness proofs for the problem: an easier reduction for the case where reflections
of polygons are allowed, and, as an extension, a more technical proof for the case
when the orientation of the polygons is fixed. The main idea behind both proofs
is that any realization of the chain enforces a bounded rectangular region (frame)
in which the remaining polygons have to be fitted. The width of the remaining
polygons encode the integers given by the Partition instance. Simply speaking,
the joint of the first and the last polygon inside the frame have to be vertically
aligned to get the last big polygon in. This is possible if and only if we have a
yes-instance for Partition. See Fig. 2 for an example of the reduction, further
details are given in the full paper.
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Fig. 2. (a) A chain of 8 rectangles encode Partition for 3 integers (a1, a2, a3). Rec-
tangles f1, . . . , f4 form a frame around a rectangle R in any realization. (b) A chain of
16 polygons encode Partition for 3 integers (a1, a2, a3).

For the second proof we first reduce to instances in which the chained poly-
gons are either triangles, rectangles, or hexagons that are formed by rectangles
of height 2 from which an isosceles triangle of side lengths 1 is cut off on every
corner. We then replace these polygons by a subchain of triangles whose unique
realization redefines these shapes (Fig. 3 depicts this idea).

)b()a(

Fig. 3. (a) A rectangle with two hinges on opposite sides is split into a chain of 8
triangles, which has a unique realization (even with reflections). (b) A hexagon with
two hinges at opposite vertices is split into a chain of 8 triangles, which has a unique
realization with fixed orientation.
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Theorem 1. It is weakly NP-hard to decide whether a chain of rectangles is
realizable.

Theorem 2. It is weakly NP-hard to decide whether a chain of convex polygons
is realizable with fixed orientation. This is already true if the chain of polygons
is formed by triangles whose hinges are not restricted to vertices.

3 Realizability of Polygonal Linkages with Fixed
Orientation

Theorem 3. It is strongly NP-hard to decide whether a polygonal linkage whose
hinge graph is a tree can be realized with fixed orientation.

Our proof for Theorem 3 is a reduction from Planar-3-SAT (P3SAT):
decide whether a given Boolean formula in 3-CNF with a planar associated
graph is satisfiable. The graph associated to a Boolean formula in 3-CNF is a
bipartite graph where the two vertex classes correspond to the variables and to
the clauses, respectively; there is an edge between a variable x and a clause C
iff x or ¬x appears in C. See Fig. 4(left).
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Fig. 4. Left: the associated graph A(Φ) for a Boolean formula Φ. Right: the schematic
layout of the variable, clause, and transmitter gadgets in our construction.

The Big Picture. Given an instance Φ of P3SAT with n variables and m clauses,
we construct a simply connected polygonal linkage (P,H), of polynomial size
in n and m, such that Φ is satisfiable iff (P,H) admits a realization with fixed
orientation. We construct a polygonal linkage in two main steps: First, we con-
struct an auxiliary structure where some of the polygons have fixed position in
the plane (called obstacles), while other polygons are flexible, and each flexible
polygon is hinged to an obstacle. Second, we modify the auxiliary construction
into a polygonal linkage by allowing the obstacles to move freely, and by adding
new polygons and hinges as well as an exterior frame that holds the obstacle
polygons in place. All polygons in our constructions are regular hexagons or long
and skinny rhombi because these are the polygons that we can “simulate” with
coin graphs in Sect. 4.

We start with embedding the graph A(Φ) associated to Φ into a hexagonal
tiling, and then replace the vertices by variable and clause gadgets, and the edges
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by transmitter gadgets (to be described below). A variable gadget corresponds
to a cycle in the hexagonal tiling, a clause gadget to single vertex incident to
three hexagons, and a transmitted gadget to a path along a sequence of edges
and vertices of the tiling. Refer to Fig. 4(right).

