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Physical inactivity among children is on the rise. Active transport to school (ATS), namely walking and
cycling there, adds to children's activity level. Little is known about how exposures along actual routes
influence children's transport behavior. This study examined how natural and built environments in-
fluence mode choice among Dutch children aged 6–11 years. 623 school trips were tracked with global
positioning system. Natural and built environmental exposures were determined by means of a geo-
graphic information system and their associations with children's active/passive mode choice were
analyzed using mixed models. The actual commuted distance is inversely associated with ATS when only
personal, traffic safety, and weather features are considered. When the model is adjusted for urban
environments, the results are reversed and distance is no longer significant, whereas well-connected
streets and cycling lanes are positively associated with ATS. Neither green space nor weather is sig-
nificant. As distance is not apparent as a constraining travel determinant when moving through urban
landscapes, planning authorities should support children's ATS by providing well-designed cities.

& 2016 Elsevier Ltd. All rights reserved.
1. Background

Physical activity is a major public health asset decreasing the
risk of adverse health effects (Lee et al., 2012). For children, the
World Health Organization (WHO, 2015) recommends 60 min of
moderate to vigorous physical activity every day to prevent dis-
ease in later life (Faulkner et al., 2009; Janssen and Leblanc, 2010).
However, as a consequence of sedentary lifestyles, the number of
children following this recommendation is constantly decreasing
across Europe (Fyhri et al., 2011). Only 18% of Dutch children
currently do so (Hildebrandt et al., 2013).

In that respect, active transport to school (ATS) – that is,
walking or cycling to school – seems to be a valuable source for
oven),
. Kwan),
.I.d. Vries).
energy expenditure in children's daily lives (Steinbach et al., 2012;
Schoeppe et al., 2013; Dessing et al., 2014). This is particularly true
for Europe, where schools are well integrated in residential
neighborhoods (Aarts et al., 2013). There is empirical evidence that
ATS results in increased physical activity levels in children com-
pared to those who are chauffeured by their parents (Van Sluijs
et al., 2009; Cooper et al., 2010; Owen et al., 2012). ATS also mi-
tigates adverse environmental effects around schools, such as
greenhouse gas emissions and traffic congestion during peak times
(Maibach et al., 2009).

A crucial first step toward comprehensive policy strategies
promoting ATS is to understand the factors that stimulate and
hinder ATS. Children's travel decisions are highly complex; they
are driven by, for example, personal characteristics, distance be-
tween home and school, safety issues due to traffic, and stranger-
danger (Sirard and Slater, 2008; Schoeppe et al., 2013; Mitra,
2013). In addition, natural and urban environmental determinants
are suggested to be influential (Pont et al., 2009; Panter et al.,
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2010; Wong et al., 2011a; Sallis et al., 2015). Despite the sig-
nificance of greenness and weather conditions for active transport
among adults (Helbich et al., 2014; Fishman et al., 2015; Böcker et
al., 2016), little is known about how these natural environmental
factors shape children's mobility. Most studies either regard
weather as non-modifiable or consider weather conditions (e.g.,
precipitation) only on a daily (or even seasonal) basis (Børrestad
et al., 2011; Van Goeverden and de Boer, 2013), inappropriately
reflecting their instant effects on mode choice.

More research has been conducted on urban environmental
effects on children's ATS (Ewing and Cervero, 2010; Van Loon and
Frank, 2011). The built environment – subsuming urban mor-
phology, land-use, and street layout – is frequently operationalized
by means of density, diversity, and design measures (Saelens and
Handy, 2008; Ewing and Cervero, 2010). It is assumed that
neighborhoods with, for example, a higher density and a more
mixed land-use bring destinations (e.g., shops) closer together,
thereby shortening trip distances (Van Loon and Frank, 2011). This
increases the destination accessibility and promotes walking and
cycling. Neighborhoods with pronounced land-use diversity make
trip chaining via active transport modes more convenient (Saelens
and Handy, 2008). Regarding the design of the street layout, more
intersections yield a higher street connectivity, which increases
route opportunities (Giles-Corti et al., 2011). In contrast, well-
connected streets potentially attract more traffic which raises the
risk of pedestrian injury (Sirard and Slater, 2008). Even though
there is considerable knowledge about the impacts of built en-
vironmental features on adults, knowledge about the ATS of chil-
dren is still fragmented and inconclusive (Pont et al., 2009; Wong
et al., 2011a).

Inconsistent findings in past research may be due to the various
ways in which environmental context is delineated and contextual
variables are derived (Kwan, 2012). Contextual areas for deriving
environmental exposures (e.g., street intersection density) are of-
ten modeled with geographic information systems (GIS) as static
areas around residential/school location (Larsen et al., 2009; Su
et al., 2013), even though it is increasingly argued that not only the
conditions of the origin and/or the destination, but also the tra-
versed features of the taken route, are key (Badland et al., 2008;
Duncan et al., 2009; Kwan, 2012). To substitute actual routes,
Euclidean (Owen et al., 2012) or GIS-based shortest path analyses
(Schlossberg et al., 2006) are employed. However, children rarely
aim to minimize travel distance, and their route decisions are
determined by safety issues, route attractiveness, and opportu-
nities to meet classmates (Harrison et al., 2014). More importantly,
Harrison et al. (2014) highlight significant differences in environ-
mental exposures between the shortest and the actual paths. A
promising solution is to track children with a global positioning
system (GPS; Kerr et al., 2011), which is increasingly accepted as a
reliable method to collect data on children's space–time mobility
(Bohte and Maat, 2009; Dessing et al., 2014).

