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survival endpoints
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In designing an experiment with one single, continuous predictor, the
questions are composed of what is the optimal number of the predic-
tor’s values, what are these values, and how many subjects should
be assigned to each of these values. In this study, locally D-optimal
designs for such experiments with discrete-time event occurrence
data are studied by using a sequential construction algorithm. Using
the Weibull survival function for modeling the underlying time to event
function, it is shown that the optimal designs for a linear effect of the
predictor have two points that coincide with the design region’s bound-
aries, but the design weights highly depend on the predictor effect size
and its direction, the survival pattern, and the number of time points.
For a quadratic effect of the predictor, three or four design points
are needed.
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1 Introduction

The design and analysis of longitudinal studies is an increasingly important area in
applied research in many fields of science. In social and behavioral sciences, for exam-
ple, this kind of studies is widely conducted to follow up subjects over successive time
points in order to study changes and differences that occur in their attitudes, per-
formances, and behaviors. Examples are smoking intervention studies with repeated
measurements of smoking behavior across time, or educational studies to evaluate
critical transitions across educational levels, which measure student performances on
academic and adaptive skills over time. Conducting longitudinal studies is always
expensive, time-consuming, and intellectually challenging; it also requires a massive
effort of proficient experts in recruiting and following subjects up over a long period
of time. All these efforts can be in vain if the study does not have sufficient power and
efficiency for estimating and testing the hypotheses of interest. Therefore, researchers
must carefully design their study in the planning stage, and they must be certain their
design is efficient for the objective or objectives of their study.
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In general, the efficiency of a design is indicated by the accuracy of estimators of
the model parameters in terms of their variances: the smaller the variances, the more
efficient the estimators. A simple way to increase efficiency is to increase the sample
size of the study. However, researchers should always keep in mind that their designs
must meet many practical constraints, such as ethical, feasibility, and more important
cost constraints. Therefore, they should always find a right balance between costs of
the study on the one hand and statistical power and efficiency on the other.

Optimal design theory is a standard procedure for finding highly efficient and
cost-effective designs, and it mainly depends on theoretical considerations, along with
practical constraints, of the problem at hand. Optimal design theory measures the
efficiency of a design based on its variance–covariance matrix of the parameter esti-
mators and defines various optimality criteria; each optimizes a certain function of the
variance–covariance matrix.

Optimal designs for longitudinal studies have been investigated by various
authors. Tekle et al. (2008a), Tekle et al. (2008b), Galbraith and Marschner (2002),
Lima Passos et al. (2011), and Moerbeek (2008) are just a few among others who stud-
ied optimal designs for trials with dichotomous (e.g., daily smoking) and continuous
(e.g., tumor reduction) responses.

A particular type of outcome in longitudinal studies is a survival endpoint, where the
research interest centers on the occurrence and timing of events. The timing of events
can be measured continuously using thin precise units (e.g., minutes or days) in time.
Data that are recorded on a continuous scale are called continuous-time survival data,
and they are often encountered in the biomedical sciences. In social and behavioral
sciences, in contrast, far less likely is the possibility that the timing of events is recorded
this precisely. This may be illustrated by an example of smoking intervention studies
with the aim of preventing or delaying the onset of daily smoking during adolescence.
Researchers will not be able to contact participants on a daily basis to record their
smoking status. Instead, they might measure the onset of this event discretely using a
set of discrete intervals. To do so, they might record the onset of daily smoking once
each month and define having initiated daily smoking as having smoked at least one
cigarette a day since the last time of measurement.

Time that is measured in discrete intervals is called discrete time, and survival
data that are recorded in discrete time are referred to as discrete-time survival data.
Discrete-time survival data can be encountered in retrospective studies, where, because
of memory failure, respondents do not recall the exact time an event occurred, and
also in studies where events can only occur at discrete points in time. For instance,
graduation from university occurs at a few points in time during the academic year.
Optimal designs for longitudinal studies with discrete-time survival endpoints have
been recently studied by Jóźwiak and Moerbeek (2012, 2013). These studies solely
focus on a comparison between two qualitative treatments (a control condition and
an experimental condition). We aim to extend their results to studies, where the effect
of a single and quantitative predictor variable is of interest. An example is a social
work project that aims to ascertain the effect of a reduction in social welfare on the
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occurrence and timing of finding a paid job. Another example can be found in market-
ing: a study that aims to evaluate the effect of a reduction in the price of a specific good
or service on the occurrence and timing of buying that good or service. In both stud-
ies, the time to event occurrence (finding a paid job or buying the good or service) may
be measured discretely in, for instance, months. It is worth noting that the predictor
is continuous; it is, however, the underlying time to event occurrence that is measured
discretely by using discrete-time intervals while in fact events can occur at any point
in time.

A design for a continuous predictor variable is determined by the choice of design
(or support) points and weights assigned to these points. The design points are the
values of the continuous predictor, and the weights specify the proportion of subjects
assigned to each value. In our example, design points can be thought of as the pro-
portions of the standard amount of social welfare, and weights are the proportions of
unemployed persons who are allocated to these design points. Different designs have
different design points and/or different design weights. To find the most efficient design,
we use optimal design theory to optimally select the design points and their weights.
Optimal designs with a continuous predictor variable have been extensively exam-
ined in several studies for the logistic regression model. Some relevant references are
Atkinson et al. (2007), Berger and Wong (2009), and King and Wong (2000). More-
over, Hsieh and Lavori (2000) examine this specific optimal design problem for trials
with continuous-time survival outcomes.

For discrete-time survival analysis, however, there have been no studies to obtain
optimal designs for a continuous predictor variable. The aim of the present paper is
to determine such optimal designs. We focus our attention on D-optimality criterion,
which minimizes the determinant of the variance–covariance matrix of a design; that
is, it minimizes the volume of the confidence ellipsoid of the parameter estimators.
Hence, the D-optimality criterion has a natural interpretation. It has also other proper-
ties. D-optimal designs do not depend on the chosen design space, and so they are not
affected by a linear transformation of the design space (Ouwens et al., 2006). They are
usually quite robust with respect to other criteria (Lucas, 1974; Donev & Atkinson,
1988; Chasalow, 1992). Therefore, D-optimality criterion is the most important and
accessible optimality criterion. As the designs depend on an initial best guess of the
unknown parameters that we want to estimate, we construct locally optimal designs.
An evaluation of the robustness of such designs is also given. We also study the effects
of attrition and the number of time periods on D-optimal designs.

