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ABSTRACT

In China, industrial energy use accounts for two thirds of total energy consumption, and this is expected
to remain the same in the medium and long-term. China has embarked on a path towards more sus-
tainable energy use to meet domestic (e.g. air quality) and global needs (e.g. climate change), and to
sustain its economic welfare. However, most energy-economy models for China have shown limitations
to evaluate policy instruments and technology diffusion in industries, in relation to the multiple policy
goals. In this paper, the advantages and weaknesses of 19 current energy models for China are evaluated,
including important co-benefits as reduced air pollutant emissions. Results show that the co-benefits of
energy use and emission policies are rarely modeled on industrial level. Based on the critical assessment
of the state-of-the-art energy models, we develop recommendations for modeling industrial energy use,
with an emphasis on improved incorporation of (economic, environmental and energy) policy effects,
technology representation, co-benefit modeling, and uncertainty analysis.

Air quality
Technology change
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1. Introduction

Today, energy security, climate change, and air pollution are
widely recognized as three challenging issues. China, as the largest
developing country in the world, has achieved significant economic
progress over the past decades, but it has now also become the
world's largest energy consumer, source of GHGs (greenhouse gas
emissions), and air pollution [1]. The increased demand for energy
has mainly been provided by the increased combustion of fossil
fuels, i.e. coal in industry and power generation, and oil products in
transport. Because coal is the dominant energy source (accounting
for 70.4% of final energy consumption) in China, the emissions of
GHGs and air pollutants are comparatively higher than that for
other countries [2].

Between 2000 and 2006, local governments often focused on
economic development while neglecting to update environmental
standards. Environmental policies were seldom implemented at a
local level [3] and annual growth rate of China's energy con-
sumption was 1.2 times higher than its economic growth. Fortu-
nately, that was changed in the following five years (between 2006
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and 2010) [4], when the government implemented a series of
ambitious energy and air quality policies to curb energy use and
reduce air pollutants. The “Top-1000” program, for example, which
focused on the 1000 largest energy consuming enterprises in China,
contributed to 21% of the national energy intensity target in the
11th Five Year Plan [5]. Likewise, SO, emissions from Chinese in-
dustry grew by 16%, while PMrsp emissions fell by about 37%, from
2000 to 2010. This might be ascribed to the installation of air
pollutant control options (e.g. Cyclone and Electrostatic Precipita-
tion) [6]. During the 12th Five Year Plan (2011—2015), a new “Top-
10000” program has been implemented, which covers two thirds of
China's total primary energy consumption or 85% of energy use in
industries. The target is to decrease coal consumption by 2.9% and
CO; emissions from fossil fuels by 0.7%, from 2013 to 2014 [7]. The
growth of energy use in China is aimed to slow down due to a series
of policy instruments for energy efficiency improvement [8].
However, industrial final energy consumption in 2013 still
accounted for 70% of total final energy consumption in China, and
correspondingly, industrial CO, emissions contributed to 72% of
total emissions [9].

There is mounting evidence that exposure to high levels of air
pollution are associated with adverse health impact [10]. The latest
results from the UNEP (United Nations Environment Programme)
show that the death rate related to air pollution rose by 4%
worldwide and 5% in China, between 2005 and 2010 [11]. In 2013
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an estimated 257 thousand premature death in 31 Chinese capital
cities could be linked to PM, 5 air pollution, which led to an increase
in the mortality rate of 0.9%.. The study also found that if annual
PM, 5 concentration meets Air Quality Guidelines set by Chinese
government standards, the mortality rate could be decreased by
0.41%o, compared to 2013 [12]. Hence, the increasing air quality
problems have put a lot of pressure on the Chinese government,
who is now pursuing aggressive policies to reduce air pollutant
emissions by requiring more strict emissions standards, closing key
emission sources (e.g. outdated power plants), updating fuel stan-
dards for automotive fuels, as well as introducing renewable energy
sources as solar and wind energy. For example, the central gov-
ernment has pledged to spend $275 billion over the next five years
to clean up the air [3]. However, the increase in the demand for
energy services related to economic growth (albeit at a bit lower
since the global financial crisis), is still being met with increased
combustion of fossil fuels. Although the extra energy might be
consumed though with an installation of air pollution control de-
vices, in order to meet air pollution reduction targets.

Energy models are usually employed in policy making to fore-
cast future energy consumption and emissions of GHGs and air
pollutants, as well as the economic development and technology
choices [13]. Several studies summarize the current bottom—up
[14] and top—down [15] models that have been developed by
Chinese modelers [16]. The detailed reviews of industrial bot-
tom—up energy demand models have presented and provide sug-
gestions for the current and next-generation policy model
developments [17]. However, In modeling China's energy use and
GHG emissions, most models rarely take into account a range of
factors that could affect policy effects and efficiency [18]. The
following weaknesses are still present in state-of-the-art energy
models: 1) The failure to consider major changes, such as popula-
tion peak, urbanization, industry development pathways and ef-
fects of market saturation, results in errors; 2) Estimating the effect
of rapid changes in macro-economic drivers and policy impacts is
still a challenge; 3) Potential synergies between energy use, climate
change and air pollution mitigation are hardly evaluated in energy
models [19]. Yet, all these factors need to be addressed to better
estimate China's future energy consumption, and emissions of
GHGs and air pollutants. Therefore, the relationship between en-
ergy consumption and GHGs emissions as well as air pollution
deserves special attention in this context. The aim of this paper is to
address this gap and understand the limits of commonly used
models and approaches through comparing the current models.
Specifically, we first critically assess model methodology, scenario
construction, and uncertainty in existing models used in energy,
GHG and air pollutant emissions and policy assessment. We iden-
tify the opportunities to strengthen modeling efforts in China to
include air pollutants and GHGs in projecting future energy use. We
focus on the industrial sector, as these represent 70% of energy use
and emissions in China, and are often weakly represented in
models. Two main questions are explored in this paper:

1. What are the strengths and limitations of models that have been
applied to forecast future energy consumption and emissions of
GHGs and air pollutants for Chinese industry?

2. To what extent and how do these models evaluate co-benefits of
energy efficiency, GHG emissions and air pollution policies?

The structure of this paper is as follows. Section 2 describes the
methodological aspects used for comparing the 19 energy models
or tools. Based on the methodology, a comprehensive literature
review of bottom—up, top—down and integrated models is given in
Section 3. We further assess these models by a detailed evaluation
on national and industry-sector level. Scenario construction, basic

assumptions, technology diffusion, policy impacts and uncertainty
analyses incorporated in the energy-economy models are discussed
in Section 4. The recommendations for improving these state-of-
the-art models are presented in Section 5. Finally, the conclusion
is given in Section 6.

2. Methodology

Four steps were carried out to evaluate 19 selected energy
models or tools that have been used to evaluate future energy use
and associated GHG and air pollutant emissions. Model selection
(see Table 1) was based on having a wide coverage of different types
of models (bottom—up, top—down, hybrid, and global versus na-
tional and industrial level) that are used in China. While we
acknowledge that these models are different and developed for
different goals, they are all used to estimate future energy use in
China.

As a first step, we conduct a comprehensive assessment of the
selected models in Section 3. In this step, key characteristics,
strengths and weaknesses of the models are analyzed. In the sec-
ond step (in Section 4), the modeling approaches and structures,
scenario construction and basic assumptions are reviewed. Next,
we discussed how representative technologies, their diffusion and
barriers for implementation are included in the model. We also
provide a detailed evaluation of how policy instruments and im-
pacts are modeled in this step, followed by a discussion on uncer-
tainty analyses used. In a third step (in Section 5), we attempt to
provide constructive suggestions to improve the accuracy of
energy-economy models specifically to improve the modeling of
the interactions between energy use and emissions policies.

