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Abstract Mars is believed to have been exposed to low planet-wide weathering and denudation since
the Noachian. However, the widespread occurrence of alcoves at the rim of pristine impact craters suggests
locally enhanced recent backweathering rates. Here we derive Late Amazonian backweathering rates
from the alcoves of 10 young equatorial and midlatitude craters. The enhanced Late Amazonian Martian
backweathering rates (10−4 –10−1 mm yr−1) are approximately 1 order of magnitude higher than previously
reported erosion rates and are similar to terrestrial rates inferred from Meteor crater and various Arctic
and Alpine rock faces. Alcoves on initially highly fractured and oversteepened crater rims following impact
show enhanced backweathering rates that decline over at least 101 –102 Myr as the crater wall stabilizes.
This “paracratering” backweathering decline with time is analogous to the paraglacial effect observed
in rock slopes after deglaciation, but the relaxation timescale of 101 –102 Myr compared to 10 kyr of the
Milankovitch-controlled interglacial duration questions whether a paraglacial steady state is reached on
Earth. The backweathering rates on the gullied pole-facing alcoves of the studied midlatitude craters are
much higher (∼2–60 times) than those on slopes with other azimuths and those in equatorial craters. The
enhanced backweathering rates on gullied crater slopes may result from liquid water acting as a catalyst for
backweathering. The decrease in backweathering rates over time might explain the similar size of gullies in
young (<1 Ma) and much older craters, as alcove growth and sediment supply decrease to low-background
rates over time.

1. Introduction

In its early history, during the Noachian period (∼4.1–3.7 Ga), Mars was characterized by high rates of geologi-
cal and fluvial activity, such as impact cratering, erosion, weathering, and valley formation [e.g., Carr and Head,
2010]. At the end of this period, geological and fluvial activity sharply decreased. Phyllosilicates detected from
orbit are thought to have been formed by aqueous alteration in the Noachian period, after which sulfates
formed in a largely dry, acidic environment [Bibring et al., 2006]. Throughout the Hesperian (3.7–3.0 Ga) and
the Amazonian (3.0 Ga up to present) periods, Mars’ surface is thought to have been mainly subjected to very
slow surficial weathering without liquid water playing a major role [e.g., Bibring et al., 2006; Chevrier and Mathé,
2007; Ehlmann et al., 2011]. Accordingly, crater denudation rates dropped by 2–5 orders of magnitude after
the Noachian and have remained low for the rest of the planet’s history [Golombek et al., 2006, 2014b].

However, relatively high post-Noachian erosion and weathering rates appear to have occurred locally. In the
last few million years on Mars (hereafter referred to as Late Amazonian) relatively high erosion and weather-
ing rates have been found in various geological units. Golombek et al. [2014b] found that the rate of erosion of
ejecta blocks is∼0.3 m/Myr for craters younger than∼3 Ma. De Haas et al. [2013] found that boulders up to 3 m
in diameter shattered into fragments <0.5 m within 1 Myr on a gully fan surface in eastern Promethei Terra.
Moreover, De Haas et al. [2013] found that the fan surface relief was smoothed by ∼1 m within the same time
period. Sand ripple and dune migration rates at the Nili Patera dune field have abrasion rates of 1–10 m/Myr
[Bridges et al., 2012]. Young lightly cratered layered deposits on Mars require erosion rates of approximately
1 m/Myr to be free of craters [McEwen et al., 2005], and Grindrod and Warner [2014] inferred similar ero-
sion rates in interior layered deposits from 200 to 400 Ma in Valles Marineris. Enhanced Late Amazonian
erosion rates may have resulted from high peak short-term eolian erosion rates [Golombek et al., 2014b].
Moreover, the inferred rates of geologic processes tend to decrease over longer measurement time intervals
[Sadler, 1981; Gardner et al., 1987; Golombek et al., 2014b]. For example, the rate of small crater degradation
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(infill and erosion) decreased by an order of magnitude when averaged over the last ∼20 Ma instead of the
last 1 Ma [Golombek et al., 2014b].

The above described denudation rates are mainly inferred from small craters and sedimentary deposits, and
erosion can probably be mainly attributed to eolian abrasion [Golombek et al., 2014b]. The only direct estimate
of weathering, i.e., the disintegration of rockwalls and rock fragments, stems from boulders on inactive gully
fan surfaces [De Haas et al., 2013]. However, rockwall/crater retreat rates are presently unknown on Mars. The
widespread presence of alcoves in pristine impact craters [e.g., Reiss et al., 2004; Schon et al., 2009; Hartmann
et al., 2010; Johnsson et al., 2014], suggests high local bedrock weathering rates. Alcoves consist of headwall
and sidewall escarpments, located below the brink of a slope, and the disrupted topography bounded by
these scarps [Malin and Edgett, 2000]. Rockwall weathering and erosion lead to the detachment of bedrock
and thereby to the formation of alcoves and associated depositional slopes, aprons, or fans at their base [e.g.,
Rapp, 1960; André, 1997; Siewert et al., 2012]. Alcoves can be especially large and well developed in Martian
midlatitude gullies, where liquid water may have been involved in their formation [e.g., Malin and Edgett, 2000;
Dickson and Head, 2009].

Many weathering mechanisms that occur on Earth are hypothesized to have acted on Mars, including salt
weathering [e.g., Malin, 1974; Clark and Hart, 1981; Rodriquez-Navarro, 1998; Jagoutz, 2006; Head et al., 2011],
insolation or thermal weathering [McFadden et al., 2005; Viles et al., 2010; Eppes et al., 2015], eolian weather-
ing [e.g., Fenton et al., 2005; Bridges et al., 2007; Bourke et al., 2008; Bishop, 2011], and chemical weathering,
mainly by acidic volatiles after the Noachian [e.g., Burns, 1993; Banin et al., 1997; Hurowitz and McLennan, 2007;
Chevrier and Mathé, 2007]. Moreover, the abundance of fluvial landforms that have been identified on the sur-
face of Mars [e.g., Dickson and Head, 2009; Carr and Head, 2010], and the regular occurrence of temperatures
below and above the freezing point of water, suggests that freeze-thaw weathering may have also occurred
on Mars. Furthermore, the permafrost environment on Mars should promote weathering through ice segre-
gation in near-surface permafrost, which is controlled by the suction the ice exerts on water [Murton et al.,
2006]. Rocks altered by one or more of these processes have been identified on the Martian surface by multiple
Martian Rovers [e.g., Thomas et al., 2005; Jagoutz, 2006; Eppes et al., 2015].

The fracture of bedrock by weathering is fundamental to debris production and therefore to landscape devel-
opment [e.g., Murton et al., 2006]. Weathering is a complex interplay of dozens of various physical, chemical,
and sometimes biological processes that occur at different spatial and temporal scales [Viles, 2001, 2013]. The
resulting rate of weathering is essentially nonlinear and reacts strongly not only to environmental controls
but also to the preconditioning of the rock mass, which itself has a long memory of, for example, prior stress
from tectonic fields or stress events (e.g., impacts) [Hall et al., 2012; Krautblatter and Moore, 2015]. Quantifying
bedrock weathering rates on Mars can thus provide insights into past environmental and climatic conditions
and might provide constraints on the rates of landscape development. Moreover, understanding the history
of weathering rates on Mars may be a key source of information for the impact of extreme environmental
changes on bedrock weathering rates beyond those experienced in the recent past on planet Earth.

