
Programming multi-agent systems

MEHDI DASTANI

Intelligent Systems Group, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands;
e-mail: m.m.dastani@uu.nl

Abstract

With the significant advances in the area of autonomous agents and multi-agent systems in the last
decade, promising technologies for the development and engineering of multi-agent systems have
emerged. The result is a variety of agent-oriented programming languages, development frameworks,
execution platforms, and tools that facilitate building and engineering of multi-agent systems. This
paper provides an overview of the multi-agent programming research field and explains the aim and
characteristics of various multi-agent programming languages and development frameworks. This
overview is complemented with a discussion on the current trends and challenges in this research
community.

1 Introduction

Multi-agent systems consist of interacting autonomous systems called agents. Agents are assumed to
be autonomous in the sense that they decide for themselves which actions to perform in order to achieve
their own individual objectives. Agents interact either with each other through communication or with
their external environments through their sensors and actuators. One way to ensure global properties of
multi-agent systems (i.e. overall system properties) is to control and coordinate the interaction between
agents as well as the interaction between agents and environments (see e.g. Ferber, 1999; Weiss, 1999;
Wooldridge, 2009). The coordination of agents can be done either endogenously or exogenously (see e.g.
Arbab, 1998; Dastani et al., 2005a). In an endogenous approach the coordination models reside within the
agents, while in an exogenous approach the coordination models reside outside the agents. In particular, in
an endogenous approach agents are internally designed and developed to behave in a controlled and
coordinated manner, while in an exogenous approach agents are controlled and coordinated by means of
an external component.

Multi-agent systems constitute a promising software engineering approach for the development of
applications in complex domains where interacting application components are autonomous and
distributed, operate in dynamic and uncertain environments, have to respect some organisational rules and
laws, and can join and leave the system at runtime (see e.g. Zambonelli et al., 2003). Examples of such
applications are systems that manage and optimise the generation and distribution of electricity among
consumers, systems that optimally schedule and assign loads to vehicles in transportation systems, or
conference management systems. In a conference management system, application components are, for
example, individual agents (associated to the individuals involved in a conference) that interact by
submitting, reviewing, or accepting/rejecting papers. The external environment with which individual
agents interact consists of databases that store information about authors and reviewers, submitted papers,
reviews, and the final decision for papers. While individual agents can decide to submit and review papers,
their activities are exogenously controlled and coordinated by some conference rules and laws.
For example, reviewers are not permitted to review their own papers, the conference chair is responsible

The Knowledge Engineering Review, Vol. 30:4, 394–418. © Cambridge University Press, 2015
doi:10.1017/S0269888915000077



that each paper receives a certain number of reviews, and papers with more than a certain number of pages
are rejected. The development of such applications requires the development of software agents
(or interfaces that enable humans to interact with the system), environments (e.g. databases for papers and
reviews), and organisation processes that control and coordinate the activities of individual agents
(e.g. monitoring the upload of papers and reviews, while enforcing organisational rules and laws).

A distinguishing feature of multi-agent systems compared with other software development approaches
is the repertoire of high-level social/cognitive concepts and abstractions that multi-agent systems provide
to specify, design, and implement software systems in complex domains. Examples of such concepts
and abstractions are beliefs, goals, plans, actions, events, roles, organisational rules and structures,
communication, norms and sanctions. In order to build multi-agent systems in an effective and systematic
way, different methodologies (e.g. Bergenti et al., 2004), specification languages (e.g. Cohen & Levesque,
1990; Rao & Georgeff, 1991; Meyer et al., 1999; Dastani et al., 2010), programming languages and
development tools (e.g. Hindriks et al., 1999; De Giacomo et al., 2000; Leite et al., 2001; Bracciali et al.,
2004; Kakas et al., 2004; Sardina et al., 2004; Bordini et al., 2005, 2009; Fisher, 2005; Pokahr et al., 2005;
Sadri, 2005; Winikoff, 2005; Bordini et al., 2007; Dastani, 2008) have been proposed. While
methodologies assist system developers to specify and design software systems in terms of multi-agent
system concepts and abstractions, the main challenge of the proposed multi-agent programming
languages and development frameworks is to provide programming constructs and operations that
facilitate explicit and effective implementation of multi-agent system concepts and abstractions.

In general, the development of multi-agent systems requires the development of three different types of
entities: individual agents, multi-agent organisations, and multi-agent environments. Although ontological
differences between these entities and their implications for programming multi-agent systems have been
emphasised during the early ProMAS technical fora (see e.g. Dastani & Gomez-Sanz, 2006), the main
focus of the multi-agent programming community has been the development of individual agents.
Multi-agent organisations and environments have been active research areas for many years and have
resulted in a variety of models and architectures. However, the need for programming languages that
support the implementation of multi-agent organisations and environments has only recently been
recognised. It is important to emphasise that the term multi-agent system environment has been used with
different meanings. For example, it is used to refer to what is external to the system (i.e. the embedding
environment of the system), to the supporting run-time infrastructures of the system (i.e. execution
platform or communication middleware), or to the non-agentified part of the system with which individual
agents interact (i.e. databases or services). As the focus of this paper is on multi-agent programming
languages and development frameworks, we ignore the first and the second uses of the notion of
environment. The first notion of environment does not refer to a software component that needs to be
developed, and the second notion of the environment refers to an infrastructure that is assumed to be given
and used by the software developers to build and execute their software systems.

This paper starts with a discussion on the aims and objectives of the multi-agent programming research
field. Subsequently, it presents and discusses concepts and abstractions for which multi-agent program-
ming languages and development frameworks intend to support their implementations. The paper
proceeds with presenting an overview of the state of the art in multi-agent programming and explains
the aims and characteristics of some existing multi-agent programming languages and development
frameworks. Of course, there are too many programming languages and development frameworks to
mention in this paper. The programming languages covered in this paper are selected because they have an
interpreter and an execution platform. Current trends in this research field will be explained and discussed
by means of recent foci and developments of multi-agent programming languages. Finally, the paper
discusses issues that are currently challenging the multi-agent programming research field.

2 Aims and objectives

Multi-agent systems can be seen as an advance in software engineering that has resulted in new software
development methodologies. A characteristic feature of these methodologies is that they provide
high-level concepts and abstractions to model and develop complex distributed intelligent systems. Like

Programming multi-agent systems 395



other conventional software development approaches, multi-agent systems cover different phases such as
requirement, specification, design, implementation, and testing. Various multi-agent system software
methodologies have been proposed, for example, Gaia (Zambonelli et al., 2003), Prometheus (Padgham &
Winikoff, 2003), Tropos (Bresciani et al., 2003), INGENIAS (Gomez-Sanz & Pavon, 2003), and others
(see Bergenti et al., 2004). Each methodology focuses on specific phases of the software development
process. For example, Gaia focuses mainly on the analysis and design phases, while Prometheus covers
the implementation phase as well. Existing multi-agent system software development methodologies
propose concepts and abstractions such as beliefs, goals, plans, events, roles, interaction, agents,
environment, organisation rules, norms, permission, responsibility, and capability.

The main aim of the multi-agent programming research field is to propose programming languages and
development frameworks that can facilitate direct and effective implementations of multi-agent systems.
From the software development perspective, the proposed programming languages and development
frameworks should support the implementation phase of multi-agent development methodologies. In fact,
one can see a multi-agent programming language or a development framework as a computational
specification language for implementing a certain class of multi-agent system architectures. As different
multi-agent system development methodologies propose different abstractions and architectures, one may
argue that a standard general purpose multi-agent programming language or development framework
cannot emerge as long as different multi-agent system development methodologies do not converge in the
sense of agreeing on a shared set of abstractions and an architecture. Although multi-agent programming
languages provide different sets of programming constructs, most of them are considered as general
purpose programming languages that are not aimed at a particular application domain. It should
be emphasised that while these programming languages are application independent, they are dedicated
to multi-agent systems in the sense that they are designed to support the implementation of any multi-agent
system.

Multi-agent programming languages and development frameworks can be characterised along different
dimensions. First, they can be characterised by means of concepts and abstractions for which they provide
dedicated programming constructs. The concepts and abstractions, which are often motivated by
multi-agent system development methodologies, can be classified as being concerned with individual
agents, multi-agent organisations, or multi-agent environments. Some programming languages and
development frameworks provide constructs to implement individual agent concepts and abstractions
such as beliefs, goals, plans, autonomous behaviour, reactive behaviour, social awareness, reasoning about
norms and organisations, and communication with other agents. Other languages and frameworks aim at
facilitating the implementation of social and organisational concepts and abstractions such as norms
(obligation, prohibition, permission) that should be respected or followed by agents, sanctions that should
be imposed on agents if they violate norms, roles that can be enacted by agents, delegation of tasks
and responsibilities, or the synchronisation of agent’s actions. Yet, other languages and frameworks
focus on the multi-agent environment and provide programming constructs to implement concepts such as
sense and act abilities of agents (i.e. to implement the effect of actions in environment), tools, artifacts,
services, and resources.

Second, multi-agent programming languages and development frameworks can be characterised by
their language styles and their formal or practical foundations. In particular, they can be declarative,
imperative, or a combination of them. Some multi-agent programming languages and development
frameworks such as Jade (Bellifemine et al., 2005), JACK (Winikoff, 2005), and KGP (Kakas et al., 2004)
are based on (or extend) existing programming languages such as Java or Prolog, while others such as
2APL (Dastani, 2008), GOAL (Hindriks, 2009), and Jason (Bordini et al., 2007) combine Java and Prolog.
Declarative languages support the representation of and reasoning with concepts such as beliefs, goals,
norms, and actions, while imperative languages facilitate the implementation of tasks, services, and
processes. Some multi-agent programming languages have been proposed as a theoretical contribution by
means of abstract syntax and operational semantics without having a corresponding interpreter or an
execution platform (e.g. van Riemsdijk et al., 2003), while other languages and frameworks come without
operational semantics but with their corresponding development tools and execution platforms
(e.g. Bellifemine et al., 2005; Pokahr et al., 2005; Winikoff, 2005). Finally, some multi-agent

M . D A S T A N I396



programming languages come with formal and computational semantics, an implemented interpreter, or
both (e.g. Bordini et al., 2007; Dastani, 2008; Hindriks, 2009). The existence of formal semantics for
multi-agent programming languages is essential for a better understanding of the programming constructs
and the verification of multi-agent programs. Without a formal semantics one cannot guarantee the
correctness of programs.

Third, multi-agent programming languages and development frameworks can be characterised by
means of general programming principles that they support. Examples of such principles are modularity,
encapsulation, reuse, separation of concerns, recursion, abstraction, exception handling facilities, and
support for legacy codes. Of course, the very concept of agent itself supports some of these principles such
as encapsulation and reuse. Moreover, individual agents, environments, and organisations are different
concerns and constitute different foci of multi-agent systems. Therefore, the idea of implementing agents,
environments, and organisations separately supports the separation of concerns principle. Multi-agent
programming languages can be used in a more efficient and effective manner when they support various
principles at different levels. For example, at the individual agent level modularity can be used to support
the implementation of different functionalities and roles, recursion can be used to implement complex
plans, and exception handling can be used to implement plan failure operations.

Finally, multi-agent programming languages and development frameworks can be characterised by
means of their integrated development environments and their corresponding functionalities. An
integrated development environment supports the development of multi-agent programs with function-
alities such as editors with syntax highlighting and autocomplete features, search operations allowing easy
browsing of code, debugging tools that help to localise errors and anomalies, and automatic testing tools
allowing the automatic generation of test cases for specific parts of the programs. A major difficulty
for building an integrated development environment is the distributed nature of multi-agent programs, for
example, how to browse through a program that consists of agents, environments, and organisations
possibly running on different machines. Debugging multi-agent programs is even harder as it is not
clear how to debug an agent program when the execution of the agent program depends on the execution
of other agent programs, the environment programs, and the organisation programs. It is important to
emphasise that an integrated development environment is different from and should not be confused with a
multi-agent system environment.

3 Abstractions in multi-agent programming

In this section, we present key concepts and abstractions that need to be addressed when programming
multi-agent systems. The following subsections reflect the highest level of abstraction in multi-agent
systems: agents, organisations, and environments. Each subsection discusses these abstractions in detail
and explores different ways that they can be implemented.

