
Information Processing Letters 115 (2015) 965–968
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

Google Scholar makes it hard – the complexity of organizing 

one’s publications

Hans L. Bodlaender, Marc van Kreveld ∗

Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB, Utrecht, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 October 2014
Received in revised form 2 June 2015
Accepted 3 July 2015
Available online 9 July 2015
Communicated by A. Muscholl

Keywords:
Computational complexity
NP-completeness
Reduction
3-partition
Google Scholar

With Google Scholar, scientists can maintain their publications on personal profile pages, 
while the citations to these works are automatically collected and counted. Maintenance 
of publications is done manually by the researcher herself, and involves deleting erroneous 
ones, merging ones that are the same but which were not recognized as the same, adding 
forgotten co-authors, and correcting titles of papers and venues. The publications are 
presented on pages with 20 or 100 papers in the web page interface from 2012–2014. 
(Since mid 2014, Google Scholar’s profile pages allow any number of papers on a single 
page.) The interface does not allow a scientist to merge two versions of a paper if they 
appear on different pages. This not only implies that a scientist who wants to merge certain 
subsets of publications will sometimes be unable to do so, but also, we show in this note 
that the decision problem to determine if it is possible to merge given subsets of papers is 
NP-complete.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Most researchers in computer science will be familiar 
with Google Scholar and its abilities to maintain publica-
tions and their citations. Each researcher has his/her own 
profile which is shown as a web page with a list of publi-
cations. Google Scholar determines the number of citations 
to each publication and by default, lists them in this or-
der on web pages for that researcher. Since the collection 
of the data is automated, it will contain various mistakes, 
many of which are caused by other scientists who fail 
to give the title or other essential information on a pa-
per correctly. As a consequence, a single paper may have 
various versions in the list, with a slightly different ti-
tle or publication venue, or with co-authors missing (see 
Fig. 1). Google Scholar offers researchers the possibility to 

* Corresponding author. Tel.: +31 30 2534119.
E-mail addresses: h.l.bodlaender@uu.nl (H.L. Bodlaender), 

m.j.vankreveld@uu.nl (M. van Kreveld).
http://dx.doi.org/10.1016/j.ipl.2015.07.003
0020-0190/© 2015 Elsevier B.V. All rights reserved.
correct these mistakes on their own profile page, for ex-
ample by allowing them to merge two paper versions into 
one. This creates one version with the citations of the orig-
inal versions summed up. Of course, one could also delete 
the erroneous version, but this may cost some citations, 
which on its turn can influence the ever-important H-index 
and other summary statistics that Google Scholar main-
tains.

Google Scholar by default shows the publication list on 
pages with 20 papers. It is possible to change this number 
to 100. Since mid 2014, a change in the interface makes 
it possible to get all publications on a single page. In this 
note we assume the interface in use from 2012 until mid 
2014, when this was not possible and the maximum was 
100 on a single page. To merge two papers, both should 
be selected on the web page, after which the merge ac-
tion can be executed. However, selection of two papers is 
possible only if they appear on the same page, and there-
fore, merging can be done only if the two papers appear 
in the same group of 100 papers. For example, if one pa-
per is the 103rd by citation count and another paper is the 

http://dx.doi.org/10.1016/j.ipl.2015.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:h.l.bodlaender@uu.nl
mailto:m.j.vankreveld@uu.nl
http://dx.doi.org/10.1016/j.ipl.2015.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2015.07.003&domain=pdf


966 H.L. Bodlaender, M. van Kreveld / Information Processing Letters 115 (2015) 965–968
Fig. 1. Two pages for the author Jones with six different papers occurring as nine versions of papers. Jones must perform three merges to correct the data, 
and the order is important.

Fig. 2. A merge and the changes of positions of all versions of papers in the sorted list.
187th, then they can be merged, but if one is the 97th and 
the other is the 105th, then they cannot be merged.

The order in which papers are merged is important. If 
there are two pairs of papers to be merged, for example 
at positions 4 and 12, and at positions 101 and 107, then 
merging the first pair first will move the positions of the 
latter pair to 100 and 106, putting them on different pages. 
But merging the second pair first still allows the merging 
of the first pair. Notice that the position of a paper can 
change both forward and backward due to a merge, see 
Fig. 2.

Besides the problem that desired merges sometimes 
cannot be done, the computational problem of deciding 
whether a sequence of merges exists (and therefore, find-
ing the correct order) is computationally intractable. This 
implies that a polynomial-time algorithm to produce the 
sequence of merges is unlikely to exist.