3. Energy models used for energy consumption, GHGs
emission and air pollution policies

In recent decades, several models (e.g. bottom—up, top—down,
and hybrid models) have seen a rapid improvement in the possi-
bility to analyze the interaction between energy consumption and
GHG emissions on global, national, and industry levels, such as (e.g.,
the CIMS (Canadian Integrated Modeling System) [20], China End-
Use Energy Model [21], and the LEAP (Long-range Energy Alter-
natives Planning System) [22]|, C-REM (China Regional Energy
Model) [23], C-GEM (China-in-Global Energy Model) [24], GAINS-
AIM/CGE (Greenhouse Gas and Air Pollution Interactions and
Synergies-Asia Pacific Integrated Assessment Model/Computa-
tional General Equilibrium) [25], and GAINS-ECSC (GAINS-Energy
Conservation Supply Curves) [26]). Many of these models have
been used in China or include China. As shown in Table 1, the key
features of 19 current energy models or tools used to evaluate
energy consumption, as well as the emissions of GHGs and air
pollutants in China were summarized.

Many Bottom—Up models have been develop to assess the
interaction of energy consumption and low carbon emission tra-
jectories to meet China's mid-term and long-term goals on a na-
tional level [21] and industry level [27]. The bottom—up China End-
Use Energy model, for example, was adopted to assess the potential
for China to reduce energy demand and emissions, and used two
scenarios to assess this, i.e. CIS (Continued Improvement Scenario)
and AIS (Accelerated Improvement Scenario). The key feature of
this model is the use of end use technologies to model energy
demand on a sector level. Technological development, equipment
efficiency, and saturation effects were included in the CIS and AIS
scenarios. The main finding was that China's CO, emissions will not
likely continue to grow as rapidly, as demand for a selection of
energy services will saturate around 2030. Unlike other countries,
the industrial development path, especially the energy intensive
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Table 1
Included models or tools for assessing energy efficiency, GHG and air pollutant emissions.
Item Reference Model name Model type Geography Sectors included
Energy efficiency [57,21,58] China End Use energy model Bottom—Up China All sectors
and GHG emission [31] Decomposition analysis LMDI method China Manufacturing
[20,50,69,86] CIMS model Integrated Canada, US, China All sectors
[40] MARKAL-MACRO energy Top—Down UK All sectors
system model
[33,34] Hybrid 10 model RAS, Input—Output, SDA China All sectors
[27,30,29] LEAP model Bottom—Up China Electricity, iron and steel,
cement, pulp and paper, transport
[41,53] WITCH model Integrated Global All sectors
[24,36] C-GEM model Top—Down Global, China All sectors
[23,37] C-REM model Top—Down China All sectors
[35,59,62,66,87] EPPA model Top—Down Global All sectors
GHG emission and [52] MARKAL model-AIM/ENDUSE Integrated India All sectors
air pollution [39] WorldScan Integrated EU All sectors
[44] Haiku model Integrated us Electricity
[25] GAINS-AIM/CGE Integrated China All sectors
Energy efficiency, [54,56,71,88,89] GAINS Integrated EU, Asia All sectors
GHG emission, [19] GAINS-MESSAGE Integrated Global All sectors
air pollution [26,42,43] GAINS-ECSC Integrated China Iron and steel, cement
[45—47] MERGE Integrated EU All sectors
[51] MARKAL Integrated Shanghai All sectors

industry, dominates China's total energy consumption and GHGs
emission [28]. The LEAP model was employed by Wang et al. and
Cai et al. to project future energy consumption of China's five major
(industrial) sectors [27] (i.e. electricity [29], iron & steel [30],
cement, pulp & paper, transport) using three scenarios. The results
of these studies provide potential development pathways for en-
ergy use of China's energy intensive industries. The studies found
that GHG mitigation policies for the electricity, transport and
cement sectors have more co-benefits than two other sectors (i.e.,
iron & steel and pulp & paper) in reducing emissions of other air
pollutants. In these models, the benefits of energy use, climate
change and air pollution are studied separately. Yet, these issues are
closely related. Only Cai et al. mentions that GHG mitigation pol-
icies have notable co-benefits by reducing air pollutant emissions
[27].

To better understand the industrial development pathways, and
improved modeling to forecast future trends of energy consump-
tion and carbon emissions on a national level, a retrospective and
prospective decomposition analysis was conducted for China's 18
industry subsectors under three scenarios [31]. Not surprisingly,
this study found that three factors (i.e. industrial output, structural
change, and energy intensity change) have a large impact on future
trends. There are many cost-effective opportunities to improve
energy efficiency and decreasing GHG and air pollutant emissions
that are not (fully) implemented. A bottom—up analysis method
was adopted to estimate the ancillary benefits of emissions miti-
gation of CO; and air pollutants, but not at the same level of detail
as for developed countries [32].

To compare bottom—up models to top—down models, The MRIO
(multi-regional input—output) model was employed to project
energy requirements and CO; emissions in China [33]. In the model,
China is divided into eight regions and four sectors including
agriculture, manufacturing, construction and services. The results
show that improvement in energy end-use efficiency for each re-
gion could generate different energy savings up to 2020. For
example, the central of China has the highest energy savings, fol-
lowed by those in eastern and northeast regions. Regional emis-
sions in the model may differ from actual emissions. Hybrid 10
(Hybrid energy input—output) models (Input—Output model,
decomposition analysis, and modified iterative proportional
method) were applied to decompose drivers (i.e. energy input mix,
industry structure, and technology improvement) to identify how

these factors impact changes in energy intensity [34]. Energy re-
quirements were projected for a BAU (Business-as-Usual) scenario
and alternative scenarios. The main findings were that energy de-
mand in China will continue to increase rapidly to 138 EJ (4.7 billion
tonne of coal equivalent (tce)) and CO, will reach 11.47 billion tons
by 2020 in the BAU scenario.

The EPPA model was employed to evaluate the potential synergy
between air pollution and CO; emissions in China up to 2050 [35].
The main finding was that CO, abatement measures have strong
effects on air pollution reduction, and vice versa. C-GEM, a similar
model framework incorporating the EPPA model, was used to
analyze China's energy consumption, CO, emissions and economic
activity [36]. In line with the study, an improved version of C-GEM
was developed to simulate future CO, emission trajectories and
evaluate the effects of new policy directives of the Chinese gov-
ernment by 2050 under different scenarios [24]. Main findings
were that a modest CO, price would reduce CO, emissions signif-
icantly. Considering the regional heterogeneity across China, C-
REM was used [37] to assess the efficiency and distributional im-
plications of alternative coal and fossil energy cap policies. The
main results were that the fossil energy cap policy on national level
is more cost effective than regional coal cap policy because of large
welfare losses in some provinces (i.e. Guangdong and Jiangsu).
Afterwards, in line with the study, an improved version of C-REM
[23] was employed to further analyze migration effects on energy
consumption and energy intensity, as well as economic activity.
This study showed that migration has fewer impacts on energy
consumption and economic consumption on national level than
provincial changes. In addition, the provincial energy intensity
targets with lower cost would be more efficient than provincial
energy caps under the changes of migration.