3.1 Individual agents

The focus of most multi-agent programming languages and development frameworks has been on
programming individual agents (see e.g. Bordini et al., 2005, 2009). In these works, multi-agent programs
are considered as comprising a set of individual agent programs that are executed concurrently.

An essential characteristic of individual agents is their autonomy. An agent is called autonomous if it
has the ability to decide and perform actions at each moment of time in order to achieve its objectives
(e.g. Woolridge, 2002). Without getting into the exact nature of autonomy, we consider an agent as
autonomous if it has a decision-making component that governs its decisions based on its informational
(e.g. belief, probability distribution, knowledge), motivational (e.g. desire, utility, preference), and
deliberational (e.g. intention, plan, commitment) attitudes. One can argue that any computational system
that interacts with other systems (e.g. other agents or software components) can be seen as autonomous, at
least from an external point of view. However, the development of an autonomous software agent can
also be considered from an internal point of view. Such a view requires an explicit decision-making

Programming multi-agent systems 397



component that can be specified, designed, implemented in terms of informational, motivational, and
deliberational attitudes. The decision-making component should allow a programmer to implement
different issues related to an agent’s decisions such as decision strategies, resolving decision conflicts, and
rationality of decisions. In this sense, programming languages that support the implementation of
autonomous agents should provide programming constructs to support the implementation of decision
concepts and mechanisms.

Different decision models can be used for developing the decision component of autonomous agents,
for example, Partially Observable Markov Decision Process model (POMDP) (see e.g. Tasaki et al.,
2008), Belief-Desire-Intention model (BDI) (see e.g. Cohen & Levesque, 1990; Rao &Georgeff, 1991), or
a combination of both (see e.g. Nair & Tambe, 2005). POMDP is a quantitative framework that can be
used to model a sequential decision process in terms of actions, states, transition probability, observation
probability, and reward function. In order to determine an agent’s decisions, its corresponding
POMDP (the agent’s decision model) should be solved. However, solving POMDP’s are in general
computationally intractable such that approximate methods are often proposed to solve POMDP’s.
Moreover, POMDPs are not suitable to model agents that have complex goals and need to interact with
dynamically changing environments (see e.g. Rens et al., 2009). These problems make POMDP less
plausible to be integrated in programming languages and development frameworks for individual agents.

In contrast, the BDI model can be seen as a qualitative decision model that explains an agent’s rational
decision in terms of the agent’s information about the current state of the world (Belief), the states the
agent wants to achieve (Desire), and its commitments to already made choices (Intention). The BDI model
has proven to be an efficient model for reactive planning and for the agents that have complex goals
interacting with highly dynamic environments (see e.g. Bratman et al., 1988). Some existing BDI-based
agent programming languages provide constructs to implement an agent’s beliefs, goals, and conditional
plans. The conditions that are assigned to plans are specified in terms of beliefs and goals such that a plan
can be decided/selected if its belief and goal conditions are satisfied by the agent’s beliefs and goals,
respectively, and moreover the plan is not in conflict with the existing plans. Plan conflict can be defined in
various ways such as realising inconsistent states or being in conflict with respect to the use of resources. In
some BDI-based programming languages (e.g. Dastani, 2008) a plan is selected if it is not already
generated to achieve the same goal. The reasoning engine of the BDI agents often involves a process
that continuously decides a plan to execute.

Another characteristic of an individual agent is its reactive behaviour (see e.g. Muller, 1996). The
implementation of reactive agents requires an event handling mechanism that generates reactions to
the received events. There are many types of events such as messages that are received from other agents,
information that are originated from the environment, and the information about the internal working
of agents (e.g. the failure of a plan or the updates of beliefs and goals). Programming languages and
development frameworks that support the implementation of reactive agents provide constructs to implement
conditional plans where the plan’s conditions are defined in terms of events. The reasoning engine of reactive
agents continuously checks if plans can be selected based on the received events. It should be noted that there
is an essential difference between events and goals. In principle, an event causes the generation of a plan and,
as soon as the plan is generated, the event is deleted and considered as being processed. Goals are similar to
events in the sense that they cause the generation of plans. However, and in contrast to events, goals are not
dropped after they have caused the generation of plans. An achieve goal is, for example, dropped if the state
denoted by it is achieved, that is, if the agent believes that the state denoted by the goal is achieved. The
relation between beliefs and goals is an essential characteristic of BDI agents, which is formulated by means
of rationality axioms in the BDI logics (see e.g. Cohen & Levesque, 1990; Rao & Georgeff, 1995). It should
also be noted that autonomy and reactive behaviour are two different characteristics and that agents can be
both autonomous and reactive, be autonomous without being reactive, or vice versa.

3.2 Multi-agent environment

Soon after the emergence of the first generation of the execution platforms for agent-oriented program-
ming languages and development frameworks, the need for the implementation of shared environments

M . D A S T A N I398



with which software agents can interact became apparent. This need was manifested by applications in
which software agents have to interact with non-agentified software components, for example, shared
resources or services. An immediate solution was to model an environment as an external software
component with which individual agents interact. Such a software component can be an implementation of
resources and services, or an interface to other (software of natural) systems that are external to the
developing multi-agent system. In most BDI-based multi-agent programming languages (e.g. Pokahr
et al., 2005; Bordini et al., 2007; Dastani, 2008; Hindriks, 2009) an environment is simply a software
component that is implemented in the same programming language as that of the interpreter of the
agent-oriented programming language (e.g. Java or C++). In other programming frameworks (e.g.
Bellifemine et al., 2005; Winikoff, 2005) an environment is a software component implemented in Java.
In both cases, the state of the software component is considered as the state of the environment, while the
methods that allow the interaction with the software component are used to implement the effect of
the actions that agents could perform in the environment. In fact, the repertoire of actions that an agent can
perform in an environment is determined by the methods of the corresponding software component. In
this view, a software agent decides which method to call (i.e. which action to select and perform) and the
environment program determines the effect of the action.

One of the first overview papers in the field of multi-agent system environments emphasised that the
concept of environment was originally used with different meanings causing confusion about the exact
nature of this abstraction (see e.g. Weyns et al., 2005; Van Dyke Parunak &Weyns, 2007). As argued in this
overview paper, some researchers consider a multi-agent system environment as the run-time environment
and as equivalent of infrastructures such as message transport system and other infrastructural tools, for
example, brokers and management tools, while other researchers consider a multi-agent system environment
as the embedding environment of the multi-agent system consisting of entities external to the multi-agent
software system. Yet, other researchers consider a multi-agent environment as a component that encapsulates
resources, services, and objects. Existing agent programming languages (e.g. Pokahr et al., 2005; Bordini
et al., 2007; Dastani, 2008; Hindriks, 2009) consider an environment as a first-class abstraction in
multi-agent system that encapsulates resources and services and has its own state and processes.

It should be emphasised that from the programming point of view, it does not make sense to consider
other notions of environment. For example, the notion of environment as an entity external to the
multi-agent system refers to something to be assumed by the system developer and not an entity to be
programmed. In addition, the notion of environment as an infrastructure denotes a set of tools and facilities
that a multi-agent system developer can assume as given and not something that the system developer has
to program for each application separately. Note also that the concept of multi-agent environment
as encapsulating resources and services is different from agent-based simulation environment. An
agent-based simulation environment can be used to model, execute, and analyse agent-based simulations.
An agent-based simulation environment can be compared with an integrated development environment for
multi-agent systems. In particular, agent-based simulation environments can be seen as special cases of
integrated development environments where the focus is on tools for analysing simulation behaviours
rather than general purpose tools for the development of multi-agent systems.

In the same overview paper, a multi-agent system environment is claimed to be used for various
purposes, for example, to facilitate and coordinate agent’s interactions by means of exchanging
information through it (blackboard architectures and tuple spaces)1, or to provide agents the sense and
act abilities in order to observe and modify the environment’s state, respectively. For example, an
environment can provide artifacts or services to allow agents to manage their coordination or to exchange
information. An environment can also provide various sense and act modalities such as blocking and
non-blocking sense operations, event broadcasting, event subscription mechanisms, and synchronous or
asynchronous actions.

The implementation of environments therefore requires dedicated programming languages and
development frameworks that allow direct and effective implementations of its related concepts

1 ln contrast to direct communication by means of send and receive messages, a shared environment can be used to
communicate indirectly by reading and writing information from/to it.

Programming multi-agent systems 399



and abstractions such as resources, services, and objects. Like the development in agent-oriented
programming languages, one may expect typical architectures for multi-agent environments. Such
architectures would suggest specific concepts, concerns, or components that often need to be implemented
when developing a multi-agent system environment. In particular, a dedicated environment programming
language or development framework should provide programming constructs to implement resources,
services, artifacts, processes, several sense, and action types and mechanisms. The A&A model (see e.g.
Omicini, 2007) has been proposed as a generic approach for modelling environments. In the A&A model,
an application is composed of agents as well as the so-called artifacts. An implementation of the A&A
model is available in form of the distributed architecture and middleware infrastructure Cartago (see e.g.
Ricci et al., 2006). Such an environment architecture consists of a dynamic set of artifacts, each of which
encapsulates resources, services, or objects designed by the environment developer.

3.3 Multi-agent organisation

The overall objectives of a multi-agent system depend on the behaviours of its participating individual
agents that pursue their own objectives. The objectives of the participating individual agents may be
different from, and even be in conflict with, the overall objectives of the multi-agent system. One way to
guarantee the overall objectives of a multi-agent system is to control and coordinate the behaviour of its
individual agents and their interactions. This can be done either endogenously by integrating the
organisation mechanism within the agents themselves, or exogenously by designing the organisation
mechanism outside the agents, or a combination of both. An endogenous organisation implies that agents
are internally designed and implemented to follow, for example, specific interaction protocols, norms, or
organisational rules. In an exogenous approach agents are coordinated by means of external components
that control the agent’s actions according to some interaction protocols, norms, or organisational rules.
Generally speaking, endogenous coordination mechanisms can be used for the development of closed
multi-agent systems where the set of participating agents is predefined by the system designer. Exogenous
coordination mechanisms can be used for open multi-agent systems where software agents can join and
leave the system at run time. It should be noted that an exogenous organisation can also be effective for
the development of closed multi-agent systems as such an approach supports the separation of concerns
and encapsulation principles.

There have been various proposals for regulating and organising the behaviours of individual agents.
Some of these proposals advocate the use of coordination artifacts that are specified in terms of low-level
coordination concepts such as synchronisation (see e.g. Arbab et al., 2009). Other approaches are
motivated by organisational models, normative systems, or electronic institutions (e.g. Jones & Sergot,
1993; Esteva et al., 2002, 2004; Grossi, 2007; Dastani et al., 2009b; Hübner et al., 2010). In these
approaches, the behaviours of individual agents are regulated by means of norms and organisational
rules that are either used by individual agents to decide how to behave, or being enforced or regimented
through monitoring and sanctioning mechanisms. In these approaches, the social and normative
perspective is conceived as a way to make the development and maintenance of multi-agent systems easier
to manage. A plethora of social concepts (e.g. roles, groups, social structures, organisations, institutions,
norms) has been introduced in multi-agent system methodologies such as Gaia (Zambonelli et al., 2003),
models such as OperA (Dignum, 2004), specification and modelling languages such as S�MOISE +

(Hübner et al., 2006) and ISLANDER (Esteva et al., 2002), and computational frameworks such as
AMELI (Esteva et al., 2004).