2. A proof of intractability

To prove intractability, or, NP-completeness of the prob-
lem, we will formalize it first. Let n be the total number of 
versions of papers initially in a problem instance, and let p
be the page size. Let the paper versions be v1, . . . , vn , and 
assume that paper version vi is cited c(vi) times. A prob-
lem instance consists of the sequence c(v1), . . . , c(vn), and 
a partition of 1, . . . , n into subsets where two or more 
versions in the same subset indicates that they are dif-
ferent versions of the same paper, and therefore, they are 
to be merged into one. The Google Scholar Merge Prob-
lem is the problem of deciding whether for every subset, 
all of its versions can be merged. When two versions are 
merged, they appear as one new version and their cita-
tions are added. After each merge, the new set of versions 
appears in sorted order on citation count. When citation 
counts are the same, the papers will appear in some other 
well-defined order, but this will be irrelevant for the in-
tractability proof and we will ignore this issue.

Theorem 1. The Google Scholar Merge Problem is NP-complete.

Proof. First, we will verify that the Google Scholar Merge 
Problem is in NP. This is easy: a suggested merge order can 
easily be checked in quadratic time or less.

Second, we use another NP-complete or NP-hard prob-
lem and provide a reduction to our problem, namely
3-partition [2]. A 3-partition instance consists of a set 
a1, . . . , a3m of positive integers and an integer B , and asks 
whether we can partition a1, . . . , a3m in m subsets of 3 in-
tegers that each sum up to B . The integers a1, . . . , a3m are 
all strictly between B/4 and B/2, which ensures that any 
subset that sums to B consists of exactly three integers.

We describe the reduction from 3-partition to the 
Google Scholar Merge Problem. First, we double all ai and 
B to ensure that they are even. With slight abuse of nota-
tion we continue to use the notation a1, . . . , a3m and B for 
these doubled values.

We set the page size to 3m. Let D be some large, even 
integer; we can use D = 3mB .

Our instance consists of one paper P with many ver-
sions and many papers with one version, see Fig. 3 for a 
schematic depiction.



H.L. Bodlaender, M. van Kreveld / Information Processing Letters 115 (2015) 965–968 967
Fig. 3. Initial situation of the Google Scholar Merge problem arising from a 3-partition instance. Vertical grey lines are page boundaries.
First, we take one paper P with 5m versions that are 
cited:

• a1, . . . , a3m times (type X),
• D − B + 2i times (type Y), for each i, 1 ≤ i ≤ m,
• D + 2i times (type Z), for each i, 1 ≤ i ≤ m.

All versions of P have an even number of citations, so any 
merge of these will also have an even number of citations.

Second, we take many papers with only one version as 
follows:

• for each i, 1 ≤ i ≤ m, we take 3m − 1 papers with one 
version, each with D + 2i − 1 citations,

• we take 3m papers with D + 2m + 1 citations,
• we take 5m papers with B − 1 citations.

An instance fills exactly m + 4 pages, and all type X 
versions appear on the last page.

We call the papers second set the single papers; they all 
have an odd number of citations and will not be merged. 
A group of at least 3m − 1 single papers with the same 
number of citations is called a block; there are m +2 blocks 
in the instance. Since a block has at least as many papers 
as the page size minus one, paper versions on different 
sides of a block in citation count can never be on the same 
page. Notice that the type Z versions of paper P are sep-
arated by the blocks. The only way to “rescue” a type Z 
version and get it out of the adjacent blocks is to create a 
version of paper P that has exactly the same number of ci-
tations. The construction makes sure that this can only be 
accomplished using exactly one type Y version and three 
type X versions of paper P; the proof is given shortly.

We claim that this Google Scholar Merge Problem in-
stance has a solution if and only if the 3-partition instance 
has a solution.

Suppose we have a partition of a1, . . . , a3m into m
triples that each sum up to B . Let Ti be the subset of in-
tegers in the ith triple. For i from 1 to m do the following. 
Merge the three type X versions with a j citations for the 
a j ∈ Ti with each other. Note that all intermediate merged 
versions have less than B − 1 citations together, and thus 
will appear on the last page. When we merged the triple 
we have a version with B citations, which will appear on 
the same page as all type Y versions. Next, we merge any 
merged triple with a type Y version with D − B + 2i ci-
tations, giving it D + 2i citations. Then we merge it with 
the type Z version that has D + 2i citations. Any merge 
of a type Z, a type Y, and three type X versions will ap-
pear on the first page because it will have more citations 
than the block with most citations. We finish by merging 
all versions of paper P on the first page. Hence, we can 
merge all versions of paper P if the 3-partition instance 
has a solution.

Conversely, suppose that we can merge all versions of 
paper P in the instance. This implies that all type X ver-
sions can be merged with other type X versions into ver-
sions with at least B citations, otherwise they would stay 
after the block with B − 1 citations. We can make ≤ m of 
these merged versions, because the type X versions have 
mB citations in total. These merged versions consist of at 
least three type X versions, because any two type X ver-
sions merged have at most B − 2 citations (since type X 



968 H.L. Bodlaender, M. van Kreveld / Information Processing Letters 115 (2015) 965–968
versions are cited ai times with B/4 < ai < B/2, for all 
1 ≤ i ≤ 3m).