In addition to these exposure operationalization challenges,
extra uncertainty about the validity of environmental correlates
arises due to a North American and Australian centric research
focus (McMillan, 2005; Pont et al., 2009; Su et al., 2013). Because
of substantial differences in urban geographies, findings based on
these regions may not be easily transferred and generalized to
European areas (Panter et al., 2010; Lu et al., 2015). European cities
have higher densities, distinctive land-use diversities, and lower
levels of reliance on automobiles. Even within Europe, the Neth-
erlands needs special attention as it has the world's highest level
of bicycle usage (Pucher and Dijkstra, 2003) and cycling is em-
bedded in people's daily lives not only for leisure but also for
utilitarian trips (De Vries et al., 2010a).

Although there is a limited number of European studies
(Bringolf-Isler et al., 2008; D’Haese et al., 2011; Broberg and
Sarjala, 2015) and Dutch studies (De Vries et al., 2010a; Aarts et al.,
2013; Van Goeverden and de Boer, 2013; Dessing et al., 2014), the
present research addressed the aforementioned shortcomings and
is among a few studies to consider the impact of not only built
environmental exposures, but also natural environments (i.e.,
weather, green space) on children's actual commuting paths to
and from school. The two research questions were:

a) Are weather conditions at the trip departure time a significant
behavioral determinant influencing ATS?

b) Are the exposed natural and built environmental features en
route significant determinates of ATS?

To answer these questions, we monitored children's commut-
ing behavior by means of GPS and transport mode choice to and
from six schools located in the Netherlands. The research out-
comes dealing with the built environment are of fundamental
importance for both urban planners and health policymakers who
wish to develop strategies and interventions that will system-
atically promote active transport and thus a healthier urban living
(Sallis et al., 2015).
2. Methods

2.1. Study design

This study was part of a project titled “SPACE: Spatial Planning
and Children's Exercise” (De Vries et al., 2010a, 2010b) and focused
on a subset of 97 children aged 6–11 years in six elementary
schools located in five neighborhoods in mid- to large-sized Dutch
cities (Amersfoort, Haarlem, Hengelo, Rotterdam, and Vlaardin-
gen) for which GPS data was available. Children were only in-
cluded when living in the neighborhood where the school was
located. The schools are located in neighborhoods with similar
demographic profiles (e.g., ethnicity, social status) but they varied
in size and population density. Teachers invited children to par-
ticipate, and their parents or legal guardians were asked for
written consent.

The children’s daily movements were monitored between De-
cember 2008 and April 2009 for eight consecutive days during a
regular school week. To record their spatiotemporal trajectories,
each child was equipped with a GPS unit (Travel recorder X, BT-
Q1000X, QStarz International Co) with a sampling interval of 5 s
(Kerr et al., 2011). After distributing the GPS receivers during
school hours, the children were briefed by a skilled researcher on
how to wear and operate the device. A manual was handed to their
parents/guardians. To guarantee uniform data collection, all chil-
dren carried the GPS on an elasticated belt around their hips from
the morning till bedtime. They removed the device temporarily
only to perform activities that would otherwise damage the re-
ceiver (e.g., showering). The ethics committee of the Leiden Uni-
versity Medical Center has approved the present study.

2.2. GPS-based trip detection, transport mode classification

GPS loggers collect time–location data under free living con-
ditions (Kerr et al., 2011). Neither individual trips nor selected
modes are gathered directly and require data processing. As Wu
et al. (2011) report no striking differences between rule-based and
computational approaches, we applied the former (Sterkenburg
et al., 2012), as it is more intuitive. First, we used the cluster de-
tection algorithm of Maas et al. (2013) to distinguish between
stationary activity places (e.g., residential and school locations)
and conducted trips. For trip detection from home to school, we
identified the first GPS data point within a 40 m radius of the



Fig. 1. Accident risk exposure along a walking trip (brighter cells receive a lower
weight).
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known residential address. The procedure queried consecutive
locations chronologically until the first data point within 40 m of
the known school location was reached, at which point it was fine-
tuned. If the search detected the home instead of the school lo-
cation first, the trip was labeled non-educational and the algo-
rithm was restarted. To identify trips back home, the procedure
was repeated from the opposite direction (i.e., from school). Trips
with other destinations were not included unless this destination
was a stop-over between home and school or vice versa.

Secondly, the transport mode of each trip was classified. As
urban traffic flows show stop-and-go patterns, the following
combinations of average and maximum speeds were utilized
(Dessing et al., 2014):

a) A walking trip has an average speed of o10 km/h and a
maximum of o14 km/h.

b) A cycling trip has an average speed of o25 km/h and a top
speed of o35 km/h.

c) Motorized trips have a maximum speed of o150 km/h.

