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Morphodynamics of Supercritical Turbidity
Currents in the Channel-Lobe
Transition Zone

George Postma, David C. Hoyal, Vitor Abreu, Matthieu J.B. Cartigny,
Timothy Demko, Juan J. Fedele, Kick Kleverlaan,

and Keriann H. Pederson

Abstract This study aims to resolve process-facies links at both bed and environ-

mental scales for the channel lobe transition zone (CLTZ). Data comes from

existing experimental and modern CLTZ studies and from new outcrop studies.

The experiments show that the CLTZ architecture of supercritical turbidity currents

is complex and different from their counterparts where flows are subcritical

throughout. Supercritical CLTZ’s are characterised by erosive channels formed

by supercritical turbidity currents, by offset stacked lobes deposited from subcrit-

ical turbidity currents and by hydraulic jump related mouth bar deposits and

upslope onlapping backfill deposits at the down slope end of the transition zone.

Erosive channels and backfill features can be resolved by high resolution seismic

data, yet evidence for supercritical flow must come from facies analysis of core

data. Outcrop examples of the CLTZ from the Tabernas submarine fan (SE Spain)

and the Llorenç del Munt deep-water delta slope (N. Spain) are used to establish

such links between seismic scale architecture and facies recognised in cores. The

outcrops described here were mapped as transition zone, and show 100 m sized,

spoon-shaped scours filled with sediment containing sandy to gravelly backsets up

to 4 m in height. Their facies and architecture is indicative of deposition by

hydraulic jumps, can be recognized from cores, and is a good proxy for further

predicting CLTZ architecture constructed by supercritical turbidity currents.
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47.1 Introduction

The morphodynamics of turbidity currents at the transition from confined channels

to unconfined lobes, commonly referred to as the channel-lobe transition zone

(CLTZ), is still a poorly explored part of the submarine turbidite fan environment.

Consequently, making inferences about sand body architecture and facies in cored

CLTZ successions remains uncertain.

Features of the CLTZ recognized from the modern seafloor vary. Turbidite

deposits are commonly patchily distributed and extensively reworked (Wynn

et al. 2002). Lobes can have complex architecture with numerous onlap, toplap

and downlap surfaces built by numerous events (Gervais et al. 2006). Both seismic

and sea floor data reveal that lobes may contain many small channels indicating that

gravity flows remain confined at least for their basal part across most of the lobe for

some of the turbidite events (Gervais et al. 2006). Under sediment bypass condi-

tions, the CLTZ is characterized by abundant erosional features, including isolated

spoon- and chevron-shaped scours up to 20 m deep, 2 km wide, and 2.5 km long,

partially filled with coarse-grained material that is trapped in the scour

(e.g. MacDonald et al. 2011a, their Table 1). The CLTZ of the Monterey Canyon

exhibits elongated sand fingers and shallow channels filled with sand (Klaucke

et al. 2004). In contrast, CLTZ’s on the slope east of Corsica (Gervais et al. 2004)

are characterised by (1) small proximal isolated lobes (PILs) connected with local

slope gullies and deposited at the slope break (3� ! 1.5�), and (2) somewhat larger

composite midfan lobes (CMLs) on slopes of 1.5–1� that are connected with erosive
and leveed channels issuing from large canyons. The CMLs were probably river fed

during sea-level low stands and have more complex architecture than the PILs (see

further Deptuck et al. 2008).

Sediment bypass features of inferred CLTZ similar to those described by Wynn

et al. (2002) and Deptuck et al. (2008) have occasionally been inferred from ancient

turbidite successions. In particular the bypass zones in the turbidite series of the

Hecho Basin (Pyrenees, see Mutti and Normark 1987) and the Ross Formation

(Ireland, see Chapin et al. 1994; Macdonald et al. 2011b), the latter displaying

chevron shaped scours (Elliott 2000) are well known.

It is hypothesized in this paper that some of the CLTZ depositional complexities

can be significantly clarified by considering the flow domain of turbidity currents.

Recent experimental fan and field studies suggest that sub- and supercritical

turbidity currents each have a characteristic architecture (Cantelli et al. 2011;

Fernandez et al. 2014; Hoyal and Sheets 2009; Hamilton et al. 2015) and facies

associations (Postma and Cartigny 2014). The objectives of our CLTZ studies

include highlighting the relevance of the critical densimetric Froude number for

facies and architectural development in the CLTZ.
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47.2 Experimental Analogues of Channelized Submarine
Fans

Experiments with subcritical kaolinite suspensions showed numerous channels

formed by levee building, which avulsed near the steep cone as the fan evolved

(Fig. 47.1a, Cantelli et al. 2011; Fernandez et al. 2014). Lobes formed once the

channels crossed the break of slope, and channel-lobe tracts were typically

maintained over several flows. Compensational deposition occurred at a time

scale that was longer than that of the individual runs (Fernandez et al. 2014). The

resulting architecture was mainly aggradational with channel levee elements above

and lobes below the slope break.