Furthermore, the assumption that we can merge all 
versions of paper P implies that at some point in the 
merge sequence, we must have had merged versions with 
D + 2, D + 4, . . . , D + 2m citations, otherwise the type Z 
versions cannot get to a common page.

Two type Y versions merged will have at least 2D −
2B + 6 > D + 2m citations, so we can use at most one type 
Y paper if we want to get a version with as many citations 
as some type Z version. To get the type X versions merged 
with any of the type Z versions, they must at some point 
be in a merged version with at least D + 2 citations, but 
all of the type X versions together have only mB < D + 2
citations. So a type Y version is always needed in such a 
merged version, and we conclude that exactly one type Y 
version is needed in any merged version to make a merged 
version with the same number of citations as any of the 
type Z versions.

This implies that we need at least m merged versions 
of type X versions, otherwise we do not have enough ver-
sions to merge with the type Y versions to reach the same 
citation counts as the type Z versions, so we must be able 
to make exactly m merged versions of type X papers. To 
realize this we cannot have a merged version with four 
type X versions, because this merged version would have 
> B citations, and then by the pigeonhole principle at least 
one of the m merged versions has only two versions and 
hence < B citations. It follows that the m merged versions 
of type X papers are triples and they sum up to exactly B , 
showing that the 3-partition instance has a solution. This 
completes the proof of NP-completeness. �

It would have been possible to construct a similar 
but slightly easier proof based on a reduction from the 
NP-complete problem Partition. The reason we chose
3-partition is that 3-partition is NP-complete in the strong 
sense [2], which implies that even if the total number of 
citations is bounded by a polynomial in n (the integers of 
the input), then 3-partition is still NP-complete. A proof 
based on Partition would require exponentially many ci-
tations to the papers of a researcher.
3. Conclusions

It is interesting to see an example of a user inter-
face where the user has to solve an NP-complete prob-
lem due to the choice of interface. By comparison, oper-
ations research companies often provide a user interface 
where a user makes a schedule for a scheduling problem 
that is usually NP-hard, but here the user interface as-
sists in the scheduling, and no user interface can make the 
problem easier. Other examples are certain puzzle games 
where large-instance extensions of the puzzle type are NP-
complete or even PSPACE-hard [3]. Here the idea is clearly 
that the task is supposed to be hard. In the Google Scholar 
Merge Problem, the NP-completeness is accidental, and 
arises from the way the user interface is designed. Google 
Scholar makes it hard for researchers to maintain their 
Google Scholar profile pages. Since the interface change in 
the middle of 2014, the problem is no longer intractable 
because there is now a button “show more” that allows a 
user to get more papers on the same page, eventually al-
lowing all papers to be on a single page.

Maximizing the H-index using paper merging in Google 
Scholar was shown to be NP-hard [4]. Furthermore, when 
a compatibility graph exists between paper versions, even 
deciding whether the H-index can be increased by one is 
already NP-hard [1].

It is open to determine whether the Google Scholar 
Merge Problem studied in this paper is still NP-complete 
if:

• the page size is bounded by a constant,
• the number of versions of any paper is bounded by a 

constant, or
• the page start can be placed at any rank number, not 

just at multiples of the page size plus one.

References

[1] René van Bevern, Christian Komusiewicz, Rolf Niedermeier, Manuel 
Sorge, Tony Walsh, Manipulation by merging: models, theory, and ex-
periments, in: Proceedings of the 24th International Joint Conference 
on Artificial Intelligence, AAAI Press, 2015.

[2] Michael R. Garey, David S. Johnson, Computers and Intractability: 
A Guide to the Theory of NP-Completeness, Freeman, 1979.

[3] Robert A. Hearn, Erik D. Demaine, Games, Puzzles, and Computation, 
A K Peters, 2009.

[4] Bart de Keijzer, Krzysztof R. Apt, The H-index can be easily manipu-
lated, Bull. Eur. Assoc. Theor. Comput. Sci. 110 (2013) 79–85.

http://refhub.elsevier.com/S0020-0190(15)00116-7/bib626B6E733135s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib626B6E733135s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib626B6E733135s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib626B6E733135s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib476172657931393739s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib476172657931393739s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib486561726E32303039s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib486561726E32303039s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib6B613133s1
http://refhub.elsevier.com/S0020-0190(15)00116-7/bib6B613133s1

	Google Scholar makes it hard - the complexity of organizing one's publications
	1 Introduction
	2 A proof of intractability
	3 Conclusions
	References