In a field experiment the approach classified, on average, 90% of
the transport modes correctly (Sterkenburg et al., 2012). Finally,
walking and cycling trips were re-coded as active modes and motor-
ized trips as passive modes, serving as a response variable in sub-
sequent analyses. In addition, each trip1 was enriched with its length
in meters, time at day, and duration in minutes.

To capture exposures along each trip and around the residental
and the school location, we conducted GIS-based buffer analyses.
Although buffer sizes are arbitrary, we followed Panter et al. (2010)
and Wiehe et al. (2013) in using a 100 m buffer width. This buffer
size also represents building blocks in the study areas satisfactorily
(Fig. 1). The buffered trips were then overlaid and intersected with
built environmental features computed on a 100�100 m grid
superimposed on the study sites. Such cell resolution is detailed
enough to retain urban form (e.g., squares) while providing a large
enough sample size to derive exposure variables. Because some
cells were only partially included in the buffers and are thus less
influential, an extra (down-)weighting was incorporated (Badland
et al., 2008) before the average individual exposures were de-
termined. To illustrate this approach, Fig. 1 shows the weighted
accident risk as an example.
2.3. Natural environmental variables

Hourly meteorological data at the start of each trip was ob-
tained from the Royal Dutch Meteorological Institute (2013). For
each city, weather data of the closest station was matched with
each trip date and time. We considered on an hourly basis four
weather conditions that are frequently used in transport studies
(Helbich et al., 2014), namely a) temperature in 0.1 °C, b) global
radiation in J/cm2, c) mean wind speed in 0.1 m/s, and d) pre-
cipitation in mm re-coded as dummy variable.

Logarithmically transformed proportion of green space was
determined for each 100 m cell. Data on greenery with a spatial
resolution of 25 m were taken from the Landelijk Grondgeb-
ruiksbestand Nederland 6 (LGN; Hazeu et al., 2010) for the year
2007/08. We comprehended green space not only as natural (e.g.,
woods, grasslands) but also as artificially installed greenery (e.g.,
parks), which is of particular importance in urban neighborhoods.
1 Note that trips other than to/from school and home, outliers with a trip
distance longer than 15 km or less than 50 m (e.g., due to GPS signal inaccuracies
when leaving indoor), as well as weekend trips, were not further considered.
2.4. Built environmental variables

To capture the complexity of the built environment, 10 urban
form measures were derived for each grid cell (Table 1). Following
Larsen et al. (2009), we represented land-use mix through the
(not-normalized) Shannon entropy index utilizing LGN data. In-
terpretatively, a cell with an index value of 0 refers to only one
land-use class, while higher index values refer to a richer set of
land-use classes per cell (Turner, 1990). A similar entropy index
was calculated for the usage of buildings per cell (Broberg and
Sarjala, 2015). Data describing the building usage was collected
from the Dutch Basisregistratie Adressen en Gebouwen (BAG,
2013).

Density was reflected through the total length of street cen-
terlines. The design of the street layout was measured as the pro-
portion of cul-de-sacs, 3-way, 4-way, and 44-way intersections
relative to all intersections within a cell (Schlossberg et al., 2006).
Since these measures are descriptive, they do not provide insights
into the local connectivity (accessibility) of street segments in re-
gard to the surrounding street network (Cooper et al., 2014). Thus,
we used the following two space syntax-based indices (Chiaradia
et al., 2013): a) The closeness index, which describes the nearness/
farness by measuring how difficult it is to go from location i to all
other locations on the street network (less accessible street seg-
ments should lower ATS); and b) the betweenness index, which
quantifies which street segment will be busiest to move from lo-
cation i to all other locations along the shortest path (well-con-
nected street segments have a higher index value and should in-
crease ATS). These analytics were set up with catchment radii of
200 m, reflecting building block structures while avoiding over-
generalization. As both statistics were computed for street seg-
ments, they were aggregated to the 100 m cells by taking the mean.
Street indicators utilize Navteq 2012 street data.

The aforementioned built environmental measures focus on
the horizontal dimension, and fail to describe the vertical di-
mension of the urban morphology. We therefore developed a
morphometric measure called the building-roughness index,
which reflects height differences between a building and its
neighbors. For input data we used the Actueel Hoogtebestand
Nederland (AHN, 2008), which provides a surface model describ-
ing the topography of the built environment gathered through
airborne laser scanning (Helbich et al., 2013). For realization, GIS-
based focal map algebra functions are applied (Riley et al., 1999).
High index values point to a pronounced building height differ-
ence, which hypothetically stimulates ATS more than uniformly
high buildings (Aarts et al., 2013).



Table 1
Descriptive statistics stratified by active and passive modes on a trip level.

