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A Human Renal Proximal Tubule Cell Line with Stable Organic Anion
Transporter 1 and 3 Expression Predictive for Antiviral-Induced Toxicity
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Abstract. Drug-induced nephrotoxicity still hampers drug development, because current translation from
in vitro or animal studies to human lacks high predictivity. Often, renal adverse effects are recognized
only during clinical stages of drug development. The current study aimed to establish a robust and a more
complete human cell model suitable for screening of drug-related interactions and nephrotoxicity. In
addition to endogenously expressed renal organic cation transporters and efflux transporters,
conditionally immortalized proximal tubule epithelial cells (ciPTEC) were completed by transduction
of cells with the organic anion transporter (OAT) 1 or OAT3. Fluorescence-activated cell sorting upon
exposure to the OAT substrate fluorescein successfully enriched transduced cells. A panel of organic
anions was screened for drug-interactions in ciPTEC-OAT1 and ciPTEC-OAT3. The cytotoxic response
to the drug-interactions with antivirals was further examined by cell viability assays. Upon subcloning,
concentration-dependent fluorescein uptake was found with a higher affinity for ciPTEC-OAT1 (Km =
0.8 ± 0.1 μM) than ciPTEC-OAT3 (Km = 3.7 ± 0.5 μM). Co-exposure to known OAT1 and/or OAT3
substrates (viz. para-aminohippurate, estrone sulfate, probenecid, furosemide, diclofenac, and cimeti-
dine) in cultures spanning 29 passage numbers revealed relevant inhibitory potencies, confirming the
robustness of our model for drug-drug interactions studies. Functional OAT1 was directly responsible for
cytotoxicity of adefovir, cidofovir, and tenofovir, while a drug interaction with zidovudine was not
associated with decreased cell viability. Our data demonstrate that human-derived ciPTEC-OAT1 and
ciPTEC-OAT3 are promising platforms for highly predictive drug screening during early phases of drug
development.

KEY WORDS: antivirals; drug-drug interactions; nephrotoxicity; organic anion transport; proximal
tubule epithelial cell.

INTRODUCTION

The renal proximal tubules play a major role in eliminating
waste products from the body, including drugs and their
metabolites. Their active secretion and reabsorption mecha-
nisms together with biotransformation capacity make proximal
tubule cells especially sensitive to drug-induced toxicity and
subsequent acute kidney injury (AKI) (1). Not surprisingly,
nephrotoxicity is a significant cause for drug attrition during
pharmaceutical development, often recognized only during
clinical stages of development as translation from in vitro and
animal studies to human lacks high predictivity (2,3).

An in vitro model with high predictive value for drug-
induced nephrotoxicity should closely reflect the in vivo
processes involved in renal drug handling. More specific, a
robust cell-based model should include a proximal tubule
epithelium stably expressing a broad range of functional
transporters and metabolic enzymes that act in concert in renal
drug elimination (4). This process may be affected in concom-
itant drug treatment, leading to clinically relevant drug-drug
interactions (DDI). The renal elimination mechanism of
xenobiotics can roughly be divided into two major pathways,
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viz. the organic anion and the organic cation system. As a first
step in elimination of organic anions in humans, active tubular
uptake is mediated by the organic anion transporter 1 (OAT1;
SLC22A6) and organic anion transporter 3 (OAT3; SLC22A8)
present at the, blood-facing, basolateral side (5). These trans-
porters are characterized by their high affinity and capacity and,
as a consequence, aremajor players in the development of drug-
induced nephrotoxicity (6). After uptake, secretion of anionic
compounds into the tubular lumen is facilitated by apically
expressed efflux transporters, such as the multidrug resistance
proteins 2 and 4 (MRP2 and -4; ABCC2 and -4) and breast
cancer resistance protein (BCRP;ABCG2) (7). In parallel, renal
elimination of organic cations in the human proximal tubular
epithelium is facilitated by basolateral uptake, predominantly
via the organic cation transporter 2 (OCT2; SLC22A2), and
apical efflux via multidrug and toxin extrusion proteins 1 and 2-
K (MATE1 and -2-K; SLC47A1 and -2) (8) and P-glycoprotein
(P-gp; ABCB1) (9).

Renal drug transporters demonstrate a large overlap in
substrate specificity, introducing redundancy in uptake mecha-
nisms of proximal tubule cells, and contributing to the relative
high sensitivity of the tissue (6,10). This especially counts for
organic anions, as this class comprises the majority of drugs that
are excreted by the kidneys. Drug-induced nephrotoxicity
related to the proximal tubular epithelium by this class of
compounds have been described broadly, including for the
acyclic nucleotide phosphonates adefovir, cidofovir, and
tenofovir (11,12). These antiretroviral compounds are used for
treatment of HIV, hepatitis B, and cytomegalovirus infections
and function as nucleotide analog reverse transcriptase inhibi-
tors (NtRTIs) (13). The exact mechanism of antiviral-induced
renal toxicity is still under debate (14), but the involvement of
OATs in the uptake of many antivirals has been widely
acknowledged (15–17). To prevent NtRTI-induced nephrotox-
icity, their uptake can be inhibited by co-administration of an
OAT1 inhibitor, such as probenecid (18). As with many other
diseases, current antiviral therapy in HIV infections is based on
polypharmacy. Increased plasma concentrations and systemic
toxicity have been observed with didanosine co-administration
of tenofovir in anti-HIV triple therapy, possibly by DDI at the
site of OAT1 that limited renal excretion (19). Together,
polypharmacy can optimize the life-span of infected patients,
but this strategy simultaneously increases the risk for DDI and
demands for personalized evaluation of the benefit/risk ratio for
each drug (20).