On Earth, bedrock weathering rates are often defined and quantified as a backweathering rate (i.e., rockwall
retreat rate) [e.g., Rapp, 1960; Söderman, 1980; Hinchliffe and Ballantyne, 1999; Sass, 2007; Krautblatter and
Dikau, 2007; Moore et al., 2009; Siewert et al., 2012]. These rates are generally quantified by direct or indirect
measurements of sediment loss from rock faces or alcoves and the associated sediment input to deposi-
tional slopes or aprons [e.g., Rapp, 1960; Hinchliffe and Ballantyne, 1999; Krautblatter and Dikau, 2007]. The
widespread presence of alcoves on the walls of pristine impact craters on Mars thus enables quantifica-
tion of recent backweathering rates. Note that in crater alcoves backweathering or rockwall retreat is not
strictly controlled by weathering only, as part of the retreat might be related to erosion by geomorphic flows
(backweathering is used analogous to backwearing).

Backweathering is the sum of rock falls and rock slope failures that cover magnitudes from 10−6 to 1010 m3

on Earth [Krautblatter and Moore, 2015]. These processes can be classified into debris falls, <10 m3; boulder
falls, 10–102 m3; block falls, 102 –104 m3; cliff falls, 104 –106 m3; and rock avalanches > 106 m3 [e.g., Whalley,
1974; Krautblatter et al., 2012]. Low-magnitude rock fall processes generally occur more frequently than
high-magnitude processes, but the relative effectiveness of these processes varies between sites depend-
ing on the local conditions [Krautblatter et al., 2012]. Local geological conditions that strongly influence
backweathering rates include (1) lithology, (2) strength of the rock, (3) state of weathering of the rock, and
(4) joint density, orientation, width, and continuity and infill [e.g., Selby, 1980; Krautblatter and Dikau, 2007;
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Table 1. Study Crater Characteristics

Crater Latitude Longitude Diameter (km) Highest elevation (m) Lowest Elevation (m) Age (Ma)

Crater A 50.19∘N 184.51∘E 1.8 −3924 −4398 0.3 (0.15–0.8)a

Crater B 21.59∘N 184.3∘E 13.8 −2950 −4540 39 (30–60)a

Corinto 16.95∘N 141.70∘E 13.9 260 −1040 (0.1–3.0)b

Crater C 16.41∘N 209.7∘E 2.5 −3660 −4300 5.3 (4–8)a

Zunil 7.78∘N 166.34∘E 10.0 −2330 −3510 (0.1–1)c

Gratteri 17.72∘S 199.90∘E 6.9 570 −460 (0.7–2.0)c

Zumba 28.65∘S 226.90∘E 2.8 2350 1710 (0.1–0.8)cd

Gasa 35.72∘S 129.45∘E 6.5 580 −700 1.25 (0.6–2.4)e

Galap 37.66∘S 192.93∘E 5.6 1080 100 6.5 (5–9)a

Istok 45.11∘S 274.2∘E 4.7 2670 1840 0.19 (0.1–1.0)f

aThis study (Figure 4).
bFrom Golombek et al. [2014a].
cFrom Hartmann et al. [2010].
dFrom Schon et al. [2012].
eFrom Schon et al. [2009].
fFrom Johnsson et al. [2014].

Moore et al., 2009; Krautblatter and Moore, 2015]. Many of these factors are interconnected, and weathering
is indirectly included in many of these parameters, e.g., the loss of rock strength and opening of joints are
largely weathering phenomena. Lastly, the presence of liquid water greatly enhances weathering and thereby
backweathering rates [e.g., Selby, 1980; Sass, 2005; Viles, 2013; Warke, 2013].

We hypothesize that backweathering rates in the alcoves of pristine impact craters are relatively high.
Crater rims are generally oversteepened shortly after formation and consist of highly faulted, fractured, and
fragmented materials [e.g., Kumar and Kring, 2008; Kumar et al., 2010; Wang et al., 2013; Kenkmann et al., 2014].
As a result, they are particularly prone to weathering shortly after their formation. Positions of alcoves appear
to be precondition by the distribution of radial fractures in the crater wall bedrock, as shown for Meteor crater
(i.e., Barringer crater) (USA) and Xiuyan crater (China) [Kumar et al., 2010; Wang et al., 2013]. Accordingly, the
occurrence of dense fractures on impact crater walls and evidence for erosion along these fractures are found
on Mars Exploration Rover images [e.g., Squyres et al., 2009]. Moreover, the pattern of fracturing around many
gully alcoves is indicative of landsliding, for instance, on the pole-facing gully alcoves of Gasa crater [Okubo
et al., 2011].

Here we aim to (1) determine recent (Late Amazonian) backweathering rates on Mars, (2) understand local and
regional variability in backweathering rates and its implications for gully formation, (3) unravel the balance
between recent backweathering and erosion, and (4) reveal any systematic difference (if any) between
Martian and terrestrial backweathering rates. We further aim to (5) introduce and provide evidence for
a “paracratering” concept explaining enhanced recent rockwall retreat rates on crater walls following crater
formation. The term paracratering is inspired by the use of paraglacial to refer to sites on Earth exposed to
enhanced rates of geomorphic activity after the retreat of a glacier [e.g., Church and Ryder, 1972; Ballantyne,
2002a].

This paper is organized as follows. We first detail study sites and methods. Then we present the calculated
backweathering rates in the studied craters and their temporal, local, and regional variation. We discuss the
occurrence of a paracratering decrease of backweathering rates with time and compare Late Amazonian
backweathering rates to erosion rates and to terrestrial backweathering rates. We end with a discussion of the
potential role of liquid water in backweathering and its implications for gullies on Mars.

2. Methods
2.1. Study Site Selection
We quantify Late Amazonian Martian backweathering rates in the alcoves of 10 pristine craters (Table 1
and Figures 1 and 2). These craters are distributed over the northern and southern equatorial (30∘N–30∘S)
and midlatitude regions (30∘N–60∘S). The study sites were selected using the following criteria:
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Figure 1. Study crater locations. Background topography is from the Mars Orbiter Laser Altimeter (red is high, blue is
low elevation).

Figure 2. Image draped over colorized elevation model for the studied craters. Corresponding HiRISE image references and stereo pairs used to create the DEMs
are found in Table 2. (a) Corinto crater (HiRISE image: PSP_003611_1970). (b) Galap crater (PSP_003939_1420). (c) Crater B (PSP_006774_2020). (d) Istok crater
(PSP_006837_1345). (e) Crater C (PSP_005837_1965). (f ) Gasa crater (ESP_014081_1440 and ESP_021584_1440). (g) Zumba crater (PSP_003608_1510). (h) Gratteri
crater (PSP_010373_1620). (i) Crater A (ESP_025366_2305). (j) Zunil crater (PSP_002252_1880).
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Table 2. List of Data Sources and Accuracy for the DEMs Used to Study Backweathering Rates

Pixel Scale Pixel Scale Convergence Vertical Error

Crater HiRISE Image 1 Image 1 (m) HiRISE Image 1 Image 2 (m) Angle (deg) (m)a DEM Creditb

Crater A ESP_025498_2305 0.346 ESP_025366_2305 0.307 25.2 0.15 University of Arizona