The remainder of this paper is organized as follows. The next section describes the
generalized linear model that is widely used to analyze discrete-time survival data and
gives the variance–covariance matrix of parameter estimates. Then, we provide theo-
retical explanations of constructing D-optimal designs and present numerical results
in section 4. We then illustrate the use of our methodology by an example in section 5.
Finally, we conclude with a discussion in section 6.
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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2 The discrete-time hazard model

This section describes a widely used model to analyze discrete-time hazard model. An
extensive description of this model is found in Singer and Willett (1993, 2003). Let
Yik denote the binary outcome variable for the ith (i = 1, 2, · · · , N) subject in the kth
(k = 1, 2, · · · , p) period, where Yik = 0 if subject i in time period k does not experience
the event and Yik = 1 if the subject experiences the event in time period k. The event
indicator Yik is observed until and including the kth period if subject i experiences the
event in period k or is lost to follow-up during period k, or until the pth period if subject
i experiences the event in period p or does not experience the event during the course
of the study and the study concludes.

The risk of event occurrence for subject i in the kth discrete interval is denoted by
h
(
tik

)
and depends on the duration of the interval and the underlying continuous-time

survival function S(t) = Pr(T > t), where T is a continuous random variable that
measures the survival time in discrete intervals [tk−1, tk) for k = 1, 2, · · · , p, with S(t0)=
1. The h

(
tik

)
gives the conditional probability that subject i experiences the target event

in period k given that the event did not occur before period k and is defined as h
(
tik

)
=

Pr(Γi = k|Γi ≥ k), where Γ is a discrete random variable and indicates the time period
when the target event occurs; that is, Γi = k if tk−1 ≤ Ti < tk. The discrete-time hazard
probability can also be expressed in terms of discrete-time survival probabilities as
h
(
tk

)
= S(tk−1)−S(tk)

S(tk−1) , where S
(
tk

)
is the survival probability at the end of time period

k, and gives the probability of not experiencing the event through time period k.
The generalized linear model with a logit link function is used to model the

discrete-time hazard probability for subject i in period k:

logit h
(
tik

)
= log

h
(
tik

)
1 − h

(
tik

) =
p∑

k=1

𝛼kDik + 𝛽Xi. (1)

The dummy variable Dik is set to 1 in time interval k and 0 elsewhere. The independent
variable Xi is a continuous variable that takes on the value xi for subject i in the region
of x values xmin ≤ x ≤ xmax, where xmin and xmax are the lower and upper boundaries
for the variable X . These boundaries are dictated by ethical and practical considera-
tions, and they may represent values of X at which there is no effect on the event of
interest or values that cause a harmful damage. For example, a too large reduction in
social welfare to an unemployed person may be considered unethical because he or she
should at least be able to pay for basic needs such as food, clothes, housing, and medi-
cal care. The predictor X is only subscribed i, which means it is time-invariant and its
values vary across subjects but do not change over time periods for a given subject. The
intercept parameter 𝛼k represents the value of the logit hazard probability in period k
for the baseline group, which is the subset of subjects with value zero on the variable X .
It should be noted that the baseline hazard probability in the kth period is computed
from evaluating the inverse of the logit link function at 𝛼k. The regression coefficient 𝛽
© 2016 The Authors. Statistica Neerlandica © 2016 VVS



150 M. Safarkhani and M. Moerbeek

assesses the effect of a one-unit increase in the predictor X on event occurrence on the
logit scale and is assumed to be constant across time intervals. In other words, Model 1
is a proportional odds model.

Suppose we decide to take a fixed number of N subjects in our study and each subject
is allowed to have a different value of the independent variable X . We assume that
there are m distinct values of the independent variable such as x1, x2, · · · , xm, where
xmin ≤ xj ≤ xmax for all j. We consider the weight 𝜋j as the proportion of subjects with
value xj, subject to

∑m
j=1 𝜋j = 1.

In matrix form, we can write Model 1 as follows:

logit(𝐡(𝐭)) = 𝐗𝜃,

where 𝐡(𝐭) is a vector of discrete-time hazard probabilities of event occurrence for all
p time periods and all N subjects in the study until they experience the target event or
drop out from the study or the study concludes (i.e., k = p). The design matrix 𝐗 is a
matrix with (p+1) columns and

∑p
k=1

Nk rows, where Nk = N
∑m

j=1 𝜋jS
(
tj,k−1

)
(1−r)k−1

denotes the number of subjects entering the kth period and neither experienced the
event nor dropped out of the study past time period k − 1. It should be noted that
S
(
tj,k−1

)
indicates the probability of survival of a subject with the value of xj on X

through the (k−1)th time period, and r ∈ [0, 1] is the attrition rate and denotes the pro-
portion of subjects who leave the study between any two adjacent measurement points
because of unforeseen reasons other than event occurrence such as moving out of town
or changing jobs or schools. Therefore, the censoring mechanism is non-informative,
which implies that all subjects who remain in the study are representative of every-
one who would have remained in the study had censoring not occurred (Singer &
Willett, 2003, section 9.3.2). Finally, 𝜃 = (𝛼1, 𝛼2, · · · , 𝛼p, 𝛽)′ is the column vector of
p+1 unknown regression parameters.

The vector 𝜃 can be estimated by iteratively reweighted least squares that is exten-
sively described by McCullagh and Nelder (1989). The least squares estimator �̂� has
the following asymptotic variance–covariance matrix:

Cov
(
�̂�
)
= (𝐗′𝐖𝐗)−1 = 1

N

(
m∑

j=1

p∑
k=1

𝐗′
jkW

(
tjk

)
𝐗jk𝜋jS

(
tj,k−1

)
(1 − r)k−1

)−1

. (2)

The vector 𝐗jk corresponds to subjects with the value xj on X in the kth time period
and has (p + 1) elements with value 1 on the kth element and value xj on the (p + 1)th
element and zeros elsewhere so that the first p elements represent the values on the
dummies D1,D2, · · · ,Dp and the (p+1)th element represents the value on X . The scalar
W

(
tjk

)
is the least squares weight for subjects with the value of xj on X in time period

k, and for a logit link function, it is obtained as W
(
tjk

)
= h

(
tjk

)
(1 − h

(
tjk

)
), where

h
(
tjk

)
is the probability of experiencing the event in period k. It should be mentioned

that the variances of the parameter estimates are proportional to the diagonal elements
of Cov

(
�̂�
)
.
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The variance–covariance matrix in Equation 2 shows that the variances of the esti-
mated parameters and the power of finding an existing predictor effect are specified by
design factors such as the number of X values (m), their values (xj), the proportion of
subjects allocated to each value (𝜋j), the duration of the study (p), the predictor effect
size (𝛽), the attrition rate (r), and the underlying discrete-time survival function S

(
tk

)
.

In this study, we assume that p is fixed beforehand and prior estimates for 𝛽, r, and
S
(
tk

)
are obtained from findings in the literature or estimated based on a pilot study

or expert opinion. Then any different combination of m, xj, and 𝜋j results in a differ-
ent design over the region xmin ≤ x ≤ xmax. An important design question is how to
find the design that has highest efficiency. Doing so results in constructing an optimal
design, which is the subject of the next section.

