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Abstract An important feature of BDI agent systems is number of different ways in which
an agent can achieve its goals. The choice of means to achieve the goal in made by the
system at run time, depending on contextual information that is not available in advance. In
this article, we explore ways that the user of an agent system can specify preferences which
can be incorporated into the BDI execution process and used to guide the choices made.
For example, a user of a travel system can specify a preferred airline, or a particular kind of
accommodation, and the system will use this information to satisfy the goal and preferences,
if possible. Preferences are specified in terms of properties of goals and resource usage,
and are used to make two types of decisions: (a) select a plan when there is a choice and
(b) determine the order in which subgoals of a plan should be pursued when their order is
not fixed by design. We have implemented our preference framework in Jadex, and provide
detailed case studies within the context of a holiday travel agent application.

Keywords Agent programming languages · Reasoning (single and multiagent) · Preference
reasoning

1 Introduction

The Belief-Desire-Intention (BDI) [22] model of agency is a popular agent development
paradigm for developing complex applications. The agents are built using cognitive concepts
such as goals, plans and beliefs. A typical BDI agent is equipped with a pre-defined set of
plans which are recipes for achieving its goals. An agent generally has several plans that
could be utilized to achieve a goal, and the choice is often dependant on the agent’s beliefs.
Plans generally contain subgoals, which are in turn handled by other plans. Hence, there are
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generally several choices of plans to be made when achieving a particular goal. This means
that the execution of a BDI agent can be thought of as a sequence of choice points, where
each choice point involves choosing the next plan to be executed.

A key feature of these ‘intelligent’ agents, is the way in which the agent deliberates
over its choices and how it manages the consequences of these decisions. For example,
a travel agent that is asked to book a holiday may subdivide this task into two subgoals
of booking accommodation and booking transport. If there are 5 different accommodation
venues (possibly involving hotels, bed-and-breakfast and backpacker venues) and 6 different
means of transport (such as two different trains and four different airlines), there are a total
of 30 different combinations that may be used by the agent to achieve the goal. However, not
every such combination may be available; for instance, a given flight may arrive too late for
bed-and-breakfast accommodation to be possible, or a given hotel or flight may be full. It is
precisely this uncertainty that motivates the use of the BDI approach, in that we can specify
what needs to be done (booking accommodation and transport) whilst leaving the agent free
to find the most appropriate combination of plans which will achieve this.

There has been work towards enabling BDI agents to make more rational choices, by
introducing mechanisms to detect and avoid conflicts [29], identify and take advantage of
synergies [27] and more recently on exploiting coverage and overlap measures for plan
selection [28]. In this article we further this research and explore the use of preferences in
the agent deliberation process.

In practice, it is common for the user to want to specify some preferences for how the
goal should be achieved. For instance, in the travel example above, the user may wish to
specify a particular choice of airline (to take advantage of a frequent flyer membership),
or that it is preferable to travel by train and spend any money saved on a better class of
accommodation. Note that this extra information is included as a preference rather than a
goal since, it is acceptable to satisfy the goal without satisfying the preference. For example,
if the user prefers to fly on Dodgy Airlines, but no such flights are available, then specifying
this as a preference means that the user can still have a holiday; specifying this as a goal
would mean that the user refuses to travel by any means other than Dodgy Airlines.

In this paper we present a way of allowing the user to specify his or her preferences over
the execution of particular goals independent of the plans (and subgoals). The preferences are
therefore not pre-programmed into the system and are provided by the user prior to execution.
We provide detailed mechanisms for the specification of user preferences and incorporating
them into the agent deliberation process. The key benefit of our approach is that the same
system can be used by different users with different preferences.

We achieve this by adapting the preference language LPP [1,2] to specify preferences
over properties of goals, which are a way of specifying what will occur when the goal is
achieved. For example, booking a 5∗ hotel gives the property accommodation class the value
5∗. The properties of a goal and their values are presented to the user, who can then use these
to specify preferences, without having to know how the goals may be achieved.

In our approach preferences are used for two different types of deliberation: (a) plan
selection and (b) subgoal ordering. Preferences can be used to choose plans that would satisfy
the user’s preferences over others. For example, if the user prefers 5∗ accommodation, then
the agent should first attempt to book accommodation of this type, i.e. choose plans which
book 5∗ hotels in preference to other plans. Similarly, when no ordering between subgoals
is specified, we provide mechanisms which can exploit this to enable greater preference
satisfaction. For example, to satisfy the preference of travelling by train and spending any
money saved on accommodation, it is necessary that the subgoal of booking the train be
performed first.
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Often the choices made early in the achievement of goals affect later choices. Hence it is
important to perform some form of look ahead analysis. Given that the future plan choices
are not pre-determined we build on the the notion of summary information [27,29] to derive
information at abstract levels that can be used at early stages of decision making.

This article is organized as follows. In Sect. 2 we discuss the use of preferences in agent
platforms and other fields within computer science, such as automated planning. In Sect. 3
we discuss how the user preferences are specified in our preference language and what
information is added to the agent specification to enable the user to express preferences. In
Sect. 4 we discuss our reasoning algorithms which are built into the reasoning component
of an agent to utilize the user preferences. In Sect. 5 we discuss our implementation of these
techniques in an existing agent platform, Jadex [21], and demonstrate our work with case
studies. Lastly, in Sect. 6 we discuss some of the limitations of our work and present directions
for future work.

2 Background and related work

Preferences can be regarded as soft constraints on the solution of a problem or the performance
of a system. These constraints are soft in the sense that they do not need to be satisfied although
solutions in which they are satisfied are preferred. Extensive research has been conducted
to utilize preferences in areas such as robotics and operations research. Preferences are
contrasted with hard constraints that must be satisfied in a solution or performance of the
system. The benefit of preferences in these areas of research is to improve the quality of the
computed solutions to the problem.

2.1 Preferences in related areas of research

In operations research, a constraint satisfaction problem looks at formulating solutions to a
problem as a set of hard and soft constraints. Each solution of the problem must satisfy the
hard constraints while the soft constraints should be satisfied as well as possible. For example,
a problem could be to pack some packages into a truck. In this problem a hard constraint could
be to pack fragile packages in safe positions and a soft constraint (i.e., preference) could be
to pack all packages in the smallest possible space. This preference aids in searching for a
solution that packs the packages most tightly in the truck which leaves more space for any
future packages that need to be transported.

In the area of automated planning, a sequence of actions, called a plan, needs to be found to
reach a particular situation from an initial situation. The specification of the available actions
with their effects, the initial situation and the desired situation is called a planning problem
and any plan that reaches the desired situation is a solution to this problem. Preferences can
be added to the problem specification to indicate that certain actions should be avoided or that
certain situations should not occur while trying to reach the desired situation. For example, a
cleaning robot should not move around needlessly or clean a part of the room that is already
clean. There can be many sequences of actions that result in a clean room but striving to
satisfy these preferences results in much more efficient plans being used.

Utilizing preferences in automated planning focuses on (1) expressing these preferences
in the specification of the planning problem and (2) computing plans that satisfy these pref-
erences as good as possible according to some metric. Some examples of languages for spec-
ifying planning problems are the well-known STRIPS language [8], the Planning Domain
Definition Language 3 (PDDL3) [9,12,13] and the language LPP [1,2], upon which the
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preference language in this work is based. The latter two of these languages support the
specification of preferences.

In these areas of research the basic approach is to compute one or more solutions to the
problem at hand (i.e., that satisfy the hard constraints or desired characteristics). Furthermore,
the solutions are then compared according to how well they satisfy the soft constraints or
preferences. For this a metric function is used which computes a numeric value based on how
well the preferences are satisfied. A simple metric function counts the number of preferences
that are satisfied. A high value for this metric function generally implies a good solution while
a low value generally implies a solution that does not satisfy the preferences very well. In
practice, more elaborate metric functions are used to make some preferences more important
than others.

The task of automated planning shares some similarity to intelligent agent systems in
the sense that both systems aim to bring about a certain outcome by taking actions. An
important difference between these systems is that in automated planning the course of
action is computed before any actions are taken whereas the actions of an intelligent agent
are computed during execution.

We do not follow the approach of computing possible executions beforehand and then
comparing them according to how well they satisfy the preferences. This would not be
feasible as the number of possible executions grows quickly [31] and the future plan choices
are unknown, which is the basic philosophy that underlies BDI agent systems. The ability
to adapt is one of the key benefits of an intelligent agent and the reason why we wish to use
preferences during an agent’s execution rather than before.

2.2 Preferences in intelligent agents

In the context of intelligent agents, preferences have been used for, e.g., controlling the
selection of plans and logical reasoning about actions to take. Preferences have also been
used for the selection [14,19,20] and elimination [15,17,18] of actions or plans.

Nguyen and Wobcke [19] use preferences as a means for choosing between multiple
applicable plans in the context of a dialogue system. When there are plan choices, the user is
prompted to specify its preference by presenting a decision list with possibly nested if-then
statements. Over time, the agent learns from these choices and adapts to the user’s preferred
choices. The preference representation is therefore, simply that the user prefers one plan
choice over the other and the preference reasoning is local between a set of plans. Our
approach is more sophisticated, in that we use a preference language that is able to capture
preferences over properties, rather than individual plans. The preference reasoning performs
a look ahead, taking into consideration all possible paths that may unfold if a particular plan
is chosen, and deliberates on how that path satisfies the user’s preferences. We do not learn
plan choices but use predefined user preferences to reason over plan choices and subgoal
ordering at run-time. This also means that our preferences may be used in more than one
context.

Myers and Morley [17,18] use preferences to restrict the autonomy of agents to allow a
human supervisor to direct and guide the tasks performed by a group of agents. Preferences
consist of a context, and a constraint on the required and prohibited features of a plan. Pref-
erences are used during the execution of the agent to eliminate some instances of applicable
plans that an agent can select in response to a goal. Their work is implemented in a system
called TRAC, which is built on top of the Procedural Reasoning System (PRS) [16]. The
work of Myers and Morley focuses on three types of decision: the decision to respond to
a new goal or event, the decision to select an applicable plan for a goal and the decision
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of how to instantiate the variables of a plan. In our work, we focus on the second of these
decisions. The decision of whether and how to respond to a goal or event does not occur
in our system. The third type of decision, instantiating variables of a plan, is currently not
part of the presented work although we believe the work can be straightforwardly extended
if needed.

Our work differs from the work of Myers and Morley in that, similar to the work of
Nguyen and Wobcke, their preference specification indicates the context in which an agent
should select a particular activity specification (choice of plan and variable instantiations for
designated roles). The limitation of their work is that the preferences are tightly coupled to the
local plan choice similar to that of Nguyen and Wobcke, that is, specifying explicitly that planx
is preferred over plany . In our approach preferences are specified independent of the plans.

Toranzo et al. [30] provide a comprehensive mechanism for decision-making within a BDI
agent based on argumentation techniques. Such choices include choosing between conflicting
desires, reconsidering intentions, and choosing between plans. We only consider the last of
these three, and Toranzo et al. do not consider re-ordering goals within plans. In addition,
their techniques require a total ordering on alternative plans, which we do not, and there is
no language specified for user preferences in their work. The total ordering is not possible
in BDI agent systems where the future plan choices depends on the state of the world at that
point in time.

Dasgupta and Ghose [7] provide a mechanism to represent preferences into the BDI agent
framework by allowing the user to specify a preference value for each plan. Whilst this is
one way of representing preferences and is adequate in some domains, it does not capture
global preferences, and does not allow for specifying conditional preferences.

In contrast to the above work, in our approach ahead, we capture the global preferences of
a user in terms of properties related to a domain (such as cost, airline quality, accommodation
type etc. for a travel domain) and aim to select plans that satisfy the user’s global preferences
with respect to these properties.

Hindriks and van Riemsdijk [15] have developed a layered approach for integrating goals
and preferences into the GOAL agent programming language.1 Their work is based on linear
temporal logic and provides a formalism for choosing among the available actions. Goals and
preferences are respectively regarded as hard and soft constraints. Both types of constraints
are modelled as a process of elimination of some of the available actions, in that goals elim-
inate actions that violate the goal condition and, similar to previously discussed approaches,
preferences are used to eliminate some of the available actions. When the actions that the
agent can select does not include any that satisfy the preferences, the preferences are ignored.