The implementation of organisations requires programming languages and development frameworks
that provides programming constructs to implement social and organisational concepts and abstractions.
In particular, the implementation of endogeneous mechanisms implies that the agent programming
languages provide constructs to allow the representation and reasoning about norms, sanctions, and
organisational rules. Such constructs should allow multi-agent programmers to implement agents that
make their decisions not only based on their individual goals and beliefs, but also based on the existing
interaction protocols, norms, sanctions, and other organisational rules. The idea is that individual agents
can be implemented in terms of cognitive and social abstractions such that their behaviours are determined

M . D A S T A N I400



based on reasoning about such abstractions. The implementation of exogenous mechanisms requires
abilities to monitor and control the behaviours of individual agents. The idea is to have an external
organisation software component that is able to monitor and control the behaviour of individual agents.
The question is what should be monitored and how the agent’s behaviours can be influenced. As the
internals of individual agents cannot be assumed in general, their external behaviours (i.e. communication
and interaction with the environment) are the only controllable entities. The organisation software
component can thus observe agent’s external behaviour and determine what needs to be done. For
example, if the organisation specification disallows certain agents to interact, then the organisation
software should be able to block or respond to such interactions. This suggests that the agent’s actions
(e.g. communication, environment actions including sense actions) should be processed and managed
through the external organisation component, that is, the organisation component intermediates the
interaction between agents as well as the interaction between agents and the environment.

4 The state of the art in multi-agent programming

In this section, we provide an overview of some of the existing multi-agent programming languages and
development frameworks. This overview is by no means complete and does not cover some related or
relevant multi-agent programming languages and development frameworks. The programming languages
and frameworks in this overview are chosen because they illustrate different ways to program (some of)
the abstractions discussed in the previous section, have execution platforms, and of course, because of the
author’s familiarity with the languages and frameworks. Other multi-agent programming languages and
development frameworks can be found in Bordini et al. (2005, 2009). This overview will be structured
along the main focus of the languages and development frameworks on individual agents, multi-agent
environments, and multi-agent organisations. The programming languages and development frameworks
together with their corresponding execution platforms will be discussed in terms of concepts and
abstractions as explained in Section 3.

4.1 Programming frameworks for individual agents

One of the earliest agent-oriented programming languages is AGENT-0 proposed by Shoham (1993). In
his seminal paper, Shoham proposes to implement agents in terms of mental components such as beliefs,
commitments, capabilities, and actions. An agent program in AGENT-0 consists of an initial belief base, a
set of capabilities, a set of commitment rules, together with a repertoire of private actions. Agents can
perform different types of actions such as communication, private, conditional, and unconditional actions.
Agents enter into new commitments by means of commitment rules. A commitment rule consists of
conditions on an agent’s mental state and the incoming messages. The application of a commitment rule
generates a commitment consisting of an action together with the agent identifier towards whom the
commitment is made. In fact, the commitments define the actions that an agent have to perform. The
execution of an agent is a continuous cyclic process. At each cycle, the received messages are processed,
commitments are generated, and actions are performed. AGENT-0 is undoubtedly one of the first attempts
to develop an agent programming language that supports the implementation of autonomous agents, that
is, agents that decide actions based on their mental states. However, as indicated in the discussion section
of this seminal paper, the state of an AGENT-0 agent lacks motivational attitudes such as utility, desire,
goal, or preference such that an agent’s decisions are based only on events and messages rather than the
agent’s motivational attitude.

As the introduction of AGENT-0 various agent-oriented programming languages have been proposed
that extend AGENT-0 with a larger repertoire of agent concepts and abstractions. The aim of these
programming languages is to support the implementation of multi-agent systems, although most of them
do not support the implementation of abstractions concerning multi-agent environment and organisation.
Some of these agent-oriented programming languages have an imperative programming style as they
extend Java with agent concepts and abstractions, some languages have a declarative programming style
as they extend logic programming languages, and yet other programming languages combine both

Programming multi-agent systems 401



imperative and declarative styles by integrating, for example, Java and Prolog. The programming
languages that are based on Java have no explicit formal semantics. In the following, we give a brief
overview of some of these programming languages.

4.1.1 Imperative style programming frameworks
Jade (Java Agent DEvelopment framework) as presented in Bellifemine et al. (2005) extends Java with a
set of agent concepts and abstractions. An agent is created by extending a predefined Jade agent class and
redefining its setupmethod. After an agent is created, it receives an identifier and is registered with the agent
management system (a Jade built-in service). The agent is then put in the active state and its setupmethod is
executed. The setupmethod is therefore the point where any agent activity starts. Jade agents are behaviour
based in the sense that they can create and execute behaviours. A behaviour can be created by extending the
Jade behaviour class via a special construct that adds behaviours (initially in the setupmethod). The created
behaviours are added to a behaviour pool. Behaviours are selected for execution from this pool based on a
scheduler that constitutes the execution model of the Jade agents. Agents are executed concurrently as different
pre-emptive Java threads. The Jade framework is developed for practical and industrial applications and comes
with a development environment providing a set of graphical tools that can be used to monitor and log the
execution of multi-agent programs. The Jade execution platform is based on a middleware that facilitates the
development of distributed multi-agent applications based on a peer-to-peer communication architecture. The
platform is distributed in the sense that it can run over multiple machines, while seen as a whole from the outside
world. The Jade platform implements the basic services and infrastructure of a distributed multi-agent appli-
cation. It supports agent life-cycle, agent mobility, and agent security, and provides services such as white and
yellow pages that can be used by the agents to register their services and search for each other.

Other Java-based agent programming languages are Jadex and JACK. Jadex, as proposed in Pokahr et al.
(2005), builds on Jade and extends it with programming constructs to implement BDI concepts such as
beliefs, goals, plans, and events. It uses XML notation to define and declare an agent’s BDI ingredients and
Java constructs to implement the agent’s plans. JACK, as presented in Winikoff (2005), extends
Java with programming constructs to implement BDI concepts. In both JACK and Jadex, a number of
syntactic constructs are added to Java to allow programmers to declare beliefsets, to post events, and to select
and execute plans. The execution of agent programs in both languages are motivated by the classical
sense–reason–act cycle, that is, processing events, selecting relevant and applicable plans, and execute
applicable plans. Beliefs and goals in JACK and Jadex have no logical semantics such that an agent cannot
reason about its beliefs and goals. It should be noted that the ability to reason with beliefs and goals allows
agents to be more flexible in goal achievement in the sense that they can achieve goals partially and gradually.
Moreover, the consistency and the rational balance of an agent’s state in JACK and Jadex, as far as they are
defined, is left to the agent programmer, that is, the agent programmer is responsible to make sure that state
updates preserve the state consistency and that the rational balance (e.g. between beliefs and goals) is
maintained. In these programming languages, an agent’s goal is not automatically dropped because it is
derivable from the agent’s beliefs. Jadex provides a programming construct to implement non-interleaving
execution of plans. Jadex and JACK come also with integrated development environments and provide
monitoring and logging facilities, similar to those proposed in the Jade framework.

Another Java-based agent programming framework is Agent Factory (AF), which comes with its
corresponding programming language called Agent Factory Agent Programming Language (AFAPL), as
described in Muldoon et al. (2009). Although this programming framework has been the subject of
continuous development and modification, its distinguishing feature is its practical focus on application
domains that involve mobile and ubiquitous devices such as wireless sensor networks. AFAPL supports
the implementation of agents based on cognitive concepts such as beliefs, goals, commitments, plans, and
roles. An agent is implemented in terms of commitment rules and the applications of these rules, which are
based on the agent’s state, generate commitments. An agent’s behaviour is then determined based on the
notion of commitment management using commitment strategies. These strategies are responsible for the
adoption and maintenance of commitments, refining commitments to plans and actions, and managing
failed commitments. This programming framework consists of a distributed run-time environment,
development kits, and a structured approach to the deployment of multi-agent systems.

M . D A S T A N I402



4.1.2 Declarative style programming frameworks
KGP (Knowledge, Goal, and Plan), as presented in Kakas et al. (2004), Bracciali et al. (2004), and
Sadri (2005), is a declarative model of agency characterised by a set of modules. The model is based on
computational logic and logic programming techniques, and has an internal state module consisting of a
collection of knowledge bases, the current agent’s goals and plans. The knowledge bases represent
different types of knowledge such as the agent’s knowledge about observed facts, actions, and
communication, but also knowledge to be used for planning, goal decision, reactive behaviour, and
temporal reasoning. The KGP agent model includes also a module consisting of a set of capabilities
such as planning, reactivity, temporal reasoning, and reasoning about goals. These capabilities are
specified by means of abductive logic programming or logic programming with priorities. Another KGP
module contains a set of transitions to change the agent’s internal state. Each transition performs one or
more capabilities, which in turn use different knowledge bases, in order to determine the next state of the
agent. Finally, the KGP model has a module, called cyclic theory, that determines which transition should
be performed at each moment of time.

Minerva, as presented in Leite et al. (2001), aims at specifying an agent’s state and its dynamics.
AMinerva agent consists of a set of specialised subagents manipulating a common knowledge base, where
subagents (i.e. planner, scheduler, learner, etc.) evaluate and manipulate the knowledge base. These
subagents are assumed to be implemented in arbitrary programming languages. Minerva gives both
declarative and operational semantics to agents allowing the internal state of the agent, represented by
logic programs, to modify. Minerva is based on multidimensional dynamic logic programming and uses
explicit rules for modifying its knowledge bases.

The family of Golog languages as presented in De Giacomo et al. (2000) and Sardina et al.
(2004) propose high-level program execution as an alternative for controlling the behaviour of agents
that operate in dynamic environments with partial observation. In fact, the high-level (agent)
program consists of a set of actions, including the sense action (e.g. IndiGolog as presented in
Sardina et al., 2004), composed by means of conditionals, iteration, recursion, concurrency, and
non-deterministic operators. Instead of finding a sequence of actions to achieve a desired state from
an initial state, the problem is to find a sequence of actions that constitute a legal execution of the
high-level program. When there is no non-determinism in the agent program, then the problem is the
straight forward execution of actions in the agent program. On the other hand, when the agent program
consists of actions that are composed only by non-deterministic operators, then the problem is identical to
the planning problem.

Concurrent MetateM, as proposed by Fisher (2005), is based on the direct execution of an extension of
propositional temporal logic specifications. A multi-agent system in Concurrent MetateM consists of a set
of concurrently executing agents with the ability to communicate asynchronously. Each agent is
programmed by means of a temporal logic specification of the behaviour that the agent have to generate. In
particular, it consists of rules that can be fired when their antecedents are satisfied with respect to the
execution history. The consequent of a fired rule, which can be a temporal formula, forms the commitment
of the agent that needs to be satisfied. The execution of an agent builds iteratively a logical model for the
temporal agent specification. In Concurrent MetateM, the beliefs of agents are propositions extended with
modal belief operators (allowing agents to reason about each others’ beliefs), goals are temporal
eventualities, and plans are primitive actions.

CLAIM, as proposed by El Fallah Seghrouchni and Suna (2005), is a declarative multi-agent
programming language focusing on mobile agents. It comes with a distributed platform called SyMPA that
enables the execution of multi-agent programs. A multi-agent system in CLAIM is a set of hierarchies of
agents distributed over a network. An agent in CLAIM can be a subagent of another one such that the
hierarchies determine the parent–child relation between agents. Agents in CLAIM are BDI based and can
be programmed in terms of knowledge, goals, capabilities, messages, parents and children. Agents can
migrate within a hierarchy as well as between hierarchies by means of the move operation. The migration
of agents in CLAIM is a strong migration, that is, the state of the agent just before the migration is saved,
encrypted, and transferred to the destination. At the destination, the agent’s state is restored and processes
are resumed from their interruption point.

Programming multi-agent systems 403



4.1.3 Hybrid style programming frameworks
3APL (An Abstract Agent Programming Language), as originally proposed by Hindriks et al. (1999), is a
programming language for single agents. The state of an agent in 3APL consists of (declarative)
beliefs and plans, where plans consist of belief update, test, and abstract actions composed of sequence,
conditional choice, and iteration operators. This version of 3APL provides only plan revision rules that
are applied to revise an agent’s plan. The execution of a 3APL agent program is a cyclic process. At each
cycle a plan revision rule is selected and applied after which a plan from the plan base is selected and
executed. The execution of a plan modifies the belief base of the executed agent program. This original
version of 3APL was an abstract programming language that lacked a development and execution
platform. This version is extended by Dastani et al. (2005b) with declarative goals and a variety of action
types. In addition, an execution platform is developed for the extended version of 3APL.