Crater B PSP_006774_2020 0.291 PSP_007341_2020 0.291 18.8 0.17 University of Arizona

Corinto PSP_003611_1970 0.280 PSP_004244_1970 0.300 18.1 0.18 University of Arizona

Crater C PSP_005837_1965 0.285 PSP_005837_1965 0.319 20.1 0.17 University of Arizona

Zunil PSP_001764_1880 0.281 PSP_002252_1880 0.294 32.4 0.09 Open University

Gratteri PSP_006800_1620 0.261 PSP_010373_1620 0.272 16.9 0.18 Open University

Zumba PSP_002118_1510 0.255 PSP_003608_1510 0.278 18.1 0.17 University of Arizona

Gasa (1) ESP_021584_1440 0.255 ESP_022217_1440 0.279 20.8 0.15 University of Arizona

Gasa (2) ESP_014081_1440 0.507 ESP_014147_1440 0.538 20.7 0.28 University of Arizona

Galap PSP_003939_1420 0.256 PSP_003939_1420 0.291 21.7 0.15 Open University

Istok PSP_006837_1345 0.250 PSP_007127_1345 0.258 20.1 0.14 Open University
aVertical precision was estimated via the method of Kirk et al. [2008].
bDEMs from the University of Arizona were downloaded from the HiRISE website (http://www.uahirise.org/dtm/).

(1) pristine morphology; (2) Late Amazonian age; and (3) free of latitude-dependent mantle deposits (LDM), a
smooth, often meters-thick deposit though to consist of ice containing dust, deposited from the poles down
to the midlatitudes (30∘N and 30∘S) during periods of high orbital obliquity [e.g., Mustard et al., 2001]. We
selected craters that had already been dated in previous studies and/or for which a digital elevation model
(DEM) had already been made (Tables 1 and 2).

Pristine craters are important chronostratigraphic markers for recent exogenic processes acting on the
Martian surface [e.g., Schon and Head, 2012; Johnsson et al., 2014]. Constraining the timing of these impacts
facilitates quantifying rates of the exogenic processes acting upon craters since their formation [e.g., De Haas
et al., 2013, 2015a]. Pristine, Late Amazonian aged, craters enable (1) the measurement of relatively recent,
Late Amazonian, backweathering rates and (2) the determination of their age because they have well-defined
rays and ejecta on which the size-frequency distribution of superposed craters can be estimated.

Martian alcoves may incise into either bedrock, into the LDM, or into a combination of both [e.g., Aston et al.,
2011]. Alcoves that partly to completely incise into LDM can be eroded by melting of the ice incorporated in
the LDM [Conway and Balme, 2014]. Therefore, only craters that mainly cut into original crater wall material
or bedrock are used to determine backweathering rates. All selected craters are largely free of LDM deposits
(see section 3.1).

2.2. Quantification of Backweathering Rates
On Earth, two different approaches exist to measure backweathering or rockwall retreat rates: direct and indi-
rect measurements [Krautblatter and Dikau, 2007]. Direct measurement approaches use sediment traps or
repeat elevation models to calculate recent short-term sediment supply from a rockwall [e.g., André, 1997;
Hungr et al., 1999]. Indirect measurements estimate the volume of sediment release and/or storage to cal-
culate the long-term rockwall retreat rates over the accumulation time span [Hinchliffe and Ballantyne, 1999;
Sass, 2007; Siewert et al., 2012]. For Mars, we can only apply indirect measurements. A major source of uncer-
tainty in indirect measurements is the estimation of sediment volume in depositional slopes or aprons, mainly
because of the often unknown accumulation thickness and topography below the deposits [Siewert et al.,
2012]. On Earth, accumulation thickness is generally determined from incisions or sometimes drilling [e.g.,
Hinchliffe and Ballantyne, 1999] or geophysically using ground-penetrating radar [e.g., Siewert et al., 2012]. On
Mars, such analyses are not feasible.

This problem can be avoided by quantifying sediment loss volumes from alcoves rather than from deposi-
tional aprons. This is possible because alcoves generally develop on Martian crater walls, rather than uniform
bedrock faces. Moreover, the volume loss in alcoves roughly equals the accumulated volume in depositional
aprons in gully systems that mainly comprise bedrock [Conway and Balme, 2014].
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Figure 3. Method used for the derivation of backweathering rates from alcoves. Backweathering is defined as the
spatially averaged retreat, inferred from the planimetric difference between the present-day and paleosurface contour
lines. For the calculations, contour lines are derived from 1 to n, with a 1 m elevation interval. Background image shows
Gasa crater gully alcoves (HiRISE image ESP_021584_1440).

We extract backweathering rate R in (mm yr−1) from the spatially averaged retreat Rsa (mm), which is derived
from the difference between the contour lines of the present-day topography and the inferred paleotopogra-
phy, which we assume to be a straight line connecting the two sides of the alcove [Conway and Balme, 2014]
(Figure 3):

R =
Rsa

T
(1)

where T is the total time of exposure to weathering and erosion (year), assumed equal to the crater age. The
spatially averaged retreat Rsa (mm) was inferred from the spatially averaged planimetric area A between the
contour lines of the present-day topography and the paleotopography:

Rsa =
n∑

k=1

Ak∕Wk

n
(2)

where W is the width of the planimetric area measured between the alcove crests on both sides of the catch-
ment. Herein n is the total number of contour lines (contour lines were derived with 1 m elevation intervals for
our calculations). Contour lines were determined from ∼1 m/px DEMs derived from stereo images acquired
by the High Resolution Science Imaging Experiment (HiRISE).

2.3. DEM Generation
When available, we used DEMs from the public HiRISE website (Table 2), otherwise we produced the
DEMs using the software packages ISIS3 and SocetSet following the workflow of Kirk et al. [2008].
Vertical precision was estimated via the method of Kirk et al. [2008] where the vertical error equals maxi-
mum resolution/5/tan(convergence angle). These errors range from 0.09 m to 0.18 m, which are much smaller
than the typical depth of the alcoves and therefore negligible.
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Table 3. Comparison Between Backweathering Rates From Longyeardalen (Svalbard) Obtained From Talus
Accumulation Thickness [Siewert et al., 2012] and the Alcove Method Designed and Employed in This Study, Using a 25%
Measurement Uncertainty on Top of the Age Uncertainty Following Siewert et al. [2012]a

Backweathering Rate Backweathering Rate

Site (Siewert et al. [2012]) (mm yr−1) (Alcove Method) (mm yr−1)

SE facing slope, site 1 0.52 (0.33–0.96) 1.49 (1.06–1.95)

NW facing slope, site 1 1.04 (0.60–1.72) 1.13 (0.80–1.48)

NW facing slope, site 2 1.17 (1.08–1.96) 1.07 (0.77–1.41)

NW facing slope, site 3 0.86 (0.61–1.51) 0.36 (0.26–0.47)

Total range 0.90 (0.33–1.96) 1.01 (0.26–1.95)
aSee Figure S1 and Data Set S1 for raw data.