The aim of this study was to establish a robust human
cell model that allows prediction of drug-induced nephrotox-
icity and DDI of organic anions, with a focus on antivirals. We
evaluated conditionally immortalized proximal tubule epithe-
lial cells (ciPTEC) as a preclinical in vitro prediction model
(21). This model already demonstrated to be highly predictive
for studying DDI at the site of OCT2 (22) and to endoge-
nously exhibit metabolic enzymes (23) together with a panel
of functional efflux transporters (21,24). However, the
expression of OAT1 and OAT3 was rapidly lost in culture.
Here, these transporters were stably expressed in ciPTEC by
transduction, followed by an elegant selection procedure
using OAT transporter functionality, completing the relevant
renal xenobiotic transporters in ciPTEC. The function of both
transporters appeared to be stable upon prolonged culturing.
These unique characteristics of the presented OAT containing

human cell lines allowed screening for DDI using known
pharmacological OAT1 and OAT3 substrates and/or inhibi-
tors. Upon validation, we demonstrated that OAT-mediated
uptake in ciPTEC are key determinants in antiviral-induced
cytotoxicity. These findings underscore that ciPTEC-OAT1
and ciPTEC-OAT3 are valuable tools for drug-induced
toxicity screening.

MATERIALS AND METHODS

Cell Culture

Conditionally immortalized proximal tubule epithelial
cells (ciPTEC) were developed as described by Wilmer et al.
with informed consent of the donors in accordance with the
approved guidelines of the Radboud Institutional Review
Board (21). Cells were seeded 7 days prior to the
experiment at their corresponding density (55,000 cells/cm2

for ciPTEC parent cells, 63,000 cells/cm2 for ciPTEC-OAT1,
and 82,000 cells/cm2 for ciPTEC-OAT3) and grown for
1 day at 33°C and 5% v/v CO2 to allow proliferation,
enabled by the temperature-sensitive mutant of SV large T
antigen (SV40T). Next, cells were cultured for 6 days at
37°C and 5% v/v CO2 to stimulate differentiation and
formation of an epithelial monolayer, described as Bmatu-
ration.^ Cells were cultured using Dulbecco’s modified
eagle medium (DMEM HAM’s F12, Life Technologies,
Paisly, UK), 5 μg/ml insulin, 5 μg/ml transferrin, 5 μg/ml
selenium, 35 ng/ml hydrocortisone, 10 ng/ml epidermal
growth factor (EGF), 40 pg/ml tri-iodothyronine (Sigma,
St. Louis, USA), and 10% fetal calf serum (FCS, Greiner
Bio One, Kremsmuenster, Austria). Medium was refreshed
every second day, supplemented with 1% penicillin/
streptomycin (pen/strep, Invitrogen, Carlsbad, USA) at
33°C and without pen/strep at the maturation temperature
of 37°C. Three T3 mouse-fibroblast (3 T3) cells were
cultured at 37°C and used only as irradiated non-
proliferating feeder cells for sub-cloning procedures upon
transduction, as described (21).

Vector Construction

Vector construction was performed using Gateway
Cloning Technology (Invitrogen), according to the manufac-
turer’s instructions. Commercially obtained vectors contain-
ing OAT1 (pENTR201-hOAT1, Harvard Plasmids
HsCD00044153) and OAT3 (pENTR201-hOAT3,
HsCD00044090) were transferred into a pLenti4/V5-DEST
vector by LR recombinant reaction, resulting in expression
vectors pLenti4/V5-EX-hOAT1 and pLenti4/V5-EX-hOAT3.
The inducible CMV-TetO2 promoter was replicated from
pcDNA5-FRT-TO (Invitrogen) using primers that introduce
ClaI (forward Cla1-CMV-TetO2: GCCGCCATCGATGCC
GCCGTTGACATTGATTATTGACT) and EcoRI restric-
tion sites (reverse EcoRI-CMV-TetO2: GGCGGCGAAT
TCGGCGGCCGGAGGCTGGATCGGTCCCGG). The
resulting PCR product (ClaI-CMV-TetO2-EcoRI) was puri-
fied using the High Pure PCR Product Purification kit
(Roche, Basel, Switzerland). Both PCR product and expres-
sion vectors were digested by ClaI and EcoRI (New England
Biolabs, Ipswich, USA) for 1 h at 37°C and, after purification,

Nieskens et al.



ligation was performed with a 1:3 (insert:vector) unit ratio
using T4 ligase (Invitrogen) for 2 h at 37°C, resulting in the
pLenti expression constructs (pLenti4/V5-EX-CMV-TetO2-
hOAT1 and pLenti4/V5-EX-CMV-TetO2-hOAT3).