2APL (A Practical Agent Programming Language), as proposed by Dastani (2008), is developed
to implement multi-agent systems. It provides two sets of programming constructs to implement
multi-agent and individual agent concepts. The multi-agent programming constructs are provided to create
individual agents, external environments, and to specify the agent’s access relations to the external
environments. In 2APL, an environment (Java object) has a state and can execute a set of actions (method
calls) to change its state. At the individual agent level, 2APL agents are implemented in terms of beliefs,
goals, actions, plans, events, and three different types of rules. The beliefs and goals of 2APL agents are
implemented in a declarative way, while plans and (interfaces to) external environments are implemented
in an imperative style. The declarative part of the programming language supports the implementation of
an agent’s reasoning and update mechanisms. The imperative part of the programming language facilitates
the implementation of plans, control flow, and mechanisms such as procedure call, recursion, and
interfacing with legacy code. 2APL agents can perform different types of actions such as belief update
actions, belief and goal test actions, external actions (including sense actions), actions to manage the
dynamics of goals, and communication actions. Three types of rules are used to generate plans. The first
type of rule is designed to generate plans to achieve goals, the second to process (internal and external)
events/messages, and the third to repair failed plans. Finally, 2APL comes with a development
environment with tools to log and monitor the execution of multi-agent programs. These tools are similar
as those provided by the Jade framework.

GOAL, as proposed by Hindriks (2009), is a BDI-based programming language developed to
implement autonomous agents. It provides programming constructs to implement an agent’s knowledge,
beliefs, and goals declaratively. It also provides programming constructs to implement action selection
rules that can be used to select actions based on the agent’s current knowledge, beliefs, and goals.
A characteristic feature of GOAL is the distinction between knowledge and beliefs. Knowledge represents
an agent’s general information that are not the subject of modification, for example, the agent’s domain
knowledge, while beliefs represents an agent’s current information that can be modified during the
agent execution, for example, by sensing the environment or performing mental actions. Another
characteristic feature of GOAL is the absence of plans. The action selection rules generate only atomic
actions when they are applied. GOAL provides different types of actions such as user-defined actions,
built-in actions, and the communication actions. The execution of a GOAL agent is a cyclic process where
at each cycle the agent senses the environment, applies action selection rules, and performs the generated
actions. The development environment of GOAL can be used to log and monitor the execution of
multi-agent programs.

Jason, as proposed by Bordini et al. (2007), is introduced as an interpreter of an extension of
AgentSpeak, which is originally proposed by Rao (1996). Jason distinguishes multi-agent system
concerns from individual agent concerns An individual agent in Jason is characterised by its beliefs, plans,
and the events that are either received from the environment or generated internally. A plan in Jason is
designed for a specific event and belief context. The execution of individual agents in Jason is controlled
by means of a cycle of operations encoded in its operational semantics. In each cycle, events from the
environment are collected, an event is selected, a plan is generated for the selected event and added to the
intention base, and finally a plan is selected from the intention base and executed. A plan rule in Jason
indicates that a plan should be generated by an agent if an event is received/generated and the agent has

M . D A S T A N I404



certain beliefs. Jason is based on first-order representation for beliefs, events, and plans. Jason has no
explicit programming construct to implement declarative goals, though goals can be simulated indirectly
by means of a pattern of plans. Moreover, the beliefs and plans in Jason can be annotated with additional
information that can be used in belief queries and plan selection process. Finally, plan failure in Jason can
be modelled by means of plans that react to the so-called deletion events. The development environment of
Jason provides tools to log and monitor the execution of multi-agent programs.

IMPACT, as proposed by Dix and Zhang (2005), is a project that aims at developing a multi-agent
system platform. This project is based on the idea of agentisation, that is, agents are built around given
legacy code. The multi-agent system platform comes with a programming language and its formal
semantics. An agent is built around a legacy code by abstracting from the legacy code and describing its
main features. In particular, an agent is specified in terms of the set of all datatypes managed by the legacy
code, a set of functions over the datatypes allowing external processes to access the datatypes, and a
set of composition operators that are defined on the datatypes and generate new composed datatypes. The
state of an agent is determined by the state of the data in terms of which the agent is defined. Each agent has
a set of actions that it can perform in its environment. An action can have different status such as permitted,
obliged, or forbidden. The execution of an agent follows a cycle where messages from other agents are
processed (which may in turn change the data and thus its state), the status of each action is determined, the
actions that can be executed are determined, and the state is updated accordingly.

4.2 Programming frameworks for multi-agent organisations

In the literature on multi-agent systems, there have been many proposals for specification languages and
logics to specify and reason about normative multi-agent systems, virtual organisations, and electronic
institutions (see e.g. Jones & Sergot, 1993; Prakken & Sergot, 1996; Ågotnes et al., 2008; Boella & van
der Torre, 2008). How to develop, program, and execute such normative systems was one of the central
themes that were discussed and promoted during the AgentLink technical fora on programming multi-
agent systems (see Dastani & Gomez-Sanz, 2005 and Dastani & Gomez-Sanz, 2006 for the general report
of these technical fora). In this section, we discuss some proposals for specifying and implementing
normative multi-agent systems.

One of the early modelling languages for specifying institutions in terms of institutional rules and
norms is ISLANDER proposed by Esteva et al. (2002). In order to interpret institution specifications and
execute them, an execution platform, called AMELI, has been developed by Esteva et al. (2004). This
platform implements an infrastructure that, on the one hand, facilitates agent participation within the
institutional environment and supports their communication and, on the other, enforces the institutional
rules and norms as specified in the institutional specification. The key aspect of ISLANDER/AMELI is
that norms can never be violated by the agents. In other words, systems programmed via ISLANDER/
AMELI make only use of regimentation in order to guarantee the norms to be actually followed. The
norms in Esteva et al. (2004), Garcia-Camino et al. (2005), Silva (2008) are related to actions that the
agents should or should not perform. In these approaches, the issue of expressing more high-level norms
concerning a state of the system that should be brought about is ignored. Such high-level norms can be
used to represent what the agents should establish—in terms of a declarative description of a system
state—rather than specifying how they should establish it.

Another approach concerning specification of normative multi-agent systems by means of social and
organisational concepts is MOISE + , proposed by Hübner et al. (2007). This modelling language can be
used to specify multi-agent systems through three organisational dimensions: structural (e.g. specifying
roles, groups, and links within organisations, subgroup relation, number of agents that can play a role),
functional (e.g. goals, missions, and social schemes specifying structured sets of goals), and deontic (e.g.
norms, obligations, and prohibitions within organisations). In a series of papers, different computational
frameworks have been proposed to implement and execute MOISE + specifications. Examples of such
frameworks are S�MOISE + as proposed by Hübner et al. (2006) and its artifact-based version
ORG4MAS as proposed by Hübner et al. (2010). These frameworks are concerned with norms that are
about declarative descriptions of a state that should be achieved. Following the MOISE + specification

Programming multi-agent systems 405



language, S�MOISE + is an organisational middleware that provides agents access to the communication
layer and the current state of the specified organisation. Moreover, this middleware allows agents to
change the organisation and its specification, as long as such changes do not violate organisational
constraints. In the artifact version of this framework, ORG4MAS, various organisational artifacts are
used to implement specific components of an organisation such as group and goal schema. In this
framework, a special artifact, called reputation artifact, is introduced to manage the enforcement of
the norms.

To summarize, in the work on electronic institutions ISLANDER/AMELI norms pertain to low-level
procedures that directly refer to actions, whereas MOISE + =S�MOISE + are concerned with more
high-level norms pertaining to declarative descriptions of the system. However, S�MOISE + does not
allow agents to violate organisational rules and norms by ensuring that they respect the organisational
specification. This suggests that norms in S�MOISE + are regimented rather than being enforced by
means of sanctions. In the artifact version of this framework, ORG4MAS, the enforcement of norms is
assumed to be managed indirectly through a reputation mechanism, but it remains unclear how such a
reputation system realises sanctioning. Another important issue is that AMELI and S�MOISE + lack a
complete operational semantics that capture all aspects of normative systems, including the enforcement of
norms. An explicit formal and operational treatment of norm enforcement is essential for a thorough
understanding and analysis of computational frameworks of normative multi-agent systems. In addition,
the computational frameworks related to MOISE + are not grounded in a logical system such that the
soundness and properties of the programmed systems cannot be analysed through formal analyses
and verification mechanisms. Finally, it should be noted that ISLANDER/AMELI and
MOISE + =S�MOISE + provide a variety of social and organisational concepts.

powerJava, as proposed by Baldoni et al. (2005), and powerJade as proposed by Baldoni et al.
(2008), are developed to implement institutions in terms of roles. While powerJava extends Java with
programming constructs to implement institutions, powerJade proposes similar extensions to the Jade
framework. In these frameworks, an institution is considered as an exogenous coordination mechanism
that manages the interactions between participating computational entities (objects in powerJava and
agents in powerJade) by means of roles. A role is defined in the context of an institution (e.g. a student
role is defined in the context of a school) and encapsulates capabilities, also called powers, that its players
can use to interact with the institution and with other roles in the institution (e.g. a student can participate in
an exam). For an object or an agent to play a role in an institution in order to gain specific abilities, they
should satisfy specific requirements as well. In powerJava roles and organisations are implemented as
Java classes. In particular, a role within an institution is implemented as an inner class of the class that
implements the organisation. Moreover, the powers that a player of a role gains and the requirements that
the player of the role should satisfy are implemented as methods of the class that implements the role.
In powerJade, organisations, roles, and players are implemented as subclasses of the Jade agent class.
The powers that the player of a role gains and the requirements that a player of a role should satisfy are
implemented as Jade behaviours (associated to the role).

Finally, a recent programming language that is developed to support the implementation of multi-agent
organisations is 2OPL (Organisation Oriented Programming), as proposed by Dastani et al. (2009b) and
Tinnemeier et al. (2009b). This is a rule-based programming language that facilitates the implementation
of norm-based organisations. In this approach, an organisation is considered as a software entity that
exogenously coordinates the interaction between agents and their shared environment. In particular, the
organisation is a software entity that manages the interaction between the agents themselves and between
agents and the shared environment. 2OPL provides programming constructs to specify (1) the initial state
of an organisation, (2) the effects of agent’s actions in the shared environment, and (3) the applicable
norms and sanctions. In 2OPL, norms can be either enforced by means of sanctions or regimented. In the
first case, agents are allowed to violate norms after which sanctions are imposed. In the second case, norms
are considered as constraints that cannot be violated. The enforcement of norms by sanctions is a way to
guarantee higher autonomy for agents and higher flexibility for multi-agent systems. The interpreter of
2OPL is based on a cyclic control process. At each cycle, the observable actions of the individual agents
(i.e. communication and environment actions) are monitored, the effects of the actions are determined, and

M . D A S T A N I406



norms and sanction are imposed if necessary. An advantage of 2OPL approach is its complete operational
semantics such that normative organisation programs can be formally analysed by means of verification
techniques (see e.g. Astefanoaei et al., 2009). This organisation-oriented programming language is
extended with programming constructs that support the implementation of concepts such as obligation,
permission, prohibition, deadline, norm change, and conditional norm; see Tinnemeier et al. (2009a,
2009b, 2010).

4.3 Programming frameworks for multi-agent environments

A framework for the development of multi-agent environments is Cartago (Common artifact infrastructure
for agent open environment), which is proposed by Ricci et al. (2006). This framework is based on the
A&A model that proposes a working environment to be used by agents for supporting their activities.
A working environment is considered as consisting of a set of artifacts organised in workspaces
(containers of artifacts). The artifacts are meant to encapsulate specific functionalities and can be added,
removed, and organised in the workspaces by agents at run time. Artifacts can be used by agents through
their usage interfaces that allow agents to trigger and control the execution of artifacts’ operations
and perceiving events from them. Different operations are supported by artifact interfaces. An agent
can, for example, create, remove, or search for artifacts and workspaces. Agents can also execute
operations of artifacts, for example, sense the events generated by an artifact or inspect an artifact by
retrieving its description. This framework can be distributed in the sense that a working environment
can consist of one or more workspaces that can be mapped onto a different nodes of a network. Cartago is
implemented in Java and has been connected to various agent executions platforms such as the execution
platforms for 2APL and Jason.