The main idea for the auxiliary construction is the following. We thicken
the edges of the hexagonal tiling into corridors of uniform width, and the ver-
tices of the tiling into regular triangles, which form junctions between three
corridors. The boundaries of the corridors form regular hexagons, which will
be the obstacle polygons in our auxiliary construction. In each corridor, we
insert flexible hexagons, with one corner hinged to the boundary of the corri-
dor. Each flexible hexagon has two possible realizations (say, left and right) that
can encode a binary variable: all flexible polygons turn in the same direction
along a cycle (clockwise or counterclockwise) with suitable spacing between the
hexagons (Fig. 5(a) and (b) and with a small flexible polygon at each junction
(Fig. 5(c)). Similarly, the value of a binary variable is transmitted via a chain of
corridors and junctions. A clause of Φ is simulated by a single junction (Fig. 7),
where a small flexible polygon ensures that hexagons from at most two adjacent
corridors enter the junction (i.e., at most two literals are false).

Auxiliary Construction: Flexible Hexagons in a Rigid Frame. Let Φ be a Boolean
formula in 3CNF with variables x1, . . . , xn and clauses C1, . . . , Cm, and let A(Φ)
be the associated planar graph. We modify A(Φ) to obtain a plane graph Ã(Φ)
of maximum degree 3 as follows: Replace each variable vertex v by a cycle whose
length equals the degree of v, and distribute the edges incident to v among the
vertices of the cycle.

Embed Ã(Φ) into the section of a hexagonal tiling (Fig. 4), contained in a
regular hexagon of side length N , where N is a polynomial of n and m [3].
Let t = 2N3 + 1 (t will be the number of flexible hexagons in a corridor).
Scale the grid such that the cells become regular hexagons of side length (5t −
1)/2 +

√
3, and then scale each cell independently from its center to a hexagon

of side length (5t − 1)/2. These large hexagons are considered fixed obstacles in
our auxiliary construction. Between two adjacent obstacle hexagons, there is a
5t−1
2 × √

3 rectangle, which we call a corridor. Three adjacent corridors meet at
a regular triangle, which we call a junction. We next describe variable, clause,
and transmitter gadgets.

The basic building block of both variable and transmitter gadgets consists of
t regular hexagons of side length 1 (unit hexagons, for short) attached to a wall
of a corridor such that the hinges divide the wall into t + 1 intervals of length
(1, 2.5, . . . , 2.5, 1) as shown in Fig. 5(a) and (b) for t = 3. Since the height of
the corridor is

√
3, each hexagon has exactly two possible realizations: it can lie

either left or right of the hinge in a horizontal corridor. For simplicity, we use
the same notation (R and L) in nonhorizontal corridors, too. Hence, the state of
each flexible hexagon in a realization is either L or R. The following observation
describes the key mechanism of a corridor.
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(b)

2.5 11

√ 3
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2.5 2.5 11 2.5 xi = T

(c)

Fig. 5. (a) A corridor when all unit hexagons are in state R. (b) A corridor where all
unit hexagons are in state L. (c) A junction where a small hexagon between two cor-
ridors ensures that at most one unit hexagon enters the junction from those corridors.

Observation 1

(1) If the leftmost hexagon is in state R, then all t hexagons are in state R, and
the rightmost hexagon enters the junction on the right of the corridor.

(2) Similarly, if the rightmost hexagon is in state L, then all t hexagons are
in state L, and the leftmost hexagon enters the junction on the left of the
corridor.

Each junction is a regular triangle, adjacent to three corridors. In some of
the junctions, we attach a small hexagon of side length 1

3 to one or two corners
of the junction (see Fig. 5(c) and Fig. 6). Importantly, if such a small hexagon is
attached to a vertex between two corridors, then a unit hexagon can enter the
junction from at most one of those corridors.