3 Optimal designs

We investigate locally D-optimal designs that minimize the determinant of the
variance–covariance matrix or, equivalently, maximize the determinant of the infor-
mation matrix of the parameter estimates of Model 1. A design for our study is
characterized by the choice of the design points xj and the design weights 𝜋j at these
points. The design points are selected within a predetermined design region that is fea-
sible and ethical for the study at hand. We denote the design region as Δ = [xmin ≤

x ≤ xmax], and our aim is to choose m distinct points in Δ so that all the regression
parameters in Equation 1 are estimated as precisely as possible.

A continuous design with m distinct points is presented by the measure 𝜉 over Δ
as follows:

𝜉 =
{

x1 x2 · · · xm

𝜋1 𝜋2 · · · 𝜋m

}
.

The first line gives the design points inΔwith the associated design weights 𝜋j in the sec-
ond line, where 0 ≤ 𝜋j ≤ 1 for all j and

∑m
j=1 𝜋j = 1. Different designs 𝜉 for Model 1 are

determined by different design points and/or different design weights. An ideal exper-
imental design is the one that results in small values of the variances and covariances
of the parameter estimates. The variance–covariance matrix Cov

(
�̂�
)

in Equation 2 is
inversely related to the Fisher information matrix 𝐌=𝐗′𝐖𝐗 and the larger elements
in 𝐌, the larger the Fisher information of a design. Therefore, our aim is to find the
D-optimum design 𝜉∗ that maximizes the criterion Ψ{𝐌(𝜉)} = |𝐌(𝜉)| among all 𝜉
over Δ.

In this paper, we use a sequential construction algorithm, which sequentially adds
the point in Δ at which the determinant of the information matrix after N points|𝐌(𝜉N)| is a maximum (Atkinson et al., 2007, section 11.2). To do this, we first choose
N0 = p+1 starting points from Δ and refer to these as the initial design 𝜉N0

. We then
compute the information matrix of the initial design 𝐌(𝜉N0

) and evaluate the increase
in this information matrix by adding each of the candidate points in Δ. Finally, we add
the candidate design point that results in the largest possible increase in |𝐌(𝜉N0

)| to
the initial design 𝜉N0

. The result is a new N1=N0+1-point design 𝜉N1
, and it is further
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improved by adding the point in Δ that results in the highest increase in |𝐌(𝜉N1
)|. We

replicate this procedure 1000 times to find an approximation of the D-optimal con-
tinuous design. The more replications are included in the algorithm, the better the
approximation of the D-optimum design. It should be mentioned that as the design
region Δ is continuous and the variable X can take any value on this continuous scale,
the search of the sequential algorithm is carried over a grid on the design region Δ. In
our calculations, we subdivided Δ with a step size of 0.001.

3.1 Weibull survival function

The variances and covariances of the parameter estimates depend on the underlying
survival function S

(
tk

)
. We remind the reader that the current study considers tri-

als with a continuous underlying time to event variable T that is measured discretely
in discrete intervals [tk−1, tk) for k = 1, 2, · · · , p. We further assume that all time
intervals have equal length that is fixed beforehand in order to enable a comparison
between hazard probabilities across time periods. Different continuous-time survival
functions can be used to model survival in the baseline group. This study focuses on the
continuous-time Weibull survival function, which constructs a flexible hazard function
that decreases, increases, or remains constant over time. The Weibull survival function
is given by S(t) = e−𝜆t𝜏 , and its hazard rate is given by h(t) = 𝜆𝜏t𝜏−1. The parameters
𝜏 and 𝜆 are shape and scale parameters, respectively, and t determines time that has
elapsed in the study. Time is rescaled between 0 and 1 with 0 as the beginning of the
trial (t0) and 1 as the end of the trial (tp). The scale parameter 𝜆 can be replaced by
− log(1 − 𝜔) with 𝜔 ∈ [0, 1] as the overall proportion of subjects in the baseline group
who have experienced the event by the end of the study, that is, at tp = 1.

The shape parameter 𝜏 determines the shape of the hazard function. For 𝜏 < 1, the
hazard rate decreases over time and corresponds to trials where the risk is concentrated
toward the beginning of the study. For 𝜏 > 1, the hazard rate increases over time and
indicates trials with the highest risk concentrated toward the end. A value 𝜏=1 implies
a constant hazard rate over time, and the corresponding survival function is called the
exponential survival function. The baseline discrete-time survival probability at the
end of the kth discrete interval S

(
tk

)
is computed by evaluating the Weibull survival

function at time point tk=
k
p
, and the related hazard probability h

(
tk

)
is calculated by

using the formula h
(
tk

)
= S(tk−1)−S(tk)

S(tk−1) . We assume that the survival and hazard prob-

abilities of the baseline group follow from the Weibull distribution and the predictor
effect 𝛽 quantifies the difference in the value of discrete-time hazard probability (on
the logit scale) in every time period per unit difference in the predictor X .

In this paper, we assume the duration of trials is 12 time periods (i.e., p = 12) that
might be considered as the length for 1-year trials given the time periods represent
months or trials with weekly measurements and a duration of 12 weeks. We also find
optimal designs for trials with a smaller number of time periods (i.e., k<12) to study to
what extent optimal designs depend on the number of time periods; recall that for each
number of time periods, we use the same scale on the continuous predictor X . It should
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be noticed that as the period length is fixed, a trial with 12 time intervals has maximum
study duration and a trial with k (k < 12) time intervals has a shorter duration. We
note that the first k elements of S

(
tk

)
and h

(
tk

)
for trials with 12 time periods are the

survival and hazard probabilities of trials with a shorter duration of k time periods.

4 Numerical results

We choose values 𝜏 = 0.5, 1, 2, and 𝜔 = 0.2, 0.5, 0.8 for the parameters of the sur-
vival function. We take different negative (𝛽 = −2.0, −1.5, −0.5) and positive (𝛽 =
+2.0, +1.5, +0.5) values of the predictor effect 𝛽 into account. When 𝛽 > 0, the prob-
ability of experiencing an event increases as X increases, while for 𝛽 < 0, the risk of
event occurrence decreases with increasing X . In addition, we study different values
for the attrition rate r (r = 0, 0.05, 0.1, 0.25) and take the design region Δ = [0.75, 1]
into account.

4.1 Locally D-optimal designs

Equation 2 shows that Cov
(
�̂�
)

is a complicated function of the design matrices 𝐗 and
weights 𝜋j. It is therefore very cumbersome to find the optimal designs analytically,
and so we compute them numerically and present our results using a series of graphs.
All calculations were performed in the program r, and the codes are included in the
Appendix. For k = 1, we observe that the D-optimal design points are equal to the
boundaries of the design regions. This can be explained by the fact that for a bounded
design region Δ = [xmin, xmax], the D-optimal design points will become equal to the
boundaries xmin and xmax when x∗

1 <xmin <xmax <x∗
2, where x∗

1 and x∗
2 are the optimal

design points for an unbounded design region Δ=(−∞,+∞) (Berger & Wong, 2009,
section 5.3.3). From our calculations, this also applies to more than one period (k > 1).
Another observation is that D-optimal weights at the boundaries are always equal to
0.5 when k=1, which confirms the findings in the literature for the logistic regression
model for one time period (Sebastiani & Settimi, 1997; Mathew & Sinha, 2001). We
now discuss results of the D-optimal design weights and start with the combination
𝜔=0.2 and 𝜏=2 of the Weibull survival parameters.