The CGE (computable general equilibrium model) [38] were
used to analyze the impact of end of pipe options for air pollutants
on GHG emissions in the EU. The model only included interactions
of CO2 and air pollutants in stationary energy sources. Subse-
quently, in line with this study, the extended CGE model WorldS-
can, a global coverage model, were employed to analyze
interactions between EU's air pollution and climate change policies
[39]. The main result of this study is that changes in energy use (i.e.
fuel switching, efficiency improvements, and structural change)
will contribute at least 50% to the required air pollution emission
reduction. The study also found that the cost of GHGs mitigation
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policies will decrease when air pollution control is included, e.g. if
the air pollution emission target exceeds 40% reduction, carbon
prices could drop to zero. This study only evaluates interactions of
air pollution and climate changes policies in the EU regions, and did
not consider China. The authors also mentioned that the in-
teractions of CO, and air pollutants in China will investigate in
future.

To solve the limitations of bottom—up models and top—down
models, hybrid models were developed to compensate for the
limitations of both types of models. Generally, hybrid models can
be classified into three broad types [40]. First, independently
developed bottom—up and top—down models are combined
together through soft linked (e.g. MARKAL-MACRO energy system
model) and hard linked (e.g. the WITCH (World Induced Technical
Change Hybrid model) [41], GAINS-AIM/CGE [25], and GAINS-ECSC
[42]). The GAINS-AIM/CGE model has been used to pursue CO; and
air pollutant emission trajectories and related co-benefit in China
under four alternative scenarios featuring different levels of carbon
mitigation policies and air pollution control technologies [25]. It
was found that if both policies were implemented the CO, intensity
and SO, emissions could be reduced by 41% in 2020 and 20% in
2030, compared to 2005 level. Developed regions were found to
have usually more co-benefits than developing regions, but the
latter is more cost effective.

Similarly, the GAINS-ECSC was used to assess the co-benefits of
energy efficiency measures and air pollution control options that
jointly reduce GHGs emissions and air pollutants, as well as energy
consumption in China's cement and steel industries up to 2030
[43]. The main result was that the energy consumption and emis-
sions of CO, and air pollutants in cement and steel industries will
increase quickly until they peak in 2020. Both studies found that
energy efficiency measures will result in significant reduction in air
pollution during the study period. Second, one model type (either
bottom—up or top—down) uses reduced form representations of
the other (e.g. WorldScan and Haiku). For example, the Haiku
model [44] has been used in the US to simulate electricity gener-
ation, consumption, air pollution and GHG emissions. In that study,
electricity demand, electricity prices, air pollutants and health ef-
fects were modeled using various scenarios to simulate air quality
policy. This resulted in the incomplete modeling of emissions (i.e.
only the power sector) and health effects [44]. The third approach
provides an integrated platform (CIMS, GAINS and GAINS-
MESSAGE). The GAINS model, for example, has been used to eval-
uate synergies of climate and air quality impacts of changing en-
ergy use in various regions of the world [57]. The studies recognize
that reducing GHG emissions can lead to a simultaneous decrease
of air pollutants. The MERGE (Model for Evaluating the Regional
and Global Effects of GHG emission reduction policies) [45], for
example, as one of the early models that was used for cost-benefit
analyses of climate change policy, ecological damage, valuation and
discounting. In a study by Bollen et al. [46], climate change policy
proposals were evaluated in light of air pollution and correspond-
ing health damages using MERGE [46]. However, the study had
important limitations in analyzing emission abatement costs. An
extended MERGE model [47] was developed for a cost-benefit
analysis of GCC (global climate change), LAP (local air pollution)
and energy security based on three different policy scenarios. The
main finding was that the combined implementation can generate
additional benefits that each area individually does not. Specifically,
global climate change policy not only reduces CO, emission, but
also generates a net decline of PM emissions. Synergies of GCC and
LAP policies can further reduce CO, emission by 15% in Western
Europe and 20% in China, respectively. LAP policies reduced PM
emissions with a large effect on CO, emissions. Inversely, GCC
policies produced negligible impacts on improved air quality in the

short-term. The main reason is that while fossil fuel use is reduced,
increased biomass use will increase air pollutant emissions.

The main findings from this literature review include: various
scenarios in selected models have been made to analyze mid-term
and long-term patterns of China's energy use, which also included
projecting expected policy results [48]. The results found in these
studies indicate that China's energy consumption and emission
trends are poorly understood and hard to predict with current
energy economic models, because of rapid economic growth and
new energy policies (i.e. top 10,000 program), which leads to dis-
tortions in most models when forecasting China's future de-
velopments [18]. The models (e.g. China End Use energy model,
LEAP model and Hybrid I0 model) have been developed by Chinese
modelers to mostly study energy efficiency, greenhouse gas emis-
sions and air pollution separately. There have little attention to
evaluate the synergies of energy use and emissions of GHGs and air
pollutants in China, compared to developed countries (e.g. US and
EU). In particular, the evaluation of the synergies between energy
efficiency, climate change and air pollution policies on the level of
industrial sectors has received little attention. Yet, these sectors are
not only the engine of economic growth; they are the key energy
user and source of emissions. The co-benefits in developing coun-
tries would be higher than developed countries, based on a survey
of 37 studies [49]. Therefore, the integrated analysis of those ben-
efits on an industrial level is essential. Other models (e.g. WITCH
and WorldScan, and GAINS-AIM/CGE) provide lessons on analyzing
co-benefits of energy efficiency, GHG emission and air pollution
policies, but have no or limited sub sector detail.

4. Lessons from energy economy models and integrated
assessment models

4.1. Model construction and scenarios assumption

Table 2 summarizes the key features of the models for scenario
construction and basic assumptions. A clear definition of a baseline
or alternative scenario is critical for scenario construction. The
baseline (reference) scenario assumptions include mainly the level
of macro-economic activities, energy and products demand, pop-
ulation growth, structural change effects, technology representa-
tion (including diffusion, spillovers), policy instruments, and
uncertainty and sensitivity analysis.

Different modeling methodologies have a variety of assump-
tions to define baseline scenarios. The baseline scenario can be
treated as the status quo or reflect current expectations or
continuation of present government policies. In terms of macro-
economic assumptions, many models assume key drivers (e.g.
GDP growth, per capita income, structural effects, population and
urbanization) through general economic assumptions [50],
combining literature [51], government expectations [52] and expert
judgment [31]. For example, most Top—Down models use a Ramsey
type neoclassical optimal growth and neo-classical recursive dy-
namic framework to determine macro-economic drivers in the
baseline scenario, e.g. WITCH model [53], WorldScan model [39],
EEPA model, C-GEM, C-REM, and MERGE model [47]. This approach
may lead to distortions when meeting irregular phenomena, which
means that future development pathways might have a higher
uncertainty level if macro-economic factors, energy use and in-
tensity change drastically. It is necessary to assess these un-
certainties and calibrate key drivers based on latest historical data,
government expectations and literature [39]. Hence, the question
can be raised if these approaches provide reliable results for the
Chinese economic conditions. The China End-Use Energy Model
[21], a typical bottom—up model, uses a conservative assumption
for activity and economic drivers (e.g., population peak,



ovve

Table 2
Key drivers.
Item Population drivers Marco-economic drivers Energy drivers Structure Production
effects drivers
Population Urbanization Migration GDP Value Intermediate Energy/ Fuel/ Production Intermediate
added energy electricity electricity product
consumption trading price consumption
Energy efficiency and China End Use A A — A — — — — A A —
GHG emission policies energy
Decomposition - - - A A - - = A A -
analysis
CIMS A A - A - - - A — A —
MARKAL-MACRO A A - A A A — A A A -
energy system
Hybrid 10 A A - A A A - A A A A
LEAP A A — A — - - - - A -
WITCH A A - A - A - A A A A
C-GEM A A - A A A - A A A A
C-REM A A A A A A A A A A A
EEPA A A - A - A - A A A A
GHG emission and air MARKAL model- A - - A A A - A A A -
pollution policies AIM/ENDUSE
WorldScan A - - A A A - A A A A
Haiku A - - A - — A A — A -
GAINS-AIM/CGE A - - A - - - A — A -
Energy efficiency, GHG GAINS A - A - A - A -
emission and air GAINS-MESSAGE A - - A - - - A — A -
pollution policies GAINS-ECSC A A — A — — - A — A -
MERGE A — - A A A - A A A A
MARKAL A — — A A - — A A A A
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Table 3
Technology representation.