OAT Transduction in ciPTEC

To obtain lentiviral particles containing the OAT
constructs, lentiviral stock was produced by transfecting
the pLenti expression constructs with packaging plasmid
mix into the HEK293FT cell line using ViraPower Lentiviral
Gateway Expression Systems (Invitrogen), according to the
manufacturer’s instructions. CiPTEC were cultured to 50–
70% confluency and exposed to lentiviral particles for 24 h.
Both ciPTEC-OAT1 and ciPTEC-OAT3 were selected and
subcloned to obtain a homogeneous cell population. To this
end, transduced ciPTEC-OAT3 cells were plated into three
separate culture flasks (100, 300, and 900 cells) containing
irradiated (30 Gy) non-proliferating 3 T3 cells as described
by Saleem et al. (25). After 2–3 weeks, single cell colonies of
ciPTEC-OAT3 were picked and cultured. Transduction
efficiency for ciPTEC-OAT1 was lower than for ciPTEC-
OAT3, making immediate subcloning difficult. Therefore,
the heterogeneous cell population of ciPTEC-OAT1 was
enriched by positive selection of fluorescein-transporting
cells. Only successfully transduced ciPTEC express func-
tional OAT; hence, positive selection could be performed
upon exposure to the OAT substrate fluorescein using BD
FACSAria SORP flow cytometer (BD biosciences, San
Jose, USA). Twenty million ciPTEC-OAT1 cells were
suspended in HBSS (Invitrogen) containing 1 μM fluores-
cein and incubated for 10 min at 37°C before fluorescence-
activated cell sorting (FACS). Enriched ciPTEC-OAT1 cells
were subcloned as described for ciPTEC-OAT3. Both
ciPTEC-OAT1 and ciPTEC-OAT3 were cultured for up to
30 passages after transduction to study stability of OAT1
and OAT3 expression.

OAT-Mediated Fluorescein Uptake

To evaluate OAT transporter function and inhibition
properties of several known OAT substrates, fluorescein
uptake was measured by flow cytometry and multi-plate
reader. Mature monolayers of sub-cloned ciPTEC spanning
29 passages were co-incubated with fluorescein (1 μM,
unless stated otherwise) and a test compound in HBSS for
10 min at 37°C. Compounds known for their inhibitory
effect on OAT-mediated transport, para-aminohippuric acid
(PAH), estrone sulfate, probenecid, furosemide, cimetidine,
diclofenac, adefovir, cidofovir, tenofovir, and zidovudine,
were tested. The organic cation metformin was included as
a negative control. All chemicals were obtained from Sigma,
unless stated otherwise. Uptake was stopped by washing
three times with ice-cold HBSS (4°C). For flow cytometry,
samples were harvested following fluorescein exposure
using trypsin-EDTA, washed, fixed using 0.5% paraformal-
dehyde, and measured using FACS calibur (Becton Dickin-
son, Franklin Lakes, USA). For 96-well plate assay, cells
were lysed by 200 μl 0.1 M NaOH for 10 min at 37°C, and
fluorescence was measured (exCitation 485 nm, emission

535 nm) using the multiplate reader Victor X3 (Perkin
Elmer, Waltham, USA).

Viability Assays

To evaluate toxicity induced by antivirals, viability of
ciPTEC was evaluated by an MTT assay (26). Briefly,
monolayers of ciPTEC (96-wells) were exposed to antivirals
in serum-free medium (SFM) on day 6 of maturation. Cell
toxicity was analyzed further in presence of MRP and BCRP
efflux inhibitors MK571 (5 μM) and KO143 (10 μM). After
incubation for 24, 48, and 72 h at 37°C, ciPTEC were washed
and incubated with 0.5 mg/ml thiazolyl blue tetrazolium
bromide (MTT, Sigma) for 3 h at 37°C in absence of
antivirals. Formazan crystals formed in viable cells were
dissolved in dimethyl sulfoxide (DMSO, Merck, Whitehouse
Station, USA), and optical density was measured (560 nm,
background at 670 nm was subtracted) using Benchmark Plus
(Bio-Rad, Hercules, USA).

Gene Expressions in ciPTEC

Total RNA was isolated from matured ciPTEC (6-well
plates) spanning 10 passages for ciPTEC-OAT1 and 11
passages for ciPTEC-OAT3 using TRIzol (Life Technologies
Europe BV) and chloroform extraction. Complementary
DNA (cDNA) was synthesized using M-MLV Reverse
Transcriptase (Promega, Madison, USA), according to the
manufacturer’s instructions. The messenger RNA (mRNA)
expression levels were evaluated using gene-specific primer-
probe sets obtained from Life Technologies: OAT1
(SLC22A6, hs00537914), OAT3 (SLC22A8, hs00188599),
GAPDH (hs99999905), and TaqMan Universal PCR Master
Mix (Applied Biosystems). The quantitative PCR reactions
were performed using CFX96-Touch Real-Time PCR System
(BioRad) and analyzed using BioRad CFX Manager (version
1.6). mRNA levels for ciPTEC-OAT1 and ciPTEC-OAT3
were calculated using GAPDH as a reference gene and
compared to gene expressions in human kidney homogenates
in triplicate.

Data Analysis

A Michaelis-Menten equation was combined with linear
diffusion to fit fluorescein uptake data after background
subtraction with GraphPad Prism (version 5.03). For calcula-
tion of IC50 values, log (concentration inhibitor) versus
fluorescein uptake was plotted after background subtraction
using GraphPad Prism.