Beside this generic architecture and framework for the development of environments, there have been
many interesting environments implemented using existing programming languages such as Java or C++ .
These environments are initially developed in an ad hocmanner either for an existing agent platform (e.g.
the platforms for 2APL, GOAL, Jadex, and Jason) or as a simulation environment. The availability of
these implemented environments raises the question how they can be (re)used and applied to arbitrary
agent platforms. In practice, agent developers rebuild similar environments from scratch. Apart from these
duplicating works, the interaction between agents and environments are managed in an ad hoc manner
making the reuse of the environments a dedicated task that depends on the specific agent platform and the
environment at hand. This problem has lead to an initiative for creating a generic environment interface
that provides the required functionalities for connecting agents to environments (see e.g. Behrens et al.,
2010). This initiative wants to become a de facto standard. If environments were developed using such a
standard, they could be exchanged freely between agent platforms that support the standard and thus
would make already existing environments widely available. In order to develop a generic environment
interface standard various issues should be addressed. An important issue is the right level of abstraction
for modelling the interaction between agents and environments. This generic environment interface
standard supports the interaction between agents and environment in two ways. On the one
hand, agents can perform actions, including sense action, in the environment (the environment is assumed
to realise the effect of the actions).

On the other hand, the environment can send events to individual agents. This interface provides
constructs to establish and manage the relation between agents with entities (agent bodies) in the
environment, the registration of agents by the interface, adding and removing entities from the
environment, and performing actions and retrieving percepts from the environment. Several agent plat-
forms such as 2APL, GOAL, and Jason have already integrated the environment interface standard.

5 Current trends

Existing multi-agent programming languages and development frameworks are the result of continuous
developments. Despite their characteristic differences, these developments and extensions have been quite
similar causing the programming languages to converge in the sense of providing programming constructs

Programming multi-agent systems 407



for the same set of concepts and abstractions. For example, 2APL, GOAL, Jason, and Jadex provide
similar types of actions such as actions to modify an agent’s state, communication actions, and external
actions allowing individual agents to interact with a shared environment. In the logic-based programming
languages for BDI architectures such as 2APL, GOAL, Jason, and KGP, an agent’s beliefs and goals are
often programmed declaratively (e.g. in Prolog) allowing the programmed agent to reason with its beliefs
and goals. Existing agent programming languages and development frameworks such as 2APL, GOAL,
Jason, Jade, JACK, and Jadex provide constructs to process various types of events by means of generating
and executing plans. In order to respect programming principles such as reuse and encapsulation, agent
programming languages such as 2APL, GOAL, and JACK provide constructs to support implementation
of modules. The similarity between these languages is not only due to similar programming constructs, the
underlying semantics of these languages converge as well. For example, programming languages
with declarative beliefs and goals (e.g. 2APL, GOAL, and KGP) establish rational constraints in their
underlying semantics by, for example, requiring that agents should have consistent beliefs and that agents
cannot aim at achieving goals that are believed to be achieved. Finally, the execution platforms
corresponding to agent programming languages such as 2APL, GOAL, Jason, and Jadex also converge in the
sense that they provide similar functionalities and development tools. Most multi-agent development
framework such as 2APL, Jason, GOAL, and Jadex provide editors that support the syntax of their
corresponding programming languages, different tools to monitor and control the execution of agents, and
different services such as agent management and directory facilitator. In the following, we focus on two main
ongoing trends in the development of multi-agent programming languages and development frameworks.

5.1 Goal types

An advance in the field of agent programming languages concerns the concept of goals. Goals are essential
for agents with pro-active behaviour (see e.g. Wooldridge, 2009). The initial focus of agent-oriented
programming languages was on achievement goals, which represent a desired state that the agent aims at
achieving. In due course other goal types have been studied by Braubach and Pokahr (2009), Dastani et al.
(2006), Duff et al. (2006), Hindriks and van Riemsdijk (2008). Examples of goal types are perform
goal (the goal to execute certain actions), test goal (the goal to test agent’s state), and maintain goal
(the goal to maintain a state). In order to allow the implementation of various goal types existing agent
programming languages provide a variety of constructs to represent and reason with the goal types. For
example, JACK, as presented byWinikoff (2005), provides programming constructs to implement, among
others, test, achieve, insist, and maintain goals. In addition, Jadex, as presented by Pokahr et al. (2005),
covers achieve, query, perform, and maintain goals. The way in which goals are treated by these
programming languages differs. In Jadex goals are represented in XML in terms of a label/name and a
number of other parameters, while JACK goals are particular types of events. Moreover, neither JACK
nor Jadex provide the formal semantics of their goal types. Winikoff et al. (2002) provides a survey of
existing literature on goal types. A more recent (theoretical) trend in this direction is to go beyond these
goal types and to introduce more expressive goal types or even a language for expressing goal types. For
example, Dastani et al. (2011) proposes six types of multiple state goals (goals expressing a property that
should hold over a number of states), while other approaches propose to take arbitrary linear temporal
logic (LTL) formulae as goals (see e.g. Bacchus & Kabanza, 1998; Baral & Zhao, 2007; Shapiro &
Brewka, 2007; Hindriks et al., 2009; Khan & Lespoerance, 2009). The advantage of the approach
proposed by Dastani et al. is their computational setting where the six multiple state goal types are defined
in terms of achieve and maintain goals. This makes it possible to implement these goal types in the agent
programming frameworks that already have an operationalisation of achieve and maintain goals.

5.2 Modular programming

From the software development point of view, the ultimate aim of multi-agent programming languages and
development frameworks is to support practitioners to developmulti-agent systems for industrial applications.
To this aim it is important that programming languages and development frameworks satisfy essential

M . D A S T A N I408



principles in structured programming such as modularity. Of course, the separation of concerns at the level of
individual agents, organisation, and environment support modularity in multi-agent programming. However,
programming languages and development frameworks for agents, organisations, and environments need to
satisfy modularity as well. There have been some proposals for supporting modules in BDI-based program-
ming languages. Examples of these proposals are Braubach et al. (2005), Busetta et al. (2000), Hindriks
(2008), van Riemsdijk et al. (2006), Dastani and Steunebrink (2010), andMadden and Logan (2009). In these
proposals, modularisation is considered as a mechanism to structure an individual agent’s program in separate
modules, each encapsulating cognitive components such as beliefs, goals, and plans that together model a
specific functionality and can be used to handle specific situations or tasks. However, the way the modules are
used in these programming approaches are different. For example, in JACK (Busetta et al., 2000) and Jadex
(Braubach et al., 2005), modules (which are also called capabilities) are used for information hiding and
reusability by encapsulating different cognitive components that together implement a specific capability/
functionality of the agent. In these approaches, the encapsulated components are used during an agent’s
execution to process events that are received by the agent. In other approaches (e.g. van Riemsdijk et al., 2006;
Hindriks, 2008), modules are used to realise a specific policy or mechanism in order to control an agent
execution.More specifically, in GOAL, as proposed byHindriks (2008), modules are considered as the ‘focus
of execution’, which can be used to disambiguate the application and execution of plans. This is done by
assigning a mental state condition (beliefs and/or goals) to each module. The modules whose conditions are
satisfied form the focus of an agent’s execution such that only plans from these modules are applied and
executed. In 3APL, as proposed by van Riemsdijk et al. (2006), a module is a set of planning rules that is
associated with a specific goal indicating which planning rules can be applied to achieve the goal. In other
words, a module implements specific means for achieving specific goals. In 2APL, as proposed by Dastani
and Steunebrink (2010), modules are introduced for encapsulation of different cognitive components that
together implement a specific agent functionality. The significant difference with other approaches is that a
programmer can perform a wide range of operations on modules. These module-related operations enable a
programmer to directly and explicitly control when and how modules are used. For instance, a programmer
can create an instance of the module specification, query and update its internals, and execute the updated
module instance. An agent that executes a module instance, stops deliberating on its current cognitive state
and starts deliberating on a new cognitive state that is encapsulated by the executed module instance. The
proposed notion of module can be used to implement a variety of agent concepts such as agent role and agent
profile. Recently, a modularisation idea for Jason is proposed byMadden and Logan (2009). In this proposal,
a module encapsulates a subset of an agent’s functionalities and consists of cognitive ingredients such as
belief, goal, and event bases, a plan library, and a list of exported belief and goal predicates. An agent is then
defined as a composition of modules (modules cannot be nested), together with a slightly modified version of
the Jason’s original interpreter. Finally, it should be noted that the concept of module as used by Novak and
Dix (2006) is different from other approaches. In this approach, a module is considered as one specific
cognitive component (e.g. an agent’s beliefs) and not as a functionality modelled by different cognitive
components. Note also that behaviours in Jade, which can be used to implement an agent’s functionality, can
also be seen as a kind of module.

6 Current challenges

There are many challenges to meet in the multi-agent programming research field. Examples of these
challenges are scalability and automatic code generation from system specifications. In this overview, we
focus on two challenges that require both theoretical and practical investigations. The first challenge is a
principle integration of programming languages for individual agents, organisations, and environments
and the second challenge is the debugging and testing of multi-agent programs.

6.1 Integration of programming languages

Respecting the separation of concerns principle advocates separate programming languages and
development frameworks for the implementation of individual agents, environments, and organisations.

Programming multi-agent systems 409



The development of multi-agent systems therefore requires a systematic integration of the corresponding
programming languages and development frameworks. Ideally, one should be able to write programs for
different components of a multi-agent system separately and integrate these programs either by means of
another program that indicates how the programs of different components should interact and executed, or
through a platform that facilitates an integrated execution of all involved programs. It should be noted that
this challenge is only relevant when different components of multi-agent systems need to be programmed
separately using dedicated programming languages and development frameworks.

The first proposal for integrating programming languages for various components of multi-agent
systems is based on the integration of 2APL and 2OPL, as mentioned by Tinnemeier (2011) and realised
by Adal (2010). In this approach, a multi-agent program is implemented by specifying a number of agents
programmed in 2APL, one or more environments programmed in Java, and an organisation programmed
in 2OPL. An execution of such a multi-agent program is a concurrent execution of the specified individual
agents programs, the environment program, and the organisation program. The execution of individual
agents programmed in 2APL may cause agents to interact with each other and with the environment.
The resulting actions are not directly effectuated in the environment, but passed to the organisation
implemented in 2OPL. The organisation decides the effects of those actions in the environment based on
the specified organisational norms and sanctions. In particular, the performance of actions in the
environment by individual agents is effectuated by the organisation program, which allows/disallows
actions and realises the effect of actions in the environment. The organisation will also evaluate the
updated state of the environment with respect to the specified organisational norms and impose sanctions
when violations are detected. Imposing sanctions is seen as specific updates of the environment state
according to the sanctions specified by the organisation. This integration approach views an organisation
as an exogenous coordination mechanism that controls and regulates the interaction among agents as well
as between agents and environment.

Another integration proposal is JaCaMo as proposed by Boissier et al. (2013). This approach aims at
integrating Jason, Cartago, and MOISE to program individual agents, environments, and organisations,
respectively. The idea is to integrate on the one hand MOISE and Cartago, and on the other Jason and
Cartago. The integration of MOISE and Cartago is by means of organisational artifacts and based on the
earlier work on ORA4MAS as presented by Kitio et al. (2008). The integration of Jason and Cartago is
through artifact operations performed by the Jason agents. In this integrated approach, the organisational
infrastructure of a multi-agent system consists of organisational artifacts and organisational agents
that together are responsible for functionalities concerning the management and enacting of the
organisation. Organisational agents manage organisational activities such as observing and reasoning
about organisation dynamics. The violation of norms is detected by organisational artifacts after which
organisational agents have to deal with those violations. The organisational artifacts and agents are
intended to implement norm regimentation and enforcement by means of sanctions, as originally proposed
by Dastani et al. (2009b). A characteristic of this integration is that the management of organisational
activities such as norm enforcement is the responsibility of the so-called organisational agents. It is,
however, not clear why such activities should be performed by an agent rather than, for example, by the
organisation itself. After all, an agent has by definition its own objectives which is used to motivate its
actions and which may not be compatible or even in conflict with the organisation objectives.