Item

Technology representation

Fuel technology Electricity technology Air pollution control

technology
Energy efficiency and GHG emission policies China End Use energy A A —
Decomposition analysis — — —
CIMS A A -
MARKAL-MACRO energy system A A -
Hybrid 10 - - -
LEAP A A -
WITCH A A -
C-GEM A A -
C-REM — — —
EEPA - - -
GHG emission and air pollution policies MARKAL model-AIM/ENDUSE A A -
WorldScan — — A
Haiku A A -
GAINS-AIM/CGE - - A
Energy efficiency, GHG emission and air pollution policies GAINS - - A
GAINS-MESSAGE A — A
GAINS-ECSC A A A
MERGE A - A
MARKAL A A -

urbanization rate, and saturation effects) to evaluate the influence
of these drivers on future energy use and carbon emissions. This
leads to future primary energy consumption and carbon emission
results that are lower than those forecasted by e.g. McKinsey,
CEACER and IEA. Furthermore, activity projections of future eco-
nomic development was used as a baseline projection in the GAINS
model [54]. For China, they use the baseline projection, developed
by the ERI (Energy Research Institute), as a reference scenario. In
line with this study, a new method was developed to link mid-term
emission interactions of air pollutants and GHG derived by GAINS
with long-term projections that are developed for MESSAGE to
expand the original baseline scenario [19]. In this model, GDP
growth, population growth, and technological development are
derived from literature. This approach provided a new direction to
forecast mid-term and long-term baseline emissions of air pollut-
ants and GHGs.

Structural changes by shifting from higher energy intensive and
polluting industries to less energy intensive economic activities,
whether inter-sectorial [55] or intra-pectoral [31], in the economy

Table 4
Policy instruments and economic feedbacks.

are a major driver affecting emissions and energy use. During the
period 2000—2005, structural changes caused an increase in
manufacturing energy use, mainly due to an increasing share of
energy intensive industries. A retrospective and prospective
decomposition analysis was used to estimate the extent of energy
savings that can be obtained by structural changes in Chinese
manufacturing during the periods 1995—2020 [31]. They conclude
that the structural effect is vital to decrease overall energy con-
sumption, both in the past and for the future in three different
scenarios. Many models incorporate structural changes to construct
scenarios. However, in alternative scenarios, the economic struc-
ture is usually assumed to be similar to the baseline. This is not
correct, especially if there are large differences between the sce-
narios. The MRIO (multi-regional input—output) model assumes
using the same growth rate for future industries development for
each region in China [33].

The WorldScan model [39] were employed to provide a better
understanding to what extent emission reduction can be obtained
by structural changes in the EU, the marginal abatement cost curves

Item

Policy instruments Economic feedbacks

Technology policy Economic policy

Energy efficiency and GHG emission policies

CIMS

MARKAL-MACRO energy system

Hybrid 10
LEAP
WITCH
C-GEM
C-REM
EEPA
GHG emission and air pollution policies
WorldScan
Haiku
GAINS-AIM/CGE
GAINS
GAINS-MESSAGE
GAINS-ECSC
MERGE
MARKAL

Energy efficiency, GHG emission and air pollution policies

China End Use energy
Decomposition analysis

MARKAL model-AIM/ENDUSE

(2 S S 2 =

> >
| S O O B B S Y

|
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was used to find largest co-benefits between GHGs mitigation and
air pollutants reduction with minimized cost. In the expanded
WorldScan model, time series were used to calibrate the BAU
(Business-as-Usual) scenario. They also analyzed the indirect
impact of GHGs mitigation induced structural changes and air
pollution policies. The potential role of structural change was
explored to identify cost-effective measures to reduce the emis-
sions of air pollutants and GHGs in the GAINS optimization tool.
However, GAINS does not consider non-technical behavior changes
[56].

Compared with modeling other macro-economic drivers, rep-
resenting current technologies and accurate forecasting of future
technologies is more difficult. Technologies are divided into end-
use energy demand and supply technologies, and air pollution
control technologies (see Table 3). Technological explicit models
are most represented by bottom—up models. Only current tech-
nology was used in several bottom—up models to simulate policy
impact and optimize strategies, such as the China End Use energy
model, MARKAL, GAINS, and GAINS-MESSAGE. The China End Use
energy model contains information on current end-use technolo-
gies [21], current international best practices [57] and emerging
technologies (including CCS (Carbon Capture and Storage)) [58]
projected energy intensity trends and industrial production
growth under scenarios representing different technology imple-
mentation rates. In contrast, top—down models generally apply
constant-elasticity-of-substitution functions to represent produc-
tion technologies, with no detailed technology representation, such
as the C-REM, C-GEM, EPPA, and WITCH model. Technological
learning effects and R&D investments are combined to capture the
dynamics of technological change in these models [53]. Note that C-
GEM not only uses AEEIs (autonomous energy efficiency
improvement) to represent current energy technology diffusion
within China, but also includes 11 advanced energy technologies
that are not yet commercial [36]. Most of the other integrated
models link bottom—up models or combine CES production func-
tions (e.g., WITCH model, WorldScan, MERGE, MARKAL model-
AIM/ENDUSE and MARKAL-MACRO energy system model, and
GAINS-AIM/CGE model). The WorldScan model links end of pipe
technology and emission data derived from GAINS to extend the
evaluation of air pollution and GHG emission policy and to what

Table 5
Technology representation, technology learning and their barriers.

extent technological and structural change contribute to emission
reduction [39]. The energy efficiency technologies and air pollution
control options are combined together in the GAINS-ECSC to eval-
uate the co-benefits between energy savings and emissions miti-
gation in Chinese industry [43]. The use of aggregated AEEIs and
ESUB (elasticity of substitution) to represent current energy tech-
nology diffusion in the CIMS model, resulted in useless outcomes
for Chinese policy-makers seeking policy advise to meet energy
intensity and GHGs emission targets, as in reality AEEIs and ESUB
differ widely by sector [50] (see Table 4).

The diversity of policy instruments plays an important role in
technology diffusion. Several energy modelers have modeled pol-
icies aimed at specific technologies (e.g. technology procurement
and best practice dissemination) and general policies (e.g. regula-
tion, standards, pricing and taxation, subsidies, energy and emis-
sion trading, voluntary programs) [13]. Only general policy
instruments are adopted by Top—Down models (e.g. Hybrid 10,
EEPA, C-GEM, and C-REM). In contrast, most Bottom—Up models
(e.g. China End Use energy model) and hybrid models (e.g.
MARKAL-MACRO, CIMS, MERGE, WITCH, WorldScan, C-GEM, C-
REM, GAINS, and GAINS-AIM/CGE model) often employ both type
of policy instruments together. For example, the China End Use
energy model and GAINS-ECSC use (extensions of) current and
future policies and best practice dissemination, to model baseline
and alternative scenarios.

