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Abstract – We report on the residence times of capillary waves above a given height h and on
the typical waiting time in between such fluctuations. The measurements were made on phase-
separated colloid-polymer systems by laser scanning confocal microscopy. Due to the Brownian
character of the process, the stochastics vary with the chosen measurement interval ∆t. In
experiments, the discrete scanning times are a practical cutoff and we are able to measure the
waiting time as a function of this cutoff. The measurement interval dependence of the observed
waiting and residence times turns out to be solely determined by the time-dependent height-height
correlation function g(t). We find excellent agreement with the theory presented here along with
the experiments.
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Introduction. – The often counterintuitive field of
stochastic number fluctuations has boggled the scientist’s
mind for ages. Svedberg’s measurement of the diffusion
constant [1], based on the residence times on a fluctuating
number of Brownian particles in a fixed region, inspired
von Smoluchowski to develop a theoretical framework
for it [2,3]. His ideas were for example exploited to
derive the mobility of spermatozoids [4] and white blood
cells [5]. The original experiment was performed in even
more detail by Brenner, Weiss and Nossal [6]. Based on
Einstein’s [7] and Perrin’s seminal papers on Brownian
motion of particles [8], von Smoluchowski [9] was the
first to predict the Brownian height fluctuations of the
interface. They were first theoretically treated by Mandel-
stam [10] and have become an important component of
modern theories of interfaces [11–13]. Capillary waves
were initially accessed experimentally by light [14] and
X-ray scattering [15,16]. On a microscopic level capillary
waves were studied in computer simulations of molecular
systems [17], before recent investigations by Aarts and
coworkers on colloid-polymer mixtures [18–20] added
another dimension to studies on capillary waves by using
confocal microscopy. In these experiments, the interfacial
tension γ is lowered to the nN/m range. As a consequence
the characteristic length and time scale of the fluctuations

are such that they can be visualized by microscopy.
Microscopy furthermore enables the investigation of local
phenomena such as the role of capillary waves in the
rupture [21] and coalescence [22] problems. At a fixed
location on the interface, the height is continuously fluc-
tuating in time. Following Becker [23] and as sketched out
in fig. 1(A) the waiting time Θ is the average time spent in
between fluctuations above a height h, and the residence
time T is the average time spent above a height h:

Θ(h) =

∫ ∞

0

dtp−(h, t)t, T (h) =

∫ ∞

0

dtp+(h, t)t, (1)

where p−(h, t) and p+(h, t) are the normalized distrib-
utions of time intervals of length t at a fixed position,
respectively, below and above the height h. Such local
measurements are not possible by scattering methods,
since they require knowledge of continuous local stochas-
tics which seem, however, easily accessible by microscopy.
Pioneering work by Aarts and Lekkerkerker [24] resulted
in scaling relations, but did not include a full quantitative
description of the process. The crux is that however
fast microscopy may be, measurements always have to
be taken at discrete time intervals ∆t, as sketched in
fig. 1(B), resulting in the observed waiting and residence
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Fig. 1: (Colour on-line) (A) Variation of the interfacial height
h in time with characteristic residence times T and waiting
times Θ. (B) in practice, T and Θ are determined by discrete
intervals, resulting in observed residence and waiting times τ+

and τ−. These are determined by weighted averages, of the
stochastics of intervals with length ∆t.

times τ+ and τ−:

τ−(h) =
∑

np−n (h), τ+(h) =
∑

np+n (h). (2)

Here, p−n and p
+
n are, respectively, the normalized prob-

abilities on time intervals at a fixed position of snapshots
of length n= t/∆t, below and above height h, with n
an integer. Note that τ+ and τ− are in units ∆t and
are therefore both dimensionless. Switching to discrete
time intervals is not entirely trivial. Due to the Brownian
character of the process, the discretisation of eq. (1)
leads to statistics that depend on the chosen interval
∆t. However, the necessity to be discrete saves rather
than spoils the day, as it enables us to overcome the
divergencies for continuous distributions.