The aims of their work is similar to ours—when there is choice in the next course of
action, select the one that maximises the user’s preferences. The execution of a GOAL
program is such that it is composed of a set of action-rules and performs an action at every
step by evaluating the current state of the world. In contrast, BDI languages such as JadeX
[21], JACK [4] and GORITE [23], have predefined plan libraries from which plans are
chosen and executed to achieve particular goals. This means that they require a different
reasoning mechanisms, such as the mechanisms based on summary information as proposed
by Thangarajah et al. [29], which we adapt in our approach to reason about preferences.

Furthermore, they represent goals and preferences using operators of linear temporal logic
while our approach utilizes a preference language that aims to be more suitable for end-users
to express their preferences.

1 http://mmi.tudelft.nl/trac/goal.
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Hindriks et al. [14] augment the specification of an agent program with utility values
that provide heuristic guidance in the agent’s selection of actions. Padgham and Singh [20]
provide a mechanism for providing preference values for each plan which are evaluated
dynamically at run time. These approaches are appropriate for when the developer has the
appropriate domain knowledge to encode the preferences. It does not however capture the
general preferences of the users of the system. Our aim is to express the user’s preferences
in a language that uses terms and concepts of the problem domain (see Sect. 3), rather than
a language which incorporates specific details of the agent.

The work of Fritz and McIlraith [10,11] shares some similarities with the work presented
here. They use a subset of the preference language of Bienvenu et al. [2] (as we do). In our
case, we integrate the use of preferences into the agent platform Jadex while they provide an
integration of preferences into the agent programming language DT-Golog [3]. The practi-
cality of their work is shown by means of a travel planner that utilizes user preferences and
the Yahoo!-Travel online service. The main difference between their work and ours is that
they are concerned with generating plans that conform to user preferences, whilst we are
concerned about making the choice between plans at run time.

Our use of summary information for preference-based reasoning in BDI agents is the key
novelty compared to all other previous approaches.

2.3 BDI agents and goal-plan tree structures

As mentioned in the Sect. 1, the focus of this work is on BDI agent systems. A typical BDI
agent system consists of a plan library where for a given goal, there is one or more plans in
the plan library that could possibly achieve the goal (this is an OR decomposition, as any
of the plans can satisfy the goal). Each plan performs some actions and/or posts a number
of subgoals (this is an AND decomposition as all subgoals must be achieved for the plan to
succeed). A subgoal is in turn handled by some other plan in the plan library in a similar
manner. This decomposition leads to a natural hierarchy which is termed a goal-plan tree.
The root of a goal-plan tree is a goal node, and the leaves of goal-plan tree are plan-nodes.
Each goal-node has one or more plan nodes as children, and each plan-node has zero or more
goal-nodes as children. A goal is considered achieved if one of its child plans succeeds. A
plan is considered achieved if every one of its child goals succeeds.

Figure 1 shows an example goal-plan tree of a goal of booking a holiday (HolidayGoal),
which consists of two subgoals for booking accommodation (AccommodationGoal) and
booking transport to the destination (TransportGoal).

Goal-plan trees can be annotated with additional information, such as the pre- and post-
conditions of the goals and plans, the resource consumption of the plans, etc. Previous work
by Thangarajah et al. [27,29], and Clement and Durfee [5,6] have shown how to use annotated
goal-plan trees to improve agent decision-making by avoiding potential conflicts and taking
advantage of synergies. The key idea is that information at the lower levels of the tree can be
summarised and propagated to the higher levels of the tree. This gives a form of look-ahead
for BDI-agents. The propagated information is termed summary information.

Goal-plan trees have been analyzed by Shaw et al. [24–26] and they present various theo-
retical properties and experimental results on the performance of these techniques. Shaw et
al. present a method for representing the goals and plans of an agent using mathematical
models called Petri nets. In this approach they aim to perform similar reasoning about goals
without utilizing the notion of summary information as developed by Thangarajah et al. and
Clement et al.
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BookFiveStarHotelPlan FlyWithQantasPlan

TrainPlan

BookFlightGoal

TransportGoal

HotelPlan BackpackerPlan

AccommodationGoal

HolidayPlan

HolidayGoal

BookThreeStarHotelPlan

FlightPlan

FlyWithJetstarPlan

BookHotelGoal

Fig. 1 Goal-plan tree example

Furthermore, the characteristics and possible executions of a goal-plan tree have been
analyzed by Winikoff and Cranefield [31], showing that the number of possible agent exe-
cutions grows significantly as the goal-plan tree becomes bigger. Mechanisms such as plan
failure profoundly contribute to the number of ways an agent could possibly be executed.
A thorough theoretical analysis of preference satisfaction is beyond the scope of this work.
However, the vast number of executions is something to keep in mind when providing a
formal analysis of our preference system, as mentioned in our discussion of future work in
Sect. 6.

In this work, we build on the summary information approach of Thangarajah et al. [27,29]
to incorporate preference information into summary information and we present algorithms to
utilize this information to satisfy the user’s preferences. It should be noted that our choice for
the annotation of the goal-plan tree has been guided by the design of the Jadex platform [21]
in which we have implemented our approach. The goal-plan tree mechanisms that we use
has also been used by Thangarajah et al. for the agent system JACK [4].

It should also be noted that the scope of our work is the goal-plan tree, and in particular
the choices to be made within it. Hence we do not consider other aspects of the BDI cycle,
such as events and belief updates.

3 Preference specification

In this section we discuss the specification of the user preferences. These are expressed in
a formal language using information that is extracted from the agent system. In short, we
enable the developers of an agent system to annotate the goals and plans of the agent. After
that the annotated information is processed and a summary of this information is presented
to the user. The user can express preferences in terms of this summary information.
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We note here that the role of the specification language is to allow the designers to specify
preferences in a natural way, retaining a formal structure that allows reasoning over them.
The language is not the ‘most’ natural nor the ‘most’ expressive, but is sufficient to illustrate
our approach to how they can be included in the reasoning mechanisms.

Our preference specification therefore consists of two parts: a method of annotating the
goals and plans of an agent system and a formal language in which the user can express
preferences.

We introduce the notion of a property of a goal which can be thought of as a relevant
effect of the achievement of a goal. For example, a goal G of booking a holiday may have a
property called payment which specifies the payment method used. Any plan that achieves
G by paying for the holiday with a credit card will result in the value credit being assigned
to this property. Similarly, an alternative plan may assign the value debit for payment . This
means that the values of the property payment for goal G is the set {credit, debit}.

The preference language we use allows the user to specify preferences over the possible
values of these properties. For example, the statement “I would prefer for payment to be
made via credit” states the preference for value credit rather than debit for the payment
property. The user can also specify preferences over the resource usage of a particular goal.
Resource usage is specified in terms of an amount and comparative operator (e.g., at least,
at most) for a particular resource type, such as “I prefer to spend at most $100 on transport”.

The user then specifies preferences in terms of properties of goals and their values. This
means that the user does not need to know the details of how the goal is achieved in order to
specify preferences. For example, for the above user, it is sufficient to know that paying for a
holiday can be done by credit or debit card; it is not necessary to know that in order to pay,
a mode of transport and accommodation must be selected.

We annotate the goals and plans of the agent system with additional information which
is then automatically propagated to parent goals and plans. This can also be seen in the
example given earlier in this section, as the possible values of the property payment of G
can be computed using the information in its plans. These annotations are then presented to
the user who can then specify his or her preferences in a preference language.

In Sect. 3.1 we describe techniques for annotating and propagating information using the
notion of summary information [27,29]. In Sect. 3.2 we describe a preference language based
on the language LPP [1,2].

3.1 Summary information

We follow a similar approach to the one taken by Thangarajah et al. [27,29], in that goals
and plans are augmented with resource and effect summaries to detect and resolve resource
conflicts and to facilitate the merging of common subgoals. In this section we introduce
property summaries for annotating relevant characteristics of plans and goals.

Figure 2 shows an example goal-plan tree of a goal of booking a holiday (HolidayGoal),
which consists of two subgoals for booking accommodation (AccommodationGoal) and
booking transport to the destination (TransportGoal).

We annotate nodes in the goal-plan tree with the required information and automatically
propagate this information to other nodes in the tree at compile time. The goal-plan tree
in Fig. 2 shows both the programmer-specified properties PPS and resources PR and the
propagated annotations of the summary information (property summaries PS and resource
summaries RS). It also serves as our motivating example.

We use resource summaries here as we also allow the user to specify preferences based
on resources. A resource summary [29] contains the necessary and possible resource usage
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for a node (〈N , P〉). Necessary resources are those that are used irrespective of the goal-
plan choice and possible resources are those that may be needed in the worst case where
plans may fail and alternatives are tried. Furthermore, Thangarajah et al. make a distinction
between consumable resources and reusable resources that respectively can be used once and
repeatedly. In this work we focus solely on consumable resources. For example, the resource
money used by various plans in Fig. 2 is a consumable resource.

We note that in the example illustrated in Fig. 2, the possible resources for theBookHotel
goal is $600, which is based on the assumption that if booking one particular hotel fails, the
money is not refunded. This is not always the case in reality. In fact, the original design
for this example contained a PayforHotel subgoal which was executed after a particular
hotel was selected, however for illustration purposes we have simplified it here, sacrificing
intuitiveness for presentation.

Property summaries

We now describe how property information can be summarized. We define a property sum-
mary PS of a node N (denoted as PSN ) in the goal-plan tree, that summarizes the properties
of the subtree rooted at N , as follows. A property is of the form (goalpath.name, values)
where goalpath denotes the path to N in the goal-plan tree, name is the name of the prop-
erty, and values is a set of values. A property summary is a non-empty set of properties.
For a property p = (goalpath.name, values), we denote name by name(p) and values by
values(p).

The reason that values must be non-empty is that the intended meaning of a property
p in the property summary of a node N is that upon successful execution of N , the value
of p is exactly one of the set values. For example, upon successful execution of the node
AccommodationGoal the value of the property t ype is exactly one of {backpacker, hotel}.
Clearly this requires the values to be non-empty.

A goalpath contains the human-readable names of the goals, separated by dots, that are
encountered on the path from the root goal to the property’s node, excluding the name of the
root goal node. We will also use the term goalpath fromG to indicate the goalpath from a given
goalG in the goal-plan tree rather than the root, and refer to goalpath.name where goalpath
is the goalpath from a given goal G as localname(p,G). For example, the property sum-
mary of the node AccommodationGoal contains a property called book_hotel.quali t y.
This property has book_hotel as goalpath from AccommodationGoal and quali t y as
the property name, and its localname is book_hotel.quali t y. Alternatively, we say that
book_hotel.quali t y refers to the property quali t y of the goal called book_hotel.

We use the value null ∈ values to indicate that the property could receive no value. For
example, the goal TransportGoal has two plans, FlightPlan and TrainPlan, where
the former has the property book_ f light.airline but the latter does not. Hence the prop-
erty book_ f light.airline of TransportGoal will have the value null if TrainPlan is
successfully executed.

Note that we allow properties to have more than one value. For example the property
payment of BackpackerPlan has values {credit, debit}. If the user does not prefer a
particular value, the resulting value of the property is irrelevant.

3.1.1 Goal-plan tree node annotation

The nodes in the goal-plan tree are annotated with programmer-specified information and
computed summary information as we describe below.
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Programmer-specified information

Each goal-node is annotated with the programmer-specified goalname. For each plan in
the plan library, we require that a programmer specifies the resources required by that plan
(PR), similar to the work of Thangarajah et al. [29], and additionally a property summary
(PPS). The corresponding plan-node in the goal-plan tree is annotated with this programmer-
specified information.

For example, in Fig. 2, goal BookFlightGoal is annotated with its name, and its
plans FlyWithJetstarPlan and FlyWithQantasPlan are both annotated with the sets
of resources and properties required by the plan. Note that it is sufficient to provide this
information just for the lowest level plans (i.e. the leaves of the goal-plan tree) as the infor-
mation is propagated up in the goal-plan tree. We do however allow annotation for all plan-
nodes, such asHotelPlanwhich has both programmer-specified and computed information.
HotelPlan has two programmer-specified properties, t ype and payment , and one property
called book_hotel.quali t y which has been computed from its subgoal BookHotelGoal.