Economic feedbacks may be incorporated to assess the impacts
of energy, climate change and air pollution policies. In most Bot-
tom—Up models (e.g. China End Use energy model and GAINS-
ECSC), these feedbacks are ignored. However, in most Top—Down
models, typically iteration is used to calculate the feedback and
optimize the results. For example, technology improvement, pop-
ulation growth, and trade coefficients had main impacts on na-
tional energy use and CO, emissions in the Hybrid 10 model [33].
Aggregated energy demand responses were adopted to calculate
macro-economic impacts in the MARKAL-MACRO energy system
model [40]. Similarly, climate change damages were taken into
account through feedback from an integrated climate module in the
WITCH model [53]. The extended MERGE model used penalty
functions and other parameters to simulate interactions between
climate change damage, premature deaths, and the economy [47].
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Table 6
Policy and instruments.

Item Policymakers and Implementation of policies instruments Cost and benefit
consumers Tax/price Cap/target for Technology Conventional Co-benefits
behavior L L . -

policies emissions and  specific policies benefits
consumption
policies
Policies Energy efficiency China End Use energy  — - A A - -
instruments and GHG Decomposition analysis — — A — — —
and evaluation emission policies CIMS A A A A A -
MARKAL-MACRO A A A - - -
energy system
Hybrid 10 — A — A - -
LEAP - — A A - -
WITCH A A A - - -
C-GEM - A A A A -
C-REM - A A - A -
EPPA - A A — A -
GHG emission and air MARKAL- - A - - - -
pollution policies AIM/ENDUSE
WorldScan A A A - A A
Haiku A A A - A A
Energy efficiency, GAINS - - A A A A
GHG emission GAINS-MESSAGE — — A A - -
and air pollution policies GAINS-AIM/CEG — A A A A A
GAINS-ECSC - — A A A A
MERGE A - -
MARKAL - A — - A A

In addition, the impact of tax policy on the economy were analyzed
through adjusting carbon prices and the willingness-to-pay in
WorldScan [39]. The modelers of C-GEM and C-REM evaluated the
robustness of energy and emission cap policies on the energy and
environmental targets by changing prices and taxes [37].

As demonstrated above, each modeling approach has advan-
tages and limitations. The strengths of traditional bottom—up en-
ergy economy models (e.g. China End-Use energy model and LEAP)
include more detailed information (e.g. technology representation)
to forecast interactions of energy use and energy related carbon
emissions on industrial sector level (see Table 5). However, these
models hardly quantify the co-benefits of energy use, GHG emis-
sion, and air quality policies. The traditional top—down models (e.g.
EPPA, C-GEM, and C-REM) usually use neo-classical recursive dy-
namic approach forecasting macro-economic drivers to build sce-
narios. The top—down models still dominate in the discussion as
they can assess both economic impacts and behavioral factors.
However, detailed industrial (sub-) sector-level representation is
lacking, while this information is needed for policy making. Some
extended models (e.g. MERGE, WorldScan, GAINS-AIM/CGE, GAINS-
ECSC, MARKAL-MACRO, and WITCH) and new integrated models
(e.g. GAINS, MARKAL, CIMS, and GAINS-MESSAGE) are developed to
overcome these limitations. However, those models typically still
do not cover all drivers (e.g. technological learning, non-price
policy effects, non-energy benefits) of industrial energy use and
emissions. Hence, Model improvements have to be developed to
improve the discussed aspects in these models at the level of in-
dividual (sub-) sectors to come to modeling tools that have policy
relevance (see Table 6).

4.2. Technology representation, diffusion and its barriers

The methodology to model technological change is widely
considered as the vital determinant for realistic modeling results
for energy, climate and air quality policies. The current models
mostly focus on the potential of technology diffusion, but tech-
nology change is ignored [59]. As shown in Table 5, endogenous or
exogenous mechanism was adopted to represent technological

change in the energy-environment-economy models [60]. Table 5
shows that the bottom—up models are better in representing
technology options depending on technological learning (although
primarily focused on the energy sector) and associated costs. For
example, to achieve national targets, energy efficiency policies and
programs were designed in the China End Use energy model to
simulate technological change through exogenous mechanism.
Conversely, the top—down models are better in modeling tech-
nology penetration based on endogenous mechanism [61]. Both
types of mechanisms have their advantages and limitations. There
has been no single mechanism (neither exogenous nor endoge-
nous) that dominates modeling of technology diffusion and tech-
nology options. To overcome the gap between both mechanisms,
several approaches are developed to represent technology options
and diffusion in the state-of-the-art models. A typical method for
better modeling technology representation and diffusion is con-
structing a link for different models. The WorldScan and in-
corporates end of pipe options (derived from GAINS) [39] were
used to analyze the interaction of air pollution and climate change
policies. The cost of air pollution control options from GAINS was
input as an exogenous factor in the EPPA model to assess the po-
tential synergy between pollution and carbon emissions [35]. The
results from ECSC containing energy technology diffusion was
input into GAINS to represent the diffusion of air pollution control
options to assess co-benefits of energy efficiency and air pollution
[42]. Similarly, AIM/CGE models, which simulate production tech-
nologies in an endogenous way, were combined with GAINS, in
order to evaluate the co-benefits of CO, emissions and air pollution
[25]. The other methodology is one type (either exogenous
approach or endogenous approach) can use reduced form repre-
sentations of the other. For example, the learning curves that affect
prices of new vintages of capital and R&D investments were an
endogenous input into the WITCH model to represent technological
progress [53]. The exogenous factors of AEEI and CES production
function that endogenously represent technology change and
penetration were both adopted in EEPA, C-GEM, and C-REM
models. In these models, the technology-specific factor was adop-
ted to operate the backstop technology that have not been
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implemented yet at commercial scale [62]. The third approach is an
integrated methodology based on theoretical and practical de-
velopments of solution algorithms. For example, the mixtures of
equations and inequalities combined with MCPs (mixed comple-
mentarity problems) were used in CIMS, C-GEM, C-GEM, GAINS and
GAINS-MESSAGE, who attempted to forecast rates of technical
implementation. In CIMS [50], the financial and social discount rate
were replaced by behavioral parameters to simulate technology
penetration. In addition cross-cutting technologies (e.g. motor
systems, lighting, utilities) combined with specific other technol-
ogies will generate more energy saving in energy intensive in-
dustries [63]. The cross-cutting technologies and different plant
type's technologies in the industry sector were included in the
GAINS database.

Many studies demonstrate that costs of new technologies will
decrease due to technological learning. Technological learning as-
sumes that a technology's performance improves as experience
with the technology accumulates. The experience curve is incor-
porated in many energy-economy-environment models [55].
Learning rates of future technologies have been included in
MARKAL-MACRO for future supply technologies based on the
published literature. Similarly, the WITCH model incorporates
learning by doing effects in the electricity sector [53]. In that study,
it is assumed that mature technology spillovers and constant
learning rates are used in all countries. The extended WorldScan
model uses induced technological change to analyze mitigation
policies under emission targets [39]. The feedback between supply
side technologies and macroeconomic impacts are typically
embodied through technological change, induced by prices. The
bottom—up models (e.g. China End-Use Energy Model) excludes
endogenous technological learning and economics, as it assumes
that best practice technology will be fully implemented in different
scenarios. The impacts of technology R&D and non-technical
behavior were considered, but exogenously in the model inputs.
A relatively high CCS (carbon capture and sequestration) utilization
rate was assumed in coal fired power plants and other industries by
2030 in China [64]. In contrast, the LBNL (Lawrence Berkeley Na-
tional Laboratory) and ERI (Energy Research Institute) of China
scenarios do not expect CCS to play a major role in the power sector
[65].