Experimental section. – Fluorescently labeled
polymethyl-metacrylate particles were prepared using the
Bosma method [25], slightly modified by using decalin
(Merck, for synthesis) as the reaction solvent [26]. The
particle polydispersity is around 10% from scanning elec-
tron microscopy, and the dynamic light scattering particle
radius is 69 nm. Polystyrene polymer (2 · 103 kgmol−1)
with an estimated radius of gyration Rg of 42 nm [27]
was added to induce depletion attraction between the
colloids [28]. At sufficiently high colloid and poly-
mer volume fractions, respectively φc = π/6σ

3
cnc and

φp = 4/3πR
3
gnp (with nc and np the number densities

of colloids and polymers and σc the colloid diameter),
this system phase separates into a colloid-rich (colloidal
liquid) and a polymer-rich (colloidal gas) phase. By
diluting several phase-separating samples with its solvent
decalin, the phase diagram presented in fig. 2(A) was
constructed. The shown binodal is a guide to the eye
(the theoretical binodal appears at much lower volume
fractions) and the critical point is an estimate based on
the ratios of the volumes of the phases.

Fig. 2: (Colour on-line) (A) Phase diagram of the system
studied. The dilution line studied here is marked. All shown
state points phase-separate. (B) Confocal images of state
points II and IV. These are pictures of a vertical cross-section
of the liquid-gas interface at a given time. The horizontal axis
is directed along the interface, the vertical axis perpendicular
to it. (C) An example of a tanh fit for a single height of state
point IV. The line is the fit, the squares are the datapoints.

A Nikon Eclipse E400 laser scanning confocal micro-
scope equipped with a Nikon C1 scanhead was placed
horizontally to study the colloid polymer mixture [26].
The microscope was furthermore equipped with a 405 nm
laser and a Nikon 60× CFI Plan Apochromat (NA 1.4)
Lens. The sample container is a small glass vial, part of
which is removed and replaced by a thin (0.17mm) glass
wall. Series of 10000 snapshots of the interface of 640× 64
and 640× 80 pixels were taken at constant intervals ti of
0.45 s and 0.50 s of state points II and IV along the marked
dilution line in the phase diagram, shown in fig. 2(A).
The images have dimension 100µm along the interface
vs., respectively, 10.0µm and 12.5µm perpendicular to
it. A single scan takes approximately 0.25 s to complete
(the exact scan time does vary by a few percent in time).
Typical snapshots for state points II and IV are shown in
fig. 2(B). The low excitation wavelength results in resolu-
tion of ∼ 160 nm. The particles are ∼ 138 nm in diameter,
hence a pixel roughly corresponds to a particle. Note that
the resolution of the measured heights is significantly
higher than this: the vertical location of the interface
h(x) is determined for each column of pixels in a frame
by fitting the pixel value I(z), which is proportional to
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Fig. 3: (Colour on-line) Interfacial properties determined by
dynamic correlation functions and height distributions for state
points II and IV. (A) Height distributions for state points II
and IV. (B) The dynamic correlation functions obtained for
state points II and IV, normalized by 〈h2〉.

the local colloid concentration, to a van der Waals profile
I(z) = a+ b tanh ([z−h(x)]/c), as in [19]. An example for
a single height is shown in fig. 2(C). The average height is
set as h= 0. The exact resolution depends on the contrast
between the phases, which depends on the distance to
the critical point. Further away from the binodal the
height fluctuations are too small, closer to the binodal
the contrast between the phases reduces and the capillary
waves start to show overhang effects.

Observations and results. – The wave heights h
at an arbitrary point are distributed according to the
Gaussian

Peq(h) =
exp(−h2/2〈h2〉)
[2π〈h2〉]1/2 . (3)

It can be shown that 〈h2〉 satisfies the expression

〈h2〉= L
2

2π

∫ kmax

kmin

〈|hk|2〉kdk=
kBT

4πγ
ln
k2max+ ξ

−2

k2min+ ξ
−2
. (4)

Here ξ = (γ/∆ρg)1/2 is the capillary length, with g the
gravitational acceleration, ∆ρ the density difference
between the two phases, kB the Boltzmann constant, T
the Kelvin temperature and L the system size. Further-
more, hk is the amplitude of mode k, kmax ≈ 2π/d is a
cutoff related to the typical interparticle distance d and
kmin = 2π/L is related to the lateral system size parallel
to the interface L. In eq. (4) we have used that the mean
square average of hk is given by