Variable description Passive mode Active mode P-val.

n 53 570
Personal char.
Age (years) (median (SD), IQR) 7 (1.7) 6/9 9 (1.4) 8/10 o0.001
Sex (female¼0, male¼1) (%) 21/32 39.6/60.4 356/214 62.5/37.5 0.002
BMI categories (%) 0.013

Normal 47 88.7 397 69.6
Overweight 2 3.8 76 13.3
Obesity 4 7.5 97 17.0

Trip char.
Trip direction (home to school¼1, school to home¼2) (%) 28/25 52.8/47.2 279/291 48.9/51.1 0.691
Logged trip distance (median (SD), IQR) 6.8 (0.9) 6.5/7.1 5.6 (1.4) 4.3/6.1 o0.001
Weekday (%) 0.036

Monday 8 15.1 103 18.1
Tuesday 5 9.4 109 19.1
Wednesday 8 15.1 63 11.1
Thursday 20 37.7 121 21.2
Friday 12 22.6 174 30.5

Traffic safety
Availability of a major road or highway within a 100 m cell (1¼yes, 0¼no) 0.0 0.0/0.1 0.0 0.0/0.01 0.014
Euclidean distance to major roads/highways per 100 m cell (meters) (median (SD), IQR) 182 (121) 100/231 154 (116) 87/243 0.602
Proportion of cycling paths length per street length per 100 m cell (median (SD), IQR) 1.1 (16.4) 0.0/10.8 1.0 (16.0) 0.0/13.3 0.760
Probability of fatal/no-fatal accidents per 100 m cell (normalized kernel density estimation)
(median (SD), IQR)

0.2 (0.2) 0.1/0.3 0.1 (0.2) 0.1/0.2 0.003

Weather and natural environment
Hourly mean wind speed (0.1 m/s) (median (SD), IQR) 40 (20) 30/60 50 (21) 30/60 0.003
Temperature (0.1 °C) 47 (57) 13/89 63 (41) 41/87 0.017
Global radiation (J/cm²) during the hourly division (median (SD), IQR) 28 (66) 11/112 32 (69) 8/108 0.861
Hourly precipitation (1¼yes, 0¼no) (%) 41/12 77.4/22.6 447/123 78.4/21.6 0.996
Logged proportion of green space per 100 m cell (median (SD), IQR) 0.6 (1.1) 0.3/1.6 0.8 (3.9) �6.9/1.7 0.022

Built environment
Proportion of cul-de-sacs per 100 m cell (median (SD), IQR) 7.1 (5.7) 2.5/10.2 3.7 (8.0) 0.0/7.5 o0.001
Proportion of 3-way intersections per 100 m cell (median (SD), IQR) 34 (7.2) 26.5/36.3 30.6 (8.7) 21.2/35.1 0.049
Proportion of 4-way intersections per 100 m cell (median (SD), IQR) 5.2 (3.2) 2.7/8.0 5.0 (3.5) 3.7/8.4 0.404
Proportion of 44-way intersections per 100 m cell (median (SD), IQR) 0.0 (0.9) 0.0/0.9 0.0 (1.3) 0.0/1.3 0.127
Shannon land-use diversity index per 100 m cell (median (SD), IQR) 0.2 (0.1) 0.0/0.2 0.1 (0.1) 0.0/0.2 o0.001
Shannon building usage mix per 100 m cell (median (SD), IQR) 0.1 (0.1) 0.1/0.2 0.1 (0.1) 0.0/0.2 0.946
Building-roughness index (normalized) per 100 m cell (median (SD), IQR) 0.3 (0.2) 0.2/0.3 0.2 (0.1) 0.1/0.2 o0.001
Closeness index per 100 m cell (median (SD), IQR) 74.7 (23.2) 70.9/78.4 63.1 (9.0) 56.0/70.2 o0.001
Betweenness index per 100 m cell (median (SD), IQR) 15.4 (5.7) 13.8/17.5 23.8 (6.8) 15.1/27.0 o0.001
Street density per 100 m cell (median (SD), IQR) 116.0 (12.6) 105.0/125.0 107.0 (24.5) 89.1/122.0 0.005

Note: SD¼standard deviation. IQR¼ interquartile range.
P-values for categorical variables are based on Chi2 tests, while for continuous ones Wilcox tests were used. Some variables were log transformed to receive more Gaussian-
like distributions. To save degrees of freedoms, BMI classes are modeled as numeric variable. Other variables (e.g., ethnicity) are not considered due to several missing values.
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2.5. Personal characteristics and traffic safety control variables

The parents/guardians of the school children who participated
in the study completed a survey, which provided the gender, age,
and ethnicity of each subject. The children's height and weight
were registered with a digital scale (Seca 812, Vogel & Halke
GmbH & Co) and a microtoise (Stanley 04–116). These data were
used to determine an independent variable reflecting sex- and
age-specific body mass index (BMI, kg/m2) classes, namely normal
weight, overweight, and obesity (Cole et al., 2000).

The traffic safety control variables were a compromise between
data availability and literature suggestions (Pont et al., 2009; Wong
et al., 2011a; Yeung et al., 2008). Firstly, a dummy variable indicated
whether a cell was traversed by a major road or highway (extracted
from Navteq data). Secondly, we determined the Euclidean proximity
to major roads. Thirdly, as traffic accidents are perceived as strong
barriers to walking or cycling (Panter et al., 2010), data on registered
fatal and non-fatal road accidents for 2009 were obtained from the
Basisregister Onderwijs (Ministry of Infrastructure and the Environ-
ment). To model accident risk, kernel density estimation (Bailey and
Gatrell, 1995) with an adaptive Gaussian kernel was applied. Higher
values refer to a more pronounced accident probability (Fig. 1).
Fourthly, the proportion of cycling path (extracted from Open-
StreetMap 2014; Jokar Arsanjani et al., 2015) relative to the overall
street length per cell was determined. Sidewalks are ubiquitous in the
investigated neighborhoods and were thus excluded from further
consideration. No reliable geodata on pedestrian crossings (with traffic
lights) were available.