For MTT and fluorescein inhibition assays, data were
normalized to the viability or activity of untreated control
cells. Non-linear regression with variable slope constraining
the top to 100% was used to fit the data after background
subtraction with GraphPad Prism. Statistics was performed by
two-way ANOVA (two-tailed, α = 0.05) using GraphPad
Prism as well. All data is presented as mean±SEM of at
least three separate experiments (n= 3) performed in tripli-
cate, unless stated otherwise.
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RESULTS

Functional OAT Expression in ciPTEC

The absence of endogenous OAT1 and OAT3 expression
in ciPTEC was demonstrated by exposure to fluorescein
(1 μM) for 10 min, which did not increase the intracellular
fluorescence intensity as measured by flow cytometry (Fig. 1b,
red line). Therefore, OAT transporters were introduced
separately by lentiviral transduction. A schematic overview
of the experimental approach is provided in Fig. 1a. The
transporter genes SLC22A6 and SLC22A8 were cloned under

regulation of a CMV promoter and a TetO2 site to
conditionally induce the expression. Remarkably, basal ex-
pression and function upon transduction of both OAT
transporters was positive without tetracycline induction and
was not influenced by this inducer (data not shown).
Fluorescein uptake capacity (without induction by tetracy-
cline) was used to discriminate between successfully trans-
duced cells and non-transduced cells, reflected by a two sub-
populations in the flow cytometer histogram (Fig. 1c). When
exposed to 1 μM fluorescein for 10 min, a small cell
population accumulated the fluorescent substrate, which was
immediately selected using FACS. The fraction of OAT1-

Fig. 1. Schematic overview of transduction procedure to obtain ciPTEC-OAT1 and ciPTEC-OAT3. a CiPTEC parent was
transduced with OAT1 or OAT3 lentiviral constructs and enriched by FACS using OATs’ capacity to transport fluorescein.
Further subcloning using radiated 3 T3 fibroblasts as feeder cells resulted in a homogeneous ciPTEC-OAT1 or ciPTEC-
OAT3 cell line. Histogram obtained by flow cytometry of b ciPTEC parent, c ciPTEC-OAT1, and ciPTEC-OAT3 exposed to
fluorescein (1 μM, 10 min, green line), fluorescein and para-aminohippuric acid (100 μM, red line), or untreated cells (black
line). Parent cells exposed to fluorescein did not show increased fluorescence intensity, while ciPTEC-OAT1 and ciPTEC-
OAT3 both showed a sub-population with increased fluorescence indicative for OAT functionality, which is sensitive to para-
aminohippuric acid-induce inhibition. d Scattered plot showing forward scatter (y axis) and fluorescein intensity (x axis) of
transduced ciPTEC-OAT1 exposed to 1 μM fluorescein for 10 min. The population with high-fluorescence intensity
indicated by gate P1 (8.3% of total population) was sorted to enrich successfully transduced ciPTEC-OAT1. Transduction
with OAT3 was more efficient than OAT1, represented by the larger positive subpopulation in Fig. 1c, making the
enrichment protocol redundant for ciPTEC-OAT3. e Histogram of enriched ciPTEC-OAT1 exposed to fluorescein (1 μM,
10 min) in presence (red line) or absence (green line) of competitor para-aminohippuric acid (100 μM) demonstrates
increased fluorescence intensity compare to non-enriched ciPTEC, but a heterogeneous population sensitive to para-
aminohippuric acid, pointing towards the requirement of subcloning of the enriched cells
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positive cells selected (Fig. 1d) accounted for only 8.3% of
the total population. The enriched population accumulated
fluorescein efficiently, and was sensitive to inhibition by para-

aminohippuric acid, a known OAT1 substrates and/or inhib-
itors (Fig. 1e). The ciPTEC-OAT1 population enriched by
FACS and the non-enriched ciPTEC-OAT3 population were
subcloned to obtain homogeneous cell populations with high
functional OAT transporter expression, demonstrated by
qPCR. Expression levels of OAT1 and OAT3 in the
respective cell lines were compared to gene expression levels
in human kidney tissue homogenates, resulting in a ratio of
0.7 ± 0.2 and 0.14 ± 0.02 for OAT1 and OAT3, respectively.
Intact tubular phenotype was demonstrated by functionally
active OCT2, for which a drug interaction with cimetidine was
shown to be similar to the parent cell line (Fig. S1).

Drug-Interaction at the Site of OAT1 and OAT3

Transport kinetics of OAT-mediated fluorescein trans-
port was investigated further by studying the time and
concentration dependent uptake of the substrate. Fluorescein
uptake demonstrated partial saturation in OAT1- and OAT3-

Fig. 2. OAT-mediated fluorescein uptake in ciPTEC-OAT1 and
ciPTEC-OAT3. a Concentration-dependent OAT1 and OAT3 medi-
ated uptake of fluorescein after 10 min incubation in ciPTEC-OAT1
and ciPTEC-OAT3. The curve was fitted (n = 4) according to a
Michaelis-Menten model in combination with linear diffusion. b, c
Fluorescein uptake (1 μM) by ciPTEC-OAT1 and d, e ciPTEC-OAT3
up to 60 min in absence or presence of two concentrations of the
typical inhibitors para-aminohippuric acid (PAH, for ciPTEC-OAT1)
or estrone sulfate (ES, for ciPTEC-OAT3). b, d The curves were
fitted (n = 4) to a standard saturation model after background
subtraction. Analysis using two-way ANOVA indicated significantly
decreased uptake curves in both ciPTEC-OAT1 (10 μM and 100 μM
PAH, p < 0.001)) and ciPTEC-OAT3 (3 μM ES, p < 0.01; 100 μM ES,
***p < 0.001). c, e Representative images of fluorescein uptake
(1 μM) by ciPTEC-OAT1 (c) and ciPTEC-OAT3 (e) after 10 min
(magnification 20×)