〈|hk|2〉=
kBT

L2(∆ρg+ γk2)
. (5)

The height distributions are shown for state points II and
IV in fig. 3(A), with 〈h2〉1/2 = 0.219 and 0.336µm for state
points II an IV, respectively. These will be used as a unit
for the heights.
Next we consider the height correlations in time

〈h(t)h(t′)〉 at a fixed position, which we denote by
〈h2〉g(t− t′). It is calculated as [29,30]

〈h2〉g(t− t′) = L
2

2π

∫ kmax

kmin

〈|hk|2〉e−ωk|t−t
′|kdk. (6)

Fig. 4: (Colour on-line) (A) The distribution of observed
residence times τ+ for state point IV. p+n (h) is shown for h=−1
(filled squares), 0 (circles), and 1 (semi-filled pentagons) ×

〈h2〉
1

2 . The inset shows the short-time behaviour for h= 0
in detail. The colours correspond to time intervals ∆t= 1 ti
(black squares), 2 ti (red circles) and 4 ti (green triangles). (B)
Observed waiting times (open symbols) and residence times
(filled symbols), for state point II, at time intervals of 1 ti
(black squares), 2 ti (red circles) and 4 ti (green triangles).
(C) As in panel (B), but now for state point IV.

The measured and fitted (setting kmax =∞ and kmin = 0)
dynamic correlation functions of state points II and IV are
shown in fig. 3(B). In colloidal systems capillary waves
are in the overdamped regime [18,29] with a decay rate

ωk =
1

2tc
(kξ+(kξ)−1). (7)

Here, tc = ξ/uc is the capillary time and uc = γ/η is the
capillary velocity with η the combined viscosities of
the phases. From the fits, the interfacial tensions and the
capillary times can be extracted, which gives tc = 12 s
and γ = 69nN/m for state point II and tc = 22 s and
γ = 25nN/m for state point IV. These values are compa-
rable to those measured for similar systems in [18,31].
The residence and waiting times are calculated through

the experimentally obtained functions p±n (h). In order
to check the possible variation of waiting and residence
times, we calculate the distributions for intervals of 1, 2
and 4 ti. They are shown for state point IV at heights
h=−1, 0 and 1〈h2〉1/2 in fig. 4(A). Note that the x-axis
has intervals as units, not time. The distributions are
clearly complicated: the shortest interval of 1 time interval
becomes more dominant as ∆t decreases as shown in the
inset of fig. 4(A). On the other hand, h=−〈h2〉1/2 has a
surprisingly large interval of ≈ 2–50 interval durations,
which occur most frequently for ∆t= 4ti. The longest
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intervals decay exponentially and as expected decrease
most rapidly in quantity for the largest time intervals.
As a result, the waiting and residence times, shown for
state points II and IV as a function of height in figs. 4(B)
and (C), are confusing at first sight: if we increase the
time in between observations ∆t to 2 or 4 ti, the observed
residence times are significantly larger!

Interpretation and discussion. – In order to
understand these observations, we need some theoretical
framework. In the spirit of von Smoluchowski we start with
simple counting arguments, [2,3], in order to identify the
essential object to be calculated. Consider a long measure-
ment of N snapshots. We take pairs of consecutive heights
and divide them into 4 sets: N++(h) pairs where on both
sides of the interval the interface is above h, N+−(h)
pairs where the earlier value is above h and the later value
below h, N−+(h) pairs where it is the other way round
and finally N−−(h) pairs where the interface is on both
sides of the interval below h. The first observation is that

N+−(h) =N−+(h)≡M(h), (8)

since each interval in which the interface crosses the
level h from above is followed by the next crossing from
below. These numbers are also equal to the number of
“hills” M(h), which in turn is the same as the number of
“valleys”. Now M(h)τ+(h) is the total length of the hills
(measured in units ∆t). Thus, we have the relations