2.6. Statistical analyses

Initially, to investigate differences between active and passive
modes, we employed Chi2 tests for categorical variables and Wil-
cox tests for continuous variables. As highlighted by Oliver et al.
(2014), the joint consideration of multiple built environmental
variables provokes multicollinearity problems in regressions (Lu
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et al., 2015). This makes individual exposure effects hardly as-
signable. To circumvent this, one could remove correlated vari-
ables – resulting in a loss of information – or derive latent vari-
ables, using principle component analysis. However, individual
variable effects remain unidentifiable. We therefore followed an
alternative strategy (Berrigan et al., 2014) by pre-screening the
associations between the response (i.e., ATS yes/no) and the pre-
dictor variables with a binomial elastic net (Zou and Hastie, 2005).
This approach is robust against highly correlated variables and
allows selection of the relevant exposures.

Subsequently, the impact of pre-screened exposures on the
probability of children's ATS was determined by means of general-
ized linear mixed models with a logit link function (GLMM; Gelman
and Hill, 2007). GLMMs account for the complex correlation struc-
tures arising as trips are taken repeatedly by the same child and are
nested within schools, otherwise having serious consequences for
statistical validity. We first determined an appropriate random effect
structure through model comparisons of the full models utilizing the
Akaike information criterion (AIC; Gelman and Hill, 2007) score. The
following correlations were tested: a) trips nested in children, b)
children nested in schools, and c) trips clustered in children and
within cities. Variables were retained in the regression, being sig-
nificant at the 0.1 level. To determine the goodness-of-fit, marginal
and conditional pseudo-R2s were investigated. The former refers to
the variance explained by the fixed effects while the latter comprises
both the fixed and the random effects.
3. Results

The median age of the 97 participating children was 9 years.
Roughly 60% of the subjects were girls. The majority (71%) of the
children had a normal BMI score; 13% were overweight and 16% were
obese. Approximately a tenth of all trips were made by automobile or
public transport. The trip distances were rather unevenly distributed,
with more shorter trips. The overall median trip distance was 284 m
with a standard deviation (SD) of 2221 m, while the median ATS
distance was 264 m (SD¼923 m) and the motorized travel distance
908 m (SD¼6771 m). With po0.001, the Wilcoxon test refers to
significant distance differences between active and passive modes.
No differences in trip length were found for trip direction (from or to
school) pointing to a well-balanced sample (51% vs. 49%). More de-
tailed descriptive statistics are shown in Table 1.

Bivariate relationships between the environmental variables were
tested in advance. Spearman's correlation coefficients show some
pronounced associations not only between the built environment
variables, but also between a few weather variables. In order to reduce
multicollinearity and remove predictors not related to the response
(i.e., ATS yes/no), we employed an elastic net. We used a penalty of 0.5,
being a compromise between ridge (α¼0) and lasso penalty (α¼1).
Other hyperparameters of the elastic net were optimized via 10-fold
cross-validation. The elastic net suggested that 13 out of 25 variables
are associated with ATS. Variables such as day of the trip, trip direction,
precipitation, green space, building usage mix, and land-use diversity
were dropped at this stage. Re-running Spearman's coefficients con-
firmed a marked reduction of correlations between the remaining
predictors. These 13 variables served as input for GLMMs.

To determine the relative impact of different exposure groups,
the GLMMs were adjusted iteratively by adding variables group-
wise. Model 1 is based on personal characteristics, trip character-
istics, and traffic safety variables. Model 2 also considers weather
characteristics,2 while Model 3 extends Model 2 through built
2 Other variables describing the natural environment were not selected by
means of the elastic net.
environmental variables. After testing different random effect
structures using AIC scores, all GLMMs were estimated with a
subject-specific random effect (i.e., trips nested within persons). To
receive the most parsimonious models, insignificant factors at the
0.1 level were eliminated sequentially (De Vries et al., 2010a;
Oliver et al., 2014). Table 2 depicts the model results.

The base model (Model 1) comprises two predictors. With an
estimated parameter of 0.761, age is significantly positively asso-
ciated with ATS (p¼0.022). Logged trip distance shows a weak but
significant negative association (β¼�0.512, p¼0.062): As dis-
tance increases, the likelihood of ATS decreases. A weak negative
association is found for major roads (β¼�9.855, p¼0.099). After
variable selection, no weather variable seems to be related with
ATS and the reduced Model 2 is similar to Model 1. In Model 3, age
remains an important variable, although the correlation (β¼0.652,
p¼0.029) is slightly reduced. In contrast to Model 2, trip distance
loses its significance and cycling path availability (β¼0.046,
p¼0.053) replaces the variable major roads in Model 2. Further-
more, while the closeness index shows a strong negative asso-
ciation (β¼�0.118, p¼0.001), the betweenness index shows a
weak positive one with ATS (β¼0.116, p¼0.092). However, both
measures indicate that a less accessible network decreases ATS,
and that well-connected streets increase ATS. The marginal R2

increases in Model 3 compared to Model 2 from 0.234 to 0.364,
which is a marked increase (35%). In addition, the AIC score drops
from 222 to 211. Both measures refer to better model fits when
built environmental features are included. Still in Model 3, no ef-
fects are found for the weather conditions on ATS.
4. Discussion