Table I. Michaelis-Menten Parameters for OAT-Mediated Fluores-
cein Uptake in ciPTEC-OAT1 and ciPTEC-OAT3a

ciPTEC-OAT1 ciPTEC-OAT3

Km (μM) 0.8 ± 0.1 3.7 ± 0.5
Vmax (RFU) 695 ± 84 384 ± 103
Kd (RFU*L/μmol) 2.4 ± 1.2 4.3 ± 0.9

aData are expressed as mean ± SEM, n = 4

Fig. 3. Inhibition of OAT-mediated fluorescein uptake by a panel of
OAT-perpetrators. Fluorescein uptake (1 μM) by ciPTEC-OAT1 and
ciPTEC-OAT3 when co-incubated with para-aminohippuric acid,
estrone sulfate, probenecid, furosemide, cimetidine, diclofenac, and
metformin for 10 min in HBSS at 37°C, relative to uptake without
inhibitor. The line represents the fit according to a one-site
competition model with variable slope, except for metformin. Values
are derived from experiments performed at passage x + 8, x + 11, x +
14, and x + 29 upon transduction (n = 4)
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expressing cells (Fig. 2a, b, d) for which a Km and Vmax value
was determined taking a passive diffusion component kd into
account (Table I). Fluorescein affinity was approximately
fivefold higher for OAT1 than for OAT3. Upon fluorescein
exposure (10 min, 1 μM), confocal fluorescent imaging
confirmed uptake in ciPTEC-OAT1 and ciPTEC-OAT3
(Fig. 2c, e). To demonstrate the uptake was transporter
mediated, specific inhibition of fluorescein uptake in presence
of two concentrations para-aminohippuric acid (10 and
100 μM) and estrone sulfate (3 and 100 μM) in ciPTEC-
OAT1 and ciPTEC-OAT3, was studied (Fig. 2b, d). CiPTEC-
OAT1 and ciPTEC-OAT3 were evaluated further by deter-
mination of IC50 values using concentration-dependent inhi-
bition of fluorescein uptake in presence of para-
aminohippuric acid, estrone sulfate, probenecid, furosemide,
cimetidine, and diclofenac (Fig. 3, Table II). Overall, IC50

values calculated in our models are in close agreement with
previously reported values, although it should be noted that
probe substrates may differ and influence IC50 values
(Table II). Further confirmation of specificity was obtained
using metformin, not affecting OAT-mediated fluorescein
uptake in both ciPTEC-OAT1 and ciPTEC-OAT3, as met-
formin is an OCT substrate (38). The experiments depicted in
Fig. 3 were performed in cells spanning 29 passages after
transduction. The small variations in these data and main-
tained fluorescein uptake indicate stable transduction and
high robustness of transporter function in ciPTEC-OAT1 and
ciPTEC-OAT3.

OATs Mediate Antiviral-Induced Toxicity

As toxicity of antivirals was reported to be associated
with OAT1- and OAT3-mediated renal tubular uptake, we

Table II. Inhibitory Potencies of Substrates and/or Inhibitors of Fluorescein Uptake in ciPTEC-OAT1 and ciPTEC-OAT3 and a Selection of
Reference Valuesa

Current study Literature

Cell line IC50 (μM) IC50 (μM) Ki (μM) Substrate Cell line Ref

Para-aminohippuric acid ciPTEC-OAT1 18 ± 4 8.8 6.02 6-carboxyfluorescein
ochratoxin A

CHO-OAT1
S2-OAT1

(27,28)

ciPTEC-OAT3 152 ± 3 19.6
100

ochratoxin A
benzylpenicillin

S2-OAT3
HEK293-hOAT1

(28,29)

Estrone sulfate ciPTEC-OAT1 54 ± 13 >100 PAH S2-OAT1 (30)
ciPTEC-OAT3 2.1 ± 0.3 3.0 estrone sulfate Xenopus-OAT3 (31)

Probenecid ciPTEC-OAT1 12.7 ± 0.5 6.3 4.29
12.1

ochratoxin A
6-carboxyfluorescein PAH

S2-OAT1
CHO-OAT1
S2-OAT1

(16,27,28)

ciPTEC-OAT3 1.9 ± 0.6 3.1 4.41 cimetidine
ochratoxin A

CHO-OAT3
S2-OAT3

(28,32)

Furosemide ciPTEC-OAT1 25 ± 4 18 PAH S2-OAT1 (33)
ciPTEC-OAT3 2.3 ± 0.4 7.31

1.7
estrone sulfate
sitagliptin

S2-OAT3
CHO-OAT3

(32,33)

Cimetidineb ciPTEC-OAT1 654 ± 291 492 PAH S2-OAT1 (34)
ciPTEC-OAT3 215 ± 162 79

53
sitagliptin
estrone sulfate

CHO-OAT3
Xenopus-OAT3

(32,35)

Diclofenac ciPTEC-OAT1 5 ± 1 4.46
4

PAH
adefovir

S2-OAT1
CHO-OAT1

(36,37)

ciPTEC-OAT3 3 ± 1 7.78 estrone sulfate S2-OAT3 (36)

aData are expressed as mean ± SEM, n = 4
bApparent IC50 value due to partial inhibition