When 𝜔= 0.2, 20% of subjects with X = 0 have experienced the target event by the
end of a study with 12 time points and the value 𝜏 = 2 implies that the probability of
experiencing the event is lowest at the beginning of the study and increases over time.
Figure 1 displays the D-optimal design weights as a function of the number of time
periods k (on the vertical axis) for the design region Δ= [0.75, 1]. The design weights
corresponding to negative values of 𝛽 (−2.0, −1.5, and − 0.5) are displayed in the left
plot, and the weights corresponding to positive values of 𝛽 (+2.0, +1.5, +0.5) in the
right. In each plot, the open symbols represent the D-optimal weights 𝜋min at the lower
boundary (xmin =0.75), and the closed symbols represent the D-optimal weights 𝜋max

at the upper boundary (xmax = 1). Different types of symbols correspond to different
values of 𝛽: 𝛽 =−0.5 or +0.5 (circle), 𝛽 =−1.5 or +1.5 (square), and 𝛽 =−2.0 or +2.0
(triangle). We want to emphasize that as the sum of 𝜋min and 𝜋max is always equal to
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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Fig. 1. Effect of 𝛽 on D-optimal design weights when 𝜔 = 0.2, 𝜏 = 2, and Δ = [0.75, 1]. In each plot, the
vertical axis shows the number of time periods, and the horizontal axis shows the D-optimal design weights.

1, a decrease in 𝜋min results in an increase in 𝜋max and vice versa. Therefore, we only
discuss results for 𝜋min, and the reader will observe the reverse pattern occurs for 𝜋max.

We first consider the plot for 𝛽 < 0. As can be seen, 𝜋min is equal to 0.5 for k =
1, and it increases when k increases. The increase in 𝜋min depends on the value of 𝛽,
and it is stronger for a more negative 𝛽. When 𝛽 > 0, we observe that increasing the
number of time periods from 1 to 12 results in a decrease in 𝜋min, and this decrease
is larger for a larger 𝛽. However, the weights with 𝛽 = +2.0 only slightly differ from
those with 𝛽 = +1.5, especially for higher values of k. In sum, we can conclude that
the weights of the locally D-optimal design depend on how strongly the predictor X
influences the outcome variable and on the direction of this effect. For instance, when
𝛽 < 0, the chance of finding a paid job decreases by an increase in the proportion of
the regular amount of social welfare, and it is then more efficient to offer the maximum
reduction of 25% in social welfare to more than half of the unemployed people and
welfare without any reduction to less than half of the people (𝜋min > 𝜋max). The reverse
occurs (𝜋min < 𝜋max) if increasing the reduction in social welfare decreases the chance
of finding a paid job (𝛽 > 0).

Now, we investigate to what extent the parameters 𝜔 and 𝜏 affect the optimal designs
for a given 𝛽. Figure 2 displays the D-optimal design weights for 𝜔 = 0.2. Each plot
represents a different value of 𝛽; the plots in the upper half correspond to negative 𝛽

values and those in the lower half correspond to positive 𝛽 values. In this figure, the
three different symbols indicate different 𝜏 values: 𝜏 = 2 (circle), 𝜏 = 1 (square), and
𝜏=0.5 (triangle). The curves of 𝜋min almost overlap when 𝛽<0, which means that 𝜏 has
a negligible effect on the optimal design weights when X has a negative effect on event
occurrence. In contrast, if 𝛽 >0, 𝜋min decreases as 𝜏 increases from 0.5 to 2 for a given
k. Therefore, in trials where many subjects experience the event shortly after entering
the study (𝜏 < 1), the weights at the boundaries are closer to 0.5 compared with cases
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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Fig. 2. Effect of 𝜏 on D-optimal design weights when 𝜔 = 0.2 and Δ = [0.75, 1]. In each plot, the vertical
axis shows the number of time periods, and the horizontal axis shows the D-optimal design weights.

with 𝜏 > 1. For instance, a lower proportion of subjects should be offered a reduction
of 25% in social welfare when 𝜏 = 2 in comparison with 𝜏 = 0.5 if 𝛽 > 0. Moreover,
𝜋min fairly decreases with increasing the number of time periods k for any value of 𝜏
when 𝛽 > 0, but as k becomes closer to 12, an increase in k causes a slight decrease in
𝜋min when 𝛽=+2.0.

Now, we investigate the effect of 𝜔 on the optimal design weights for a given 𝜏.
Figure 3 shows plots similar to Figure 2 but for 𝜏 = 2. Here, three different symbols
represent three different values of 𝜔: 𝜔 = 0.8 (circle), 𝜔 = 0.5 (square), and 𝜔 = 0.2
(triangle). We observe that the curves of the design weights for different 𝜔 are fairly
similar when 𝛽=−2.0 and 𝛽=−1.5. When 𝛽=−0.5, 𝜋min slightly decreases with increas-
ing 𝜔 for any given k. The design weights substantially depend on the value of 𝜔 when
𝛽 > 0. It is observed that when 𝛽 =+0.5, a larger 𝜋min is found with a larger 𝜔 for any
given k. In general, 𝜋min decreases as k increases, but it becomes closer to 0.5 when
𝜔=0.8 and k approaches 12.

The effect of 𝜔 on the D-optimal design weights becomes even more stunning when
𝛽 increases further to +1.5 and +2.0. The pattern that we observe for 𝜔=0.2 does not
hold for larger values of 𝜔. For 𝜔 = 0.2, 𝜋min mainly decreases if k increases from 1
to 12. For those cases with a larger 𝜔, 𝜋min first decreases if k increases, but at some
value of k, it considerably increases with an increase in k. We also observe that the
minimum value of 𝜋min is found at a smaller value of k when 𝜔 = 0.8 compared with
that when 𝜔=0.5. We remind the reader that when 𝜔 increases, the proportion of event
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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Fig. 3. Effect of 𝜔 on D-optimal design weights when 𝜏 = 2 and Δ = [0.75, 1]. In each plot, the vertical
axis shows the number of time periods, and the horizontal axis shows the D-optimal design weights.

occurrence by the end of the study for X =0 increases. In studies with a larger 𝜔 and a
small number of time periods (k<5), it is always most efficient to offer the total amount
of social welfare to more than half of the subjects (𝜋min < 𝜋max) if subjects receiving a
lower amount of social welfare are less likely to find a paid job (𝛽 ≥ 1.5). The reverse
pattern becomes more efficient as the number of time periods increases. It should be
emphasized that the consequence of the aberrant pattern for 𝛽 > 0 is that the number
of time periods should be fixed beforehand and should not be increased during the
course of the study. If one does increase the number of time periods, then it may turn
out the optimal design for the increased number of time period requires most weight
at the lower boundary of the design space while the chosen design put most weight on
the upper boundary. This could have consequences for design efficiency.