2.4. Age Determination
For craters that were already dated in other studies we used the ages reported from literature (Table 1) [Schon
et al., 2009, 2012; Hartmann et al., 2010; Johnsson et al., 2014; Golombek et al., 2014a]. The other craters were
dated based on the size-frequency distribution of impact craters superposed on the ejecta blanket and/or rim
of the craters using HiRISE images (Crater A) or images from the Mars Reconnaissance Orbiter Context Camera
(CTX) (Crater B, Crater C, and Galap crater). Superposed craters were identified by their bowl-shaped form. We
defined crater ages based on the crater-size-frequency distribution using the chronology model of Hartmann
and Neukum [2001] and the production function of Ivanov [2001]. Crater counts were performed using Crater
Tools 2.1 [Kneissl et al., 2011], and crater-size-frequency statistics were analyzed with Crater Stats 2 [Michael
and Neukum, 2010]. The uncertainty in crater age can be relatively large; the minimum and maximum age
typically differ by a factor of 2 to 10 (Table 1).

2.5. Uncertainties
Inferred backweathering rates from alcoves are subject to multiple measurement uncertainties. In a closed
system, the volume of material eroded from the alcoves is similar to the volume of material deposited in
the associated depositional apron, when corrected for deposit porosity. Alcove crests will probably be partly
weathered and a portion of the weathered material is often temporally stored on the alcove floor, resulting
in a slight underestimation of backweathering, and small geometrical errors may arise from digitizing alcove
crests. Extracting a representative backweathering value from all backweathering contours per catchment
results in a relatively small error; the median and average value are typically similar within 10%, and maximum
values are typically 2–4 times the median value.

Errors of similar magnitude are associated to backweathering rates inferred from depositional aprons, as
often applied on Earth, resulting from uncertainties in the talus thickness, talus porosity, and depositional
apron delineation [e.g., Hinchliffe and Ballantyne, 1999; Siewert et al., 2012]. The estimated rockwall area is
also a source of uncertainty as it is a fractal property, and area will increase with decreasing measuring scale
[Hoffmann and Schrott, 2002]. Moreover, the rockwall can be buried over time because of increasing amounts
of accumulated scree in the talus cone, decreasing the height of the exposed rockwall. Siewert et al. [2012]
estimate the total error to be 25%, excluding errors associated to dating of the accumulated time of back-
weathering. Further, it is often unknown whether backweathering rates are constant over time [McCarroll
et al., 2001; Ballantyne and Stone, 2013] or whether covered (e.g., moraine) deposits sometimes lead to an
overestimation of accumulated talus volumes [Sass and Krautblatter, 2007].

To validate our approach, we compare Holocene backweathering rates from Longyeardalen (Svalbard)
inferred from the accumulation thickness of four talus cones [Siewert et al., 2012] with the rates calcu-
lated from the associated alcoves using the methods employed here. For this analysis, we use an airborne
High-Resolution Stereo Camera (HRSC-AX) DEM, with a spatial resolution of 0.5 m that we upscaled to a 1 m
spatial resolution, similar to the spatial resolution of the HiRISE DEMs used (Figure S1 in the supporting infor-
mation) (see Hauber et al. [2011] and De Haas et al. [2015b] for a detailed description of the HRSC-AX DEM).
The Holocene backweathering rates in Longyeardalen inferred from talus cone accumulation range from 0.33
to 1.96 mm yr−1 [Siewert et al., 2012]. These rates compare very well to the backweathering rates inferred from
the alcoves, which range from 0.26 to 1.95 mm yr−1 (Table 3). The values inferred from both methods are very
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Figure 4. Crater-size-frequency distributions of dated craters. (a) Crater A. The size-frequency distribution indicates an
absolute model age between 150 and 800 ka. The best fit absolute model age is ∼300 ± 100 ka. Count performed on
HiRISE image ESP_025366_2305. (b) Crater B. The size-frequency distribution indicates an absolute model age between
30 and 60 Ma. The best fit absolute model age is ∼39 ± 4 Ma. Count performed on CTX images P16_007341_2013_
XN_21N175W and B17_016360_2017_XN_21N175W. (c) Crater C. The size-frequency distribution indicates an absolute
model age between 4 and 8 Ma. The best fit absolute model age is ∼5.3 ± 1 Ma. Count performed on CTX image
P12_005837_1966_XI_16N150W. (d) Galap crater. The size-frequency distribution indicates an absolute model age
between 5 and 9 Ma. The best fit absolute model age is ∼6.5 ± 0.5 Ma. Count performed on CTX image
B07_012259_1421_XI_37S167W.

similar on sites 1 and 2 on the NW facing slope. For site 3 on the NW facing slope, the backweathering
rate inferred from the alcove is approximately 2.5 times lower than the rate inferred from the talus cone,
whereas for the site on the SE facing slope the backweathering rate inferred from the alcove is approximately
3 times larger than the rate inferred from the talus cones. As both methods are subject to potential errors,
we assume that backweathering rates inferred from alcoves are accurate within factors 2–3 but are generally
more accurate.

The uncertainty range on backweathering rates that results from crater age uncertainties (factors 2 to 10) is
thus larger than the uncertainty that results from determining total backweathering in the alcoves. However,
the variability of backweathering rates of the alcoves within craters ranges from 1 to 3 orders of magnitude and
is therefore larger than the uncertainties associated with the methods employed to calculate backweathering
rates. Therefore, we neglect the latter for simplicity and use the 25th and 75th percentile-sized alcoves per
crater to indicate the backweathering range per crater in the figures throughout this article.
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Figure 5. Alcove morphology. For each crater, a portion of the northern wall is displayed on the top panels, and a portion of the southern wall is displayed on
the bottom panels. North is up in all images. (a–e) Northern latitude craters for which the southern wall is pole facing. (f–j) Southern latitude craters for which
the northern wall is pole facing. Crater A (HiRISE image: ESP_025366_2305; Figure 5a). Crater B (PSP_007341_2020; Figure 5b). Corinto crater (PSP_004244_1970;
Figure 5c). Crater C (PSP_005837_1965; Figure 5d). Zunil crater (PSP_002252_1880; Figure 5e). Gratteri crater (PSP_006800_1620; Figure 5f ). Zumba crater
(PSP_003608_1510; Figure 5g). Gasa crater (ESP_021584_1440; Figure 5h). Galap crater (PSP_003939_1420; Figure 5i). Istok crater (PSP_006837_1345; Figure 5j).

3. Results
3.1. Crater Age, Geology, and Lithology
The studied craters range in diameter from 1.8 to 13.9 km (Table 1). They are located at various altitudes,
ranging from Istok crater with a highest point of 2670 m, down to Crater B for which the lowest part of the
crater floor is located at−4540 m. The studied craters range in age from∼0.19 to∼39 Ma (Table 1 and Figure 4),
but all craters except for Crater B are younger than 6.5 Ma.