Fig. 4. Inhibition of OAT-mediated fluorescein uptake by adefovir,
cidofovir, tenofovir, and zidovudine. Fluorescein uptake (1 μM) by
ciPTEC-OAT1 and ciPTEC-OAT3 when co-incubated with the
antivirals for 10 min in HBSS at 37°C, relative to uptake without
inhibitor. The line represents the fit according to a one-site
competition model with variable slope (n = 4)
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investigated their effects on OAT function and cell viability
upon drug exposures. Concentration-dependent inhibition of
fluorescein uptake via OAT1 was observed by adefovir,
cidofovir, tenofovir, and zidovudine, while OAT3 was only
associated with zidovudine-fluorescein interactions (Fig. 4,
Table III). Next, the DDI indices were determined. The US
Food and Drug Administration (FDA) draft a DDI guideline
(48) recommending to perform clinical DDI studies when the
ratio between unbound plasma concentration and IC50

(Cmax,u /IC50) is higher than 0.1. For adefovir, cidofovir, and
zidovudine, the IC50 value was less than 10 times the maximal
free plasma concentration (Cmax,u/IC50 > 0.1), and, therefore,
at clinically relevant plasma concentrations inhibition of
OAT1 is likely, and DDI with OAT1 transporter substrates
were defined as clinically relevant in our study. Next,
cytotoxicity caused by all four antivirals was evaluated after
exposure of ciPTEC for 24–72 h to the drugs. As a measure of
cytotoxicity, cell viability was analyzed by cellular dehydro-
genase capacity, metabolizing MTT into purple formazan. In
the parent ciPTEC, viability was not affected by any of the
antivirals (48 h, 1 mM), while adefovir, cidofovir, and
tenofovir significantly affected cell viability in ciPTEC-
OAT1, and only tenofovir slightly decreased ciPTEC-OAT3
viability (Fig. 5a). Antiviral-induced toxicity was evaluated in
more detail, demonstrating a concentration- and time-
dependent decrease in viability by adefovir, cidofovir, and
tenofovir in ciPTEC-OAT1, while the effect was less pro-
nounced in ciPTEC-OAT3 (Fig. 5b and Table IV). These
findings indicate the direct involvement of the OAT trans-
porters in antiviral-mediated nephrotoxicity, although IC50

values found in the current study are higher compared to
those obtained in previous studies (Table IV). The cytotoxic
effect of the antivirals correlated nicely with the inhibitory
effect on fluorescein uptake, except for zidovudine. Despite a
clear inhibition of fluorescein uptake by zidovudine, suggest-
ing OAT-mediated uptake, this compound did not affect cell

viability as determined by the MTT assay. To investigate a
potential protective effect via intact efflux transporters in
ciPTEC, cells were exposed to zidovudine at 10× Cmax

(50 μM) in presence of MRP4 and BCRP inhibitors MK571
and KO143, respectively. This did not affect cell viability in
ciPTEC, ciPTEC-OAT1, nor ciPTEC-OAT3, indicating that
efflux transporters did not counteract intracellular exposure
of zidovudine and thereby reducing the cytotoxic potential of
zidovudine.

DISCUSSION

To improve prediction of the nephrotoxic potential of
novel chemical entities and to mechanistically understand the
pathways associated with drug-induced toxicity, highly pre-
dictive and validated translational models are required. In the
present report, we describe such a robust human-based cell
model with intact proximal tubular characteristics. Stable
OAT1 and OAT3 expression in the human renal cell line
ciPTEC allowed studying reproducible DDI for a panel of
model substrates and antiviral compounds. Functional OAT1
and OAT3 transport activity was demonstrated to be
associated with drug-induced toxicity of the antivirals
adefovir, cidofovir, and tenofovir. These findings indicate that
our model predicts drug-induced nephrotoxicity and under-
score that functional expression of influx transporters is
pivotal in prediction of drug-induced renal toxicity.

Many reports related to studying drug-OAT interactions
describe the use of non-polarized overexpression systems,
such as Chinese hamster ovary (CHO) cells, the human
cervical epitheloid carcinoma cell line HeLa, or human
epithelial kidney (HEK) 293 cells, which are highly relevant
for studying interactions at the single-transporter level but
might have a poor overall predictivity due to their simplicity
(27,39). Since proximal tubule cells are the main site of
adverse drug effects in the kidney, this cell type is preferred

Table III. Inhibitory Potencies of Antivirals on Fluorescein Uptake Using ciPTEC-OAT1 and ciPTEC-OAT3 Compared with a Selection of
Reference Values. In the Current Study, Fluorescein Inhibition by the Model Compounds was Measured. For References, the Competitive

Substrate is Provided

Current study Literature DDI index

Cell line
IC50

(μM)
IC50

(μM)
Km

(μM) Substrate Cell line Ref.
Cmax

(μM) Cmax/IC50 Ref

Adefovir ciPTEC-OAT1 23 ± 4 8.1
28

23.8 PAH
6-carboxyfluorescein
–

HeLa-OAT1
CHO-OAT1
CHO-OAT1

(27,39) 1.6
38.8

0.18
4.2

(40,41)

ciPTEC-OAT3 N.A.
Cidofovir ciPTEC-OAT1 71 ± 34 60 58 6-carboxyfluorescein

–
CHO-OAT1
CHO-OAT1

(27) 15.8
26.3

0.53
0.88

(42,43)

ciPTEC-OAT3 N.A.
Tenofovir ciPTEC-OAT1 42 ± 8 29.3 33.8 PAH

–
HeLa-OAT1 (39,44) 0.52

0.72
0.014
0.019

(45,46)

ciPTEC-OAT3 N.A.
Zidovudine ciPTEC-OAT1 14 ± 7 45.9 – S2-OAT1 (16) 5.5 0.55

0.66
(47)

ciPTEC-OAT3 21 ± 4 145 – S2-OAT1 (16) 6.6 0.69
0.83

(47)