Figures 1–3 correspond to studies without attrition (r=0). We also investigated the
effect of the attrition rate r on the D-optimal design weights. We observed that a slightly
larger 𝜋min is obtained with a larger attrition rate, which is more clear when 𝜔 is 0.5 or
0.8 (results not shown).

4.1.1 Robustness of the locally optimal designs

The asymptotic variance–covariance matrix Cov
(
�̂�
)

in Equation 2, and consequently
the D-optimality criterion, depends on the unknown parameters of interest, includ-
ing 𝛽, 𝜔, 𝜏, and r. Thus, practitioners have to specify values of the parameters a priori
before they can optimally design a study to estimate these parameters. One way to cir-
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cumvent this difficulty is to assume that a good initial estimate is available based on
a prestudy or subjective guesses and compute locally optimum designs as discussed
earlier. It is, however, worth to study how robust these designs are against misspecifica-
tion of the initial parameter estimate. We investigate the robustness of locally optimal
designs presented in the previous figures against incorrect estimates of the true param-
eters 𝛽 and 𝜔. With respect to the parameter 𝛽, the robustness of a design based on an
incorrect estimate for a given k is given in terms of RE as follows:

RE
(
𝜉∗
𝛽≠𝛽∗

|𝜉∗
𝛽=𝛽∗

)
=
⎡⎢⎢⎢⎣

Det
[
𝐌−1

(
𝜉∗
𝛽=𝛽∗

)]
Det

[
𝐌−1

(
𝜉∗
𝛽≠𝛽∗

)]⎤⎥⎥⎥⎦
1

k+1

,

where the numerator is the determinant of the variance–covariance matrix 𝐌−1 under
the locally optimal design for the correct estimate of 𝛽 (𝛽∗) and the denominator is the
determinant of 𝐌−1 under the locally D-optimal design for an incorrect estimate of
𝛽. They both are evaluated at the true 𝛽 = 𝛽∗. A similar equation can be written with
respect to the parameter 𝜔.

The RE has a value between 0 and 1; it is equal to 1 for the design 𝜉∗
𝛽=𝛽∗ . When

RE(𝜉∗
𝛽≠𝛽∗

|𝜉∗
𝛽=𝛽∗ ) < 1, 𝜉∗

𝛽≠𝛽∗
is less efficient than 𝜉∗

𝛽=𝛽∗ . The RE−1(𝜉∗
𝛽≠𝛽∗

|𝜉∗
𝛽=𝛽∗ ) indicates

the relative amount of extra information that must be taken under design 𝜉∗
𝛽≠𝛽∗

to be
equally efficient as the other design 𝜉∗

𝛽=𝛽∗ (Atkinson et al., 2007; Berger & Wong,
2009). For example, if RE(𝜉∗

𝛽≠𝛽∗
|𝜉∗

𝛽=𝛽∗ ) = 0.8, then (0.8−1 − 1) × 100% = 25% more
subjects are required under design 𝜉∗

𝛽≠𝛽∗
to have the same efficiency as under design

𝜉∗
𝛽=𝛽∗ . Therefore, relative efficiencies of 0.8 or 0.9 and closer to 1 are preferred.

The two plots of Figure 4 represent the RE as a function of initial estimates of 𝛽 (on
the left) and initial estimates of 𝜔 (on the right) for the design region Δ = [0.75, 1] and
r = 0. The four curved lines represent the RE for different numbers of time periods k.
We first discuss the plot on the left. Here, horizontal dotted lines represent 0.95 and
0.85 relative efficiency, and the vertical dotted line marks initial parameter estimate
equal to the population parameter, which is 𝛽 = 𝛽∗ = 1.0. We presume researchers
have some prior information about the shape of the survival function. For example,
a Weibull distribution with an increasing hazard function 𝜏 = 2 and 𝜔 = 0.2 may be
expected. The values of the initial 𝛽 estimates are within the range [−2,+2]. The value
of 𝛽=+2 results in a difference of about 17% in the survival probabilities Smin

(
tk

)
and

Smax

(
tk

)
after 12 time periods, where Smin

(
tk

)
gives the survival probability in period

k for subjects with the value xmin on X , and Smax

(
tk

)
denotes the survival probability

for subjects with the value xmax on X . Correspondingly, the value of 𝛽 = −2 leads
to Smax(t12) − Smin(t12) = 1.9%. As can be seen, even a severe misspecification of the
true 𝛽 results in a RE above 0.8, and so, locally optimal designs are rather robust to
misspecification of true 𝛽. We observe that underestimating the true 𝛽 affects the RE
more severely than overestimation does especially so when the study duration is long.
We also studied the same plot for other combinations of 𝜔 and 𝜏 and observed that the
RE is always above 0.8, even with a large departure of the true 𝛽.
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Fig. 4. Relative efficiency as a function of the initial 𝛽 estimates (on the left) and the initial 𝜔 estimates (on
the right) for different numbers of time periods k with the design space Δ = [0.75, 1] when r = 0. The dotted
horizontal lines represent 0.95 and 0.85 relative efficiency and vertical dotted line marks initial parameter
estimate equal to the population parameter, which is 𝛽 = 𝛽∗ = +1.0 (on the left) and 𝜔 = 𝜔∗ = 0.5

(on the right).

The plot on the right presents the RE as a function of initial estimates of the param-
eter 𝜔 when 𝛽 = 2.0 and 𝜏 = 1. Here, the true 𝜔 is 𝜔∗ = 0.5, and the initial estimates
are within the range [0.25, 0.75]. Even a large deviation from the true 𝜔 results in a
RE above 0.9. The RE is very close to 1 for a minor departure from the true 𝜔, and it
drops as the incorrect estimate of the true 𝜔 deviates more from the population 𝜔. We
observe that underestimation of the true 𝜔 affects the RE more than overestimation.
The decrease in RE is rather steep for a larger study duration k. We also studied the
same plot for different 𝛽 and 𝜏 values and observed that the decrease in RE is rather
less sizable for a smaller 𝛽, but the RE does not change that much if another 𝜏 value
is used. This means that if the population value of the predictor effect size 𝛽 is smaller
than +2, the loss in efficiency as a result of misspecification of 𝜔 becomes smaller; the
population value of 𝜏 hardly influences the loss in efficiency, though.