Computed information

Using the programmer-specified information above, we compute the resource summaries
using the techniques described by Thangarajah et al. [29], and the property summaries using
the techniques we develop in this work. Each node is annotated with this information.

An alternative approach is to explicitly attach a set of properties to any goal in the goal-
plan tree, such as properties = {payment, airline}, to indicate the properties of the goal
BookFlightGoal. However, this would require the agent designer to ensure that such
properties are compatible with the plans used to achieve the goal. As the relevant properties
can be inferred from a bottom-up evaluation of the goal-plan tree, it seems simpler to annotate
only the plans in the plan library, and then use an automated process to propagate this
information upwards. We also annotate each goal with a programmer-specified name which
is used when propagating information upwards. These names do not have to be known when
annotating the plans, as they are only used in the propagation process.

3.1.2 Propagation rules

We now present propagation rules that formalize how the annotated information of a node
and its child nodes can be used to compute the property summary of that node. The rules
vary for goal and plan nodes.

Plan node

We start with the rule for computing the property summary of a plan. The properties of a
plan are its programmer-specified ones combined with the properties of all the subgoals of
the plan, if any. This is because when a plan is successfully executed, the properties of its
subgoals will have received a value and we therefore regard them as part of the properties
of that plan. We prepend the names of the properties of subgoals with the human-readable
name of that goal to form part of the goalpath to identify from which subgoal the property
has come from. For example, the subgoal AccommodationGoal of HolidayPlan has a
property (t ype, {backpacker, hotel}) and the property summary of HolidayPlan contains
a property called accommodation.t ype with values {backpacker, hotel} to distinguish it
from other properties called t ype, such as the one from TransportGoal.
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Definition 1 (Propagation to a plan node) Let P be a plan node with programmer-specified
property summary PPS , and let Goals(P) be the set of subgoals of P . Furthermore, let
G ∈ Goals(P) be a subgoal of P with name nameG and property summary PSG . We define
the property summary PSP of P as:

PSP ≡de f P PS ∪
⋃

G∈Goals(P)

{(nameG .n, v) | (n, v) ∈ PSG}.

As an example, consider the plan HolidayPlan with subgoals AccommodationGoal
and TransportGoal. The programmer-specified property summary PPS is empty (i.e.
there is nothing specific to this plan that has been added by the programmer), and so hence
the properties of this plan are solely computed using the properties of its two subgoals. The
properties of each subgoal are respectively prepended with their names accommodation and
transport and all these properties together form the property summary of HolidayPlan.

Goal node

We now turn to the rule for computing the property summary of a goal. Recall that a goal
has no programmer-specified properties. We compute the property summary of a goal based
on the property summaries of its plans. Since we do not know which plan will be chosen for
the goal at run time, we include the properties of each plan in the property summary of the
goal.

We first define an operator ⊕ for merging two property summaries that adds the value
null to the set of values of a property when a plan assigns at least one value to that property
but a different plan does not. The assumption that we make here is that when two plans have
a property with the same name then they are taken to refer to the same effect of the goal.
For example, when the goal BookFlightGoal has two plans FlyWithJetstarPlan and
FlyWithQantasPlan that both have a property called airline then we compute for the
goal a property with the same name and with the values of each of these plans (i.e., a property
airline with values { jetstar, qantas}). The operator ⊕ is defined as follows:

PS1 ⊕ PS2 ≡ de f {(n, v1 ∪ v2) | (n, v1) ∈ PS1 ∧ (n, v2) ∈ PS2}
∪{(n, v1 ∪ {null}) | (n, v1) ∈ PS1 ∧ (n, v2) /∈ PS2}
∪{(n, v2 ∪ {null}) | (n, v1) /∈ PS1 ∧ (n, v2) ∈ PS2}

In addition to properties that were obtained by merging properties with exactly the same
name (e.g., t ype of BackpackerPlan and HotelPlan for AccommodationGoal), pos-
sibly with the value null added, we also merge properties by assuming that properties of
different plans with the same name but with a different goalpath represent the same charac-
teristic of the goal. For example, we introduce a property quali t y for Accommodation-
Goal by merging the values of quali t y of BackpackerPlan and book_hotel.quali t y
of HotelPlan. The presence of both quali t y and book_hotel.quali t y for Accommoda-
tionGoal enables us to specify preferences at the level of accommodation in general and of
hotels in particular.

We define a set N that contains the property names which have this characteristic as
follows. We have name ∈ N iff ∃P1, P2 ∈ Plans(G) such that name ∈ PSP1 and
goalpath.name ∈ PSP2 where goalpath is the goalpath from G and goalpath is not
empty.

We also define a set Vname that contains the possible values of a property name ∈ N . For
each v ∈ Vname it holds that either
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(1) for some plan P of the goal and for some property p ∈ PSP , we have that name(p) =
name ∧ v ∈ values(p), or

(2) v = null when there exists a property summary PSP that does not contain a property q
such that name(q) = name.

The first condition is used to include the values of properties with that name. The second
condition is used to include the value null when there is at least one plan that does not have
a property with that name.

Definition 2 (Propagation to a goal node) Let G be a goal node, let PLANS(G) be the set
of plans for G and let P ∈ Plans(G) be a plan with property summary PSP . We define the
property summary PSG of G as follows

PSG ≡ de f {(localname(p,G),Vname) | localname(p,G) ∈ N }
∪

⊕

P∈Plans(G)

{p | p ∈ PSP ∧ localname(p,G) /∈ N }

For example, consider the AccommodationGoal with plans BackpackerPlan and
HotelPlan with the following property summaries

{(t ype, {backpacker}), (quali t y, {basic})}
and

{(t ype, {hotel}), (book_hotel.quali t y, {3∗, 5∗})}.
Note that here N = {quali t y}. This means that we obtain the following properties for

AccommodationGoal

{(t ype, {backpacker, hotel}),
(book_hotel.quali t y, {3∗, 5∗, null}),
(quali t y, {basic, 3∗, 5∗})}

We observe that the values of t ype are merged and that the property quali t y results
from the merge of quali t y and book_hotel.quali t y of respectively BackpackerPlan

and HotelPlan. Furthermore, observe that the value null is added to the values of
book_hotel.quali t y as this property could receive no value when the backpacker alternative
is chosen.

The user specifies preferences in terms of the information in the summaries of the root node
(top-level goal) of the goal-plan tree. The user therefore does not need to know the structure
of the goal-plan tree and the goal-plan tree can be used by multiple users as preferences are
specified separately from it. In Sect. 3.2 we will show how this information can be used to
express the preferences.

3.2 Preference language

The preferences we wish to express are concerned with the values of properties and the
resource usage of goals. Examples include:

– “I prefer to minimize the money spent on accommodation”
– “I prefer to fly rather than travel by train”
– “If the accommodation is a 5* hotel, I prefer to travel with Jetstar”
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Our preference language is based on the language LPP [1,2]. Following the structure of
LPP , we use basic desire formulas to represent basic statements about the preferred situation,
atomic preference formulas to represent an ordering over basic desire formulas and general
preference formulas to express atomic preference formulas that are optionally subjected to
a condition. We introduce the class of conditions that allow us to specify conditions with
regard to information collected at run time.

The preferences of a user are specified as a set of general preference formulas.

Definition 3 (Basic Desire Formula) A basic desire formula is either

1. the name of a goal property and a desired or an undesired value, expressed as name =
value or name �= value, where value is not null,2

2. the predicate minimize(resource), to express that the usage of resource should be mini-
mized,3

3. the predicate usage(resource, amount, comparator ∈ {<,≤,=,≥,>}) to express that
the usage of the resource should be according to the comparator and the amount (e.g.,
usage(r, 500,≤) implies at most 500 units of resource r should be used), or

4. a predicate preceded by a goal name goal (e.g. goal.minimize(resource)).

If ϕ1, . . . , ϕn , n ≥ 2, are of the form name = value or name �= value, then ϕ1 ∧ · · · ∧ ϕn

(conjunction) and ϕ1 ∨ · · · ∨ ϕn (disjunction) are also basic desire formulas.

The first type of basic desire formulas can be used to express basic statements such
as transport.t ype = train or accommodation.payment �= credit . The predicates
minimize and usage can be used to express preferences about resource usage, such as
minimize(money) and usage(money, 500,≤). These predicates can also be prefixed with
a goal name and we will explain later the purpose of these types of basic desire formulas.
Lastly, we allow conjunctions and disjunctions of multiple basic desire formulas with a name
and a desired or undesired value.

Basic desire formulas can be ordered in atomic preference formulas to express preferences
in which a basic desire formula is preferred over another.

Definition 4 (Atomic Preference Formula) Let vmin and vmax be numeric values such that
vmin < vmax . An atomic preference formula is a formula

ϕ0 (v0) � · · · � ϕn (vn), n ≥ 0,

where ϕi is a basic desire formula and vmin ≤ vi ≤ vmax and vi < v j for i < j . If ϕi is a
predicate, then ϕi can only be used when i = n = 0 (i.e., we do not allow predicates together
with other basic desire formulas).

Note that we have dropped the constraint for ϕ0 to have v0 = vmin , in contrast to Bienvenu
et al. [2]. We will explain later the reason for this modification. We use vmin = 0 and
vmax = 100 in our work. We note that these numerical values (i.e., v0, . . . , vn) in these
atomic preference formulas are also present in the language LPP . These values are used
when evaluating the preferences. We present our method of evaluation in Sect. 4.1.2 but, in
short, a lower value means more preferred than a higher value. An example of an atomic
preference formula is

transport.t ype = plane (0) � transport.t ype = train (100),

2 The value null serves a particular purpose that we have explained in Sect. 3.1.
3 This predicate was included because the resource usage does not always need to be minimized when other
preferences are taken into consideration.
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which indicates that transport by plane is preferred to transport by train. Consider now the
goal of booking transport with two plans that respectively book transport by plane and by
train. With regard to this preference formula, the first of these plans will result in the value 0
(as it brings about transport.t ype = plane) whereas the second plan will result in the value
100 (as it brings about transport.t ype = train). We will discuss these numerical values in
more detail in Sect. 4.1.2.

For simplicity we have constrained the use of basic desire formulas with predicates to
atomic preference formulas with only one basic desire formula. As a result the following is
not a valid atomic preference formula:

transport.t ype = plane (0) � minimize(money) (100)

We now define conditions which will be used later to define general preference formulas.

Definition 5 (Condition) A condition is

1. the name of a goal property and a desired or an undesired value, expressed as name =
value or name �= value, or

2. the predicate success(goal), failure(goal), or used(goal, resource, amount), where goal
is the name of a goal, resource is the name of a resource and amount ≥ 0 is a numerical
value.

If ϕ1, . . . , ϕn , n ≥ 2, are conditions then ϕ1 ∧ · · · ∧ ϕn (conjunction) and ϕ1 ∨ · · · ∨ ϕn

(disjunction) are also conditions.

Some examples are f ailure(book_ f light) and success(transport). A condition, such
as f ailure(book_ f light), can be used to express preferences such as, “If I’m unable to
travel by plane, then I prefer ...”.

We now define general preference formulas to express atomic preference formulas that
are optionally preceded by a condition.

Definition 6 (General Preference Formula) A general preference formula is

1. an atomic preference formula, or
2. γ : Ψ , where γ is a condition and Ψ is an atomic preference formula.

Recall that the user preferences are specified as a set of general preference formulas. We
can express the examples given in the beginning of this section as the following general
preference formulas

accommodation.minimize(money) (0)

transport.t ype = plane (0) � transport.t ype = train (100)

accommodation.t ype = hotel ∧ accommodation.quali t y = 5∗ :
book_ f light.airline = Jetstar (0)

4 Reasoning about preferences

We can identify two types of decisions that an agent needs to make: for a goal, an agent can
select one of the plans and for a plan, an agent can choose the order in which to pursue the
subgoals, if any, unless the order is determined by the structure of the plan. Both of these
decisions can influence to what extent the user preferences will be satisfied. In this section
we describe algorithms that utilize the user preferences and the summary information in the
goal-plan tree to guide these decisions.
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4.1 Plan selection for a goal

When the agent needs to select a plan for a goal, our approach is to express numerically how
well a plan satisfies the preference formulas. We can then sort the plans from most to least
preferred and attempt the plans in that order to achieve the goal.