4.1. Empirical findings

The overwhelming majority (91%) of the trips were conducted
on foot or by bicycle, which can partly be explained by the fact that
only children that lived in the same neighborhood as their school
was located were included in this study. As anticipated, this pro-
portion is in sharp contrast to the finding of North American
studies (McDonald, 2008). Wong et al. (2011b), for instance, report
only 47% school-bound and 38% home-bound ATS trips for Cana-
dian children. Contrasting our ATS frequency with European re-
search, the Netherlands still shows a high ATS share. For example,
78% ATS trips were found for children aged 6–14 years in Swit-
zerland (Bringolf-Isler et al., 2008) and 59% for 11–12-year-old
Belgian children (D’Haese et al., 2011). The low share of motorized
trips in our study is consistent with a Dutch questionnaire-based
study by Aarts et al. (2013), which showed that only 10% of the
trips within a distance of 1 km from school were made by passive
modes. Explanations for such a high usage of active modes are the
Dutch-specific cycling mentality, whereby children start cycling at
an early age, and well-supported infrastructures (e.g., cycling
paths). Other external factors relevant to parental chauffeuring
might be higher automobile ownership costs, and higher fuel
prices in the Netherlands compared to North America (Pucher and
Dijkstra, 2003). Furthermore, Dutch elementary schools are well-
embedded in or near residential areas (Aarts et al., 2013), and in
the present study, children were selected on the basis of having
their residence in the same neighborhood as where the school was
located. This also explains the short distances and transport mode
choice. Thus, it is not surprising that the distance from home to
school is, at 284 m, generally shorter than the 2.5 km reported by
Yeung et al. (2008) for Brisbane, Australia. For such short distances,
the automobile is less competitive (Van Goeverden and de Boer,
2013). Our study does not support a significant number of mode
choice switchers from the morning to the afternoon (5.6% for



Table 2
Results of the fixed effects for the full and stepwise GLMMs (n¼623).

Full Model 1 Stepwise Model 1

Coef. Std. err. Z-val. P-val. Coef. Std. err. Z-val. P-val.

Intercept �0.016 3.720 �0.004 0.997 1.239 3.211 0.387 0.670
Personal char.
Age 0.754 0.315 2.393 0.017nn 0.761 0.331 2.299 0.022nn

Sex �0.930 0.913 �1.018 0.309
BMI 0.536 0.744 0.720 0.471

Trip char.
Logged distance �0.598 0.285 �2.101 0.036nn �0.512 0.274 �1.868 0.062n

Traffic safety
Major road �9.117 5.698 �1.600 0.110 �9.855 5.967 �1.652 0.099n

Cycling path 0.026 0.025 1.007 0.314
Marginal R2 0.322 0.234
Conditional R2 0.737 0.741
AIC 224 222

Full Model 2 Stepwise Model 2

Coef. Std. err. Z-val. P-val. Coef. Std. err. Z-val. P-val.

Intercept �0.548 3.425 �0.160 0.873 1.239 3.211 0.387 0.670
Personal char.
Age 0.696 0.283 2.457 0.014nn 0.761 0.331 2.299 0.022nn

Sex �0.852 0.814 �1.046 0.296
BMI 0.571 0.676 0.845 0.398

Trip char.
Logged distance �0.640 0.271 �2.363 0.018nn �0.512 0.274 �1.868 0.062n

Traffic safety
Major road �10.365 5.285 �1.961 0.049nn �9.855 5.967 �1.652 0.099n

Cycling path 0.278 0.023 1.207 0.228
Weather char.
Wind 0.008 0.014 0.569 0.569
Temperature 0.009 0.007 1.208 0.227
Marginal R2 0.371 0.234
Conditional R2 0.711 0.741
AIC 226 222

Full Model 3 Stepwise Model 3

Coef. Std. err. Z-val. P-val. Coef. Std. err. Z-val. P-val.

Intercept 1.960 3.712 0.528 0.597 3.678 3.519 1.045 0.296
Personal char.
Age 0.579 0.245 2.359 0.018nn 0.652 0.298 2.188 0.029nn

Sex �0.835 0.738 �1.131 0.258
BMI 0.654 0.691 0.946 0.344

Trip char.
Logged distance 0.307 0.418 0.734 0.463

Traffic safety
Major road 3.571 6.407 0.557 0.577
Cycling path 0.055 0.023 2.367 0.018nn 0.046 0.024 1.935 0.053n

Weather char.
Wind 0.012 0.015 0.827 0.408
Temp 0.008 0.006 1.217 0.224

Built environment
3-way intersections �0.045 0.059 �0.765 0.444
Roughness index �5120 4.711 �1.087 0.277
Closeness index �0.097 0.057 �1.706 0.088n �0.118 0.037 �3.176 0.001nnn

Betweenness index 0.132 0.075 1.757 0.079n 0.116 0.069 1.688 0.092n

Street density �0.020 0.027 �0.718 0.473
Marginal R2 0.474 0.364
Conditional R2 0.691 0.725
AIC 220 211

Signif. codes:
n o0.1.
nn o0.05.
nnn o0.01.
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passive and 2.2% for active transport modes); this is in line with
Broberg and Sarjala (2015) study for Helsinki (Finland). This im-
plies that chauffeuring children to school one-way is less attrac-
tive, and that mode decisions are made for both directions in the
Netherlands.