4.1.2 Quadratic effect of the predictor

It is important to note that Model 1 only takes a linear effect of X into account. We
also study optimal designs for a quadratic model by adding the term X2 to Model 1
as follows:

logit h
(
tik

)
= log

h
(
tik

)
1 − h

(
tik

) =
p∑

k=1

𝛼kDik + 𝛽1Xi + 𝛽2X2
i ,

where 𝛽1 represents the linear effect of X on the probability of event occurrence and
𝛽2 represents the quadratic effect of X . Figure 5 presents the optimal design points for
different combinations of 𝛽1 and 𝛽2 as a function of the number of time periods k. Note
that the horizontal axis in Figures 1–3 corresponds to the optimal design weights 𝜋. In
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Fig. 5. Effect of 𝛃 = (𝛽1, 𝛽2)′ on D-optimal design points and weights for the quadratic model when 𝜔 =
0.2, 𝜏 = 2 and Δ = [0.75, 1]. In each plot, the vertical axis shows the number of time periods, and the
horizontal axis shows the D-optimal design points. The numbers next to the dots show D-optimal design

weights corresponding to the points.

Figure 5, however, this axis corresponds to the optimal design points x. The values next
to the points in Figure 5 indicate the mass distributions (𝜋j) at these points. As it can
be observed, more than two design points are needed to optimally estimate parameters
in the quadratic model. When k = 1, optimal designs have three design points, two end
points of the interval Δ and an additional point mainly located in the middle of Δ, with
almost equal weights at these points. The weight at the lower boundary 𝜋min decreases
with an increase in the number of time periods (k) when 𝛽2 > 0; this is stronger if
𝛽1 > 0 compared with 𝛽1 < 0. However, the weight 𝜋min increases as k increases when
𝛽2 < 0; this is stronger if 𝛽1 < 0 compared with 𝛽1 > 0. The opposite holds for 𝜋max. It
is important to note that in designs for a linear effect of X , an increase or a decrease
in 𝜋min with an increase in k depends on the value of 𝛽1 (Figure 1). For the quadratic
model, however, it seems this depends on the 𝛽2 value. In Figure 5, the quadratic effect
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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is high (𝛽2 = 0.5). We studied if this is also the case with a smaller 𝛽2 (e.g., 𝛽2 = 0.2)
and observed that the relation between 𝜋min and k still depends on 𝛽1 in a quadratic
model with a small quadratic effect. What is more, the mass at the middle point hardly
changes as k changes. For some cases, it is also observed that the middle point moves
to a slightly larger or smaller value as the number of time periods increases, and for
few values of k, even four design points are needed.

4.2 Optimal number of time periods

In the previous section, we presented optimal designs for any given number of time
periods k ∈ {1, 2, · · · , 12}. Here, we compare the optimal designs for a different num-
ber of time periods to obtain the optimal number of time periods. A larger number of
time periods result in more information and consequently larger efficiency of a design
but require a higher budget. To make a fair comparison between optimal designs with
a different number of time periods, we take the total costs of each design into account
because increasing k leads to taking more measurements, which increases the study
costs. Budget restrictions are widely used in optimum design constructions (e.g., Tekle
et al., 2008a; Berger & Wong, 2009; Tack & Vandebroek, 2004). Here, we compare
the optimal designs with an equal sample size N at baseline. The relative efficiency
(RE) of 𝜉∗K1

compared with 𝜉∗K2
is given by

RE
(
𝜉∗K1

|𝜉∗K2

)
=

Det
[
𝐌−1

(
𝜉∗K2

)] 1
K2+1

Det
[
𝐌−1

(
𝜉∗K1

)] 1
K1+1

×
C𝜉∗K2

−C0

C𝜉∗K1
−C0

.

Here, 𝜉∗K1
represents the D-optimal design for a study with K1 time periods, and 𝜉∗K2

corresponds to the optimal design of a study with K2 time periods. 𝐌−1
(
𝜉∗K1

)
and

𝐌−1
(
𝜉∗K2

)
are the variance–covariance matrices of the unknown parameters under

designs 𝜉∗K1
and 𝜉∗K2

, respectively. If RE
(
𝜉∗K1

|𝜉∗K2

)
= 1, the design 𝜉∗K1

is as efficient as

the design 𝜉∗K2
; if RE

(
𝜉∗K1

|𝜉∗K2

)
< 1, 𝜉∗K2

is more efficient than 𝜉∗K1
; if RE

(
𝜉∗K1

|𝜉∗K2

)
> 1,

𝜉∗K2
is less efficient than 𝜉∗K1

. The total costs under designs 𝜉∗K1
and 𝜉∗K2

are denoted by
C𝜉∗K1

−C0 and C𝜉∗K2
−C0, respectively, where C𝜉∗ is the total amount of money required for

conducting a study with design 𝜉∗ and C0 is the initial cost for setting up the design. We
assume that the initial costs are defined as those costs that are not directly connected
to repeatedly sampling and measuring subjects. Therefore, we assume the same initial
costs for designs with different number of time periods.

In this paper, we define three different cost functions corresponding to differ-
ent types of follow-up that allow the total costs of the designs to vary across the
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number of time periods. Similar cost functions can be found in Jóźwiak and Moerbeek
(2012, 2013). Cost function I assumes that all subjects are followed up until the end
of the study even if they experience the event in earlier periods. This cost function is
realistic for studies where not only the primary event is of interest but other secondary
outcomes are important as well. Cost function I for a continuous D-optimum design

𝜉∗K =
{

xmin xmax

𝜋minK
𝜋maxK

}
with K time periods is given as

C𝜉∗K
= C0+𝜋minK

Cmin+𝜋maxK
Cmax+C2(K+1) = C0+C2

[
𝜋minK

f2 + 𝜋maxK
f1f2 + (K + 1)

]
.

Here, Cmin and Cmax are the costs of a subject assigned to the values xmin and xmax of
the design region Δ=[xmin, xmax], respectively. In our example, Cmin can be thought of
as the cost of paying 75% of the regular amount of social welfare to an unemployed
person and Cmax is the cost of paying the regular amount of social welfare. Obviously,
Cmax is always larger than Cmin. In addition, C2 is the cost of obtaining one mea-
surement for a given subject. It should be noted that K +1 indicates the number of
measurements for a given subject, which is equal to the number of time periods K plus a
baseline measurement.

The cost ratio f1 =
Cmax

Cmin
represents the cost of a subject assigned to xmax relative to

the cost of a subject assigned to xmin. Correspondingly, the cost ratio f2=
Cmin

C2
indicates

the relative cost of a subject assigned to xmin to the cost of obtaining one measurement
for a given subject. For the design region Δ = [0.75, 1], f1 is equal to f1 = 1

0.75
. In our

study, we assume that the cost of sampling a new subject at xmin is at least twice as high
as the cost of obtaining one measurement per subject, and we take values f2 = 2, 10,
and 100 into account.

The first cost function is not appropriate for studies where subjects immediately leave
the study after event occurrence. In such studies, the number of measurements for a
given subject can be smaller than K + 1 and should be replaced by the summation
𝜋minK

∑K
k=0 Smin

(
tk

)
+ 𝜋maxK

∑K
k=0 Smax

(
tk

)
. Then, cost function II is given by

C𝜉∗K
= C0+C2

[
𝜋minK

f2 + 𝜋maxK
f1f2 +

(
𝜋minK

K∑
k=0

Smin

(
tk

)
+ 𝜋maxK

K∑
k=0

Smax

(
tk

))]
.