6.2 Debugging and testing multi-agent programs

Debugging is the art of finding and resolving errors or possible defects in a computer program. In general,
there are various types of bugs such as syntax bugs, semantic bugs (logical and concurrent bugs), or design
bugs. Design bugs arise before the actual programming and are based on erroneous design of software
programs (see e.g. Dastani et al., 2009a). In contrast to design bugs, both syntax and semantic bugs arise
during programming and are related to the actual code of the programs. Although syntax bugs depend on the
specification of programming languages and are (most of the time) simple typos, which can easily be detected
by the program parser (compiler), semantic bugs are mistakes at the semantic level. Because they often depend
on the intention of the developer they can rarely be detected automatically by the program parsers. Therefore,

M . D A S T A N I410



special tools are needed to detect semantic bugs. The ease of the debugging experience is largely dependent on
the quality of these debugging tools and the ability of developers to work with these tools.

The main challenge with respect to debugging multi-agent programs are the semantic bugs caused by
the execution of autonomous agent programs, and those caused by the interaction between agents,
environments, and organisations. The bugs causing by the interaction between agents are often dealt with
by means of different types of visualisation tools such as sniffer and causality graphs (see e.g. Bellifemine
et al., 2005; Pokahr et al., 2005; Botia et al., 2006; Bordini et al., 2007; Dastani, 2008; Vigueras & Botia,
2008). The visualisation tools allow the developer to browse through exchanged messages, inspect the
messages, and present them using different visualisation techniques. Debugging the interaction between
agents, environments, and organisations are still an unexplored research area. The semantic bugs caused
by the execution of individual agent programs are dealt with by a variety of techniques such as
breakpoints, assertions, and execution tracers (see e.g. Bellifemine et al., 2005; Lam & Suzanne Barber,
2005; Bordini et al., 2007; Collier, 2007; Sudeikat et al., 2007; Dastani, 2008). A breakpoint is a marker
that can be placed in the program’s code to control the program’s execution. When the marker is reached
the program execution is halted. Assertions are statements that can be annotated to specific elements of
the programming language. When an assertion is evaluated to false, a warning is generated to inform the
developer about the agent and the element where the assertion is evaluated to false. The execution tracer is
a standard tool that is present in most multi-agent development frameworks. This is a window that enables
a developer to view, inspect, and trace an agent’s internal state, and to start, stop, and step through the
execution of the agent program.

Debugging agent programs that are based on BDI abstractions requires additional tools to monitor and
control temporal and cognitive properties of the agent program executions. In Dastani et al. (2009a), a
debugging approach is proposed which is based on a specification language to express temporal and
cognitive execution properties of multi-agent programs and a set of debugging tools. The expressions of
the specification language are related to the proposed debugging tools such that the debugging tools are
activated as soon as their associated properties hold for the multi-agent program execution thus far. The
specification language is based on LTL extended with the BDI operators. Given an execution of a
multi-agent program, one can check if an agent drops a specific goal when it is achieved, when two or
more agents have the same beliefs, whether a protocol is suited for a given task, whether important beliefs
are communicated and if they are adopted/rejected once they are communicated.

Recent developments in multi-agent programming languages have proposed specific programming
constructs enabling the implementation of social concepts such as norms, roles, obligations, and sanctions
(see e.g. Esteva et al., 2004; Hiibner et al., 2006; Dastani et al., 2009b; Tinnemeier et al., 2009b).
Debugging such multi-agent programs requires specific debugging constructs to specify properties related
to the social aspects and to find and resolve defects involved in such programs. The presented debugging
approaches assume all agents are developed on one single platform such that their executions for
debugging purposes are not distributed on different platforms. One important challenge and a future work
on debugging multi-agent systems remains the debugging of multi-agent programs that run concurrently
on different platforms. It is, for example, not clear how the distributed executions of a multi-agent program
can be monitored and controlled or how the distributed program codes can be accessed and modified.

The techniques mentioned above are helpful when errors manifest themselves directly to the developers
or users. However, errors in a program do not always manifest themselves directly. For industrial
applications it may be necessary to extensively test programs before deploying them. The testing should
remove as many bugs (and possible defects) as possible. However, it is often infeasible to test every single
situation in which the program could run. A testing approach for multi-agent programs is proposed by
Poutakidis et al. (2002, 2003) andWinikoff (2010). Testing is an indispensable part of evaluating multi-agent
programs and should therefore be integrated in the existing debugging approaches. This allows the generation
of a set of critical test traces which will be the subject of debugging in post mortem mode. Finally, we would
like to emphasise that for mission and industrial critical systems, it is often necessary to formally verify the
programs by means of theorem proving or model checking techniques. Unfortunately, these verification
techniques are computationally expensive and cannot be applied to large-scale software systems. Some
existing work on formal verification of multi-agent systems are presented in Dastani et al. (2010).

Programming multi-agent systems 411



6.3 Towards industry-strength technology

The field of multi-agent programming can be approached from two different perspectives: academic and
industry. From the academic perspective, this research field contributes to the integration of theories and
techniques from artificial intelligence in the development and implementation of intelligent systems. In
particular, it provides computational and executable models for high-level (social and cognitive) concepts,
and proposes corresponding programming constructs that can be used to develop and implement
intelligent systems. For example, computational models for beliefs and goals with their corresponding
programming constructs are used to develop and implement proactive systems, and event processing
mechanisms are used to develop and implement reactive systems. Moreover, the provided models and
programming languages are extended and used to build prototypes of intelligent systems. For example,
programming languages for BDI agents are extended with emotion models (e.g. Dastani & Meyer, 2010)
to prototype emotional agents, and multi-agent programming languages are extended with social concepts
to prototype or simulate agent societies. The academic perspective on this research field has shown to be
attractive to the researchers from the logic community. In particular, researchers from computational
logics and knowledge representation and reasoning have proposed formal and computational models that
can be used in multi-agent programming languages and their interpreters to allow the representation and
reasoning with an agent’s (cognitive) state. In addition, researchers with specification and verification
background have proposed various frameworks to specify and verify properties of individual agents and
multi-agent programs.

Although the research in the multi-agent programming community has been dominated by the
academic perspective and attracted more academic researchers than industrial practitioners, an important
aim of this community has been the development of industry strength tools and technologies to build
industrial applications. There are some unverified explanations for why the existing tools and technologies
from multi-agent programming research community have not been adopted and deployed for industrial
applications. For example, it is often claimed that the industry requires tools and technologies with
predictable behaviours, while agents and multi-agent systems are generally seen by the industry as
intelligent and adaptive systems with unpredictable behaviours. Moreover, the developers from the
industry seem to prefer having full control over the execution of the developed software systems, while
most of the existing multi-agent programming languages are based on interpreters that make complex
decisions (e.g., deliberation and control processes) on behalf of the software developers. It is also claimed
that the industry tends to use standard software technologies and is not eager to adopt paradigmatic change
in software technologies and methodologies.

The adoption of multi-agent programming tools and technologies by the industry is a major challenge
that still needs to be met by the multi-agent programming community. One possible way to meet this
challenge is by transferring multi-agent programming tools and technologies to the standard software
technologies. An idea is to start with the high-level concepts and abstractions for which multi-agent
programming research field have provided computational models and programming constructs, and
propose either corresponding language-level supports in the standard programming languages (e.g. C++
or Java), or alternatively propose corresponding design patterns, that is, general reusable solutions to
problems such as proactivity, reactivity, adaptivity, control, and monitoring. The language-level support
can either be realised by standard programming approaches such as meta-programming or aspect-oriented
programming where concepts such as deliberation and control can be considered as different concerns that
can be programmed either by meta-programs or aspects. Although these suggestions are not mature and
need to be work out both in details and in practice, attempts along these lines can bring multi-agent
community closer to the industry.

7 Conclusion

The maturation of multi-agent programming languages and development frameworks is still a main issue
in the multi-agent programming community. From the software development perspective, one of the
objectives of multi-agent programming community is to propose programming languages that support

M . D A S T A N I412



direct and effective implementations of large-scale multi-agent systems. This is realised by proposing
programming constructs to facilitate the implementation of concepts and abstractions used in the analysis
and design of multi-agent systems. Up until now many multi-agent programming languages and
development frameworks have been proposed. They differ from each other in the set of abstractions,
programming constructs, and principles they convey. Although these programming languages and
development frameworks are evolving towards a certain level of maturity in the sense that their
programming concepts and operations are well motivated and have profound semantics, a majority of
them are still not being used in the development of large-scale industrial applications.

Currently, multi-agent programming languages and development frameworks, in particular those that
are based on social and cognitive constructs, are mainly considered as research works. The incorporation
of social and cognitive concepts in multi-agent programming languages and development frameworks
requires their semantic and computational analyses. Therefore, the multi-agent programming research field
has been attractive to researchers from various scientific disciplines such as logic, artificial intelligence,
philosophy, cognitive science, and social science.

From this interdisciplinary perspective, multi-agent programming languages and development
frameworks are primarily seen as computational architectures of multi-agent systems and are not
designed to satisfy or support (functional or non-functional) requirements for engineering large-scale
industrial applications. The maturation of multi-agent programming languages and development
frameworks regarding such requirements remains a future research direction in multi-agent
programming community (see Cysneiros & Yu, 2003; Silva et al., 2003 for a discussion on multi-agent
system requirements).

The state of the art in the field of multi-agent programming shows the emergence of specialised
programming languages and development frameworks for individual agents, organisations, and
environments. The main focus of multi-agent programming community has been on the development of
programming languages and development frameworks for individual agents. Although the research on
(formal) models of multi-agent organisations and environments has a long history, the emergence of
programming languages and development frameworks for supporting their implementations is a recent
phenomenon. The evolution of programming languages and development frameworks for individual
agents show a convergence in the sense that they propose programming constructs for an established set of
concepts and abstractions. These languages and frameworks differ from each other as they use different
programming styles (declarative, imperative, or both), support different programming principles such as
modularity, abstraction, recursion, exception handling, support for legacy code, and as their corresponding
integrated development environments provide different sets of functionalities such as editing, debugging,
and automatic generation of codes.

One of the current challenges in the multi-agent programming research field is the integration
of programming languages and development frameworks for individual agents, multi-agent
organisations, and multi-agent environments. Although there have been several attempts to integrate
specific programming languages, the ultimate goal is a mechanism to facilitate the integration of arbitrary
programming languages and development frameworks for individual agents, multi-agent organisations,
and multi-agent environments. A possible solution to realise this goal is to develop standard interfaces that
can manage the interactions between individual agent programs, multi-agent organisation programs, and
multi-agent environment programs. There have already been some initiatives to establish standard
interfaces for managing the interaction of individual agent programs and environment programs, but
the research in this direction is still in a preliminary phase and needs support and collaboration from the
community. Another issue currently challenging the multi-agent programming community is the
debugging and testing of multi-agent programs. There is a need for powerful debugging facilities and
testing tools that can cope with the distributed nature of multi-agent systems, the autonomy of individual
agents, and the interactions between individual agent, multi-agent organisation, and multi-agent
environment programs. There have been some initial attempts for enriching debugging tools with
expressive specification languages such that tools can be initialised and activated when the execution of
multi-agent programs satisfy certain properties, but such attempts ignore multi-agent organisation and
environment programs.

Programming multi-agent systems 413



As noticed before, this overview is by no means complete. There are still many issues related to
multi-agent programming that need to be investigated. Among these issues are mechanisms to deal with
plan failure, goal types, reasoning about organisations and environments from an agent’s point of view, the
integration of concepts such as sensing, planning, acting, learning, and emotions in the agent’s deliberation
process, the adaptivity of organisation and environment based on the executions of individual agent
programs, and formal verification of multi-agent programs.

Acknowledgement

The author would like to offer special thanks to anonymous reviewers for their valuable and constructive
comments. They have helped to improve the quality of this paper.

References

Adal, A. 2010. An Interpreter for Organization Oriented Programming Language. Master’s thesis, Utrecht University.
Ågotnes, T., van der Hoek, W. & Wooldridge, M. 2008. Robust normative systems. In Proceedings of the Seventh

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2008), Padgham, L.,
Parkes, D., Mueller, J. P. & Parsons, S. (eds), 747–754, May. IFAMAAS/ACM DL.

Arbab, F. 1998. What do you mean, coordination? Bulletin of the Dutch Association for Theoretical Computer Science
(NVTI), 11–22.