In experiments with supercritical saline density flows, channels were not formed

by levee building, but through erosion, thus forming a ‘bypass channel’ (Hoyal and
Sheets 2009; Hamilton et al. 2015). Eventually, an extending channel stagnates and

Fig. 47.1 Experimental studies of channel lobe systems. Table length in both a and b is 3 m: (a)
Subcritical channel lobe system of Fernandez et al. (2014) with 5–45 μm silica particle slurries of

5–10 % volume concentration over 4� slope. The 0.19 measure is the height drop onto the slope;

(b) supercritical channel lobe system of Hoyal and Sheets (2009) and Hamilton et al. (2015) with

saline underflow over 10� slope and transporting 180–250 μm crushed plastic particles over a

similar substrate. Cross-sections a and b are given in Fig. 47.5a, b
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aggrades a mouth bar ahead of itself thus creating an obstacle, which progressively

slows down the supercritical flow to subcritical through a hydraulic jump. Backsets

develop in the scour just upstream of the mouth bar, backfilling the channel. It is

interesting to note that channel stagnation occurred in the experiments on the

sloping portion of the domain, i.e., a slope break did not play a role in restraining

the system as it did in the subcritical case. Eventually, the backfill of the channel

leads to avulsion and the creation of a new channel (Fig. 47.1b).

The conditions for forcing a hydraulic jump on a slope depends on the flow’s
densimetric Froude number and thus on its density and velocity, which is a function

of slope. If the slope is mild then a downstream subcritical normal flow boundary

condition is likely to force the jump. If the slope is steep, then it is likely that the

jump is forced by a stepped obstruction (see Hamilton et al. 2015). Flow density

plays a role in the required height of the obstruction: dilute flows with high

velocities require a very large stepped obstruction, many times the flow thickness,

to trigger a jump, while dense flows with relatively low velocities require very small

steps (Hamilton et al. 2015).

47.3 Facies Associations

The difference in morphodynamics of the sub- and supercritical CLTZ experiments

is striking. The subcritical CLTZ is mainly progradational and aggradational,

forming tabular, compensationally stacked channels and lobes, while the supercrit-

ical CLTZ shows bypass zones characterized by erosion and hydraulic jump related

deposits. The stacking of channel and lobes in the supercritical case is complex

showing channel erosion, offset stacked lobes and backfilling patterns including

hydraulic jump deposits. Each cycle (see Fig. 47.1b) starts with avulsion and

channel elongation, followed by onlap (mouth bar), flow stagnation (hydraulic

jump deposits) and bypass features and ends with channel abandonment (mud

cover). Hydraulic jump related deposits can be easily recognised by their backset

architecture filling an asymmetrical scour. Facies associations related to a hydraulic

jump is typically Ta, Tb4 – Tb3a (see Fig. 47.2, Postma and Cartigny 2014; Russell

and Arnott 2003) indicating high concentration and little shear of the flow during

deposition. Ta facies is often in combination with soft sediment deformation

structures in particular flames at the base of the bed (Postma et al. 2009) and

angular mud chips ripped up locally from the substrate (Postma et al. 2014).

47.4 Field Observations

Superb examples of supercritical CLTZ turbidites have been found in the late

Miocene submarine fan deposits of the Tabernas basin, mapped by Kleverlaan

(1989a). The inferred transition zone stretches over several kilometres from the
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canyon (‘Buho Canyon’) to the lobe deposits (Kleverlaan 1989b). Its facies is

characterized by large, asymmetric gravel lenses enveloped in bioturbated mud

(Fig. 47.3). The gravel units are characterized by upcurrent dipping crude stratifi-

cation (Tb4 and Tb3a) and structureless gravel nests (Ta). This up-flow dipping

crude stratification forms backset beds. They are seen locally to grade upslope into a

structureless gravel, with vertical clast fabrics. Imbricated clasts dip slightly steeper

than the upslope dipping cross stratifications pointing to flow traction, hence

distinguishing the deposit from a debris flow origin. The top of the gravel units is

sharp (grain size change from gravel to mud) and wavy possibly pointing to a

bypassing supercritical flow. Clusters of outsized clasts drape the wavy surface that

is overlain by bioturbated, thin sand and mud layers.

Sedimentation units in the transition zone comprise stacks of up to several

meters thickness of the above described gravel lenses, and alternating dm’s thick
sandy (Tb4-2) and homogenised muddy turbidite beds. The stacking has an aggra-

dational (little vertical change in bedding and grain size) to progradational (overall

coarsening) character. The lobe consist of turbidite sheets with rare Ta facies, some

Tb4-1 and abundant Tcde (see Cartigny 2012).