4.1.1 Preferences over resource usage

Before we define how we evaluate preference formulas, we first discuss the differences
between preferences that are concerned with goal properties and preferences that are con-
cerned with the resource usage of a goal. These preferences differ in the sense that goal
properties and their possible values are more precisely known to the agent than the resource
usage of a goal. The latter depends on the possibly unsuccessful execution of plans in the
subtree rooted at that goal whereas the value of a goal property must be one of the values in
the known set of values.

Recall that the purpose of preferences is to guide the agent to make a rational decision.
Since the actual resource usage of a node in the goal-plan tree is not known to the agent, we
need to use estimates of the amount that will be used. The resource summaries of a node only
contain the amounts that will necessarily and possibly be used. This is the only information
the agent has with regard to the resource usage of a node. We argue that the use of resource
estimates can lead to rational decisions as the resource usage of a plan or goal can be learned
from previous executions. However, we do not prescribe how this must be done, and as below,
we provide a flexible mechanism for this.

One such mechanism is the function k-estimate to compute the estimated resource
usage of a particular resource of a plan.

Definition 7 (k-estimate) Let (neci , posi ) be the necessary and possible usage of a particular
resource for a plan Pi . We define the k-estimate of Pi as ei = neci + k · (posi − neci ) where
0 ≤ k ≤ 1.

The value of k can be set for each plan and it is related to the expected failure rate of the
plan, including the execution of its subgoals. We emphasize that the estimate serves to guide
the agent and that this does not mean the agent is able to execute the plan with a resource
usage that is close to the estimate.

4.1.2 Evaluating preference formulas

The method of evaluating formulas of our preference language is based on the semantics of
the language by Bienvenu et al. For each class of preference formulas, we define an evaluation
function w that assigns a value vmin ≤ v ≤ vmax to a formula of that class, where a lower
value means more preferred. We evaluate preference formulas only for plan selection for
a goal and we therefore evaluate a formula for a given goal G and a plan Peval of G. We
include G in the evaluation of a preference formula because the evaluation of some basic
desire formulas for a plan depends on the summary information of other plans of G. For
example, the basic desire formula minimize(resource) is satisfied for a plan if its resource
usage of resource is lowest compared to all other plans for that goal.

Compared to the work of Bienvenu et al., our work differs in the evaluation of our basic
desire formulas and the evaluation of our introduced class of conditions. Otherwise, we follow
the semantics of Bienvenu et al., apart from the adaptation of general preference formulas to
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utilize conditions. Note that we only present a method of reducing a preference formula to
a numerical value and not some rigorous formal semantics that describe when a formula is
true in a model. These numerical values are utilized at run time to help the agent to make its
decisions and we have left the development of formal semantics as part of future work.

It should be noted that the use of numerical values provides a means of comparing pref-
erences. Ultimately either a preference is satisfied or it is not, but in the intermediate com-
putations, it can be very useful to be able to provide a means of relative comparison, which
the numerical values provide.

Basic desire formula

The following definition of evaluation of basic desire formulas consists of several cases which
we explain in more detail soon.

Definition 8 (Basic Desire Evaluation) Let ϕ be a basic desire formula, let G be a goal and
let Plans(G) = {P1, . . . , Pn}. Furthermore, let PSi and Ri respectively be the property
summary and resource summary of Pi , and let PSeval be the property summary of Peval . We
define w(ϕ,G, Peval) as follows

– if ϕ is name = value then w(ϕ,G, Peval) = vmin iff there exists a property p ∈ PSeval ,
such that value ∈ values(p) and name is equal to either

(1) name(p) or name(p) prepended with the goalpath from the root node toG, excluding
the name of the root goal node, or

(2) name(p) with the goalpath to G prepended, if there exists a plan Pi �= Peval with a
property q ∈ PSi such that q has no goalpath and name(q) = name(p).

(3) name(p) prepended with a goalpath from the root node to G, excluding the name of
the root goal node and one or more of the goalnames of G and parent goals.4

Otherwise, w(ϕ,G, Peval) = vmax .
– if ϕ is name �= value then w(ϕ,G, Peval) is as above for (name = value) with the

requirement that value /∈ values(p).
– if ϕ is ψ1 ∧ · · · ∧ ψm , m ≥ 2 then

w(ϕ,G, Peval) = max({w(ψ j ,G, Peval) | 0 ≤ j ≤ m})
– if ϕ is ψ1 ∨ · · · ∨ ψm , m ≥ 2 then

w(ϕ,G, Peval) = min({w(ψ j ,G, Peval) | 0 ≤ j ≤ m})
– if ϕ is minimize(resource) then w(ϕ,G, Peval) = vmin iff Peval ∈ S, and

w(ϕ,G, Peval) = vmax otherwise, where S is a set of plans computed by one of the
following procedures.5

– min_nec_pos Let (neci , posi ) be the necessary and possible resource usage of
resource for Pi . Let S contain each plan Pi that satisfies
(1) there is no Pj , i �= j such that nec j < neci ,
(2) if multiple plans satisfy (1), we include in S only those for which it additionally

holds that there is no Pj , i �= j such that pos j < posi .

4 Conditions (2) and (3) are used for properties that were merged using N as described in Sect. 3.1.2. We
provide a detailed example in Sect. 5.4
5 The procedure to be used is determined by the designer prior to execution. Other reasonable choices for this
procedure can be used if the designer so wishes.

123



308 Auton Agent Multi-Agent Syst (2016) 30:291–330

– min_estimate Let ei be the k-estimate of a plan Pi . Then S contains each
plan Pi for which there is no Pj , i �= j such that e j < ei .

– if ϕ is usage(resource, amount, comparator) then w(ϕ,G, Peval) = vmin iff Peval ∈
S, and w(ϕ,G, Peval) = vmax otherwise, where S is a set of plans computed using the
procedure corresponding to the comparator ∈ {<,≤,=,≥,>} that is used.
Let (neci , posi ) be the necessary and possible resource usage of resource for Pi , and ei
be the k-estimate for Pi .

– < and ≤ amount : Then S contains all plans Pi such that posi < amount ( resp. ≤).
If no such plans exist, then S contains all plans Pi such that ei < amount (resp. ≤).

– > and ≥ amount : Then S contains all plans Pi such that neci > amount (resp. ≥).
If no such plans exist, then S contains all plans Pi such that ei > amount (resp. ≥).

– = amount : Then S contain all plans Pi such that |ei − amount | is lowest (i.e., ei is
closest to amount).

– if ϕ is the predicate minimize or usage preceded by a goal name goal then the aforemen-
tioned evaluation of these predicates are used iff goal is equal to the name of G or equal
to the name of one of the parent goals of G. Otherwise, w(ϕ,G, Peval) = vmax .

We note that for the evaluation of minimize(resource) we take into account whether a
plan has previously failed. For example, if plan P1 requires a1 of a particular resource, P2

requires a2 of that resource, and P3 requires a3, where a1 < a2 < a3, then S = {P1} prior to
the execution of any plans but S = {P2} after the execution of P1 has failed (i.e., the failed
plan P1 is no longer considered when computing S). A detailed example of this can be found
in Sect. 5.3.

Let us take a closer look at these cases using some examples.

– If a basic desire formula ϕ has the form name = value or name �= value then we
analyze the property summary for a matching property.
Let ϕ1 be t ype = hotel and let p be

(t ype, {backpacker, hotel}) ∈ PSeval .

The basic desire formula ϕ1 is satisfied for this property summary due to the first condition
in the definition: we have that hotel ∈ {backpacker, hotel} and that t ype is equal to
name(p) = t ype. Note that the situation described by the first condition of the definition
does not occur in Fig. 2 but this condition is necessary for properties that belong to plans
of the top-level goal. The situation that we describe next is more common because it
involves the goalpath and as we can see in Fig. 2 most properties in property summaries
have a prepended goalpath.
Let ϕ2 be accommodation.t ype = hotel and let p be

(t ype, {hotel}) ∈ PSeval .

Furthermore, let PSeval be the property summary of a plan for the goal called
accommodation. This example can be seen in Fig. 2 in the node HotelPlan. The basic
desire formula ϕ2 is satisfied for this property summary due to the first condition (second
part) in the definition: we have that hotel ∈ {hotel} and that accommodation.t ype is
equal to name(p) = t ype with the goalpath (accommodation) prepended. When a user
preference formula contains this basic desire formula we can see that the planHotelPlan
of AccommodationGoal satisfies this formula whereas the plan BackpackerPlan

does not.
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Let ϕ3 be accommodation.quali t y = 3∗ and let p be

(book_hotel.quali t y, {3∗, 5∗}) ∈ PSeval .

This example can be seen in Fig. 2 for the nodes AccommodationGoal and
HotelPlan, the plan for which we are evaluating (Peval). The user has specified a
preference using the introduced property accommodation.quali t y. We observe that
due to the presence of the property quali t y in BackpackerPlan (see the discussion
in Sect. 3.1), we are able to match accommodation.quali t y to book_hotel.quali t y in
HotelPlan. When evaluating ϕ3 for AccommodationGoal we can see that the pref-
erence for 3∗ accommodation can possibly be accomplished when pursuing HotelPlan

rather than BackpackerPlan.
– Let ϕ4 be minimize(money). According to our method of evaluation we can

use either min_nec_pos or min_estimate to determine which plan or plans
of a goal satisfy ϕ4. Consider a goal G with plans P1 with resource summary
〈{(money, 200)}, {(money, 600)}〉, a plan P2 with resource summary 〈{(money, 100)},
{(money, 100)}〉. This example can be seen in Fig. 2 for AccommodationGoal with
HotelPlan and BackpackerPlan respectively.
Let us use min_nec_pos to compute a set S with plans that satisfy both criteria.
Informally, S contains all plans with the lowest necessary usage and in case there are
several, we include in S only those with the lowest possible usage. We can see that
S = {P2} as P2 has the lowest necessary resource usage and all other plans, in this case
only P1, have a higher necessary resource usage. This means that ϕ4 is only satisfied when
Peval = P2 but not when the formula is evaluated for P1. More concretely, ϕ4 is satisfied
for the plan BackpackerPlan of AccommodationGoal but not for HotelPlan,
where the former plan is indeed the cheaper alternative of both accommodation plans.

– Lastly, let ϕ5 be usage(money, 300,≤). Consider again the goal Accommodation-
Goal and its plans HotelPlan and BackpackerPlan as specified in Fig. 2. We follow
the procedure as defined for the comparative operator ≤ to compute a set S of plans
for which ϕ5 is satisfied. The possible resource usage of money for HotelPlan is 600
whereas the possible resource usage of money for BackpackerPlan is 100 (as noted
in the previous example). We observe that 100 ≤ 300 yet 600 � 300 and therefore we
obtain S = {Backpacker Plan}. Hence, ϕ5 is satisfied for BackpackerPlan but not
for HotelPlan.

Atomic preference formula

Recall that an atomic preference formula orders one or more basic desire formulas, each with
an associated value. The value we wish to associate with an atomic preference formula Φ as
a whole is the value of a satisfied basic desire formula in Φ with the lowest associated value.

Definition 9 (Atomic Preference Evaluation) Let Φ = ϕ0 (v0) � · · · � ϕn (vn), n ≥ 0, be
an atomic preference formula and let G be a goal. We define w(Φ,G, Peval) = vi if there
exists ϕi such that w(ϕi ,G, Peval) = vmin and there is no j < i such that w(ϕ j ,G, Peval) =
vmin . Otherwise, w(Φ,G, Peval) = vmax .

The evaluation of conditions requires information about the execution of goals thus far.
For this we define metadata

M = 〈MP ,MS,MF ,MR〉
to contain
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– MP pairs of a property name and its received value,
– MS names of goals that have succeeded,
– MF names of goals that have failed, and
– MR a data structure with per goal and per resource the amount that was used. We use

Mgoal
R (resource) to denote the amount (possibly none) of resource used thus far for

the execution of goal.

Conditional formula

We can now define the evaluation of conditions using the above metadata which contains
information collected at run time about the agent’s execution.

Definition 10 (Condition Evaluation) Let Φ be a condition and let metadata M =
〈MP ,MS,MF ,MR〉. We define w(Φ,M) as follows

– if Φ is not a conjunction or disjunction, we define w(Φ,M) = vmin iff one of the
conditions below holds and w(Φ,M) = vmax otherwise.