Arbab, F., Astefanoaei, L., de Boer, F., Dastani, M., Meyer, J.-J. C. & Tinnermeier, N. 2009. Reo connectors as
coordination artifacts in 2APL systems. In Proceedings of the 11th Pacific Rim International Conference on
Multi-Agents (PRIMA 2008), LNCS, 5357, 42–53. Springer.

Astefanoaei, L., Dastani, M., Meyer, J.-J. C. & Boer, F. 2009. On the semantics and verification of normative
multi-agent systems. International Journal of Universal Computer Science 15(13), 2629–2652.

Bacchus, F. & Kabanza, F. 1998. Planning for temporally extended goals. Annals of Mathematics and Artificial
Intelligence 22(1–2), 5–27.

Baldoni, M., Boella, G., Dorni, M., Grenna, R. & Mugnaini, A. 2008. powerJADE: organizations and roles as
primitives in the JADE framework. In WOA 2008: Dagli oggetti agli agenti, Evoluzione dell’agent development:
metodologie, tool, piattaforme e linguaggi, 84–92.

Baldoni, M., Boella, G. & Van Der Torre, L. 2005. Roles as a coordination construct: introducing powerJava.
In Proceedings of the 1st International Workshop on Methods and Tools for Coordinating Concurrent, Distributed
and Mobile Systems, Electronic Notes in Theoretical Computer Science 150, 9–29.

Baral, C. & Zhao, J. 2007. Non-monotonic temporal logics for goal specification. In International Joint Conference on
Artificial Intelligence (IJCAI), 236–242.

Behrens, T., Dix, J., Hindriks, K., Dastani, M., Bordini, R., Hubner, J., Pokahr, A. & Braubach., L. 2010. An interface for
agent-environment interaction. In Proceedings of the Eighth International Workshop on Programming Multi-Agent
Systems (ProMAS’10), Bordini, R.H., Dastani, M., Dix, J. & El Fallah Seghrouchni, A. (eds), 125–147. Springer.

Bellifemine, F., Bergenti, F., Caire, G. & Poggi, A. 2005. JADE—a Java agent development framework.
In Multi-Agent Programming: Languages, Platforms and Applications. Kluwer.

Bergenti, F., Gleizes, M.-P. & Zambonelli, F. (eds) 2004.Methodologies and Software Engineering for Agent Systems.
Multiagent Systems, Artificial Societies, and Simulated Organizations 11, Kluwer Academic Publisher.

Boella, G. & van der Torre, L. 2008. Substantive and procedural norms in normative multiagent systems. Journal of
Applied Logic 6, 152–171.

Boissier, O., Bordini, R., Hbner, J. F., Ricci, A. & Santi, A. 2013. Multi-agent oriented programming with JaCaMo.
Science of Computer Programming 78, 747–761.

Bordini, R., Huubner, J. & Wooldridge, M. 2007. Programming Multi-Agent Systems in AgentSpeak using Jason.
Wiley Series in Agent Technology, John Wiley & Sons.

Bordini, R. H., Dastani, M., Dix, J. & El Fallah Seghrouchni, A. (eds) 2005. Multi-Agent Programming: Languages,
Platforms and Applications. Multiagent Systems, Artificial Societies, and Simulated Organizations 15. Springer,
ISBN: 978-0-387-24568-3.

Bordini, R. H., Dastani, M., Dix, J. & El Fallah Seghrouchni, A. (eds) 2009. Multi-Agent Programming: Languages,
Tools and Applications, Springer, ISBN: 978-0-387-89298-6.

Botia, J. A., Hernansaez, J. M. & Gomez-Skarmeta, A. F. 2006. On the application of clustering techniques to support
debugging large-scale multi-agent systems. In Proceedings of the Fourth International Workshop on Program-
ming Multi-Agent Systems (ProMAS’06), 217–227.

Bracciali, A., Demetriou, N., Endriss, U., Kakas, A., Lu, W., Mancarella, P., Sadri, F., Stathis, K., Terreni, G. &
Toni, F. 2004. The KGP model of agency for global computing: computational model and prototype
implementation. In Global Computing, LNCS, 3267, 340–367. Springer.

M . D A S T A N I414



Bratman, M. E., Israel, D. J. & Pollack, M. E. 1988. Plans and resource-bounded practical reasoning. Computational
Intelligence 4(3), 349–355.

Braubach, L. & Pokahr, A. 2009. Representing long-term and interest BDI goals. In Proceedings of the Seventh
International Workshop on Programming Multi-Agent Systems (ProMAS’09).

Braubach, L., Pokahr, A. & Lamersdorf, W. 2005. Extending the capability concept for flexible BDI agent
modularization. In Proceedings of the Third International Workshop on Programming Multi-Agent Systems
(ProMAS’05), 139–155.

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. & Perini, A. 2003. TROPOS: an agent-oriented software
development methodology. Journal of Autonomous Agents and Multi-Agent Systems 8(3), 203–236.

Busetta, P., Howden, N., Ronnquist, R. & Hodgson, A. 2000. Structuring BDI agents in functional clusters.
In Intelligent Agents VI: Theories, Architectures and Languages, Jennings N. & Lesperance Y. (eds), Lecture
Notes in Computer Science, 1757, 277–289. Springer.

Cohen, P. R. & Levesque, H. J. 1990. Intention is choice with commitment. Artificial Intelligence 42(2–3), 213–261.
Collier, R. 2007. Debugging agents in agent factory. In Proceedings of the Fourth International Workshop on

Programming Multi-Agent Systems (ProMAS’06), 229–248.
Cysneiros, L. M. & Yu, E. S. K. 2003. Requirements engineering for large-scale multi-agent systems. In Software

Engineering for Large-Scale Multi-Agent Systems, Research Issues and Practical Applications (SELMAS),
Garcia, A. F., de Lucena, C. J. P., Zambonelli, F., Omicini, A. & Castro, J. (eds), LNCS, 2603, 39–56. Springer.

Dastani, M. 2008. 2APL: a practical agent programming language. International Journal of Autonomous Agents and
Multi-Agent Systems 16(3), 214–248.

Dastani, M., Arbab, F. & de Boer, F. S. 2005a. Coordination and composition in multi-agnet systems. In Proceedings
of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’05),
439–446.

Dastani, M., Brandsema, J., Dubel, A. & Meyer, J.-J. C. 2009a. Debugging BDI-based multi-agent programs. In
Proceedings of the Seventh International Workshop on Programming Multi-Agent Systems (ProMAS’09), LNCS,
5919, 151–169.

Dastani, M., Grossi, D., Meyer, J.-J. C. & Tinnemeier, N. 2009b. Normative multi-agent programs and their logics.
In Post Proceedings of the International Workshop on Knowledge Representation for Agents and Multi-Agent
Systems (KRAMAS’08), LNAI, 5605, 16–31. Springer.

Dastani, M. & Gomez-Sanz, J. 2006. Programming multi-agent systems. The Knowledge Engineering Review 20(2),
151–164.

Dastani, M. & Gomez-Sanz, J. J. 2005. AgentLink III Technical Forum Group, programming multiagent systems.
http://people.cs.uu.nl/mehdi/al3promas.html.

Dastani, M., Hindriks, K. & Meyer, J.-J. C. 2010. Specification and Verification of Multi-Agent Systems, Springer,
ISBN 978-1-4419-6983-5.

Dastani, M. & Meyer, J.-J. C. 2010. Agents with emotions. International Journal of Intelligent Systems 25(7),
636–654.

Dastani, M. & Steunebrink, B. R. 2010. Operational semantics for BDI modules in multi-agent programming.
In Proceedings of the 10th International Conference on Computational Logic in Multi-Agent Systems (CLIMA’09),
83–101. Springer-Verlag.

Dastani, M., van Riemsdijk, M. B. & Meyer, J.-J. C. 2005b. Programming multi-agent systems in 3APL. In Multi-
Agent Programming: Languages, Platforms and Applications, Bordini, R.H., Dastani, M., Dix, J. & El Fallah
Seghrouchni, A. (eds), 39–67. Kluwer.

Dastani, M., van Riemsdijk, M. B. & Meyer, J.-J. C. 2006. Goal types in agent programming. In Proceedings of the
17th European Conference on Artificial Intelligence (ECAI’06).

Dastani, M., van Riemsdijk, B. & Winikoff, M. 2011. Rich goal types in agent programming. In Proceedings of the
Tenth International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2011).

De Giacomo, G., Lesperance, Y. & Levesque, H. J. 2000. ConGolog, a concurrent programming language based on
the situation calculus. Artificial Intelligence 121(1–2), 109–169.

Dignum, V. 2004. A Model for Organizational Interaction. PhD thesis, Utrecht University, SIKS.
Dix, J. & Zhang, Y. 2005. IMPACT: a multi-agent framework with declarative semantics. In Multi-Agent

Programming: Languages, Platforms and Applications, Bordini, R.H., Dastani, M., Dix, J. & El Fallah
Seghrouchni, A. (eds), 69–94. Kluwer.

Duff, S., Harland, J. & Thangarajah, J. 2006. On proactivity and maintenance goals. In Proceedings of the Fifth
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 06), 1033–1040.

El Fallah Seghrouchni, A. & Suna, A. 2005. CLAIM and SyMPA: a programming environment for intelligent and
mobile agents. InMulti-Agent Programming: Languages, Platforms and Applications, Bordini, R.H., Dastani, M.,
Dix, J. & El Fallah Seghrouchni, A. (eds), 95–122, Kluwer.

Esteva, M., de la Cruz, D. & Sierra, C. 2002. ISLANDER: an electronic institutions editor. In Proceedings of
the First International Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2002),
1045–1052.

Programming multi-agent systems 415

http://people.cs.uu.nl/mehdi/al3promas.html


Esteva, M., Rodriguez-Aguilar, J. A., Rosell, B. & Arcos, J. L. 2004. AMELI: an agent-based middleware for
electronic institutions. In Proceedings of the Third International Joint Conference on Autonomous Agents and
MultiAgent Systems (AAMAS 2004), 236–243, July.

Ferber, J. 1999. Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison-Wesley Long-
man Publishing, ISBN: 0201360489.

Fisher, M. 2005. METATEM: the story so far. In Proceedings of the First International Workshop on Programming
Multi-Agent Systems (ProMAS’03), LNAI, 3862, 3–22. Springer Verlag.

Garcia-Camino, A., Noriega, P. & Rodriguez-Aguilar, J. A. 2005. Implementing norms in electronic institutions.
In Proceedings of the Fourth International Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 05), 667–673.

Gomez-Sanz, J. & Pavon, J. 2003. Agent oriented software engineering with INGENIAS. In LNCS, 2691, 394–403.
Springer.

Grossi, D. 2007. Designing Invisible Handcuffs. PhD thesis, Utrecht University, SIKS.
Hindriks, K. 2008. Modules as policy-based intentions: modular agent programming in GOAL. In Proceedings of the

Fifth International Workshop on Programming Multi-Agent Systems (ProMAS’07), 4908. Springer.
Hindriks, K. 2009. Programming rational agents in GOAL. In Multi-Agent Programming: Languages and Tools and

Applications, Bordini, R.H., Dastani, M., Dix, J. & El Fallah Seghrouchni, A. (eds), 119–157. Springer.
Hindriks, K., De Boer, F., Van der Hoek, W. & Meyer, J.-J. C. 1999. Agent programming in 3APL. Autonomous

Agents and Multi-Agent Systems 2(4), 357–401.
Hindriks, K., van der Hoek, W. & van Riemsdijk, M. B. 2009. Agent programming with temporally extended goals.

In Proceedings of the Eight International Conference on Autonomous Agents and Multiagent Systems
(AAMAS’09), 137–144. IFAAMAS.

Hindriks, K. & van Riemsdijk, M. B. 2008. Satisfying maintenance goals. In Declarative Agent Languages and
Technologies (DALT 07), LNAI, 4897, 86–103. Springer.

Hübner, J., Sichman, J. S. & Boissier, O. 2006. S-MOISE+ : a middleware for developing organised multi-agent
systems. In Proceedings of the International Workshop on Coordination, Organizations, Institutions, and Norms
in Multi-Agent Systems, LNCS, 3913, 64–78. Springer.