Finally, cost function III assumes that subjects drop out of the study not only because
of event occurrence but also because of other unforeseen reasons. Therefore, this cost
function is used for examining costs in studies with attrition and is obtained by replac-
ing K +1 in cost function I with 𝜋minK

∑K
k=0 Smin

(
tk

)
(1 − r)k + 𝜋maxK

∑K
k=0 Smax

(
tk

)
(1 − r)k.

For each combination of 𝛽, 𝜏, 𝜔, r, f1, f2, and k (k = 1, 2, · · · , 12), we compute
the determinant of the variance–covariance matrix of the corresponding D-optimal

design and its total costs. The D-optimum design with the smallest Det
[
𝐌−1

(
𝜉∗

k

)] 1
k+1 ×(

C𝜉∗
k
−C0

)
is chosen as the reference design, and the efficiencies of the other designs

relative to the reference design are evaluated by using the RE.
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Fig. 6. Relative efficiency of D-optimal designs as a function of the number of time periods k when 𝛽 = −2
and Δ = [0.75, 1].

The matrices of plots in Figures 6–7 show the relative efficiency as a function of the
number of time periods k on the horizontal axes, the survival pattern 𝜏 in the columns
(𝜏=0.5, 1, 2), and different 𝜔 values in the rows (𝜔=0.2, 0.5, 0.8) for the design region
𝚫 = [0.75, 1] and cost function I. Within each plot, the three lines represent different
values of the cost of sampling a subject at xmin (Cmin) relative to the cost of once mea-
suring a subject (C2): f2=2 (solid line), f2=10 (dashed line), and f2=100 (dotted line).
Figure 6 corresponds to a negative value of 𝛽 (𝛽 = −2.0), and Figure 7 displays the
relative efficiency for a positive value of 𝛽 (𝛽 = +2.0). In general, we observe that the
optimal number of time periods either increases or remains constant as the cost ratio
f2 increases for a given combination of 𝛽, 𝜏, and 𝜔. Now, we discuss the results of each
figure separately.

Figure 6 indicates that for a given 𝜔, the optimal number of time points for a given
cost ratio f2 increases with an increase in 𝜏. The reason is that for 𝜏 = 0.5, the event
is more likely to occur by the beginning of the study, and so it is more cost-effective
to recruit more subjects instead of taking more measurements. But this is not a very
efficient design when the event is more likely to occur at the end of the study (𝜏 = 2).
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Fig. 7. Relative efficiency of D-optimal designs as a function of the number of time periods k when 𝛽 = +2
and Δ = [0.75, 1].

For a given 𝜏, changing 𝜔 only slightly changes the relative efficiency corresponding to
a given cost ratio f2. So, we can conclude that there is a main effect of 𝜏 but not a main
effect of 𝜔 on the optimal number of time periods when 𝛽<0.

As can be seen in Figure 7, increasing 𝜏 from 0.5 to 2 increases the optimal value
of k for a given f2; however, this effect highly depends on the value of 𝜔. To illustrate
this point, consider 𝜔 = 0.2 and f2 = 100. When 𝜏 = 0.5, the optimal value of k is
small. When 𝜏 = 1, the optimal value of k is in the middle of the range [1, 12], and
as 𝜏 increases to 2, the best design is the one with a high number of time periods.
The increase becomes less severe when 𝜔 becomes larger. We also observe that to what
extent 𝜔 influences the optimal number of time periods highly depends on the value
of 𝜏. When 𝜏=0.5 or 𝜏=1, increasing 𝜔 from 0.2 to 0.8 results in a somewhat smaller
optimal value of k for a given f2, but an increase in 𝜔 largely decreases the optimal
value of k when 𝜏 = 2. In cases with 𝜏 = 2, it is more efficient to choose a design
with many measurements (i.e., many time periods) when 𝜔 = 0.2, but such designs
result in a high loss of efficiency when 𝜔 becomes larger. With a larger 𝜔, a design with
a smaller number of time periods should be taken, which results in recruiting more
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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subjects at xmin in favor of taking fewer measurements, even if it is more expensive to
include subjects than to take measurements (i.e., f2 > 2). Therefore, we can state that
there is an interaction effect between the two factors 𝜏 and 𝜔 on the optimal value of k
for 𝛽=2.

Table 1 displays the optimal value of k for each cost function for different 𝛽, 𝜔, 𝜏,
and f2 values. In general, we observe that the optimal number of time periods does not
change at all or slightly increases when cost function II is used instead of cost func-
tion I; the changes are somewhat larger when 𝛽 =+2.0 than when 𝛽 =−2. Therefore,
subjects’ leaving after event occurrence does not have a large impact on the optimal
number of time periods. Table 1 also shows that the optimal value of k with cost func-
tion III is either equal to or smaller than those with the other two cost functions. The
optimal k is in the range of 2 to 4 when 𝜏=0.5 or 𝜏=1, and it is between 4 and 9 when
𝜏=2. We also observe that the cost ratio f2 does not have as large an effect on the opti-
mal number of time periods when cost function III is considered. As a result, in studies
with dropout because of unforeseen reasons, a smaller number of time points should
be taken into account compared with studies without attrition, even though the cost
of sampling subjects at xmin relative to the cost of measuring them increases. Finally, it
should be mentioned that for any combination of 𝛽, 𝜔, f2, and cost function type, the
optimal number of time periods depends on 𝜏, especially so when 𝛽 is negative. So the
optimal number of time periods is not robust against misspecification of 𝜏.

5 An example: time to recovery from childhood malnutrition

Throughout this section, we consider the study of Le Roux et al. (2010) that investi-
gated the effect of a paraprofessional home visiting program on improving childhood
nourishment in South Africa. In this study, the outcome of interest was whether and
when an underweight child reached an acceptable weight and time to rehabilitation to
the target weight was measured at baseline and at 3-, 6-, 9-, and 12-month follow-ups
(p=4). This study showed that home visits by mentor mothers rehabilitated malnour-
ished children to weights that are appropriate for their ages by providing nutrition
education, improving feeding practices, and so on.

Suppose a specialist in nutrition wants to study the effect of the number of visits by
mentor mothers on the occurrence and timing of achieving the normative weight. She
assumes that each family is visited at least once and at most 12 times. So the design
region is identified as Δ=[1, 12], with integer values only. To find initial estimates for
the baseline logit hazard probabilities (i.e., X =0), the researcher takes the probabilities
of rehabilitation reported in Figure 2 of Le Roux et al. (2010) for underweight chil-
dren in the control condition. The researcher believes that underweight children from
families who are visited more often are more likely to reach a healthy weight. So, she
presumes the value of 𝛽=+0.07 for the effect of one-unit increase in the number of vis-
its on the logit probability of rehabilitation of malnourished children. Figure 8 displays
the discrete-time survival and logit hazard probabilities for 0, 1, 6, and 12 visits. As can
be seen in the left panel, the value of 𝛽=+0.07 leads to a maximum increase of 24% in
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Fig. 8. Survivor function (left side) and logit hazard probability function (right side) for achieving norma-
tive weight corresponding to baseline children and those with different numbers of visits in the design region

Δ=[1, 12].