MAC (Marginal abatement cost) curves are a typical approach to
estimate the abatement potential of GHG emission. It has
frequently been used in many energy economy models [66], using
either smooth functions or step functions [67]. In practice, the
bottom—up models generate larger cost-effective potentials than
top—down models. The MAC curves depict the abatement cost for a
single point in time, which may lead to inaccuracies. Carbon prices
(exogenously) combined with mitigation measures were used to
generate MAC (marginal abatement cost) curves in the GAINS
model. In the MAC curves, the co-benefits of GHG emission and air
pollutant reductions were included. However, other limitations, e.g.
economic feedbacks [68], interaction of behavioral aspects, econ-
omy, and abatement measures [69] are still a challenge.

Barriers for technology diffusion have been widely discussed,
and are also included in some of the models [59], including
imperfect information, hidden costs (WorldScan, WITCH), capital
constraints, high observed discount rates and low price elasticities
(Haiku, MARKAL-MACRO, GAINS and GAINS-MESSAGE, CIMS, and
MERGE). These factors reduce the implementation level of many
cost-effective measures [70]. Generic technology constraints are
generally applied in energy models (e.g. to limit application rates).
An upper limit on the application rate and hidden costs for tech-
nologies was employed to identify potentials for improving air
quality and decreasing GHG emissions [71]. In GAINS, technology
constraints are distinguished into four categories, i.e. generic

constraints, sector-specific constraints, context-related constraints
and transition constraints. Compared with other models, low
implementation rates were assumed for selected technologies in
alternative policy scenarios. This might lead to under estimating
the co-benefits of GHG emission and air pollution policies in the
future [72].

Summarizing, we found that models with detailed technology
representation can provide more accurate results than other
models without technology representation. Technology represen-
tation is also necessary to assess the co-benefits of GHG emission
and air pollution policies (see Table 5). The bottom—up models
often result in larger mitigation potentials of energy use and
emissions than the top—down models. Technological learning is
included in a few models, but often limited to supply-side tech-
nologies only [41]. Barriers limiting the uptake of mitigation op-
tions are included in some models. However, the modeling of
barriers is still indirect and has large uncertainties. In addition, the
interaction between energy technologies and air pollution control
options are failed to be considered. Modeling barriers for technol-
ogy diffusion and related issues (e.g. integration of co-benefits in
decision making, behavioral parameters) are challenges that need
to be addressed in model development.

4.3. Policy development and their implications

Evaluating policy is an important issue for models to come to
realistic ex-ante estimates of policy impacts. Several studies
modeled policy instruments to assess the economic, environmental
and energy impacts, including regulation, standards, pricing and
taxation, subsidies, emission trading, voluntary programs, and
technology best practices [73]. The China End Use energy model
mainly uses energy efficiency standards, enforcement of sector-
specific energy intensity targets, and mandated closure of ineffi-
cient plants to simulate policy in the scenarios. They found that the
largest potential to decrease energy use and carbon emission is in
the energy industry sector in the short-term, and in the buildings
sector in the long-term [74]. The GAINS model also extrapolate
current legislation in the baseline and alternative scenarios to
forecast future energy use and emissions in China [55]. Carbon and
fuel prices were also introduced to develop alternative scenarios
(e.g. MARKAL-MACRO energy system model, EPPA, C-GEM, C-REM,
and CIMS). In MERGE [47] and WorldScan [39], the impacts of
policy were estimated through technology learning curves and
mitigation cost curves. Pricing and taxation for fuel and electricity
were introduced to mimic policy impacts in C-GEM and C-REM
[24]. An exogenous method was used to evaluate policy effects in
LEAP [27], GAINS [55] and GAINS-MESSAGE [19]. Also, government
expectations and expert judgments are often used to simulate
Chinese industry development pathways under different scenarios
[31].

The understanding of the behavior of policy and decision
makers is crucial accurately model energy use, GHG and air
pollutant emissions. Behavior is still indirectly included in the
models. The China End-Use Energy Model only qualitatively de-
scribes consumer preferences [21]. Similarly, GAINS excludes non-
technical factors [71]. In contrast, the CIMS model uses a logit
function to simulate market shares. In this function, the preference
of decision makers, intangible cost, and heterogeneity in the mar-
ket were estimated by stated preference surveys [50]. MARKAL-
MACRO, WITCH, and Haiku considered decision behavior, free-
riding behavior and market heterogeneity (however often exoge-
nously). A so-called progress ratio was used to reduce the costs of
new technologies depending on their market penetration in some
models [40]. Free-riding behavior was used to estimate technology
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spillovers in the WITCH-model, which will lead to more realistic
estimates of the cost-effectiveness of policy [53].

Cost-benefit or cost-effectiveness analysis is an important
modeling aspect. Co-benefits play an important role in under-
standing the cost-effectiveness. However, inclusion of co-benefits is
still limited. In this discussion we focus especially on the interaction
of GHGs emissions and air pollution in energy models. Many
literature sources demonstrate that strategies for decreasing air
pollution also reduce GHGs emissions, and vice versa, and also
found that this co-benefit is higher in developing countries [49].
Previous analysis of ancillary benefits of carbon policies yielded
higher estimates due to incomplete modeling of emission and
policy baselines [56]. Similarly, the actual co-benefits (both
implementing CO, mitigation measures and air pollution control
options) usually were much higher than when only applying CO;
mitigation measures [25]. Increased use of biomass can mitigate
CO, emissions, but at the same time, biomass is a source of par-
ticulate matter emissions [75]. Hence, the impacts of GHGs policy
will depend strongly on the strategy selected. The carbon price
(emission trading system) may fall or even drop to zero when more
severe air pollution policies implemented [39]. The average mar-
ginal costs of energy efficiency measures will decrease by 20% if the
co-benefits of air pollution are taken into account [42]. Further-
more, each percent reduction of CO, emissions, particulate matter
emissions will also fall by 1% [55]. The extended MERGE model [47]
and the GAINS model [54] were used to present an integrated
assessment of energy use, climate change and air pollution policies,
both studies notice that synergetic policies can produce multiple
benefits that each individually cannot bring about. Understanding
the co-benefits may help policymakers and decision makers to
design and implement better policies.

This above analysis show that most models simulate policies by
modifying energy price; but the non-price influence is often
ignored in models for China [21]. This confirms earlier findings [13].
In reality, various (non-price) policies are implemented simulta-
neously, and synergistic or inhibitory relationships of the individual
policies within the mix, are also not well understood. The top—-
down and integrated models have currently more advantages than
bottom—up models to simulate behavior as these are generally
presumed to have a better understanding of economic aspects and
feedbacks. However, the model inputs are based on historic sta-
tistical analyses, and often for industrialized countries. It is ques-
tionable, if these models provide correct results for a country like
China, and it is not sure if the past relationships hold for the future.
The integrated models (e.g. GAINS, and WorldScan) do provide a
better opportunity to evaluate the synergies of policies on energy
use, climate change and air pollution [39]. Although the co-benefits
are much higher in developing countries, the inhibitory effect of
policy mixes has not been considered so far. It is necessary to
expand the state-of-the-art models to assess the co-benefits of
different policy instruments.