With respect to the multivariate models, Table 2 shows that
only a limited number of variables are significantly related to ATS,
replicating Oliver et al. (2014). When further adjusted with natural
environmental exposures, both Model 1 and Model 2 show that
trip distance is a significant predictor, as previously found by, for
example, Bringolf-Isler et al. (2008), Larsen et al. (2009), Aarts
et al. (2013) and Dessing et al. (2014). This result intuitively makes
sense, in that with an increasing distance, the probability of ATS
decreases and the attractiveness of motorized transport increases.
From a planning point of view, home-school distance is a factor
that needs particular attention since it can be directly influenced
by school locational policies. However, once the built environment
is taken into account (Model 3), distance is no longer a significant
determinant. This might be because built environmental char-
acteristics absorb distance effects through increased architectural
diversification, causing longer distances to be perceived as less
discouraging.

The personal characteristics indicate that gender is insignif-
icant. However, in general, the findings about sex are inconsistent
across the litrature (Faulkner et al., 2009). For example, whereas
van Goeverden and de Boer (2013) argue that girls have a higher
security risk than boys and are less likely to use ATS, others dis-
agree. Moreover, we cannot confirm that children who actively
commute have lower BMI scores than inactive children (Faulkner
et al., 2009). There are two reasons for this: Firstly, our sample has
an insufficiently low variance to detect differences (Table 1), and
secondly, the BMI effect might be moderated by distance, meaning
that active commuters tend to live closer to school. In contrast to
gender and BMI, the variable age is persistently positively asso-
ciated with ATS across all models, which is in line with a review by
Mitra (2013) consistently reporting a positive association. Faulkner
et al. (2009) state that older children have an increasingly auton-
omous mobility behavior and are less dependent on their parents.
Such an increase in independent travelling is also related to chil-
dren's developing ability to perceive and cope with risky traffic
situations along their school route (Mitra, 2013).

Our models show that traffic safety is of importance. The
variables operationalizing the exposure to major roads/highways
(Model 2) and cycling path availability (Model 3) within a buffered
trip, have a significantly negative and positive correlation, re-
spectively, with ATS (Pont et al., 2009). The explanations for both
variables are clear: Being separated from busy roads reduces the
risk of being injured when crossing busy streets, and cycling in-
frastructure reduces parental concerns about traffic safety (Pucher
and Dijkstra, 2003; Pont et al., 2009). This is in line with van Kann
et al. (2015). Even though traffic safety is essential for ATS (De
Vries et al., 2010a), Aarts et al. (2013) found no significant asso-
ciation for the Netherlands. Although Larsen et al. (2009) used the
perceived quality of sidewalks and cycling lanes instead of objec-
tive measures, they report a supporting effect for the USA.

In this study weather variables are not related to children's
ATS. This finding contradicts not only transport studies that argue
that, for adults, active transport is highly sensitive with respect to
poor weather conditions (Helbich et al., 2014; Böcker et al., 2016),
but also a few school travel studies (Oliver et al., 2014) that found
univariate, but not multivariate, associations between daily
weather and ATS. Lacking associations are supported by Mitra
and Faulkner (2012), who found no seasonal or weather effects
for Toronto, Canada. It could be argued that significant seasonal
or weather effects in previous studies might be statistical arti-
facts due to not considering exact hourly micro-climate
characteristics before conducting a trip (Børrestad et al., 2011).
An alternative explanation could be that urban morphology
forms barriers to wind and precipitation, offering sufficient
shelter from these inconveniences to make the actual weather
less relevant to habitual, obligatory trips. In contrast to De Vries
et al. (2010a) and van Kann et al. (2015), the elastic net indicates
that the proportion of green space is unrelated to ATS. This
finding is intuitive for educational commuting, because children
face time constraints when travelling to or from school.

Built environmental variables (i.e., the closeness and betwee-
ness index) describing neighborhoods on a micro-scale are asso-
ciated with ATS. The vertical dimension of buildings en route does
not influence ATS in our study. This can be explained by the lim-
ited variation in building heights. This is unexpected because Aarts
et al. (2013) report that the degree of high-rise versus low-rise
buildings matters. However, as their indicator is based on a
questionnaire, it is not objectively and consistently measured. Si-
milarly, land-use mix and building diversity are insignificant in our
study. This lack of significance seems rational, as children's prime
motive is commuting to/from school, and not chaining trips. While
land-use mix brings more destinations close by and increases the
likelihood of ATS for utilitarian trips among adults, this association
is less clear for children (Larsen et al., 2009). Previous results
concerning land-use and building diversity on children's ATS are
mixed (Wong et al., 2011a). Our findings replicate those of, for
example, Ewing et al. (2004), who found no significant relation-
ship for the USA. Compared to studies that largely measured the
built environment by means of descriptive measures of street
patterns (Panter et al., 2010; Wong et al., 2011a), both newly in-
troduced space syntax-based variables emerged as relevant de-
terminants. Intuitively, it is expected that well-connected street
layouts that have less severance encourage ATS by creating in-
creased interaction possibilities and more meeting points with
schoolmates (Cooper et al., 2010; Giles-Corti et al., 2011). That is
exactly what Model 3 confirms. While the closeness index in-
dicates that a less accessible network lowers ATS, the betweenness
index indicates that well-connected streets increase ATS.