M(h)τ+(h) =N++(h)+M(h),

M(h)τ−(h) =N−−(h)+M(h).
(9)

We have to add M(h) on the right-hand side, since the
number of points in a hill (valley) is one more than the
number of intervals inside a hill (valley). Adding the two
relations gives

τ+(h)+ τ−(h) =
N

M(h)
≡ 1

r(h)
. (10)

r(h) is the probability to find an interval where the
interface crosses the level h from above to below h.
The second observation is that the right-hand side of

(9) gives the probability to find a point above (below) h:

N++(h)+M(h)

N
= q+(h) =

∫ ∞

h

dh′Peq(h
′), (11)

N−−(h)+M(h)

N
= q−(h) =

∫ h

−∞

dh′Peq(h
′), (12)

which can be calculated from the equilibrium distribution
and which states that the fraction of heights above or
below h is equivalent to the fraction of time spent above or
below height h. Thus, we find the expressions for τ±(h),

τ±(h) =
q±(h)

r(h)
, (13)

Fig. 5: (Colour on-line) Waiting and residence times for state
points II and IV. (A) The relation q+(h)/q−(h) = τ+(h)/τ−(h)
clearly holds over many orders of magnitude, both for state
point II (dashed lines) and IV (solid lines). (B) The probability
q+−(h, g) as a function of g for |h|= 0, 1 and 2 〈h2〉1/2.
The lines are the theoretical expressions, the symbols are
obtained through the definition of r(h) from the experiment.
(C) Theoretical and observed time intervals for the waiting and
residence times of state point II, with ∆t = 1 (black squares),
2 (red circles) and 4 (green triangles) ti. Open symbols are
waiting times, closed symbols are residence times. The lines
are the theoretical curves. (D) Theoretical and observed time
intervals for state point IV, with ∆t = 1, 2 and 4 ti. Symbols
are identical to those in panel (C).

showing that r(h) is the basic quantity to be calculated.
Equation (13), independently of r(h), implies

τ+(h)

τ−(h)
=
q+(h)

q−(h)
, (14)

which is experimentally verifiable. In fig. 5(A) we show
that both sides of eq. (14) fall on a single master curve over
nearly the full spectrum of heights for both state points.
For r(h) we need the joint probability to find the

interface on level h′ at t= 0 and on h′′ at time t

〈δ(h(0, 0)−h′)δ(h(0, t)−h′′)〉= Peq(h′)Gc(h′, 0|h′′, t).
(15)

It is the product of the height distribution function Peq
and the conditional probability Gc for arriving at h

′′ after
a time t, starting from a height h′ at t= 0. Gc follows from
the Langevin equation for the interface modes k, using a
fluctuation force with a white-noise spectrum [32]. The
result is

Gc(h
′, 0|h′′, t) = 1

[2π〈h2〉(1− g2(t))] 12

× exp− [h
′′−h′g(t)]2

2〈h2〉[1− g2(t)] , (16)
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which is a universal result for Gaussian random variables
and any g(t). We point out that Gc contains only the
correlation function g(t) and not explicitly the decay
rate ωk. A check on (16) is that the correlation function
〈h(0)h(t)〉 as calculated from (15) and (16) gives the result
〈h2〉g(t). Figure 3(B) shows that g(t) is not exponentially
decaying. Thus, the spatial process is non-Markovian [32].
In order to make the connection with r(h) we define the
integral

q+−(h, g) =

∫ ∞

h

dh′Peq(h
′)

∫ h

−∞

dh′′Gc(h
′, h′′; g), (17)

q+− translates to experiments as the fraction of subse-
quent height pairs h′ and h′′ for which both h′′ <h and
h′ >h are true. Gc(h