4.4. Uncertainty and sensitivity analysis

Uncertainty and sensitivity analyses are important because all
energy models cannot predict the future with precision. In energy
modeling literature, uncertainty may be classified into two types,
i.e. model structural uncertainty (including model solution algo-
rithms) and parameter uncertainty resulting from imperfect
knowledge of the parameter values [76]. The structural uncertainty
can be further divided into conceptual model structure (caused by
lack of understanding of the modeled system) and technical model
structure (caused by simplifications, and errors in software and
hardware) [77]. Several approaches (e.g. approximate dynamic
programming, stochastic programming, stochastic mixed integer

liner programming, Monte Carlo sampling, and regret theory etc.)
combined with future projections of key drivers were adopted
when performing uncertainty analyses of energy models. In most of
Bottom—Up energy models, simplified approaches are adopted to
examine the effects of changes in a single parameter and assuming
no changes in all the other factors. For example, simplified uncer-
tainty analyses were adopted to compare the results of different
studies in China End Use energy [21] and CIMS [50], respectively.
Different lower economic growth assumptions were adopted in the
LEAP model to track energy demand and supply patterns, as well as
greenhouse gas emissions under different scenarios [78]. In
contrast, prices and taxes for energy and CO, emissions were
employed in most Top—Down models (e.g. EPPA, C-GEM, and C-
REM) through PDFs (Probability Distribution Functions). For
example, the AEEI and substitution elasticity between energy and
capital-labor bundles, as important input parameters, were tested
in C-GEM and results showed the effects on energy consumption
and CO, emissions [36]. Some uncertainties can be reduced by
calibrating input data. The China's official database (China's 2007
national input—output table, China's 2007 energy balance table,
and China's industrial energy consumption table) were used to
replace the GTAP (Global Trade Analysis Project) database in C-GEM
to reduce the input data error [36]. The main sources of uncertainty
in CO, emissions and prices derived from GDP growth, AEEI, and
elasticity of substitution between energy and non-energy inputs
[62]. In a similar way, the uncertainty of key parameters (e.g.
market shares, emissions, and costs) together was estimated in
CIMS models by PDFs [79]. The other hybrid models (e.g. extend
MERGE [46] and WorldScan [39]) tend to use optimization ap-
proaches to quantify uncertainties or errors. Activity drivers and
varying assumptions were extensively described in these models to
analyze the effects on modeling outcomes. For example, the
calculation of how the costs and benefits of policies for global
climate change and local air pollution vary by changing behavior
and scaling factors [47]. The GAINS-ECSC was employed to assess
the changes of energy saving potential and emissions mitigation
under different assumptions (e.g. production, discount rate, sub-
stitution of different energy) [42]. Further, market structure, fuel
prices, environmental regulations, new air pollutant standards, and
health epidemiology are included in the Haiku model to simulate
ancillary benefits between air pollution policies and GHGs mitiga-
tion policies in the electricity sector. Previous estimated large
ancillary benefits due to incomplete modeling was identified [44],
demonstrating the risk of large uncertainties.

As demonstrated above, uncertainty in many energy models,
especially developed by Chinese modelers, has only received
limited attention. Several source of uncertainty in energy models
are mainly derived from uncertain estimates of model parameter
values. Most analyzed sources of uncertainty focused on key pa-
rameters, but the structural model uncertain is ignored. The
behavioral sources of uncertainty from policymakers and end users
are hardly considered in energy models. In addition, the interaction
between uncertain variables is not captured in the models [80].
Therefore, a transparent model should involve elements to address
uncertainties in items like input parameters, model structure, and
solution algorithms. This is especially important for countries like
China, as the changes in the economy can be fast and relatively
large.

5. Recommendations

Although valuable results have been found using energy-
economy models, many challenges and problems still exist, espe-
cially for models for China. As for the model itself, especially the
industrial model, the framework, approaches, and uncertainty
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analysis can be improved. In addition, the co-benefits of energy
uses and emissions policies are rarely reported on industrial level,
yet, they are very important for developing countries. In this sec-
tion, some constructive suggestions to improve the accuracy of
energy-economy models for analyzing the interactions of energy
use and emissions policies is given (see Table 7). As shown in
Table 7, the symbol of ‘+ =’ represent the elements that is are
included in the model. Inversely, the ‘— =’ symbol insinuates the
element in the energy model that needs to be improved in the
future.

5.1. Better use of model construction and scenarios assumption

Each model has its own structure and methodology, often based
on basic economic approaches, and patterns and relationships
based on historic statistics from industrialized countries. Some
other mechanisms are still not well understood (e.g. barriers,
policy effectiveness, potential rebound effect), limiting the reli-
ability of the results. For other determinant missing drivers,
especially non-linearity in key drivers, other models or tools are
needed. In many Chinese industries, non-linearity has been
observed [81]. The saturation effects (e.g. population peak, ur-
banization rate and demand saturation per person) should be
considered when modeling Chinese development pathways. Some
of the drivers in other sectors may produce large impacts on in-
dustry activity, e.g. as the population and urbanization rate would
start to decrease over the next decades, the building floor space
will saturate and relevant industrial activities (e.g. iron and steel,
cement, and aluminum) would be reduced [57]. Similar relation-
ships are discussed in other studies [21]. Furthermore, energy
intensive industries may affect each other, though there are still no
convincing approaches to quantify these impacts, other than gov-
ernment expectation and expert judgment. Hence, it is difficult to
model the non-linear drivers in scenario construction, and this is
why some models forecasting Chinese future energy use and
related carbon emissions result in apparent deviations [18]. All
these factors make it complicated to simulate future energy use
and emissions. Unlike for other developed countries and regions
(e.g. US and EU), a detailed assessment of the synergies between
energy efficiency, GHGs emissions, and air pollution policies at
industrial level in China has not been implemented in the state-of-
the-art energy models. To improve the results of energy models for
Chinese industry, the following aspects need to be considered:

e Including industrial sub-sectors. Although most models include
some industrial sub-sectors, quantifying the relationship within
industry and across industries is still a challenge. For example,
how to quantify the relationship between raw material demand
in the buildings and transportation sector and production ac-
tivity level for cement and iron and steel. If confined by con-
straints (model costs, software, and hardware, computational
feasibility etc.) which limit the inclusion of sub-sectors. The
exogenous approach might be used to build a link between
different models, such as GAINS-AIM/CGE model.
Data availability and quality. Reliable data is an essential
element for any model. Currently, different data sets are used in
models for China. Different data sources have different quali-
ties, necessitating sensitivity analysis. More analysis into the
validity of the different Chinese energy and production statis-
tics is also warranted.

e The non-linear development patterns of industries in rapidly
changing countries like China need special attention. Current
modeling approaches cannot fully include the effects of these
rapid changes in industrial production and production struc-
tures. Some energy models use non-linear functions to forecast
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future trends of production and macro growth. However, the
outputs of these models are still inefficient to predict future
pathways in China due to inconsistent of input data. In other
latest models with calibrated input data (such as C-GEM) the
linear function is still adopted when forecast future energy
consumption and Co, emissions. The results of these models
might have large uncertainty.

Synergy effects of energy use and emissions policies are required to
expand to better model energy use at the industry sector level.
The co-benefits between energy efficiency and policies for GHGs
emissions, air quality, and health impacts have been included in
some models. Developing countries, including China, appear to
gain higher co-benefits than developed countries. However,
there has not been a detailed evaluation at industrial level yet.
This is especially important as air quality may be a key driver for
(energy) policy in China for years to come. There have been
overestimations of the co-benefits because of incomplete con-
siderations and other assumptions. Hence, integration of better
understanding of the co-benefits is necessary in the models to
accurately calculate the impacts on energy use and emissions for
industries.