The craters formed in various terrains, ranging in age from Noachian to Late Amazonian (Table 1). Craters A, B,
and C, Corinto crater, Zunil crater, and Zumba crater all formed in volcanic terrains [Tanaka et al., 2014]. Gratteri,
Gasa, Galap, and Istok formed in Noachian terrain of undifferentiated origin on the geological map of Tanaka
et al. [2014]. However, in the vicinity of these craters, there is no evidence for any type of sedimentary deposit
(i.e., large channels), suggesting a volcanic origin. The lithology of the studied alcoves, therefore, probably
predominantly consists of volcanic rocks, most likely basalt, which is the most common rock type on Mars
[Bandfield et al., 2000]. One notable exception might be Gasa crater, which is located within an older impact
crater. Impact melt and impact breccia might therefore be the dominant bedrock lithology in Gasa crater
[Okubo et al., 2011]. Note that although the original bedrock material is probably volcanic in origin, crater
walls are likely partly covered by allogenic and fall-back breccias, such as observed on Meteor crater on Earth
[Kumar et al., 2010]. Moreover, the rims of impact craters generally consist of highly faulted, fractured, and
fragmented materials [e.g., Kumar and Kring, 2008; Kenkmann et al., 2014].
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Figure 6. The distribution of backweathering rates found for the alcoves in
each of the studied craters. The best fit crater age is used to convert total
backweathering into a backweathering rate. Boxes indicate quartiles, the
line crossing the boxes indicates the median, and whiskers indicate the 5th
and 95th percentile backweathering rates. Number of measured alcoves
per crater is denoted by n. See Figures S2–S11 and Data Set S1
for raw data.

The studied craters are largely free
of LDM deposits. The LDM was not
deposited below 30∘N and 30∘S [e.g.,
Mustard et al., 2001; Head et al., 2003],
so the equatorial craters are free of
LDM, which is supported by a visual
inspection. Of the selected midlati-
tude craters, Gasa (and also Zumba,
which is here defined as an equato-
rial crater) postdate the latest LDM
mantling episode [Schon et al., 2012].
Moreover, Istok and Galap craters
are presumably free of LDM deposits
[Johnsson et al., 2014; De Haas et al.,
2015a, 2015c], which is testified by the
presence of highly brecciated alcoves
hosting many boulders that solely
expose bedrock and the absence of
landforms associated with the LDM,
such as moraine-like ridges and polyg-
onally patterned ground. Crater A has
similar characteristics, and therefore
probably also postdates the latest
LDM mantling episode.

3.2. Alcove Morphology
3.2.1. Equatorial Craters
The alcoves of the studied equatorial craters (between 30∘N and 30∘S) range from poorly developed to
well-developed alcoves with sharply defined edges (Figure 5). Crater C exposes very shallow, poorly devel-
oped, alcoves on parts of its northwestern and southeastern walls (Figure 5d), whereas alcoves are absent
on the rest of the crater wall. Shallow and narrow alcoves with poorly developed debris chutes are cut into
the crater rim of Zumba crater (Figure 5g). Although these alcoves are larger than those found in the walls of
Crater C, they are less well developed than those in the other equatorial craters. The alcoves in these remaining
equatorial craters (Crater B, Corinto, Gratteri, and Zunil craters) (Figures 5b, 5c, 5e, and 5f) are larger and

Figure 7. Median backweathering rate per crater as a function of
crater age (= measurement time interval). Median
backweathering rates decrease with increasing crater age. The
circles are the best fit crater ages and the median backweathering
rates per crater. Error bars denote estimated minimum and
maximum crater age and the 25th and 75th percentile
backweathering rates per crater.

have sharp, well-defined edges. Moreover, the
alcoves of these craters and those of Zumba
crater are generally roughly similar in planform
shape and morphometry on all slope orienta-
tions, although the equator facing slopes are
generally slightly larger.

All equatorial crater alcoves expose brecciated
bedrock material and host meter-sized boul-
ders. The alcoves are connected to steep
depositional aprons, which can be defined as
colluvial fans or talus cones [e.g., Blikra and
Nemec, 1998; De Haas et al., 2015b]. These
aprons typically have depositional slopes near
the angle of repose, relatively short radial
lengths compared to gully aprons, a downs-
lope coarsening texture, and topographically
smooth surfaces. These characteristics suggest
a formation by rockfalls and dry grain flows
and/or rock avalanches, transporting material
from the alcoves to the depositional fans in
the absence of liquid water [e.g., Conway et al.,
2011; De Haas et al., 2015c].
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Figure 8. Backweathering rate distribution per orientation of the crater slope. Note that north represents the northern
crater wall, which is south facing. (a) Crater A. (b) Crater B. (c) Corinto crater. (d) Crater C. (e) Zunil crater. (f ) Gratteri
crater. (g) Zumba crater. (h) Gasa crater. (i) Galap crater. (j) Istok crater. Crater A, Crater B, Corinto crater, Crater C, and
Zunil crater are located on the Northern Hemisphere, while the other craters are located on the Southern Hemisphere.
The best fit crater age is used to convert total backweathering into a backweathering rate. Boxes indicate quartiles, the
line crossing the boxes indicates the median, and whiskers indicate the 5th and 95th percentile backweathering rates.
Number of measured alcoves per crater is denoted by n.

3.2.2. Midlatitude Craters
The studied midlatitude craters (>30∘N and >30∘S) differ from the equatorial craters by the presence of gul-
lies on the pole-facing slopes of Gasa, Galap, and Istok craters. In Gasa, Galap, and Istok craters the largest
alcoves are located in the middle of the northern, pole-facing, rim, and the alcoves become progressively
smaller in clockwise and counterclockwise directions. The largest alcoves have a crenulated shape and are
generally complex, consisting of multiple subalcoves (Figures 5h–5j). The sharp divides between the alcoves
and the upper rims often expose fractured bedrock material, which appears to be highly brecciated and
contains many boulders. The alcoves are connected to large gully fans, whose stratigraphy and morphometry
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Figure 9. The ratio of pole-facing to equatorial-facing median
backweathering rate per crater as a function of latitude. Larger alcoves
and higher backweathering rates are present on the pole-facing,
gullied, slopes of the studied midlatitude craters compared to the
slopes on the other side of the crater. The opposite is true for the
totally ungullied equatorial slopes except for Corinto crater.

suggest formation by aqueous flows
[Conway et al., 2011; Schon et al., 2012;
Schon and Head, 2012; Johnsson et al.,
2014; De Haas et al., 2015a, 2015c]. The
nonpole-facing, eastern, southern, and
western walls of these craters are char-
acterized by poorly developed, narrower
and shallower, alcoves. These alcoves are
similar in morphology and morphome-
try to the alcoves of the studied craters
in the equatorial regions. Similar to the
equatorial examples, they are also con-
nected to steep talus cones suggesting a
dry formation.

Crater A is a notable exception. The crater
has relatively well-defined and roughly
similar-sized alcoves on all azimuths
(Figure 5a). These alcoves are similar to
those of the nongullied slopes of the
other midlatitude craters. On the north
and NW slopes of the crater, channels are
present in the talus slopes, suggesting
the potential presence of liquid water in
formation of the alcoves and aprons. We
estimate, however, that these systems

predominately formed by dry processes as the bulk of the talus deposits have a morphometry, morphology,
and texture indicative of dry rockfall and grain flow processes [De Haas et al., 2015c].
3.2.3. Local and Regional Variations
Backweathering rates and their variability can change significantly on slopes with different orientations within
craters (Figure 8). The backweathering rates on the northern slopes of Gasa, Galap, and Istok craters are much
larger than those on the slopes with other azimuths (Figures 8h, 8i, and 8j). This agrees well with the large
gully alcoves that are present on the northern slopes of these craters (Figures 5h, 5i, and 5j). The variability of
backweathering rate on slopes with different orientations is generally smaller on the equatorial craters.