The variable gadget for variable xi is constructed as follows. Recall that
variable xi corresponds to a cycle in the associated graph Ã(Φ), which has been
embedded as a cycle in the hexagonal tiling, with corridors and junctions. In
each junction along this cycle, attach a small hexagon in the common boundary
of the two corridors in the cycle. Observation 1 and the small hexagons ensure
that the state of any unit hexagon along the cycle determines the state of all
other unit hexagons in the cycle. This property defines the binary variable xi:
If xi = T , then all unit hexagons in the top horizontal corridors are in state R;
and if xi = F , they are all in state L.

xi = T xi = T xi = F

)c()b()a(

Fig. 6. The common junction of a variable gadget and a transmitter gadget. (a) When
xi = T , a hexagon of the transmitter may enter the junction of the variable gadget.
(b) When xi = T , the transmitter gadget has several possible realizations. (c) When
xi = F , no hexagon from the transmitter enters a junction of the variable gadget.
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A transmitter gadget is constructed for each edge (xi, Cj) of the graph
A(Φ). It connects a junction of the variable gadget xi with the junction represent-
ing the clause gadget Cj . The gadget consists of a path of corridors and junctions:
at each interior junction, attach a small hexagon in the common boundary of
the two corridors in the path (similarly to the variable gadget). At the common
junction with the variable gadget xi, we attach one additional small hexagon
to one of the vertices (refer to Fig. 6). If the literal xi (resp., xi) appears in Cj ,
then we attach a small hexagon to the corner of this junction such that if xi = F
(resp., xi = F ), then the unit hexagon of the transmitter gadget cannot enter
this junction. This ensures that false literals are always correctly transmitted to
the clause junctions (and true literals can always transmit correctly).

The clause gadget lies at a junction adjacent to three transmitter gadgets
(see Fig. 7). At such a junction, we attach a unit line segment to an arbitrary
vertex of the junction, and a small hexagon of side length 1

3 to the other end of
the segment. If unit hexagons enter the junction from all three corridors (i.e.,
all three literals are false), then there is no space left for the small hexagon. But
if at most two unit hexagons enter the junction (i.e., one of the literals is true),
then the unit segment and the small hexagon are realizable.

The following lemma summarizes our result about the auxiliary construction.

Lemma 1. For every instance Φ of P3SAT, the above polygonal linkage with
flexible and obstacle polygons has the following properties: (1) it has polynomial
size; (2) its hinge graph is a forest; (3) it admits a realization such that the
obstacle polygons remain fixed if and only if Φ is satisfiable.

The remaining details of our construction can be found in the full paper.

xk = T

xi = Fxi = F

xk = F

xj = F

xi = F

xk = F

xi = Fxi = T

)c()b()a(

Fig. 7. (a-b) A clause gadget (xi ∨xj ∨xk) is realizable when at least one of the literals
is True. (c) The clause gadget cannot be realized when all three literals are False.

4 Recognition of Coin Trees with Fixed Embedding

In this section, we reduce recognition of coin trees with fixed embedding from
the realizability of polygonal linkages with cycle-free hinge graphs, which was
shown to be strongly NP-hard in Sect. 3.

Theorem 4. It is NP-hard to decide whether a given plane tree is a coin graph
with fixed embedding.
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It is enough to show that the polygons and the hinges used in Sect. 3 can be
simulated by disks whose contact graphs are trees. For a constant λ > 0, we say
that a coin graph G with embedding is a λ-stable approximation of a polygon P
if in every realization of G as the contact graph of interior-disjoint unit disks, the
Hausdorff distance between the union of disks and a congruent copy of P is at
most λ. In the remainder of this section, we design plane trees that approximate
(i) a long and skinny rhombus, and (ii) a regular hexagon. We use these trees
and suitable hinges to prove Theorem 4.

Let |ab| denote the Euclidean distance between points a and b in the plane,
and note that the distance between the centers of two kissing unit disks is pre-
cisely 2. Let ∠abc ∈ [0, 2π) denote the counterclockwise angle that rotates ray

−→
ba

to
−→
bc. The following lemma about four unit disks is the key idea for our stability

arguments.

Lemma 2. Let (a, b, c, d) be a polygonal path in the plane such that |ab| = |bc| =
|cd| = 2 and the unit disks centered at a, b, c, and d are interior-disjoint. Then
the sum of angles at the interior vertices on the left (resp., right) of the chain is
greater than π.