5.2. Better use of technology representation and diffusion

Technology availability and diffusion is another essential
element. It has been widely discussed in the literature how to better
characterize technological change and diffusion in the energy
economy models [82]. According to our evaluation (see Section 4.2),
most of the models, especially developed by Chinese modelers,
hardly take into account synergies of technologies and policy in-
struments, which lead to under estimating the co-benefits. In
addition, the ancillary benefits of abated air pollutants and emis-
sions mitigation of GHGs can be overestimated because of potential
overlaps due to different sector classifications. The following di-
rections should be considered by modelers:

¢ Extending and improving the model framework for uncertainty
analysis. The uncertainty in model structure should be consid-
ered a process error, a functional error, a resolution error, a
model-fix error or a numerical error, depending on the status
and purpose of the model. The uncertainty parameters in the
models should assess the influence of variations in key model
parameters and their influence on model output.

o Technology rich models seem to better at grasping the synergies
of mitigation options. Enriching models by better representing
current commercial technologies and new technologies is an
important step to improve modeling.

e The impacts of multiple technologies should be considered in
models. It is necessary to add technologies for energy efficiency
improvement when estimating co-benefits of emissions miti-
gation of GHGs and air pollutants. Developing a new approach to
avoid double counting should also be considered. Specifically,
energy efficiency technologies are used to improve energy ef-
ficiency and thereby reduce GHGs emissions and air pollution. In
contrast, air pollution control options only abate certain emis-
sions, while consuming extra energy.

o Capturing the trajectories of technology diffusion if large policy
changes appear. Considering the implementation of a large
policy package, such as top 1000 energy programme, it is
necessary to improve the approach to forecast China's future
energy consumption and emissions of GHGs and air pollutants.

e Forecasting future trends of technology needs caution. Excess
capacity exists in several energy intensive industries and
products in China (cement, iron and steel) because of excessive

dependence on capital investment in the past decades [83]. For
example, the Chinese cement industry, especially for the NSP
(new suspension preheater/precalciner) kilns, has seen rapid
developments in the last decade and shows excess capacity
phenomena [42]. This means that the technology diffusion of
Chinese cement industry is non-linear. Hence, the potential
application of advanced technologies might be lower than
before.

Enriching the parameters to estimate MAC curves needs to be
considered. The hidden costs (e.g. market barriers, economic
feedbacks, behavioral and inter-sectorial interactions) may
affect the MAC curves when analyzing technology adoption and
resulting impacts.

5.3. Better modeling policy development

Although a series of policy instruments have been developed
and modeled by government and policymakers, most rely on
changing cost factors. Choosing an appropriate modeling method
for policy impacts remains challenging. Several approaches were
used to exogenously model and affect non-price barriers in models
that incorporated diffusion of specific technologies. There are still
many challenges to better represent non-price policies in energy-
economy models. These policies are as heterogeneous as the bar-
riers (e.g. decision-making behavior, free-riding, intangible cost,
imperfect information, and market heterogeneity) addressed. In
addition, information policy instruments are hardly considered in
models. To allow improved modeling, evaluation of previous pol-
icies is vital. Ex-post assessment of energy policies, including
decomposition analysis, Top—Down combined with Bottom—Up
approaches, can provide better understanding and lead to new
methods to incorporate non-price barriers and policies in the
models [84]. Therefore, the following aspects should be considered
by modelers:

e Capturing the effects of non-price policies in energy models:
non-price policies are not considered in most models, espe-
cially for Top—Down model, because of data limitation. It might
be possible to improve representation of non-price policy in-
struments through e.g. accelerating information diffusion to
increase the technological application rate. For example, the
CIMS and Haiku models provide interesting directions to
improve the estimation of non-price policies barriers in
models.

Considering that crucial interactions exist between energy and
air quality policies. Most studies indicate that policy interaction
and coordination need to be considered in the future based on
ex-post assessment of different policies [84]. Hence, It is
necessary simulate the interactions between energy efficiency,
climate change, and air pollution policies through coupling of
energy and air quality models (e.g. GAINS-TM5) [85].

5.4. Improving uncertainties in models

Unlike other model elements, uncertainty analysis is part of the
whole process from input parameters calibration, model structure
determining, and policies planning. Compared to other compo-
nents of the model, uncertainties are given little attention by many
modelers. Specially, empirical analysis and expert judgment are
often used to estimate the uncertainty of the model structure. Yet,
uncertainties resulting from technology and policy instruments
have limited assessment. Several energy modelers only focus on
uncertainty related to input parameters. As mentioned above, some
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traditional bottom—up models, such as China End Use energy
model, only compare to other studies to assess the uncertainties
[21]. In this model, detailed technology and related policy in-
struments were introduced, but the uncertainty factors (e.g. tech-
nology risk, behavioral aspects, and market distortions) that affect
technology application rate are hardly considered. On the other
hand, in many other models the price elasticities are usually used to
assess policy instrument impacts and technology cost. As a typical
example, WorldScan analyses co-benefits of air pollution and GHG
emission policies through adjusting the carbon price. They found
that if government would implement more stringent air pollution
policy, the resulting carbon price could be zero [39]. Hence, these
synergies do affect the elasticities used, but are often not well
understood. Furthermore, assumptions of uncertain parameters
also influence the baseline results. As noted before [13], the choice
of an appropriate baseline is key to understanding the results of
policy modeling. In the GAINS model, it is noticed that the cost-
optimal baseline scenario was used to replace a baseline scenario.
This not only overcame several shortcomings (e.g. the uncertainty
of input data and application status of current technology and
policy) in baseline scenario, but also the modeling results were
found to be more realistic [71]. Hence, the uncertainty analysis in
energy models should not only estimate how much model outputs
(future energy consumption and emissions) are affected by changes
in uncertain key parameters, but should also assess structural
model uncertainty. In addition, it is necessary to provide detailed
information addressing the significance and interactions among
different policies or technologies. To improve the accuracy and
reliability in energy models, the interactions between different
parameters should be considered because changing parameters
simultaneously can have a large effects on results compared to
changing them separately. For example, the outputs of energy
consumption and CO, emissions in EPPA were estimated through
adjusting the parameters of energy and CO; emission prices.
However, the interaction between the two was ignored, in spite of
energy prices having an (in)-direct effect on CO, prices. Further-
more, it is necessary to consider uncertainties related to technology
diffusion and behavior of policymakers, producers, and end users.

6. Conclusion

Many different energy models are used to project China's future
energy consumption and emissions of GHGs and air pollutants.
However, many factors (e.g. market saturation, multiple effects of
different technologies, synergies between energy use, climate
change and air pollution mitigation etc.) pose large challenges for
modeling. The aim of this paper is to evaluate the modeling of these
challenges through assessing 19 selected models. These models
include the most frequently used models to simulate China's future
energy consumption, as well as emissions of GHGs and air pollut-
ants on different levels (e.g. national versus industrial level).

A critical assessment is done of the 19 models, taking into ac-
count model structure, scenario assumptions, features of technol-
ogy representation, and development of energy and air policy
instruments. It is found that these models have a number of limi-
tations to project China's future energy consumption and emissions
of GHGs and air pollution, as well as economic development,
especially on sub-sector level. Some main limitations are difficulty
to represent new technologies, difficulty to represent interactions
of different policy instruments, insufficiently developed to repre-
sent non-linearities for technology diffusion, and limitation of
model uncertainty estimates.

Based on the assessment we provided several key recommen-
dations to improve the accuracy of energy models for projecting
future energy consumption, and emissions of GHGs and air

pollutants, as well as the interaction of different policies and their
co-benefits. For example, uncertainties of model structure and of
key input parameters will become more important especially when
capturing the trajectories of technology diffusion, effects of non-
price policies, and synergies between energy consumption and
emissions of GHGs and air pollutants. These are important to be
addressed when extending/incorporating new modeling ap-
proaches. Finally, the approach in this paper can be a guidance for
future studies that compare energy models.
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