– if Φ is name = value then (name, value) ∈ MP

– if Φ is name �= value then (name, value) /∈ MP

– if Φ is success(goal) then goal ∈ MS

– if Φ is f ailure(goal) then goal ∈ MF

– if Φ is used(goal, resource, amount) then Mgoal
R (resource) ≥ amount

– if Φ is ϕi ∧ · · · ∧ ϕn , n ≥ 2 then

w(Φ,M) = max({w(ϕi ,M) | 0 ≤ i ≤ n})
– if Φ is ϕi ∨ · · · ∨ ϕn , n ≥ 2 then

w(Φ,M) = min({w(ϕi ,M) | 0 ≤ i ≤ n})
We note that although conditions are generally evaluated to true or false, in the defini-

tion above they evaluate to value as this allows a comparison between different conditional
preference formulas.

General preference formula

Lastly, we define the evaluation of the class of general preference formulas in which the user
specifies its preferences.

Definition 11 (General Preference Evaluation) Let Φ be a general preference formula and
let G be a goal. We define w(Φ,G, Peval ,M) as

– w(ϕ0 � · · · � ϕn,G, Peval ,M) = w(ϕ0 � · · · � ϕn,G, Peval) (i.e. when Φ is just an
atomic preference formula)

– w(γ : Ψ,G, Peval ,M) =
{

vmin, if w(γ,M) = vmax

w(Ψ,G, Peval), otherwise

Recall that in atomic preference formulas, we do not define ϕ0 to have value v0 = vmin .
This allows preference formulas to override other formulas. For example, we can prefer

prop = val1 (100)
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and

γ : prop = val2 (50),

where γ is a condition. If γ is satisfied then a plan that satisfies prop = val2 is preferred
over a plan that satisfies prop = val1.

Furthermore, the numerical values in the user preferences can be used to influence how
important it is that certain properties are satisfied. Consider the following formulas that
specify preferences with regard to properties of goal goal1:

ϕ1 : goal1.prop1 = val1 (0) � goal1.prop2 = val2 (100)

ϕ2 : goal1.prop3 = val3 (50) � goal1.prop4 = val4 (75)

A plan P that brings about the properties goal1.prop1 = val1 and goal1.prop3 = val3
will respectively result in the values 0 and 50 for preference formulas ϕ1 and ϕ2. As we will
see later this results in the value 0 + 50 = 50 for P if ϕ1 and ϕ2 are the only plans for goal1.
However, P would result in the value 100+50 = 150 if it would not bring about the property
goal1.prop1 = val1 and in the value 0 + 75 = 75 if it would not bring about the property
goal1.prop3 = val3. As a lower evaluation value is more preferred than a higher evaluation
value, we can see that not satisfying goal1.prop1 = val1 incurs a higher ‘penalty’ than not
satisfying goal1.prop3 = val3.

We can now present our algorithm for computing the preferred order in which plans of
a goal G should be selected for execution. The input of this algorithm is the set of general
preference formulas F , the goal G and metadata M. The algorithm consists of the following
steps:

– For each plan Pi of G, compute a score scorei which is the sum of the values of
w( f,G, Pi ,M) for each f ∈ F .

– Sort the plans by scorei in non-decreasing order.

The output of this algorithm is an ordered list of the plans and the agent attempts the plans
in that order. In case of plan failure, the next plan in the ordered list is attempted.

4.2 Order of subgoals of a plan

Recall that the other type of decision is to determine the execution order of subgoals of a
plan, when their order is not fixed by design. Our approach is to infer the ordering of subgoals
from the general preference formulas containing a condition. Consider the general preference
formula

goal1.prop1 = value1 : goal2.prop2 = value2 (0)

which can be read as “if prop1 of goal1 has received the value value1 then I prefer prop2 of
goal2 to receive value2”. To satisfy this preference, we should execute goal1 before goal2
to determine the value of prop1. If its value is indeed value1 then we can aim to satisfy
the preferred value of prop2 for goal2. We wish to satisfy the user preferences as much as
possible which is why the agent should, given a general preference formula γ : Ψ , execute
the goals mentioned in γ before the goals that are referred to in Ψ . We can determine these
goal orderings at compile time by analyzing the preference formulas and the structure of the
goal-plan tree.

Consider the following preference formula

book_ f light.airline �= qantas : accommodation.t ype = hotel (0)
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Based on our previous observations, we want to execute BookFlightGoal before Accom-
modationGoal to obtain the value of book_ f light.airline. By analyzing the goal-plan
tree, we see thatBookFlightGoal is part of the subtree rooted atTransportGoal. Further-
more, both TransportGoal and AccommodationGoal are subgoals of HolidayPlan.
We can see that at HolidayPlan, the agent should therefore pursue the subgoal Trans-
portGoal before AccommodationGoal.

In general, for a plan with subgoals G0, . . . ,Gn , n ≥ 0, we want to determine if there are
any pairs of goals Gi and G j , for some i, j, i �= j , such that Gi should be executed before
G j . To represent this information, we define an ordering set for each plan.

Definition 12 (Ordering Set) An ordering set OP of a plan P is a possibly empty set of
triples (g1, g2, weight), where g1 and g2 are human-readable names of goals, expressing
that g1 should be executed before g2, and weight ≥ 1 is the number of preference formulas
that have given rise to this goal ordering.

The value weight determines which goal orderings take precedence over others when
multiple formulas result in conflicting orderings. Goal orderings with a higher weight are
considered to be important for satisfying possibly more preference formulas than those with
a strictly lower weight.

In the following sections we present two algorithms: an algorithm for computing the
ordering sets prior to an agent’s execution (Sect. 4.2.1) and an algorithm for utilizing the
ordering sets when determining the order of the subgoals of a plan (Sect. 4.2.2).

4.2.1 Computing ordering sets

Recall that we can determine the ordering of subgoals of a plan by analyzing the user pref-
erences as described in Sect. 4.2. Each ordering constraint that can be found in a preference
formula has the form “goal G1 should be executed before goal G2”. For a given plan P in the
goal-plan tree we can analyze whether this ordering constraint influences the order in which
the subgoals of P should be executed to satisfy the preference.

– If G1 and G2 are found in a part of the goal-plan tree that is not related to P (i.e., neither
of the goals is part of the subtree rooted at P) then the ordering constraint can be ignored.
The agent can influence the execution of the subgoals of P but the decisions that are made
here do not influence whether the preference regarding G1 and G2 will be satisfied.

– If either G1 or G2 is part of the subtree rooted at P and the other goal is not then no
constraint needs to be placed on the execution order of the subgoals of P . Similar to the
previous case, the execution order of the subgoals of P has no influence on whether this
preference will be satisfied.

– If both G1 and G2 are part of the subtree rooted at P then the execution order of the
subgoals can influence whether the ordering preference is satisfied or not. For example,
if G1 and G2 are direct subgoals of P and we execute G2 before G1 then the preference
of “G1 before G2” is not satisfied.

We will now analyze the third case in which both goals are part of the subtree rooted at P .
We can distinguish three cases of preferred orderings of goals by looking at the position of
a goal in the subtree rooted at P , whether the goal is a direct subgoal of P or is it a subgoal
deeper in the goal-plan tree.

(A) The execution of a direct subgoal can be preferred before another direct subgoal.
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Fig. 3 Three cases of goal orderings can be distinguished in user preferences. A thick dashed line from a goal
node Gi to G j indicates that Gi should preferably be executed before G j .

(B) The execution of a subgoal deeper in the goal-plan tree can be preferred before another
direct subgoal.

(C) The execution of a subgoal deeper in the goal-plan tree can be preferred before another
subgoal deeper in the goal-plan tree.

Figure 3 shows these three cases in thick dashed lines. Let us consider each of these cases
to determine the information that should be put into the ordering set of plan P1 as a result of
this ordering preference.

(A) Each entry in the ordering set of P1 specifies an ordering constraint over direct subgoals
of P1. In this case that information is readily available and no further computations are
needed. Following the example in Fig. 3, we can add or update an entry in the ordering
set of P1 expressing that subgoal G2 should be executed before subgoal G3.

(B) In this case we have a subgoal that is not a direct subgoal of P1 for which we are
computing the ordering set. Before we can add or update the ordering set, we need to
compute to which direct subgoal this deeper subgoal belongs. We can repeatedly retrieve
the parent node of a node in the goal-plan tree until we arrive at a direct subgoal of P1.
We know that the deeper subgoal is part of the subtree rooted at P1 so we know that the
aforementioned situation must occur. When we have found the two direct subgoals of
P1 (i.e., the direct subgoal that is given and the one we computed), we can add or update
an entry in the ordering set with the ordering constraint of two subgoals. In Fig. 3
the preference that subgoal G4 should be executed before G3 results in the ordering
constraint that the subgoal G2 should be executed before subgoal G3.

(C) We follow the same approach as in case (B) but now for both goals as they are not
direct subgoals of P1. In Fig. 3 the preference of executing G4 before G5 results in the
ordering constraint of executing G2 before G3.
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Recall that an entry in the ordering set consists of an ordering constraint between two
subgoals and a weight . The weight is by definition the number of preference formulas that
have given rise to this goal ordering. When we have determined the ordering constraint we
also need to associate a weight with this constraint. If the ordering set does not contain
an entry with this ordering constraint we set the weight to one. Otherwise we increment
the weight of an existing entry in the ordering set. Note that is is possible to have more
sophisticated mechanisms here, such as giving some preference formulas more weight than
others, so that it is not just a simple count of preference formulas. Investigation of such
weights and similar issues is an item of future work.

We have discussed how to compute the entries in an ordering set for a particular plan.
For each ordering constraint in a preference formula we (1) determine the plan to which it
belongs and (2) we then follow the above procedure to compute the entry of its ordering set.

How do we determine the plan (i.e. the aforementioned step 1) for which we need to update
the ordering set? We have seen that there is only one case which is relevant for satisfying
the user preferences: the case in which both goals in the ordering constraint are part of the
subtree rooted at the plan. Given two ordering constraints, we are therefore looking at a plan
that is an ancestral node of both goals in the goal-plan tree.

To be precise, we are looking for an ancestral plan node of both goals at which we can
influence whether the ordering constraint is satisfied or not. Not all ancestral plan nodes
are useful in this regard because at some ancestral plan nodes both goals of the ordering
constraint belong to the same subtree underneath that plan node. For example, in Fig. 3 the
ordering constraint C that goalG4 should preferably be executed beforeG5 can be satisfied by
choosing the correct order of subgoals at plan P1 but not at a (hypothetical and not pictured)
plan node P0 that is a parent of G1.

From this analysis we can see that we are looking for the nearest ancestral plan node that
is a parent node of both goals in the goal-plan tree. The ancestral plan node P in the goal-plan
tree is ‘nearest’ to goal nodes Gi and G j in the sense that

(1) P is an ancestral plan node of both Gi and G j , and
(2) P does not have a descendant plan node for which (1) holds.

We can now present Algorithm 1 for computing the ordering set of each plan in the goal-
plan tree. Algorithm 1 is part of the initialization phase (i.e., prior to execution of goals and
plans of the agent) in which also the resource and property summaries are being propagated
through the goal-plan tree.

4.2.2 Utilizing ordering sets to order the subgoals of a plan

The next algorithm, Algorithm 2, that we will present is used to decide the preferred order of
subgoals of a plan based on its ordering set. Algorithm 2 can be executed in the initialization
phase or at run time when the plan needs to instantiate its subgoals. Regardless of when
the algorithm is executed, the algorithm does not take information collected at run time into
account. This means the order of subgoals of plans is determined by analyzing the user
preferences without information about the current situation. If the agent were able to take
the current situation into account, it might prefer a different execution order of subgoals. We
will elaborate on this further in our discussion of future work (Sect. 6).