Proof. Without loss of generality, consider the two angles on the left side at
the two interior vertices, ∠abc and ∠bcd. We have |ab| = |bc| = |cd| = 2, since
the coin graph of the unit disks is P4. If (a, b, c, d) is a rhombus, then |ad| = 2
and ∠abc + ∠bcd = π. Hence |ad| > 2 implies ∠abc + ∠bcd > π. �

We construct a caterpillar graph on n = 8 + 4k vertices, for any k ≥ 0,
and show that it is a 2-stable approximation of a long and skinny rectangle.
Recall that a caterpillar is a tree in which all vertices are either on or adjacent
to a central path. For k ≥ 0, let Tk be a plane caterpillar with central path
C = (a−k, . . . , a−1, a0, a1, . . . , ak) such that the sequence of vertex degrees along
the path is

1, 3, . . . , 3
︸ ︷︷ ︸

k−2

, 4, 5, 4, 3, . . . , 3
︸ ︷︷ ︸

k−2

, 1, (1)

and all leaves are attached to the left side of C. Figure 8(left) shows that Tk

can be embedded as a subgraph of a triangular grid. This embedding can be
perturbed into a coin graph (such that the distance between any two leaves is
strictly more than 2).

Lemma 3. For every integer k ≥ 0, the plane tree Tk in Fig. 8(left) is a 2-stable
approximation of a rhombus of width 2k + 3 and height 2 + 4

√
3.

The proof of the lemma boils down to a careful estimation of the realizable
distances of the tree Tk. With the help of Lemma 2 we can show that for every
j ≥ 1 the centers of aj and a−j lie at distance at most 2 from their “canonical”
position as indicated in Fig. 8(left). The proof goes via induction on j and can
be found in the full paper.

We can now extend the tree Tk to a larger tree T ′
k with Θ(k2) vertices as

shown in Fig. 9 that is a 2-stable approximation of a regular hexagon.
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Fig. 8. This caterpillar T6 consists of two oppositely oriented chains, each of which can
only bend towards the other.
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Fig. 9. The embedded tree T ′
6 approximates a regular hexagon.

Lemma 4. For every integer k ≥ 3, the plane tree T ′
k is a 2-stable approxima-

tion of a regular hexagon of side length 2k.

Proof (Sketch). Let k ≥ 0 be an arbitrary integer. To construct T ′
k, consider five

3-regular caterpillars, each of length k, joined in sequence at vertices of degree
four (except one joint vertex of degree five) such that the leaf vertices lie on
the outside. See Fig. 9. The joint vertices force five bends, each with a turn of
more than π/3, resulting in a hexagonal shape. The interior of the hexagon is
filled with pairs of 3-regular caterpillars aligned symmetrically across the x-axis,
similar to the realizations of Tk. Since Tk is a subgraph of T ′

k, the vertices in the
subgraph are 2-stable by Lemma 3 (c.f., the branches C and D in Fig. 9).

By arguments analogous to those in the proof of Lemma 3, additional hori-
zontal branches are similarly constrained and, therefore, also 2-stable (i.e., the
branches A, B, E, and J in Fig. 9). Similarly, the five branches forming the
hexagons boundary (i.e., the branches F , H, J , L, and N in Fig. 9) can only
move towards the interior of the hexagon. The empty space between any two
disks is strictly less than one disk diameter, and the result follows. �

We now have everything ready to give the reduction for Theorem 4. Roughly
speaking, we replace the polygons used in the reduction that is presented in
Sect. 3 by stable approximations. The details of the proof of Theorem 4 are
given in the full paper.
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5 Conclusions

We have shown that deciding whether a simply connected polygonal linkage
is realizable in the plane (with or without fixed orientation) is strongly NP-
hard. The realizability of a chain of hinged polygons is weakly NP-hard (with or
without fixed orientation); and it remains an open problem whether it is strongly
NP-hard.

Our hardness proof for the recognition of coin graphs with fixed embedding
used subgraphs that “approximate” a regular hexagon. It remains an open prob-
lem whether a similar approximation is possible for coin graphs with arbitrary
embedding. We believe it is, but it would require an approximation of a “dense”
packing of unit disks whose contact graph is a tree: this leads to a challenging
problem in discrete geometry.
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