N.A not applicable, PAH para-aminohippurate,HeLa human epitheloid cervix carcinoma cell, CHO Chinese hamster ovary cell line, S2 SV40T
immortalized mouse renal cell line
aData are expressed as mean ± SEM
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for in vitro assays investigating drug-induced nephrotoxicity
(1). Human primary proximal tubule cells reflect in vivo

toxicological responses best, but lack reproducibility and
robustness due to high donor-to-donor variability and limited
availability. Moreover, primary cells lose their proximal
tubular phenotype upon culturing, and OAT1-4, P-glycopro-
tein, and MRP expressions were found to be rapidly
decreased (50,51). To extend the life span of human proximal
tubular cells and to provide a robust model for drug
screening, we and others have immortalized primary kidney
cells, yet without demonstrating functional OATs (21,52),
despite retained gene expressions (53).

The current study demonstrates the first human model
with stable expression of OAT1 and OAT3 for up to 10 and
11 passages, respectively, as analyzed by qPCR and function-
ality of OAT1 and OAT3 for up to 29 passages as analyzed by
fluorescein uptake. Experimental values obtained for DDI of
model compounds correlated well with published data,
confirming PAH has a higher inhibitory potency for OAT1
compared to OAT3, whereas the inhibitory potencies of
estrone sulfate, probenecid, and furosemide were clearly
higher for OAT3. The IC50 value of cimetidine in ciPTEC-
OAT1 is, however, more than fivefold higher as described
earlier, whereas ciPTEC-OAT3 inhibition by cimetidine was
found well within predetermined ranges (34). This discrep-
ancy may be explained by different substrates used in the
studies, where the OAT1-substrate PAH used in earlier
studies, has a lower affinity for OAT1 as compared to
fluorescein used in the current study. Since tetracyclin-
inducible expression of OAT1 and OAT3 in ciPTEC was
not achieved, we hypothesize that random integration of the
vector could have caused silencing of this particular promoter
element. The effects of prototypic inhibitor compounds on
drug transport are promising with respect to the application
of ciPTEC as a tool to study drug-induced nephrotoxicity, and
the proof-of-concept was evaluated further with a selected a
panel of clinically relevant antivirals with various pharmaco-
kinetic parameters.

DDIs are a major concern in anti-HIV therapy that
includes co-administration of multiple antivirals. We evalu-
ated adefovir, cidofovir, tenofovir, and zidovudine DDI at the
site of OAT1 and OAT3. The affinities of adefovir, cidofovir,
and tenofovir were higher for OAT1 than for OAT3, in
agreement with previous studies in CHO cells overexpressing
hOAT1 and hOAT3 (44). The DDI index has been used to
determine the potential of clinical DDI and drug-induced
toxicities (48,54) and allows extrapolating in vitro observa-
tions to the clinical setting (48,54). In our study, IC50 values of
less than 10 times the maximal free plasma concentration

Fig. 5. Antiviral-induced toxicity in ciPTEC-OAT1 and ciPTEC-
OAT3. a Viability of ciPTEC parent, ciPTEC-OAT1, and ciPTEC-
OAT3 after exposure to antiviral agent (1 mM) for 48 h in serum-free
medium relative to cell viability as measured with the MTT assay
without exposure (n = 3). **p < 0.01; ***p < 0.001. b Viability of
ciPTEC-OAT1 and ciPTEC-OAT3 upon tenofovir, adefovir,
cidofovir, or zidovudine exposure for 24, 48, and 72 h in serum-free
medium, relative to cell viability without exposure. The line
represents the fit according to a one-site competition model with
variable slope (n ≥3)

Table IV. Inhibitory Potencies of Antivirals on Cell Viability as Measured by MTT Assay Using ciPTEC-OAT1 and a Selection of Values as
Found in Literaturea

ciPTEC-OAT1

Current study Literature

24 h 48 h 72 h 48 h 120 h Ref

Adefovir 462 ± 52 303 ± 38 230 ± 37 0.22 ± 0.08 1.4 ± 0.7 (44,49)
Cidofovirb 613 ± 384 130 ± 58 69 ± 2 0.5 ± 0.2 3 ± 1 (44,49)
Tenofovir 114 ± 25 189 ± 48 223 ± 67 10 ± 2 21 ± 7 (44,49)

aData are expressed as μM (mean ± SEM), n≥ 3.
bApparent IC50 value due to partial inhibition
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(Cmax,u/IC50 > 0.1) were found for adefovir, cidofovir, and
zidovudine, indicating these antivirals are likely to inhibit
OAT1 and OAT3 at clinically relevant concentrations.