The algorithm starts with an ordering of the subgoals, such as g1, g2, g3, g4, g5, and it
processes the elements of the ordering set in non-increasing order from highest to lowest
weight. The algorithm does not enforce a particular ordering when processing elements with
the same weight. The outcome of the algorithm is an ordered list of subgoals and the subgoals
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Algorithm 1 Computing ordering sets
Require: goal-plan tree G and set of preference formulas F
1: Initialize ordering set OP of each plan P to ∅
2: for each formula f ∈ F such that f is γ : Ψ do
3: goalscond ← all goal names present in γ (for name = value or name �= value we take the right-most

goal name in goalpath of name)
4: goals ← all goal names present in Ψ (for name = value or name �= value we take the right-most

goal name in goalpath of name)
5: for each gcond ∈ goalscond do
6: for each g ∈ goals such that g �= gcond do
7: P ← nearest common ancestral plan of g and gcond in G
8: g1 ← subgoal of P and root of subtree with gcond
9: g2 ← subgoal of P and root of subtree with g
10: Insert (g1, g2, 1) into OP or increment weight w of an existing entry (g1, g2, w) ∈ OP
11: end for
12: end for
13: end for

should be pursued in that order, e.g., g5, g3, g4, g2, g1. Note that each goal ordering constraint
(which is obtained from a preference formula of the user) results in an entry in the ordering
set of the nearest ancestral plan node of those two goals. In Fig. 3 any ordering constraint
with a goal from the left subtree (G2 and G4) and a goal from the right subtree (G3 and G5),
such as “G2 should preferably be executed before G5”, results in an entry in the ordering set
of P1. Similarly, in Fig. 2 any ordering constraint results in an entry in the ordering set of
HolidayPlan as the structure of the goal-plan tree is similar to the one in Fig. 3, with a few
additional plan nodes.

Algorithm 2 Computing preferred order of subgoals
Require: goals G0, . . . ,Gn of plan P and ordering set OP
1: result ← an ordering of G0, . . . ,Gn
2: max ← highest weight present in OP
3: prevs ← ∅
4: for lvl = max to 1 do
5: goals ← {(g1, g2, w) ∈ OP | w = lvl}
6: for (g1, g2, w) ∈ goals do
7: if moving g2 to end of result does not violate goal orderings in prevs then
8: result ← result with g2 moved to the end
9: prevs ← prevs ∪ {(g1, g2, w)}
10: end if
11: end for
12: lvl ← lvl − 1
13: end for
14: return result

We will discuss Algorithm 2 using the following example. Consider a plan P with subgoals
g1, . . . , g5 and the ordering set

OP = {
(g1, g2, 3), (g1, g3, 1), (g2, g1, 4), (g3, g4, 3)

}
.

We use the notation ψ1 →(gi ,g j ,w) ψ2 to denote that the ordering ψ1 was transformed into
ψ2 after processing (gi , g j , w). The execution of the algorithm is as follows:
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g1, g2, g3, g4, g5

−→(g2,g1,4) g2, g3, g4, g5, g1 (g1 moved to back, (g2, g1, 4) added to prevs)
−→(g1,g2,3) g2, g3, g4, g5, g1 (ignored, would violate (g2, g1, 4))
−→(g3,g4,3) g2, g3, g5, g1, g4 (g4 moved to back, (g3, g4, 3) added to prevs)
−→(g1,g3,1) g2, g3, g5, g1, g4 (ignored, would violate (g3, g4, 3))

We have now obtained an ordering of subgoals that satisfies the goal orderings (g2, g1, 4)

and (g3, g4, 3). The goal ordering (g1, g2, 3) is ignored as it violates the earlier constraint that
g2 should be executed before g1. The goal ordering (g1, g3, 1) is ignored because it would
violate (g3, g4, 3) if g3 was moved to the end of the list of goals. Note that it is possible to
satisfy this constraint by putting g3 between g1 and g4 but our algorithm does not support
this operation. We refer the reader to Sect. 6 for a discussion on this issue.

It should be noted that our algorithm is not intended to guarantee a certain level of opti-
mality, but to provide the user of the system with a systematic mechanism for indicating
preferences. These are then used as a input to the decision-making process within the agent,
so that the decisions made are in accord with the user’s desires. As with many such mech-
anisms, this becomes a trade-off between the time spent in specifying preferences and the
user’s perception of the quality of the solutions found.

5 Implementation and case studies

We have implemented our preference system in the agent platform Jadex [21] and have tested
it on a number of examples, including the holiday example discussed above. The implemen-
tation consists of around 3000 lines of code, which utilizes the metagoal, metaplan,
mastergoal and masterplan features of Jadex as follows:

– We add a metagoal and a metaplan for meta-level reasoning on plan selection. Both
have the predefined parameters applicable, which contains the plans to choose from,
and result, which must contain the chosen plan after the metaplan has been exe-
cuted. For every goal, the metagoal is instantiated and in its metaplan, we evaluate
the alternative plans and we store the preferred plan in result.

– We add a mastergoal with a masterplan which run before all other goals and
plans to (1) extract the goal-plan tree from the agent specification, to (2) annotate and
propagate the additional information in the goal-plan tree and to (3) instantiate the root
goal node. These tasks should ideally be integrated into Jadex and they should not be
written by an agent programmer.

– We attach a status (success, failure, active and default) to each node to
reflect the state of the goals and plans in Jadex. We use this information when making
a decision for a goal. For example, a goal has plans P1, P2, and P3 and P2 is the most
preferred plan but P2 has previously failed so we return the second-most preferred plan.
The status of each node is updated whenever a plan execution finishes.

– We update metadata M (see Sect. 4.1) whenever a plan execution finishes. For every
successful plan, we store the values of its properties and all ancestral properties that are
based on it (e.g., accommodation.book_hotel.quali t y and accommodation.quali t y).
Note that the resource usage of a plan affects the resource usage of all its ancestral goals.

We use this implementation to present case studies to illustrate the features of our system
as follows.
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5.1 The example system

We implemented the holiday booking system outlined in Sect. 3.2 with the goal-plan tree
show in Fig. 2. We present the user preferences mentioned here again for convenience:

“I prefer to minimize the money spent on accommodation.”
accommodation.minimize(money) (0)

“I prefer to fly rather than travel by train.”
transport.t ype = plane (0) � transport.t ype = train (100)

“If the accommodation is a 5* hotel, I prefer to travel with Jetstar.”
accommodation.t ype = hotel ∧ accommodation.quali t y = 5∗ :
book_ f light.airline = Jetstar (0)

We emphasise that our motivations for implementing this and similar examples is to
illustrate the usefulness of our techniques, and not to perform a general evaluation of the
utility of preference-based reasoning in intelligent agent systems (which would be a much
more significant undertaking). Such an evaluation would require different groups of people
with similar skills in agent programming to use a platform with and without the preference
addition and check the time, quality and results of the systems. This type of evaluation is
clearly out of the scope of this paper. Another type of evaluation might be to see how much
extra time the calculation of the preferred plan will take over just taking a default choice.
This, of course, depends on the amount of information added and the number and size of
the plans. Our implementation has shown that the extra reasoning needed to support our
techniques takes negligible time. This is due to the compositional, bottom-up method we use
to construct preferences. It means that while constructing a plan at each choice point just
a few extra operations are performed and the overhead is restricted to a linear number of
extra calculations with respect to the number of decision points (i.e. the size of the goal-plan
tree). Given the small differences in performances, it did not seem worthwhile making foraml
measurements of the overhead involved.

Our aim with the case studies below, then, is not to perform a detailed evaluation of
preference-based reasoning in agent systems, but to show how our techniques work on some
concrete examples, and to make as precise as possible the relationship between the user’s
preferences and the output of the system. In other words, we provide some insight into the
question of whether the given solutions are what the user really wants.

We executed the system with and without preference based reasoning. When preferences
were not used or when no preferences were available, the agent randomly selected a plan for a
goal and pursued the subgoals of a plan in an arbitrary order. The user preferences were there-
fore only satisfied when the agent happened to make the right decisions during executions.
When we included our reasoning algorithms, the agent booked backpacker accommodation
(as cheapest alternative) and a flight with either airline as expected. In case the plan for back-
packer accommodation failed, the agent booked a 3∗ hotel. When this plan also failed, the 5∗
hotel was selected and due to the third preference formula, the agent selected the plan to fly
with Jetstar rather than Qantas. Furthermore, the accommodation goal was pursued before
the transport goal to make this possible.

The above findings are unsurprising and as expected. In order to illustrate the more inter-
esting aspects of our preference reasoning, we extended the goal-plan tree shown in Fig. 2 as
follows. We introduce an additional subgoal LuggageGoal for booking a holiday which is
the subgoal of purchasing a piece of luggage, such as a backpack, a travel bag or a suitcase.
This subgoal LuggageGoal can be seen in Fig. 4.
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Purchase30LiterBackpackPlan

Purchase50LiterBackpackPlan

LuggageGoal

Purchase40LiterBackpackPlan

 = {(type, {backpack}), (size, {30liter})}
PR = {(money, 80)}
PPS

PR = {(money, 150)}
PPS = {(type, {backpack}), (size, {40liter})}

PR = {(money, 180)}
PPS = {(type, {backpack}), (size, {50liter})}

PurchaseTravelBagPlan

PurchaseSuitcasePlan

PR = {(money, 150)}
PPS = {(type, {bag}), (size, {40liter})}

PR = {(money, 300)}
PPS = {(type, {suitcase}), (size, {50liter})}

name = luggage
RS = <{(money, 80)}, {(money, 860)}>
PS = {(type, {backpack, bag, suitcase})
           , (size, {30liter, 40liter, 50liter})}

Fig. 4 The additional implemented subgoal LuggageGoal of HolidayPlan

In this extended version of Fig. 2, the nodes HolidayPlan and HolidayGoal addition-
ally have the properties luggage.type and luggage.size in each of their property summaries.
We also introduce the following additional subgoals:

– A subgoal PayBackpackerGoal of the plan BackpackerPlan with two plans to pay
either by credit card or debit card (i.e., the property payment with respectively the values
credit and debit). We have associated with each plan the same amount of resources,
money = 100, and BackpackerPlan no longer has resources associated with it.

– A subgoal BookAirportTransportGoal of the plan FlightPlan which handles the
goal of booking transport to get to the airport. Two plans are available, ToAirport-
ByTaxiPlan and ToAirportByPublicTransportPlan which respectively book a
taxi and book a ticket to arrive at the airport by public transport. Each of these plans
has the property payment = {credit, debit} and the monetary cost associated with
these plans is respectively 50 and 20. We express the means of transport with the prop-
erty secondary_transport which can be taxi or public_transport and the transport
towards the holiday destination (i.e., plane or train) is now referred to by the property
primary_transport .

– Lastly, a subgoal PayTrainGoal of the plan TrainPlanwith two plans that distinguish
between paying with credit card and debit card. The monetary cost is 115 for both plans
and each of the plans has a property called payment with either the value credit or
debit .

Furthermore, the values of in each of their resource summaries are accordingly adjusted.
We are unable to legibly display the fully annotated goal-plan tree with the above extensions,
however the exact values are not important for the following purpose. We use these exten-
sions to describe the case studies below, highlighting some of the features of our reasoning
algorithms. In order to bring about certain features we also force some plans to fail. These
case studies are described below.
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Table 1 Example scenario with no preferences

AccommodationGoal TransportGoal LuggageGoal

3* Jetstar, taxi, credit 30LiterBackpack

5* Jetstar, taxi, debit 40LiterBackpack

Backpacker, credit Jetstar, public transport, credit 50LiterBackpack

Backpacker, debit Jetstar, public transport, debit TravelBag

Qantas, taxi, credit Suitcase

Qantas, taxi, debit

Qantas, public transport, credit

Qantas, public transport, debit

Train, credit

Train, debit

5.2 Case study 1: no preferences

In order to provide a baseline for later results, we first consider the above scenario in which
no preferences are specified. For the goal-plan tree of Fig. 2, this means that there are 9 pos-
sible outcomes. There are three choices of accommodation, and hence three possible ways
to achieve the AccommodationGoal (3*, 5*, backpacker). There are also three ways to
achieve the TransportGoal (Jetstar, Qantas, train), thus making 3 × 3 = 9 total combina-
tions. In the extended scenario, there are four options for accommodation (the previous three,
with the backpacker case splitting into two possibilities, one for payment by credit and one
for payment by debit), and ten options for transport (for air transport, two airlines, two means
to get to the airport and two means of payment, plus the train, split into two possibilities by
means of payment). There are also five options for the new LuggageGoal. This makes a
total of 4 × 10 × 5 = 200 possible outcomes overall.

The outcomes for each of the three goals are given in Table 1. The 200 possibilities can
be constructed by selecting one outcome from each column.