Fig. 47.2 Facies associations for the channel lobe transition zone, which can be read from cores

(From Postma and Cartigny 2014). T unit legend: Ta ¼ coarse-tail normally graded with flame

structures at the base; Tb4 ¼ mainly massive and inversely graded; Tb3a ¼ crude stratification;

Tb3b ¼ spaced stratification; Tb2 ¼ <0.5 cm planar stratification; Tb1 ¼ plane bed lamination

with parting lineation; Tc ¼ ripples; Td ¼ plane bed of the lower flow regime and Te ¼
hemipelagic fall out; D ¼ debrite
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Another example comes from the deep-water fan deltas of the Vilomara section

of Llorenç del Munt fan delta complex, mapped and studied for its sequence

stratigraphy by L�opez Blanco et al. (2000a, b, Fig. 47.4). At the base of the

Vilomara section, sandy turbidite beds are seen onlapping an erosive surface on

the muddy slope of the delta. The outcrop has no obvious break in slope (Fig. 47.4).

Facies that includes Ta and Tb4-1 are believed to indicate supercritical flow (see

Fig. 47.2). These turbidite beds are truncated by a thick sand deposit up to 3 m thick

at its centre, which has a large backset and a distinct bypass surface at its top (dotted

white line in Fig. 47.4). Note the change in relief (c. 0,80 m) between the upstream

section and the backset.

47.5 Discussion and Conclusion

The diagnostic features for supercritical flow controlled CLTZ that emerged from

the experimental studies of Hoyal and Sheets (2009) and Hamilton et al. (2015) are

(1) extending erosive channels that feed and prograde the lobe and (2) a hydraulic

jump that heralds the backfilling of the channel and the development of a mouth bar.

The latter process is likely marked by scours filled with steep backset bedding, but

also by stacks of more gently upslope dipping and onlapping beds. The proximal

isolated lobes (PILs) and the complex midfan lobes (CMLs) of the Golo fan on the

lower slope east of Corsica (Gervais et al. 2004; Deptuck et al. 2008) might be a

Fig. 47.3 Supercritical CLTZ bypass zone of the mixed sand-mud turbidite fan (Tabernas Basin);

(a) Amalgamated spoon-shaped scours filled with cross stratified gravel (backsets); Paleo-flow is

from right to the left and obliquely into the outcrop. Outcrop width on picture is about 200 m; (b)
Detail of a showing large, trough-shaped sets of gravelly backsets with well defined wavy erosive

surface at the top of the bed; Note the multiple event infill of the scour by variously stacked

backsets, and chaotic massive fill at the base. Outcrop height is about 5.5 m, (c) Map of the area

North of the village Tabernas showing main features of mapped CLTZ time slice in yellow (see

Kleverlaan 1989a, b for details). South is to the left
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nice analogue for supercritical CLTZ systems. Both lobe systems are deposited on

relatively steep slopes in excess of 1� favouring development of supercritical

turbidity currents (Sequeiros 2012). In case of the PILs most abrupt deposition is

taking place within a few kilometres of the gully mouth near the slope break.

Seismic facies of the proximal parts of the lobe is typical for thick massive and

probably amalgamated sand beds onlapping up slope, while cores through the

proximal front of the bar show nearly 5 m of continuous massive coarse-grained

sands with clay chips probably consisting of a series of amalgamated beds. These

lobes may have formed when the outer shelf was inundated during the last trans-

gression and, hence, may have been supplied from inefficient surge like flows

triggered when sandy shoals or bars near the heads of gullies failed (see Deptuck

et al. 2008). The architecture of CMLs in Golo fan is much more complex and is

analogous to the complexity observed in the fans formed in the supercritical flow

experiments. Cross sections through these fan lobes have combinations of channel

erosion and offset stacking of lobes similar to those observed in experimental

studies (Fig. 47.5). Cores and seismic data reveal predominant massive and amal-

gamated beds in the proximal lobe regions. Sustained mixed-load hyperpycnal

flows were most likely to reach the fan during periods of low sea-level stands, but

surge-like flows were probably also triggered after a temporary period of storage in

the canyon head (Deptuck et al. 2008).

Facies and architecture of the outcrop examples shown by Figs. 47.3 and 47.4

support an interpretation that the sediment bodies were formed in a hydraulic jump

zone (see also Russell and Arnott 2003; Postma and Cartigny 2014). Their size,

however, is an order of magnitude smaller than the features described from the PILs

Fig. 47.5 Cross-sections lines A and B (see Fig. 47.1b) of the supercritical CLTZ experiments

(Hoyal and Sheets 2009, with thanks to Roger Bloch). Vertical exaggeration is about 1.8; C. Cross-
section from the C1 complex midfan lobe (Deptuck et al. 2008)
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and CMLs of the east Corsican slope. Hence, these scour fills are not the mouth bar

themselves, but rather represent features of the erosive channel floor upslope of the

mouth bar in the transition zone similar to the scours found by Wynn et al. (2002),

Chapin et al. (1994), and Macdonald et al. (2011b).

In conclusion, by combining experimental studies with studies on small modern

fans predictive models emerge for facies and process studies on outcrops in the

CLTZ. We infer that the Froude number of turbidity currents is an important

parameter to consider when dealing with the CLTZ environments, and perhaps

most promising is that this parameter has characteristic facies that can be identified

from core.
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