Fig. 9. D-optimal designs (left side) and relative efficiencies of other designs compared with the optimal
designs (right side) for different number of time periods in the recovery from childhood malnutrition study.

the probability of an underweight child reaching a normative weight as compared with
those who are not visited by mentor mothers. It also appears that the survival func-
tion does not follow the Weibull distribution, and so this example shows the use of the
methodology presented in this paper for a different survival function.

D-optimal design weights of a study with 1-year follow-up (k=4) or shorter (k<4)
are presented in the left panel in Figure 9, where the open circle indicates the optimal
proportion of underweight children at the lower boundary and closed circle depicts
the optimal proportion at the upper boundary. It is seen that the design for the model
with one time period equally divides underweight children into two groups: one with
children who are visited only once and the other with children who are visited 12 times.
As the number of time periods increases from 1, the optimal designs include more
underweight children in the 12-visit group and fewer children in the 1-visit group.

Suppose that the researcher is also interested in investigating the performance of
other alternative designs compared with the optimal designs using RE as a measure
© 2016 The Authors. Statistica Neerlandica © 2016 VVS
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of comparison. The right panel in Figure 9 shows the REs of other designs with the
same design points but different design weights relative to the optimal designs for a
different number of time periods k. Note that the optimal designs presented in the left
plot have a relative efficiency of 1 in the right plot. As can be illustrated from this plot,
if the researcher wants to conduct a design with RE ≥ 0.8 when k = 1, she can take
any value in the range of [0.28, 0.72] as the proportion of underweight children for
the one-visit group into account. However, this range decreases to smaller values as k
increases. We also observe that the range of possible proportions at the one-visit group
becomes slightly narrower with an increase in k.

6 Conclusion and discussion

Our results for the Weibull survival function indicate that the optimal designs for a
linear model of X are two-point designs where the design points correspond to the
design region’s boundaries. The weight at the design points highly depends on both the
value and the sign of 𝛽. More than this, the degree to which the optimal design weights
depend on the survival parameters 𝜏 and 𝜔 is substantially determined by 𝛽: there is a
very slight effect of 𝜏 and 𝜔 on the weights when 𝛽 < 0, while these factors (especially
𝜔) markedly influence the weights when 𝛽>0, which becomes more noticeable when 𝛽

becomes larger. We also observed that the attrition rate r does not have a large effect on
the optimal design weights for any combination of the other factors. The other major
finding was concerned with the effect of k on the optimal designs. We found that the
optimal number of time points largely depends on 𝜏 but does not depend on 𝜔 when
𝛽 < 0, whereas there is an interaction effect between 𝜏 and 𝜔 on the optimal value
of k when 𝛽 > 0, that is, the extent to which varying 𝜏 or 𝜔 changes the optimal k is
sizably influenced by the other survival parameter. To efficiently estimate parameters
in a quadratic model, however, more than two design points are needed, the two end
points of the interval Δ = [xmin, xmax] and other points in the middle of the interval.
The weights at the boundaries still depend on k, but the weights at the middle points
hardly depend on k. It is worth noting that the procedure for obtaining D-optimal
designs can be applied without the assumption of the Weibull survival function when
data from the literature are available.

Jóźwiak and Moerbeek (2012, 2013) studied optimal designs for discrete-time sur-
vival data with one dichotomous predictor (e.g., treatment versus control), which
are identified by the optimal combination of the number of subjects and time peri-
ods. We extended their findings to optimal designs with one continuous predictor,
which are defined by optimal choices of design points and their weights for a given
number of time periods. Although optimal designs in both studies have two design
points, their corresponding weights are not comparable as they are based on a differ-
ent optimality criterion. We also studied optimal designs for a quadratic effect of the
continuous predictor, while Jóźwiak and Moerbeek (2012, 2013) could only focus on
a linear effect. We want to emphasize that our results are in agreement with those of
Sebastiani and Settimi (1997), Mathew and Sinha (2001), and others who have
reviewed D-optimal designs in the logistic model with one continuous predictor and
just one time period.
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Our conclusion as to the effect of the continuous predictor is that the optimal design
is sensitive to misspecification of the predictor effect (its value along with its sign).
Moreover, the sensitivity of the optimal designs against misspecification of 𝜏, 𝜔, and k
highly depends on the direction in which the predictor influences the outcome. Specify-
ing the Weibull survival parameters requires more careful thought when the predictor
has a positive effect on the outcome. Our results showed that a design that is optimal for
one combination of 𝜏 and𝜔may not be so for another. Further, the fact that accounting
for study costs is likely to influence the optimal value of k adds to our understanding
that we must account for the cost differential when comparing optimal designs because
an optimal design with many time periods is not always the most cost-efficient design
for our study.

To compute locally optimal designs, researchers need to make initial estimates or
educated guesses of the unknown model parameters based on findings in the litera-
ture, a pilot study, or a previous study. Although our study shows that locally optimal
designs are relatively robust to misspecification of some parameter values, this is not
necessarily the case in other applications. To overcome local optimality problem, a
sequential procedure might be useful. To this end, we can divide the total number of
iterations used to approximate optimal designs into some sets. The first set of iterations
could be used to obtain locally optimal designs for the first initial parameter guess.
This guess could be corrected by using the data to re-estimate the parameter and use
the second set of iterations to correct the second guess and so on. Because these designs
are not necessarily robust to poor initial parameter estimates, we suggest researchers
to consider more advanced methods, such as minimax, maximin, or Bayesian design
methods, if good initial estimates are not available. These alternative methods result in
optimal designs with more and spread-out design points, which are reasonably robust
within some prespecified regions of the values for unknown parameters. A study of
minimax and maximin D-optimal designs for the logistic model (e.g., Sitter, 1992;
King & Wong, 2000) and binary longitudinal trial responses (e.g., Tekle et al., 2008b)
is available in the literature. A review of optimal linear and non-linear Bayesian designs
can be found in Chaloner and Verdinelli (1995). Additional research will need to be
performed to study a procedure for obtaining more robust designs with discrete-time
survival data if precise knowledge of the parameter estimates is unavailable.
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Appendix A: R-syntax to run the sequential construction algorithm

This Appendix provides a code for running the sequential construction algorithm of
optimum designs for trials with discrete-time survival endpoints. We assume an esti-
mate of the Weibull survival parameters (𝜏, 𝜔), as well as the predictor effect size (𝛽),
is available. The search of the sequential algorithm is carried over a grid on the design
region Δ = [a0, a1].
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