Antiviral-induced nephrotoxicity was shown to be asso-
ciated with OAT-mediated uptake and further evaluated in
the current study (11,15,44,49). We demonstrated that OAT1
or OAT3 expression is required for induction of toxicity by
adefovir, cidofovir, and tenofovir in ciPTEC. The relation
between OAT1 transporter affinity and toxicity was described
earlier using HeLa cells, transiently expressing hOAT1, in
which cidofovir showed a higher affinity as well as a higher
toxicity compared to tenofovir (39). In agreement, when the
cytotoxic potential of NtRTIs in ciPTEC-OAT1 at 72 h of
exposure was ranked, we found that cidofovir has the highest
potency over tenofovir and adefovir (44,49). On the other
hand, the low potency of adefovir in our study contrasts to the
cytotoxicity reported for other cell models (34,54). In general,
the toxic potency of the antivirals in ciPTEC is lower as
compared to hOAT1-CHO and HEK-OAT1, which may be
due to the presence of functional metabolic enzymes and an
intact efflux machinery in ciPTEC (44,49,55). RNA expres-
sion of phase I enzymes CYP3A4, CYP4A11, and several
UDP-glucuronosyltransferases (UGTs) in ciPTEC were
found to be comparable to their expression levels in primary
PTEC (23,51). Protein expression of the efflux transporters
Pgp and MRP4 was demonstrated, as well as functional efflux
transport activity of Pgp, MRP4, and BCRP (21,24). From
these findings, we conclude that ciPTEC closely reflects the
physiological situation, suggesting that our model is of higher
predictive value than single overexpression systems. Since
MRP4 mediates the efflux of tenofovir, its functional presence
in ciPTEC might explain the reduced cytotoxicity in our
model as compared to overexpression systems lacking this
transporter (15,55). Future research should clarify this.

Activity of phase I and phase II metabolizing enzymes
was demonstrated in ciPTEC of which the UGT2B7 subfam-
ily might have been the cause of the tolerance for zidovudine
observed in the present study (23). While adefovir, cidofovir,
and tenofovir are largely excreted unchanged by the kidneys,
only 23% of zidovudine is eliminated via the urine without
metabolic alterations (56). Zidovudine undergoes either
phase II metabolism into the non-toxic 5’-zidovudine-O-
glucuronide or the antiviral is phosphorylated resulting in
mitochondrial toxicity (12,57). As both glucuronidation and
phosphorylation take place at the same functional group of
zidovudine (5’-OH), the low toxicity of zidovudine suggests a
favor for glucuronidat ion in ciPTEC. Although
glucuronidation predominantly takes place in the liver,
UGT2B7 expression in ciPTEC might contribute to zidovu-
dine detoxification. Moreover, the toxic side effects of
nucleoside analogs have been correlated with the kinetics of
incorporation by the mitochondrial DNA polymerase, rank-
ing zidovudine less toxic than tenofovir (58). As efflux
inhibition of MRP4 and BCRP did not further reduce
viability of ciPTEC upon exposure with zidovudine, the
toxicity of this compound is likely not influenced by these
efflux transporters. Differences in expression of metabolic
enzymes and transporter activities between various cell lines
used for toxicity studies should be taken into account when
comparing functional readout parameters. Moreover, the
broad presence of metabolic enzymes and transporters in

our model as well as in freshly isolated PTECs increases their
predictive potential, but complicates comparison with more
simple models. Taken together, the combined expression of
efflux transporters (MRP4, BCRP, MATE2-K, and Pgp) with
influx transporters (OAT1/3, OCT2, and SLCO4C1) and
metabolic enzymes make ciPTEC suitable to study multiple
steps involved in renal elimination and drug-induced
nephrotoxicity.

The clinical relevance and impact on drug safety of OAT
transporters are well acknowledged by regulatory authorities
and the pharmaceutical industry (59). Both the FDA and the
European Medicines Agency (EMA) have issued guidance
documents, outlining that OAT interactions should be studied
for new compounds (48,60). Furthermore, the International
Transporter Consortium (ITC) provided decision trees to
determine whether a drug candidate may be a substrate
(victim) or an inhibitor (perpetrator) of transporters involved
in clinically relevant DDI (61). Consequently, pharmaceutical
industry started a quest for reliable and high-throughput
in vitro models that mimic the human kidney with improved
prediction of drug-induced nephrotoxicity and a decrease in
use of animals in research (62). Current preclinical tests for
prediction of nephrotoxicity are mainly based on animal
(rodent) models. These models provide information about
systemic toxicity in living organisms, but they bear high costs,
are time intensive, and remain an ethical issue. Their clinical
predictive value is limited due to inherent interspecies
differences in drug disposition and emphasizes the urgent
need for human-based models that closely resemble the
human kidney physiology (6,63). Current innovations in
in vitro models allowing cells to grow in polarized structures
under flow conditions, in combination with high-throughput
automated systems for toxicity read-outs, will become major
steps forward in drug safety screening, for which the ciPTEC
model may provide a suitable cellular basis (64). In general,
application of ciPTEC as a predictive tool for drug-induced
toxicity requires comparison with freshly isolated PTECs and
further validation by extrapolation of in vitro data to clinical
outcomes.

CONCLUSION

We present the first human PTEC model with stable
expression and functionality of OAT1 and OAT3, allowing
screening for drug-induced nephrotoxicity and DDI. The
NtRTI drugs tenofovir, adefovir, and cidofovir-induced neph-
rotoxicity and exhibited DDI indices at clinically relevant
concentrations. These findings underscore that ciPTEC-
OAT1 and ciPTEC-OAT3 are valuable tools for drug-
induced toxicity screening that, upon systematic validation,
could improve translation of in vitro findings to clinical
research and might decrease the use of animal studies in the
preclinical stages of drug development.
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