Hübner, J., Sichman, J. S. & Boissier, O. 2007. Developing organised multiagent systems using the MOISE+ model:
programming issues at the system and agent levels. International Journal of Agent-Oriented Software Engineering
1(3/4), 370–395.

Hübner, J. F., Boissier, O., Kitio, R. & Ricci, A. 2010. Instrumenting multi-agent organisations with organisational
artifacts and agents: giving the organisational power back to the agents. International Journal of Autonomous
Agents and Multi-Agent Systems 20, 369–400.

Jones, A. J. I. & Sergot, M. 1993. On the characterization of law and computer systems. InDeontic Logic in Computer
Science: Normative System Specification, Meyer J.-J. C. & Wieringa R. J. (eds). John Wiley & Sons, 275–307.

Kakas, A., Mancarella, P., Sadri, F., Stathis, K. & Toni, F. 2004. The KGP model of agency. In The 16th European
Conference on Artificial Intelligence (ECAI’04), 33–37.

Khan, S. M. & Lespoerance, Y. 2009. A logical account of prioritized goals and their dynamics. In Proceedings of the
Ninth International Symposium on Logical Formalizations of Commonsense Reasoning (Commonsense-09),
Lakemeyer G., Morgenstern L. & Williams M. A. (eds). Open Publications of UTS Scholars, 85–90.

Kitio, R., Boissier, O., Hubner, J. & Ricci, A. 2008. Organisational artifacts and agents for open multi-agent
organisations: ‘giving the power back to the agents’. In Proceedings of the 2007 International Conference on
Coordination, Organizations, Institutions, and Norms in Agent Systems III, COIN’07, 171–186. Springer-Verlag.
ISBN: 3-540-79002-0, 978-3-540-79002-0.

Lam, D. N. & Suzanne Barber, K. 2005. Debugging agent behavior in an implemented agent system. In Proceedings of
the Second International Workshop on Programming Multi-agent Systems (ProMAS’04), 104–125.

Leite, J., Alferes, J. & Pereira, L. M. 2001. Minerva—a dynamic logic programming agent architecture. In the
proceedings of the Eighth International Workshop on Agent Theories, Architectures, and Languages (ATAL-
2001). Meyer, J.-J. C. & Tambe, M. (eds), LNAI 2333, 141–157, Springer.

Madden, N. & Logan, B. 2009. Modularity and compositionality in Jason. In Proceedings of the Seventh International
Workshop on Programming Multi-Agent Systems (ProMAS’09), Braubach, L., Briot, J.-P. & Thangarajah, J. (eds),
LNAI, 5919, 237–253. Springer. ISBN: 978-3-642-14842-2.

Meyer, J.-J. C., van der Hoek, W. & van Linder, B. 1999. A logical approach to the dynamics of commitments.
Arificial Intelligence 113, 1–40.

Miiller, J. P. 1996. The Design of Autonomous Agents A Layered Approach, LNAI, 1177. Springer-Verlag.
Muldoon, C., O’Hare, G. M. P., Collier, R. W. & O’Grady, M. J. 2009. Towards pervasive intelligence:

reflections on the evolution of the agent factory framework. In Multi-Agent Programming: Languages and
Tools and Applications, Bordini R. H., Dastani M., Dix J. & El Fallah Seghrouchni A. (eds). Springer,
187–212.

Nair, R. & Tambe, M. 2005. Hybrid BDI-POMDP framework for multiagent teaming. Journal of Artificial
Intelligence Research 23(1), 367–420.

M . D A S T A N I416



Novaik, P. & Dix, J. 2006. Modular BDI architecture. In Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’06).

Omicini, A. 2007. Formal ReSpecT in the A&A perspective. Electronic Notes Theoretical Computer Science 175(2),
97–117.

Padgham, L. &Winikoff, M. 2003. Prometheus: a methodology for developing intelligent agents. In Lecture Notes in
Artificial Intelligence, 2585, 174–185. Springer.

Pokahr, A., Braubach, L. & Lamersdorf, W. 2005. Jadex: a BDI reasoning engine. In Multi-Agent Programming:
Languages, Platforms and Applications, Bordini, R.H., Dastani, M., Dix, J. & El Fallah Seghrouchni, A. (eds),
149–174. Kluwer.

Poutakidis, D., Padgham, L. & Winikoff, M. 2002. Debugging multi-agent systems using design artifacts: the case of
interaction protocols. In Proceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS’02), 960–967.

Poutakidis, D., Padgham, L. & Winikoff, M. 2003. An exploration of bugs and debugging in multi-agent systems.
In Proceedings of the 14th International Symposium on Methodologies for Intelligent Systems (ISMIS), 628–632.
ACM Press.

Prakken, H. & Sergot, M. 1996. Contrary-to-duty obligations. Studia Logica 57, 91–115.
Rao, A. S. 1996. AgentSpeak(L): BDI agents speak out in a logical computable language. In Proceedings of the

Seventh European Workshop on Modelling Autonomous Agents in a Multi-Agent World (MAAMAW’96), Van de
Velde, W. & Perram, John W. (eds). Agents Breaking Away, LNCS 1038, 42–55. Springer.

Rao, A. S. & Georgeff, M. P. 1991. Modeling rational agents within a BDI-architecture. In Proceedings of the Second
International Conference on Principles of Knowledge Representation and Reasoning (KR 91), Allen J., Fikes R. &
Sandewall E. (eds). Morgan Kaufmann, 473–484.

Rao, A. S. & Georgeff, M. P. 1995. BDI agents: from theory to practice. In Proceedings of the First International
Conference on Multi-Agent Systems (ICMAS 95), Allen, J., Fikes, R. & Sandewall, E. (eds), 312–319. MIT Press.

Rens, G., Ferrein, A. & van der Poel, E. 2009. A BDI agent architecture for a POMDP planner. In Nineth International
Symposium on Logical Formalizations of Commonsense Reasoning.

Ricci, A., Viroli, M. & Omicini, A. 2006. Cartago: a framework for prototyping artifact-based environments in MAS.
In E4MAS, 67–86.

Sadri, F. 2005. Using the KGP model of agency to design applications. In Proceedings of the 6th International
Conference on Computational Logic in Multi-Agent Systems (CLIMA 05), 3900, 165–185. Springer.

Sardina, S., De Giacomo, G., Lesperance, Y. & Levesque, H. J. 2004. On the semantics of deliberation in IndiGolog—
from theory to implementation. Annals of Mathematics and Artificial Intelligence 41(2–4), 259–299.

Shapiro, S. & Brewka, G. 2007. Dynamic interactions between goals and beliefs. In International Joint Conference on
Artificial Intelligence (IJCAI’07), 2625–2630.

Shoham, Y. 1993. Agent-oriented programming. Artificial Intelligence 60, 51–92.
Silva, C. T. L. L., Castro, J. & Tedesco, P. A. 2003. Requirements for multi-agent systems. In Workshop em

Engenharia de Requisitos (WER), Galvao Martins, L. E. & Franch, X. (eds), 198–212.
Silva, V. T. 2008. From the specification to the implementation of norms: an automatic approach to generate rules from

norms to govern the behavior of agents. International Journal of Autonomous Agents and Multiagent Systems
(JAAMAS) 17(1), 113–155.

Sudeikat, J., Braubach, L., Pokahr, A., Lamersdorf, W. & Renz, W. 2007. Validation of BDI agents. In Proceedings of
the Fourth International Workshop on Programming Multi-Agent Systems (ProMAS’06), 185–200.

Tasaki, M., Yabu, Y., Iwanari, Y., Yokoo, M., Tambe, M., Marecki, J. & Varakantham, P. 2008. Introducing
communication in Dis-POMDPs with locality of interaction. International Conference on Web Intelligence and
Intelligent Agent Technology, IEEE/WIC/ACM 2, 169–175.

Tinnemeier, N. 2011.Organizing Agent Organizations: Syntax and Operational Semantics of an Organization-Oriented
Programming Language. PhD thesis, Dutch Research School for Information and Knowledge Systems (SIKS).

Tinnemeier, N., Dastani, M. & Meyer, J.-J. C. 2009a. Roles and norms for programming agent organizations.
In Proceedings of the Eight International Conference on Autonomous Agents and Multiagent Systems (AAMAS
09), Decker, K. S., Sichman, J. S., Sierra, C. & Castelfranchi, C. (eds), 121–128. IFAMAAS/ACM DL.

Tinnemeier, N., Dastani, M. & Meyer, J.-J. C. 2010. Programming norm change. In Proceedings of the Ninth
International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10), van der Hoek, W.,
Kaminka, G. A., Lesperance, Y., Luck, M. & Sen, S. (eds), 957–964. IFAMAAS/ACM DL.

Tinnemeier, N., Dastani, M., Meyer, J.-J. C. & van der Torre, L. 2009b. Programming normative artifacts with
declarative obligations and prohibitions. In Proceedings of IEEE/WIC/ACM International Joint Conference on
Web Intelligence and Intelligent Agent Technology, 145–152. IEEE Computer Society.

Van Dyke Parunak, H. & Weyns, D. (eds) 2007. Introduction, special issue on environments for multi-agent systems.
Autonomous Agents and Multi-Agent Systems 14(1), 1–4.

van Riemsdijk, M. B., Dastani, M., Meyer, J.-J. C. & de Boer, F. S. 2006. Goal-oriented modularity in agent
programming. In Proceedings of the Fifth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’06), 1271–1278.

Programming multi-agent systems 417



van Riemsdijk, M. B., van der Hoek, W. &Meyer, J.-J. C. 2003. Agent programming in Dribble: from beliefs to goals
using plans. In Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’03), 393–400. ACM.

Vigueras, G. & Botia, J. A. 2008. Tracking causality by visualization of multi-agent interactions using causality
graphs. In Proceedings of the Fifth International Workshop on Programming Multi-Agent Systems (ProMAS’07),
190–204.

Weiss, G. 1999.Multiagent Systems. A Modern Approach to Distributed Artificial Intelligence, The MIT Press, ISBN:
0-262-23203-0.

Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T. & Ferber, J. (eds) 2005. Environments for Multiagent
Systems State-of-the-Art and Research Challenges, LNCS, 3374, 1–47. Springer.

Winikoff, M. 2005. JACK™ intelligent agents: an industrial strength platform. In Multi-Agent Programming:
Languages, Platforms and Applications, 175–193. Kluwer.

Winikoff, M. 2010. Assurance of agent systems: what role should formal verification play? In Specification and
Verification of Multi-Agent Systems Dastani M., Hindriks K. V. & Meyer J.-J. C. (eds). ACM Press, 353–383,
ISBN: 978-1-4419-6983-5.

Winikoff, M., Padgham, L., Harland, J. & Thangarajah, J. 2002. Declarative and procedural goals in intelligent agent
systems. In Proceedings of the Eighth International Conference on Principles of Knowledge Respresentation and
Reasoning (KR’02).

Woolridge, M. 2002. Introduction to Multiagent Systems, John Wiley & Sons, Inc.
Wooldridge, M. 2009. An Introduction to MultiAgent Systems, 2nd edition. Wiley, ISBN: 978-0-470-51946-2.
Zambonelli, F., Jennings, N. R. & Wooldridge, M. 2003. Developing multiagent systems: the Gaia methodology.

ACM Transactions on Software Engineering and Methodology (TOSEM) 12(3), 317–370.

M . D A S T A N I418


	email_1500007_1
	Programming multi-agent systems
	1Introduction
	2Aims and objectives
	3Abstractions in multi-agent programming
	3.1Individual agents
	3.2Multi-agent environment
	3.3Multi-agent organisation

	4The state of the art in multi-agent programming
	4.1Programming frameworks for individual agents
	4.1.1Imperative style programming frameworks
	4.1.2Declarative style programming frameworks
	4.1.3Hybrid style programming frameworks

	4.2Programming frameworks for multi-agent organisations
	4.3Programming frameworks for multi-agent environments

	5Current trends
	5.1Goal types
	5.2Modular programming

	6Current challenges
	6.1Integration of programming languages
	6.2Debugging and testing multi-agent programs
	6.3Towards industry-strength technology

	7Conclusion
	Acknowledgement
	ACKNOWLEDGEMENTS
	References