3.3. Backweathering Rates
The backweathering rates inferred from the alcoves in the studied craters range between 10−4 and
10−1 mm yr−1 (Figures 6 and S2–S11 and Data Set S1). Backweathering rates typically vary by 1 order of
magnitude between different alcoves within the craters. However, the variation is much larger in midlatitude
craters, up to 3 orders of magnitude for Gasa and Istok craters, mainly because of the presence of gullied slopes
(see section 3.3.2). There are similarly large differences in backweathering rates between craters, varying up
to 3 orders of magnitude. We found that these differences are mainly caused by differences in crater age.
3.3.1. Temporal Variations
The inferred backweathering rates are highly dependent on crater age, and thus measurement time inter-
val (Figure 7). The backweathering rates decrease strongly with crater age, and measurement time inter-
val explains the largest variability in backweathering rates between craters. Backweathering rates are
∼10−2 mm yr−1 for craters younger than 1 Ma, whereas they decrease down to ∼10−3 mm yr−1 for craters
approximately 10 Myr old. When corrected for measurement time interval, the backweathering rates only vary
up to 1 order of magnitude between craters.

Zumba crater, Gasa crater, and Crater C have been exposed to relatively low backweathering rates. This agrees
well with the poorly developed alcoves that we observed in Zumba crater and Crater C (section 3.2). Gasa
crater has very large gullied alcoves on its pole-facing slopes, whereas very small, poorly developed, alcoves
are present on the slopes with nonpolar azimuths. The median backweathering rate in Gasa is therefore rel-
atively low, while the large pole-facing alcoves have much higher rates that conform to the general trend
(Figure 6).
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Figure 10. The temporal evolution of paracratering backweathering rates. Following crater formation the crater walls
collapse, and pristine alcoves are rapidly formed (<1 day). Afterward, backweathering rates remain high for a prolonged
period (at least 101 –102 Myr) but slowly decrease toward steady state backweathering rates. The paracratering period
of enhanced backweathering rates starts after crater formation and ends when the backweathering rates have declined
to the long-term steady state backweathering rate.

This latitude-dependent asymmetry can be summarized on a plot of latitude versus the asymmetry
between pole-facing and equatorial-facing backweathering rates (Figure 9). The backweathering rates on the
pole-facing slopes of the studied midlatitude craters are larger than those on the equator facing slopes. This
asymmetry is relatively large and can be up to a factor of ∼60 (Gasa crater). In contrast, the studied craters in
the equatorial regions have larger backweathering rates on the equator facing slopes than on the pole-facing
ones, except for Corinto crater. The asymmetry appears to increase toward the equator. This trend should,
however, be interpreted with care since we only have five data points. Further study is required.

4. Discussion

Despite the observation that planet-wide weathering and erosion rates have dropped to very low values
following the Noachian period [Bibring et al., 2006; Golombek et al., 2006; Carr and Head, 2010; Ehlmann et al.,
2011], our results support recent observations of enhanced local weathering and erosion rates in the last few
millions of years on Mars [e.g., De Haas et al., 2013; Golombek et al., 2014b].

The results also suggest that there is a paracratering decrease of backweathering rates over time. Addition-
ally, the dependence of backweathering asymmetry on latitude (Figure 9) provides valuable insights into the
weathering mechanisms acting on the crater alcoves and the role of liquid water therein, which has impor-
tant implications for gully formation. Below we discuss these insights and implications. Furthermore, we
discuss how our results compare to Late Amazonian erosion rates reported by others, as well as to terrestrial
backweathering rates from Meteor crater and from various Holocene Arctic, Nordic, and Alpine rock faces.

4.1. Decreasing Backweathering Rates Over Time
The average Late Amazonian backweathering rates inferred from crater wall alcoves decrease with crater
age (Figure 7). These declining backweathering rates can probably be mainly attributed to a paracratering
decrease of backweathering rates over time (Figure 10).

Deglaciation exposes oversteepened rock slopes, which are often highly fractured due to enhanced stress
relaxation caused by debuttressing (removal of the support of adjacent glacier ice), resulting in enhanced
backweathering rates that decline toward background rates over time [e.g., André, 1997; Hinchliffe and
Ballantyne, 1999; Ballantyne, 2002a]. This is referred to as a paraglacial decrease in backweathering rates
over time.

The interior parts of crater rims are generally oversteepened shortly after their formation and consist of highly
faulted, fractured, and fragmented materials [Kumar and Kring, 2008; Kumar et al., 2010; Kenkmann et al., 2014],
similar to recently deglaciated rockwalls. As a result, they are particularly prone to backweathering shortly
after their formation. Many studies have shown that backweathering rates increase with increasing joint or
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Figure 11. Median backweathering rates as a function of crater age
(= measurement time interval) for the studied Martian craters, Meteor
crater (i.e., Barringer crater) on Earth, the reported terrestrial rock
faces given in Figure 12 and Table S1, and the erosion rates reported
in Golombek et al. [2014b] (as shown in their Figure 25, compiled
from data of Malin and Edgett [2000], McEwen et al. [2005], Golombek
et al. [2006], De Haas et al. [2013], Golombek et al. [2014b], and Farley
et al. [2014]). Backweathering rates for Meteor crater were derived
with the method applied to the Martian craters, using a LiDAR DEM
with 1 m spatial resolution (Figure S12 and Data Set S1; http://www.
lpi.usra.edu/publications/books/barringer/crater/guidebook/LiDAR/),

the age of Meteor crater is 49±3 ka [Sutton, 1985; Nishiizumi et al.,
1991; Phillips et al., 1991]. The circles and squares are the best fit
crater ages and the median backweathering/erosion rates. Error bars
denote estimated minimum and maximum crater age and the 25th
and 75th percentile backweathering/erosion rates. For simplicity, the
terrestrial rock face backweathering rates are given an age of 10 ka
in the diagram (approximately the start of the Holocene).

fracture density [e.g., Selby, 1980; Douglas,
1980; Fahey and Lefebvre, 1988; André, 1997;
Sass, 2005; Moore et al., 2009; Krautblatter
and Moore, 2015]. More specifically, Sass
[2005] showed empirically in the Northern
and Central European Alps that back-
weathering on average increases linearly
with joint density. The oversteepening of
rock slopes increases the stress regime
acting within a rock slope. This promotes
rock slope failure at various scales, ranging
from debris falls to large-scale catastrophic
rock slope failures, along preexisting joint
sets or other planes of weakness [e.g.,
Ballantyne, 2002a]. Following impact,
crater walls are thus relatively unstable
and backweathering rates are high. The
most unstable parts of the crater wall will
rapidly fail, after which a more stable rock
slope configuration develops. For example,
Kumar et al. [2010] suggest that parts of the
backweathering in the alcoves of Meteor
crater might have occurred almost imme-
diately after the impact, and a response
time of several thousand years following
deglaciation is hypothesized for terres-
trial rockwalls, reflecting the time needed
for stress-related fracturing to yield a
critical path for large-rock slope failures
[Einstein et al., 1983; Prager et al., 2008].
The effects of fractures in promoting back-
weathering in crater walls are evident from
alcoves in terrestrial impact craters that are
often associated with the presence of radial

fractures [Kumar et al., 2010; Wang et al., 2013]. In short, backweathering rates in impact craters are initially
high but decline to a slowly declining background rate or to a lower but rather constant background rate
over time, as the crater wall becomes more stable. Such a decline can typically be described by an exhaustion
model in which sediment yield decreases exponentially over time [Ballantyne, 2002b].