If no preferences are specified, the system will (correctly) make an arbitrary choice for one
of these 200 possibilities. It may also occur that some of these may fail, such as there being
no 5* accommodation available, or certain kinds of luggage not being able to be purchased.
As long as there is at least one solution to each of the three goals AccommodationGoal,
TransportGoal and LuggageGoal, this will not have much effect, as all it does is narrow
down an arbitrary choice to a smaller number of possibilities.

Even for this relatively simple example, it should be clear that the ability to specify
preferences is significant. Whilst in principle any one of these 200 possibilities is a solution
for the traveller, in practice it is likely that some of these will be more suitable than others.
As we shall see, we can use our preference reasoning methods to constrain the solutions
provided to ones that are far more likely to satisfy the user.

5.3 Case study 2: the backpacker

Our first example with preferences involves those of a backpacker which are characterized
by a low travel budget.

f1 “I prefer to stay in backpacker accommodation rather than a hotel.”
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accommodation.t ype = backpacker (0) � accommodation.t ype =
hotel (100)

f2 “I prefer to travel by train rather than by aircraft.”
transport.primary_transport = train (0) � transport.primary_
transport = plane (100)

f3 “I prefer to minimize my expenses.”
minimize(money) (0)

f4 and f5 “If I have to travel by aircraft then I prefer to fly with Jetstar. Furthermore,
in this case, I prefer to travel to the airport by public transport rather than by
taxi”
transport.primary_transport = plane : transport.book_ f light.airline
= jetstar (0)

transport.primary_transport = plane :
transport.book_airport_transport.secondary_transport
= public_transport (0)

f6 and f7 “I prefer a backpack as luggage that is as large as possible.”
luggage.t ype = backpack (0)

luggage.si ze = 50li tre (0) � luggage.si ze = 40li tre (50) �
luggage.si ze = 30li tre (100)

Table 2 shows two different executions of the system. If we consider the first execution
(Execution 1 in the table), observe that the agent, as expected, selects the plan for booking a
backpacker accommodation (due to f1) and the plan for purchasing the the largest backpack
as luggage (due to f6 and f7). The user has not specified a preference for the method of
payment hence the credit card is chosen at random.

Execution 2 is also possible as the decision between choosing a train and plane is neu-
tral. This is because preference formula f2 specifies a preference of train over plane yet
preference formula f3 specifies a preference to minimize the amount of resources spent.
The plan FlightPlan requires at least ‘money = 110’ and TrainPlan requires at least
‘money = 115’. When the preference formulas are evaluated for FlightPlan and Train-

Plan we get the results shown in Table 3.
Preference formula f2 is evaluated with a lower value for TrainPlan and preference

formula f3 is evaluated with a lower value for FlightPlan. Both plans receive a score of
400 which means both plans are considered equal in terms of how well they satisfy the
preferences. Note that f4 and f5 evaluate to vmin as the condition is false.

Agent execution with plan failure

In the following execution we force the failure of the plans BackpackerPlan and each of
the plans to purchase a backpack (i.e., PurchaseXXLiterBackpackPlan). This leads to
the two executions shown in Table 4.

We will discuss the following two observations: (1) the 3∗ hotel was chosen as alternative
to the preferred backpacker accommodation ( f1) because it is the cheapest alternative ( f3)
and (2) the cheaper bag with a capacity of 40 L is chosen ( f3) rather than the expensive
suitcase which would satisfy the preference of having a 50 L piece of luggage ( f7).

With regard to the first observation, we note that in both executions the agent attempts to
book a backpacker hostel for accommodation but this fails. In order to achieveAccommoda-
tionGoal, the agent selects HotelPlan for execution as this is the only alternative. For its
subgoal BookHotelGoal, the agent has to choose between BookThreeStarHotelPlan

and BookFiveStarHotelPlan. Preference formula f3 is now the only user preference that
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Table 2 Backpacker example without plan failure

Execution 1 Execution 2

BackpackerCreditPlan (S)
BackpackerPlan (S)
Purchase50LiterBackpackPlan (S)
PayTrainDebitPlan (S)
TrainPlan (S)
HolidayPlan (S)

BackpackerCreditPlan (S)
BackpackerPlan (S)
Purchase50LiterBackpackPlan (S)
FlyWithJetstarPlan (S)
ToAirportByPublicTransportPlan

(S)
FlightPlan (S)
HolidayPlan (S)

Successful goals: { pay backpacker,
accommodation, luggage, pay train,
transport, holiday }

Unsuccessful goals: { }
Resources: {(money, 395)}
Properties:
accommodation.pay backpacker.payment

= {credit}
accommodation.type = {backpacker}
accommodation.quality = {basic}
luggage.type = {backpack}
luggage.size = {50litre}
transport.pay train.payment = {debit}
transport.primary transport = {train}

Successful goals: {pay backpacker,
accommodation, luggage, book flight,
book airport transport,transport,
holiday }

Unsuccessful goals: { }
Resources: {(money, 390)}
Properties:
accommodation.pay backpacker.payment

= {credit}
accommodation.type = {backpacker}
accommodation.quality = {basic}
luggage.type = {backpack}
luggage.size = {50litre}
transport.book flight.payment = {credit}
transport.book flight.airline = {jetstar}
transport.book airport transport.secondary

transport = {public transport}
transport.book airport transport.payment

= {credit}
transport.primary transport = {plane}

S plan succeeded, F plan failed

Table 3 FLIGHTPLAN and
TRAINPLAN preference
evaluation

Preference formula FlightPlan TrainPlan

f1 100 100

f2 100 0

f3 0 100

f4 0 0

f5 0 0

f6 100 100

f7 100 100

Total 400 400

can guide the agent. For this reason, the agent selects the 3∗ hotel because it is cheaper than
the the 5∗ hotel.

The second observation is good example of how changing circumstances can change the
decisions that the agent makes. The agent needs to decide upon a piece of luggage and
the relevant preferences for this decision are preferences formulas f3, f6, and f7, which
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Table 4 Backpacker example with plan failure

Execution 1 Execution 2

Purchase50LiterBackpackPlan (F) Purchase30LiterBackpackPlan (F)
Purchase30LiterBackpackPlan (F) Purchase40LiterBackpackPlan (F)
Purchase40LiterBackpackPlan (F) Purchase50LiterBackpackPlan (F)
PurchaseTravelBagPlan (S) PurchaseTravelBagPlan (S)
PayTrainCreditPlan (S) ToAirportByPublicTransportPlan (S)
TrainPlan (S) FlyWithJetstarPlan (S)
BackpackerDebitPlan (S) FlightPlan (S)
BackpackerPlan (F) BackpackerCreditPlan (S)
BookThreeStarHotelPlan (S) BackpackerPlan (F)
HotelPlan (S) BookThreeStarHotelPlan (S)
HolidayPlan (S) HotelPlan (S)

HolidayPlan (S)

Successful goals: { luggage, pay train,
transport, pay backpacker, book hotel,
accommodation, holiday }

Unsuccessful goals: { }
Resources: {(money, 975)}
Properties:
luggage.type = {bag},
luggage.size = {40litre},
transport.pay train.payment = {credit},
transport.primary transport = {train},
accommodation.pay backpacker.payment

= {debit},
accommodation.book hotel.payment =

{credit},
accommodation.book hotel.quality =

{3*},
accommodation.type = {hotel},
accommodation.quality = {3*}

Successful goals: { pay backpacker,
book hotel, accommodation, luggage,
book airport transport, book flight,
transport, holiday }

Unsuccessful goals: { }
Resources: {(money, 970)}
Properties:
accommodation.pay backpacker.payment

= {credit}
accommodation.book hotel.payment =

{credit}
accommodation.book hotel.quality =

{3*}
accommodation.type = {hotel}
accommodation.quality = {3*}
luggage.type = {bag}
luggage.size = {40litre}
transport.book flight.payment = {credit}
transport.book flight.airline = {jetstar}
transport.primary transport = {plane}
transport.book airport transport.

payment = {debit}
transport.book airport transport.

secondary transport =
{public transport}

S plan succeeded, F plan failed

respectively deal with the cost, the type and the size of the luggage. Prior to executing any of
the plans for the goal LuggageGoal, the evaluation of preferences is as shown in Table 5
(for convenience we have included the cost and size of each piece of luggage).

We omit the other preference formulas in this overview as they do not influence the
decisions that are made. We can see that the backpacks of 30 and 50 L are considered equal
in terms of preference satisfaction: the first one is cheaper ( f3) whereas the second satisfies
the preference of having luggage with a capacity of 50 L ( f7). The agent can therefore
select either Purchase30LiterBackpackPlan or Purchase50LiterBackpackPlan as
first plan to achieve LuggageGoal and both of these situations occur in the two executions
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Table 5 Preference evaluation prior to execution

Preference Backpack Backpack Backpack Bag Suitcase
formula 30 L 40 L 50 L 40 L 50 L

(money, 80) (money, 150) (money, 180) (money, 150) (money, 300)

f3 0 100 100 100 100

f6 0 0 0 100 100

f7 100 50 0 50 0

Total 100 150 100 250 200

Table 6 Preference evaluation after failure of Purchase30LiterBackpackPlan

Preference Backpack Backpack Backpack Bag Suitcase
formula 30 L 40 L 50L 40 L 50 L

(money, 80) (money, 150) (money, 180) (money, 150) (money, 300)

f3 100 0 100 0 100

f6 0 0 0 100 100

f7 100 50 0 50 0

Total 200 50 100 150 200

Status Failure

Table 7 Preference evaluation after failure of Purchase40LiterBackpackPlan

Preference Backpack Backpack Backpack Bag Suitcase
formula 30 L 40 L 50 L 40 L 50 L

(money, 80) (money, 150) (money, 180) (money, 150) (money, 300)

f3 100 100 100 0 100

f6 0 0 0 100 100

f7 100 50 0 50 0

Total 200 150 100 150 200

Status Failure Failure

above. The execution of either of these plans fails. We will follow Execution 2 and consider
the situation after the failure of Purchase30LiterBackpackPlan which results in the
preference evaluations shown in Table 6.

The cheapest plan in the previous situation is now no longer available which means
preference formula f3 needs to be evaluated using the other four plans. There are now two
alternatives with the same monetary cost: the 40 L backpack and the 40 L bag. These two
alternatives are equal with regard to preference formulas f3 and f7 but they differ with regard
to preference formula f6. In this situation the agent can only select the 40 L backpack as this
is the preferred type of luggage ( f6). This plan also fails which results in the situation shown
in Table 7.

Given that the first two plans have failed, the agent can only select a plan out of the latter
three plans: the 50 L backpack, the 40 L bag and the 50 L suitcase. The agent selects the
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Table 8 Preference evaluation after failure of Purchase50LiterBackpackPlan

Preference Backpack Backpack Backpack Bag Suitcase
formula 30 L 40 L 50 L 40 L 50L

(money, 80) (money, 150) (money, 180) (money, 150) (money, 300)

f3 100 100 100 0 100

f6 0 0 0 100 100

f7 100 50 0 50 0

Total 200 150 100 150 200

Status Failure Failure Failure

plan for the 50 L backpack and after this plan has failed we arrive at the situation shown in
Table 8.

We can see here that the agent should select the bag rather than the suitcase as the preference
of minimizing the cost ( f3) is considered more important than the preference of obtaining
a piece of luggage with a capacity of 50 L ( f7). Informally, if an alternative does not fully
satisfy f3 (i.e., evaluate to a value of 0) it receives a value of 100 but an alternative that does
not fully satisfy f7 receives a value of either 50 or 100 (in this case 50). This means f7 can
inflict a less severe punishment than f3 upon an alternative if it does not fully satisfy the user
preference.