′, h′′; g) is expression (16) with g(t)
replaced by g. We have not found an analytical expression
for this double integral, but its numerical evaluation is
simple. q+− curves for some values of h are plotted in
fig. 5(B) as a function of the parameter g. The connection
with r(h) is given by the relation r(h) = q+−(h, g(∆t))
where ∆t is the sampling distance. In fig. 5(B) we have
also plotted the experimental values of r(h) as constructed
from its definition (10). For the sampling distance we may
use any multiple m of the smallest interval ti. Then the
corresponding experimental point in fig. 5(B) is plotted for
the value g= g(mti). The agreement between the calcu-
lated q+−(h, g) and the measured r(h) is remarkable. The
observed residence and waiting times for ∆t= 1, 2 and 4 ti
for state points II and IV, are shown in figs. 5(C) and (D)
in terms of units ∆t. Again we find excellent agreement
with the theory, using the measured values for the g(t)
function as theoretical input for the determination of r.
Note that the y-axis has units “∆t” and is dimensionless.
In terms of time, the residence time at height h increases
with ∆t. Note that q+−(h, g) = q+−(−h, g). Moreover,
since q+(h) = q−(−h), we have τ+(h) = τ−(−h). Experi-
mentally, we find that for large heights, τ−(−h) is always
larger than τ+(h), which may be an artifact of the
method by which we determine the interfacial heights:
small intensity fluctuations contribute more strongly to
the tanh fit in the gas phase than in the liquid phase.
In fig. 2(C) this shows up as more specky noise for the
high intensities of the liquid phase. On the other hand,
the high degree of symmetry is remarkable in view of
a viscosity of the liquid phase that is roughly ten times
higher than that of the gas, as can be estimated from the
sedimenting liquid and gas droplets in the late stages of
phase separation. At sufficiently large h, the theoretical
times are always larger than the experimental values,
see figs. 5(C) and (D). This is at least partly due to the
limited amount of time points considered, which tends to
exclude the tail of the distributions p±n (h).
We now ask ourselves the question whether we can

take the limit of ∆t→ 0 and arrive at a continuum
description. If r(h,∆t) were to shrink proportional to
∆t, the τ±(h) would increase inversely proportional to

∆t. From a continuum description one would expect the
relations

T = lim
∆t→0

τ+(h)∆t, Θ= lim
∆t→0

τ−(h)∆t (18)

and T and Θ would have a finite limit. However, analyzing
the small ∆t behavior of expression (17), which amounts
to the limiting behavior for g(∆t)→ 1, we find

q+−(h, g→ 1)≃
√
1− g
π
√
2
exp

[

− h2

2〈h2〉

]

. (19)

The square root in (19) is a reflection of the Brownian
character of the fluctuations. If the initial decay of g(t)
is linear, r(h) vanishes as (∆t)1/2 and consequently T
and Θ vanish. Clearly, our results are only applicable to
mesoscopic time scales, for which we may use the Langevin
equation, and will therefore break down at the time scale
of Brownian solvent molecule collisions. This would show
up in a measurement of the decay of g(t) on these times
scales, which are presently unreachable experimentally.
Moreover, the capillary-wave decay rates as given in (7)
do not apply to these microscopic time scales.
With eq. (12) and the computation of q+−(h, g) we

have determined the residence and waiting times without
evaluating the distributions p±n (h). The latter quantities
can also be calculated using multiple correlation functions,
which are generalizations of eq. (15). Their evaluation
is increasingly involved, due to the non-Markovian
character of the spatial process. Experimentally, the
exhaustive amount of multiple correlation functions can
be determined given sufficient time points, analogous to
the results in fig. 5(B). Furthermore, predictions for the
occurrence of a fluctuation of height h in a finite area
A are feasible with algorithms similar to those presented
here, but involving the positional correlation function as
well. Interestingly, the positional cutoff is of the order of
the particle diameter and therefore within experimental
reach. We leave these aspects for a further study.

Conclusion. – We have presented confocal microscopy
experiments along with theory for the microscopic waiting
and residence times of heights h of the capillary waves
of the fluid-fluid interface of a phase-separated colloid-
polymer mixture. Due to the Brownian character of
the process, these times depend on the experimental
measurement interval ∆t. The results from this discrete
time sampling are predictable in terms of the decay of
the height-height correlation function g(t). The theory is
essentially divided into two parts: the computation of g(t)
from the parameters capillary time and interfacial tension
and the determination of Gc from g(t). In this letter
we concentrated on the latter part. We found excellent
agreement between experiments and theory.
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