A major disadvantage of the paraglacial concept on Earth is that the interglacial timescale of 10−2 Myr of
observations determined by Milankovitch cycles may be shorter than the relaxation time of rock slopes; pos-
sibly, we do not reach the steady state of rockfall activity in a single interglacial cycle in Alpine and Arctic
valleys [Ballantyne and Stone, 2013; Viles, 2013; Krautblatter and Moore, 2015]. On Mars, we have the opportu-
nity to observe the full exhaustion curve that only leads to a steady state after 101 –102 Myr, or possibly longer,
suggesting that steady state rockfall activity is hardly reached in terrestrial rockwall systems.

Over long timescales, erosion, weathering, and sedimentation rates are dependent on measurement time
interval (“Sadler effect” or timescale bias) [Sadler, 1981, 1999], because the rates of surficial geological pro-
cesses are discontinuous and unsteady over time. They are variable in both magnitude and frequency in space
and time and may incorporate heavy-tailed hiatuses that separate the actual weathering and erosion events.
Moreover, higher magnitude events tend to occur with lower frequency [e.g., Gardner et al., 1987; Krautblatter
et al., 2012], and rates of surficial processes can thus incorporate longer intervals of relatively low activity, pro-
ducing an apparent slower rate [Gardner et al., 1987]. It is unknown over which timescales the decrease in
backweathering rates is also significantly influenced by a timescale bias, but Golombek et al. [2014b] attribute
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the decrease in small crater denudation rates over 0.1–100 Myr timescales mainly to topographic diffusion
(see below). Accordingly, we hypothesize that the observed decrease in backweathering rates over time in the
studied pristine craters can be predominantly attributed to paracratering effects rather than a timescale bias.

4.2. Late Amazonian Backweathering Versus Erosion Rates
Late Amazonian small crater modification rates, i.e., the denudation of the crater rim and infill of the crater
depression, decrease with increasing measurement time interval on Meridiani Planum (Figure 11) [Golombek
et al., 2014b], similar to the observed decrease in backweathering rates over time. Golombek et al. [2014b]
show that small crater denudation rates decrease from ∼ 10−3 mm yr−1 for craters younger than 1 Ma to
< 10−4 mm yr−1 for craters 10–20 Ma and < 10−5 mm yr−1 when averaged over ∼100 Myr to 3 Gyr in the
Amazonian and the Hesperian. Moreover, Golombek et al. [2014b] outline that similar erosion rates for similar
measurement time intervals were found by Malin and Edgett [2000], McEwen et al. [2005], De Haas et al. [2013],
and Farley et al. [2014] (Figure 11).

Golombek et al. [2014b] attribute the decreasing erosion rates over time to topographic diffusion. Topographic
diffusion is also used to explain the rapid smoothing of Late Amazonian gully fan surfaces on Mars [De Haas
et al., 2013]. Immediately after impact, a crater rim is formed that is out of equilibrium with the eolian regime,
which results in rapid erosion of the weak ejecta blocks and other rim deposits in the wind stream and
deposition in quiet areas around these blocks and inside the craters [Golombek et al., 2014b]. This is also a
paracratering process, and it is in essence similar to the paracratering relaxation of backweathering rates when
the crater wall progressively moves toward a more stable configuration.

The small crater modification rates observed by Golombek et al. [2014b] are approximately 1 order of mag-
nitude lower than the backweathering rates we inferred from crater alcoves (Figure 11). The alcove back-
weathering rates are probably larger than the erosion rates because (1) crater walls are highly susceptible
to backweathering and (2) crater erosion is more a “grain by grain” process, whereas backweathering spans
grain by grain to large failures [e.g., Krautblatter et al., 2012], which together result in a higher net rate.
This explanation is supported by Okubo et al. [2011], who show that the pattern of fracturing around the
crowns (upper parts) of the gully alcoves of Gasa crater is indicative of landsliding.

4.3. Martian Versus Terrestrial Backweathering Rates
Terrestrial rockwall retreat rates are highly variable in all environments and can vary up to 4 orders of magni-
tude (Figure 12) [e.g., Hinchliffe and Ballantyne, 1999; André, 2003; Glade, 2005; Krautblatter and Dikau, 2007;
Siewert et al., 2012]. The large variability mainly results from highly variable topography, lithology, and climatic
conditions at different rock slopes [e.g., André, 1997]. Furthermore, part of the variability may be attributed
to paraglacially enhanced backweathering rates on some rock slopes [e.g., Hinchliffe and Ballantyne, 1999;
Ballantyne, 2002a], the wide range of direct and indirect methods employed [Krautblatter and Dikau, 2007],
and the time span for which the backweathering rates are derived.

The inferred Martian backweathering rates are on average 1–2 orders of magnitudes below the range of
reported Holocene terrestrial values (Figure 12). The highest Martian backweathering rates are similar to the
lowest reported terrestrial Arctic, Nordic, and Alpine values. When corrected for time span, there is a remark-
ably good correspondence between the trend for Martian backweathering rates versus time interval and the
terrestrial trend derived from Holocene backweathering rates and Meteor crater (Figure 11). Although it is not
known how the Martian backweathering rates evolve toward relatively young ages (<0.1 Ma), the remarkably
good correspondence between backweathering rates on both planets suggests that they evolve similarly.
Part of the correspondence between Martian backweathering rates in pristine craters to terrestrial rock faces
might be attributed to the relatively high susceptibility of Martian crater walls to backweathering, balanced by
the atmospheric conditions on Mars that are probably less favorable to weathering (e.g., restricted amounts
of water) [e.g., Mischna et al., 2003]. However, this does not explain the good correspondence between the
backweathering rates in the Martian craters and Meteor crater, although this might be partly explained by the
higher susceptibility to backweathering of the sedimentary bedrock wherein Meteor crater formed compared
to the basaltic bedrock on Mars.

In contrast, Golombek et al. [2014b] show that Hesperian to Amazonian erosion rates are 3–4 orders of mag-
nitude lower than typical terrestrial erosion rates when averaged over similar timescales, suggesting that,
in general, Martian surface processes are dramatically slower than those on Earth. Golombek et al. [2014b]
attribute this to the absence of liquid water as an important erosional agent on Mars. One explanation for
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Figure 12. Comparison of the Martian rockwall retreat rates obtained in this study to terrestrial rockwall retreat rates
from various Arctic, Nordic, and Alpine environments (extended from André [1997, 2003], Hinchliffe and Ballantyne
[1999], and Glade [2005]. See Table S1 for raw data. Median backweathering rate per crater is used for the Martian data.
The black square indicates result for best fit age, uncertainty is based on minimum and maximum age.

this discrepancy might be that the occasional presence of liquid water could more effectively enhance weath-
ering and erosion rates on steep crater walls compared to relatively low-gradient small crater rims, as steep
landscapes have naturally faster erosion rates than lower sloping landscapes [e.g., DiBiase et al., 2012].