5.4 Case study 3: the businessman

Our second example with preferences is about a wealthy businessman whose preferences are
characterized by a larger travel budget and a certain standard of travel and accommodation.
This example demonstrates a conjunction in a condition and evaluating a preference using
a property that have been constructed using N as described in Sects. 3.1.2 and 4.1.2. The
preferences are:

f1 “I prefer to travel by plane rather than by train.”
transport.primary_transport = plane (0) �
transport.primary_transport = train (100)

f2 “I prefer to fly with Qantas rather than with Jetstar.”
transport.book_ f light.airline = qantas (0) �
transport.book_ f light.airline = jetstar (100)

f3 “I prefer to stay in a 5* quality accommodation.”
accommodation.quali t y = 5∗ (0)

f4 “If I’m staying in a 3* accommodation then I prefer to have 40-L sized lug-
gage.”
accommodation.quali t y = 3∗ : luggage.si ze = 40L (0)

f5 and f6 “I prefer to go to the airport by taxi, which I prefer to pay by credit card.”
transport.book_airport_transport.secondary_transport = taxi (0)

transport.book_airport_transport.payment = credit (0)

f7 “I prefer to have a suitcase as luggage.”
luggage.t ype = sui tcase (50)

We will now discuss how the evaluation of preference formula f3 takes place as this will
show how a property that has been introduced for the goal AccommodationGoal using
N (accommodation.quali t y), as described in Sect. 3.1.2, is evaluated. We will show that
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Table 9 Businessman example executions

Execution 1 Execution 2

BookFiveStarHotelPlan (S)
HotelPlan (S)
PurchaseSuitcasePlan (S)
ToAirportByTaxiPlan (S)
FlyWithQantasPlan (S)
FlightPlan (S)
HolidayPlan (S)

FlyWithQantasPlan (S)
ToAirportByTaxiPlan (S)
FlightPlan (S)
BookFiveStarHotelPlan (F)
BookThreeStarHotelPlan (S)
HotelPlan (S)
PurchaseTravelBagPlan (S)
HolidayPlan (S)

Successful goals: { book hotel,
accommodation, luggage,
book airport transport, book flight,
transport, holiday }

Unsuccessful goals: { }
Resources: {(money, 900)}
Properties:
accommodation.book hotel.payment =

{credit}
accommodation.book hotel.quality =

{5*}
accommodation.type = {hotel}
accommodation.quality = {5*}
luggage.type = {suitcase}
luggage.size = {50litre}
transport.book airport transport.
secondary transport = {taxi}
transport.book airport transport.payment

= {credit}
transport.book flight.payment = {credit}
transport.book flight.airline = {qantas}
transport.primary transport = {plane}

Successful goals: { book flight,
book airport transport, transport,
book hotel, accommodation, luggage,
holiday }

Unsuccessful goals: { }
Resources: {(money, 950)}
Properties:
transport.book flight.payment = {credit}
transport.book flight.airline = {qantas}
transport.book airport transport.
secondary transport = {taxi}
transport.book airport transport.payment

= {debit}
transport.primary transport = {plane}
accommodation.book hotel.payment =

{credit}
accommodation.book hotel.quality =

{3*}
accommodation.type = {hotel}
accommodation.quality = {3*}
luggage.type = {bag}
luggage.size = {40litre}

S plan succeeded, F plan failed

the way f3 is evaluated varies depending on whether we are evaluating for Accommoda-
tionGoal or its subgoal BookHotelGoal. In both cases we should be able to identify
a property in one of the plans for these goals to which accommodation.quali t y can be
matched. Table 9 shows two executions, one without any plan failure and the other with
failure introduced.

Let us first consider the case where there is no plan failure. At the level of Accom-

modationGoal the agent should be able to detect that the plan HotelPlan eventu-
ally leads to a 5∗ accommodation. Similarly, at the level of BookHotelGoal the agent
should notice that the plan BookFiveStarHotelPlan, leads to a 5∗ accommodation. This
means that at AccommodationGoal, the property accommodation.quali t y should be
matched to book_hotel.quali t y of HotelPlan and at BookHotelGoal, the property
accommodation.quali t y should be matched to quali t y of either of the plans of that goal.

Consider the case of AccommodationGoal with its two plans BackpackerPlan and
HotelPlan that respectively have the propertiesquali t y = {basic} andbook_hotel.quali t y
= {3∗, 5∗}. We are evaluating a basic desire formula ( f3) of the form name = value which
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is the first type of basic desire formulas mentioned in Definition 8. We apply the second
condition of the evaluation of preference formulas of this type to assign the value vmin to
HotelPlan and vmax to BackpackerPlan when evaluating accommodation.quali t y =
5∗. The agent therefore selects HotelPlan for execution.

Consider now the case of BookHotelGoal with its two plans
BookThreeStarHotelPlan and BookFiveStarHotelPlan that respectively have the
properties quali t y = {3∗} and quali t y = {5∗}. The agent should now be able to detect that
these properties correspond to accommodation.quali t y. However, we cannot simply match
them based on their name alone as the property quali t y could also appear in other parts of
the goal-plan tree. For example, if FlyWithJetstarPlan and FlyWithQantasPlan had
a property quali t y then we would not want the agent to use this preference mistakenly to
decide between those plans for BookFlightGoal.

Instead, we compute the goalpath of the property quali t y of these plans forBookHotel-
Goal and we compare this goalpath to the goalpath of the property in f3. To be precise,
we apply the third condition of the evaluation in Definition 8. The goalpath of the proper-
ties of these plans is accommodation.book_hotel which means the full property name is
accommodation.book_hotel.quali t y.

Based on how the property accommodation.quali t y is introduced for Accommoda-
tionGoal, we can conclude that a property accommodation.book_hotel. quali t y is part
of the subtree rooted at AccommodationGoal and that it is therefore applicable when eval-
uating a property called accommodation.quali t y. The agent is therefore able to satisfy the
preference formula f3 by selecting BookFiveStarHotelPlan rather than BookThree-

StarHotelPlan.

Agent execution with plan failure

In this case we force the planBookFiveStarHotelPlan to fail to analyze what happens with
the condition f4. Observe that preference formula f7 concerns itself with the businessman’s
luggage and that is has a value of 50 associated with it rather than the value 0. Observe also that
f4 also refers to a characteristic of the luggage and that this preference formula has a value of 0
associated with it. This means that if the condition in f4 is true then luggage.si ze = 40L (0)

is used when evaluating the preferences for the luggage goal. In turn, this means that this
preference formula will be more important in a decision than preference formula f7 as this
formula has a higher value associated with it. This shows that a user can increase a value to
decrease the importance of that preference formula.

6 Conclusion

In intelligent agents, preferences have been used for the selection [14,19] and elimination [15,
17,18] of actions or plans. The preference language on which our work is based is also used
by Fritz and McIlraith [10,11] to integrate preferences into the agent programming language
DT-Golog.

The contributions of this work are (1) a method for annotating goals and plans with their
properties, (2) the specification of user preferences in a formal language in those terms and
(3) algorithms to utilize these preferences in plan selection for goals and ordering subgoals
of a plan. A key characteristic of our approach is that preferences are specified independently
of the goal-plan tree which can therefore be used by multiple users, each with their own
preferences.
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We have implemented our preference system in the agent platform Jadex [21] and have
tested it on a number of examples as discussed above.

6.1 Discussion

A point of consideration is whether our preference language captures the ‘true’ preferences
of the user or whether they are a rather technical and low-level representation of the user’s
actual preferences. For example, in our example of booking a holiday, a user could simply
prefer to stay in the most luxurious accommodation and to travel with the most luxurious
means of transportation. The only reason for a user to ‘prefer’ a less luxurious option is
that the user has a sense of the associated costs with such high class options. An average
student would have a smaller budget than a rich businessman yet both can specify to prefer to
have the best of all worlds (i.e., accommodation, transport, luggage, etc.). The budget would
then be the limiting factor which influences what the user will actually get for each of these
subgoals. We feel that this is a valid point and an option worth exploring is the development
of a more high-level preference language that captures these preferences. These preferences
could then be translated into formulas of our preference language of which we have shown
that the agent can utilize them at run time.

In our approach we aim to improve the decisions that the agent makes at run time by
incorporating additional information, i.e., the user’s preferences. It can be argued that that
our approach merely places, prior to actual execution, some constraints on the suitable plans
for a goal or the execution order of subgoals. Furthermore, one could argue that this is
contrary to the underlying philosophy of BDI agents which are characterized as flexible and
adaptable in a dynamical environment. Does an agent augmented with our contributions still
retain these characteristics or has the agent been reduced to a complex system that essentially
performs little more than “if this then do that” operations?

Our answer is that the user preferences do not limit the agent’s options. Our algorithms
that utilize the user preferences do not forcefully constrain or eliminate certain options even
when these options are more desirable than the most preferred option according to the user
preferences. As noted in our discussion of limitations, we do not take features of modern
agent systems into account, such as context conditions, but their presence can still override
the choice that would be made if the agent relied only on the preferences.

For example, for a goal with plans P1, P2, and P3 with P1 as most preferred option
according to the user’s preferences, the agent can still select the plans P2 or P3 if plan P1

cannot be selected for execution due to the current circumstances (i.e., its context condition
may not be met which prevents it from being executed).

Our preference algorithms compute a numerical value for each plan of a goal and they
order the subgoals of a plan, both with regard to the user preferences. In our analysis of the
presented work we focus on the choice that the agent would make using these preferences
but the ‘preference reasoning component’ of the agent should be integrated into the agent
system as a whole. Preferences may therefore guide the agent in its decisions but they cannot
harm the agent’s flexibility and adaptability since they are, after all, only preferences.

While it is true that the preferences can be regarded as a set of constraints that are set in
stone prior to execution, the agent’s decisions are still made at run time and the preferred
choices do not necessarily need to be chosen at run time. Furthermore, as we have argued
earlier in this section, our current preference language can be considered a rather low-level
language outlines the constraints under which the agent should be executed. It may well be
valid to state that a greater degree of flexibility and adaptability can be attained when a more
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high-level preference language and semantics are used (i.e, a high-level preference could be
translated into a variety of run time statements, depending on the circumstances at run time).

6.2 Limitations and future work

There are many directions for future work to further this area of research. Firstly, we have
not incorporated consistency checks to see if the user has specified preferences that conflict
in some or all executions of the agent system. For example, if the user prefers backpack
over bag and bag over sui tcase then it would be conflicting to also prefer sui tcase over
backpack. More complex examples can be constructed using conditional preferences, such
as preferring (1) to have a backpack as luggage, (2) to stay in a hotel but also that (3) if a
backpack is purchased, a backpacker hostel is preferred for accommodation, which conflicts
with (2). Preference formulas can also lead to cycles, e.g., book the hotel only if the flight
is booked and book the flight only if a hotel is booked. Similarly, preferences over resource
usage can also conflict. It would not be rational to specify a preference to minimize the costs
and to specify that an excessive amount should be spent on each subgoal when this is clearly
not the cheapest choice. It is also possible that preferences only conflict in situations that
arise after a particular sequence of plan failures but not in other situations.

Secondly, we have not explored interactions that may exist between preferences. Satisfying
a preference in one part of the goal-plan tree might make it impossible to satisfy preferences
in other parts of the goal-plan tree. For example, a preference to book the most expensive
type of accommodation, which might be satisfiable early in the agent’s execution, may make
it impossible to satisfy the preferences for transport and luggage which are executed later
due to a lack of money. Rather than just using user preferences for the decisions at hand the
agent should have a sense of how this affects decisions that inevitably need to be made later.
To solve this problem a reasoning component could perhaps be developed that analyses the
goal-plan tree and the preferences to determine the interactions that could arise within the
agent system.

Thirdly, we have focussed on consumable resources and we have not explored the spec-
ification of and reasoning about preferences over reusable resources. Reusable resources
differ from consumable resources in that they can be reused again and this can lead to dif-
ferent preferences. An example of a reusable resource is a communication channel, given by
Thangarajah et al. [29], and the user could express preferences such as “I prefer to use at
most three communication channels at the same time” and “I prefer that each communication
channel is used at most five times”. Future work in this direction would lead to new prefer-
ence formulas for expressing these user preferences and these will need to be incorporated
into the agent’s reasoning algorithms.

Lastly, the assumptions that we make in our propagation rules and the way the nodes in
the goal-plan tree have been annotated influence the usefulness of the computed properties.
For example in Fig. 2, if BookFiveStarHotelPlan was also annotated with payment =
{credit}, we end up with payment = {credit} and book_hotel.payment = {credit, null}
for HotelPlan which is redundant. The underlying issue here is that it is not clear whether
a property prop of a plan and a property prop of a subgoal of that plan should be considered
the same or not.

An important area for future work would be to develop a preference language at a higher
level to better capture the user’s preferences and a mechanical way of translating those
preferences into our current preference language. An important contribution of our work is
applying the notion of summary information to the problem of utilizing preferences in an
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agent system. We acknowledge that the preference language that is used is also very important
and that improvements can be made in this area.
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