4.2. Strength and limitations

This study contributes to the very scarce evidence of exposure
assessment along actually taken routes to/from school among
children. As shown by Harrison et al. (2014), our GPS approach
represents environmental features more realistically than utilizing
shortest paths. A further key strength of this study is the con-
sideration of a rich set of built environmental features on a spatial
micro-scale, describing not only the horizontal dimension of
neighborhoods, but also the vertical urban morphology (i.e.,
building roughness). Even though building roughness turned out
to be insignificant, such an indicator has never been analyzed
before among children's ATS. Although a few previous studies (Van
Goeverden and de Boer, 2013; Oliver et al., 2014) included daily
weather in their study designs, to the best of our knowledge, this
is the first study to consider exact and objectively measured
weather conditions before trip departure. Another major strength
is the statistically sound analysis, which devoted precise attention
to correlations between exposures as called upon by Wong et al.
(2011a), while permitting the determination of individual effects
instead of employing a difficult to interpret latent variable (e.g.,
walkability index).

However, the study also has some limitations. In contrast to
longitudinal studies, the present models are cross-sectional and
cannot deal with self-selection issues. That is, it remains unclear
whether environmental features affect ATS or whether the sub-
jects' parents choose neighborhoods that support active mobility
behavior (Lee et al., 2009). Nevertheless, Saelens and Handy



M. Helbich et al. / Health & Place 39 (2016) 101–109108
(2008) stress the importance of cross-sectional studies in order to
guide researchers toward relevant variables. Although the models
are grounded on a sufficiently large number of trips to achieve
reliable results (n¼623), the number of children tracked is only
average. However, our sample was nearly twice as large as that of
Wiehe et al. (2013). The research design only considers children
who lived and attend a school within the same neighborhood. Like
other studies (Aarts et al., 2013), the data collection comprised
only a restricted period (i.e., winter and spring) and did not cover
all seasons. Given that school travel is a decision made by both
children and parents in this age group (Van Goeverden and de
Boer, 2013), household variables (e.g., household income, car ac-
cess, employment, number of siblings) might also be essential for
mode choice. It would be informative to test such factors, even
though studies have so far been inconclusive concerning their
importance (Oliver et al., 2014). Of similar importance are vari-
ables representing parental perceptions (e.g., stranger danger and
safety) (Mitra, 2013), which might interact with other variables.
Finally, the general limitations of GPS (e.g., signal interference)
remain, although they were attenuated during this study through
careful data pre-processing.

Besides tackling these shortcomings, an extension of this study
is a sensitivity analysis regarding buffer types and widths and how
these parameters influence the statistical results. It would be in-
teresting to study whether the association between distance and
ATS is different when children living further away from school are
included in the study population. Future work should also in-
vestigate walking and cycling to school separately in order to ex-
plore differences in the correlates and their magnitudes (De Vries
et al., 2010a; Broberg and Sarjala, 2015). Another promising ex-
tension is the consideration of non-school trips (Smith et al.,
2012). De Vries et al. (2010a) showed that built environmental
correlates of children's walking and cycling behavior differ by
purpose (e.g., to school, for recreation) and by commuting mode
implying a behavior-specific approach for interventions and for
future, preferably prospective, studies.
5. Conclusions

This study examined the impact of dynamic natural and built
environmental exposures on Dutch children's mode choice when
travelling to/from school. To the best of our knowledge, it is the
first study to explore a) not only horizontal urban form char-
acteristics (i.e., street layout) but also vertical ones (i.e., urban
morphology) on a micro-level along children's travel routes as-
sessed with GPS, and b) hourly weather conditions before leaving
home or school. As such environmental exposures during transit
are largely disregarded, this research adds significantly to the
literature.

Whereas distance is inversely associated with active transport
to school (ATS) when only personal, trip, and weather character-
istics are considered, the opposite is true when the models are
adjusted for traversed urban environments. Given the actual
school locations, it can be hypothesized that distance is no longer
perceived as a constraining travel determinant when moving
through urban landscapes. In particular, local street connected-
ness, investigated through space–syntax based indices, stimulates
ATS as such connectedness enlarges children's interaction possi-
bilities and increases their number of meeting points. Neither
green space nor actual weather conditions turned out to be sig-
nificant, suggesting that the former might be more relevant to
playing after school. Weather effects seem to be alleviated by the
shelter provided by urban morphology or that children simply do
not have an alternative mode choice and need to travel actively
independent of the actual weather.
Our findings are promising for decision-makers, offering them
a dimension to influence children's health outcomes through ATS
and well-thought-out planning concepts. We recommend place-
based planning strategies wherein good accessibility is key. The
results are also a call to politicians not to remove schools from
local communities, because doing so will increase the pressure not
to rely on active transport modes. On the contrary, decision-ma-
kers are advised to provide well-designed cities that will en-
courage physical activity in schoolchildren.
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