4.4. The Potential Role of Liquid Water in Backweathering and Implications for Gullies
4.4.1. Liquid Water as Catalyst for Backweathering?
The backweathering rates in the pole-facing alcoves of the studied midlatitude craters are much larger than
those on slopes with other azimuths, in contrast to the equatorial craters where the backweathering rates
are more similar around the crater wall (Figures 8 and 9). The large pole-facing alcoves of Gasa, Galap,
and Istok crater contain gullies, whereas gullies are absent on the crater slopes with nonpolar azimuths.
These observations suggest that the enhanced backweathering rates in gullies are associated to the processes
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leading to gully formation. Gullies have been hypothesized to have formed by aqueous debris flows and/or
fluvial flows [e.g., Costard et al., 2002; Dickson et al., 2007; Conway et al., 2011; Johnsson et al., 2014; De Haas
et al., 2015c] or by water-free sediment flows, often associated with CO2 ice sublimation [e.g., Treiman, 2003;
Pelletier et al., 2008; Dundas et al., 2010; Cedillo-Flores et al., 2011; Dundas et al., 2014].

On the majority of nongullied areas on Mars, weathering induced by thermal cycling is probably the most
important weathering mechanism on Mars [e.g., Viles et al., 2010; Eppes et al., 2015]. In contrast, the greatly
enhanced backweathering rates in gully alcoves may result from the presence of liquid water, CO2 ice, or
both. The presence of liquid water generally results in enhanced weathering rates as shown on Earth [e.g.,
Selby, 1980; Sass, 2005; Krautblatter and Moser, 2009; Warke, 2013], by enhancing chemical modification rates,
freeze-thaw cycles, and hydration-dehydration and crystallization cycles in the presence of salts, which are
abundant on Mars [e.g., Clark and Hart, 1981; Rodriquez-Navarro, 1998; Jagoutz, 2006; Head et al., 2011].

The effects of CO2 ice accumulation and sublimation on fractured slopes under Martian conditions are cur-
rently unknown, because there are no terrestrial analogs of this process and no laboratory experiments on
the effects of CO2 on bedrock fracturing have been performed. If CO2 ice has an effect on backweathering of
fractured slopes, it would be very different from what is seen on Earth, as CO2 cannot exist in its liquid form
on Mars. Thus, freeze-thaw cycles and salt weathering would likely not be enhanced by the presence of CO2.
Furthermore, CO2 ice deposits on Mars remain at or above the CO2 condensation temperature. This is because
when the surface temperature drops below the CO2 condensation temperature, the atmosphere provides a
continuous supply of CO2; therefore, condensation is also continuous and prevents the ice cooling further.
This is not the case for water ice, where the atmospheric supply runs out rapidly once the temperature drops
below the condensation point and therefore the temperature in the ice can experience thermal cycles below
zero, which probably causes most of the high latitude polygonally patterned terrains on Mars [Mangold, 2005].
This, for example, explains why the polygons seen on CO2 slab ice are linked to brittle failure rather than to
thermal contraction stresses [Portyankina et al., 2012].

Based on these observations, the presence of liquid water is the most parsimonious accelerator of weather-
ing rates on gullied crater slopes. This liquid water has probably been present during periods of high orbital
obliquity [e.g., Williams et al., 2009]. Nonetheless, CO2 ice accumulation and sublimation cannot be fully ruled
out as a catalyst for weathering in gully alcoves.
4.4.2. Gully Fan Formation and Modification
The high paracratering backweathering rates following crater formation (Figure 7) initially result in the pres-
ence of a lot of loose material that is available for transport in gully alcoves. This probably facilitates high
sediment transport rates toward the gully fans and might explain the presence of large and well-developed
gully fans in very young impact craters like Istok crater [Johnsson et al., 2014; De Haas et al., 2015a]. As back-
weathering rates decrease over time, the sediment supply rates decrease simultaneously and the gullies might
transition from transport-limited to supply-limited systems [e.g., Glade, 2005]. Although this remains highly
speculative, it might partly explain why gullies in very young impact craters are approximately the same size
as those in much older impact craters. For example, the gully alcoves and gully fans in the relatively young
Istok, Gasa, and Galap craters studied here (all younger than a few Ma) are fairly similar to those found in
Hale crater as described by Reiss et al. [2011], which is a relatively old crater with an age of ∼1 Ga [Jones et al.,
2011]. An alternative explanation might be that the gullies are subject to repeat erosional/deposition cycles
driven by orbital cycles and the LDM [Dickson et al., 2015], but this would not fully explain the small difference
in alcove size between gullies with different ages. The majority of gullies studied by Dickson et al. [2015] are
located within the LDM and are not systematically associated with bedrock alcoves. The mass balance of such
gullies is dominated by the gain and loss of ice, which means the sediment transport is limited to the dust
and other debris contained in the LDM [Conway and Balme, 2014]; therefore, they are isolated from the site
of backweathering at the crater rim and cannot contribute to it. It is possible that, once it is established, the
LDM forms a barrier to backweathering and once a certain threshold is reached it even inhibits gully forma-
tion entirely. New impacts clear away the LDM leaving the slope free to directly experience the full brunt of
Mars atmospheric and hydrological cycles.

The high backweathering rates on the gullied midlatitude crater slopes, which can exceed those on the ungul-
lied slopes in the same crater by more than 60 times (Figure 9), shows that weathering rates in gullies can be
much higher than those in other areas on Mars. These enhanced weathering rates potentially explain why rel-
atively young gully fan surfaces often host many meter-sized boulders and have notable relief, whereas these
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features are typically absent on older gully fan surfaces [De Haas et al., 2013, 2015c]. Moreover, this might also
explain why boulder break down can occur within 1 Myr on gully fans [De Haas et al., 2013], whereas boulders
can be preserved for millions to billions of years on other Martian surfaces.

5. Conclusions

We derived recent, Late Amazonian, backweathering rates from the alcoves of 10 pristine equatorial and
midlatitude impact craters on Mars. These backweathering rates range between 10−4 and 10−1 mm yr−1 but
decrease with increasing crater age. This paracratering decrease in backweathering rates over time mainly
results from the oversteepened and highly fractured and faulted crater walls following impact, which makes
the crater slopes highly susceptible to backweathering and results in initially high backweathering rates that
decline over time as the crater wall stabilizes.

Late Amazonian backweathering rates are approximately 1 order of magnitude higher than Late Amazonian
erosion rates. We attribute this to the high susceptibility to backweathering of crater walls and the fact that
most erosional processes are a “grain by grain” process, while backweathering is the sum of grain by grain
to large-scale slope failures. The Martian backweathering rates appear to be approximately similar to terres-
trial rates inferred from Meteor crater and various Arctic, Nordic, and Alpine rock faces. Moreover, the long
timescale before steady state backweathering rates are reached on Mars (at least 101 –102) may suggest that
steady state rockfall activity is hardly reached in terrestrial rockwall systems within interglacial timescales
of 10−2.

Backweathering rates have been much larger in the gullied pole-facing alcoves than in the ungullied,
nonpole-facing slopes of the midlatitude craters. This is in contrast with the studied craters in the equato-
rial regions, where the rates are more similar around the crater wall and backweathering rates are generally
even higher on the equator-facing slopes. We hypothesize that the higher backweathering rates in the
gullied slopes of the midlatitude craters could be caused by liquid water acting as a catalyst for backweath-
ering on these slopes but cannot yet evaluate the effect of processes related to CO2 ice.

The paracratering decrease in backweathering rates over time might partly explain why gullies in very young
impact craters are approximately the same size as those in much older impact craters. Additionally, once
established the LDM might form a barrier to backweathering that retards or even inhibits gully formation.
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