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ABSTRACT

Past hydrological interactions between the Mediterranean Sea

and Black Sea are poorly resolved due to complications in

establishing a high-resolution time frame for the Black Sea.

We present a new greigite-based magnetostratigraphic age

model for the Mio-Pliocene deposits of DSDP Hole 380/380A,

drilled in the southwestern Black Sea. This age model is com-

plemented by 40Ar/39Ar dating of a volcanic ash layer, allow-

ing a direct correlation of Black Sea deposits to the

Messinian salinity crisis (MSC) interval of the Mediterranean

Sea. Proxy records divide these DSDP deposits into four

intervals: (i) Pre-MSC marine conditions (6.1–6.0 Ma); (ii)

highstand, fresh to brackish water conditions (~6.0–5.6 Ma);

(iii) lowstand, fresh-water environment (5.6–5.4 Ma) and (iv)

highstand, fresh-water conditions (5.4–post 5.0 Ma). Our

results indicate the Black Sea was a major fresh-water source

during gypsum precipitation in the Mediterranean Sea. The

introduction of Lago Mare fauna during the final stage of the

MSC coincides with a sea-level rise in the Black Sea. Across

the Mio-Pliocene boundary, sea-level and salinity in the Black

Sea did not change significantly.
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Introduction

Connectivity between the Mediter-
ranean and the Paratethys region
to the north was important during
the Messinian salinity crisis
(5.97–5.33 Ma) (e.g. Roveri et al.,
2014). The Messinian Paratethys com-
prised large parts of the drainage area
of Central Eurasia and formed a
water body of similar surface area to
the Mediterranean Sea (Popov et al.,
2006). The Paratethys therefore repre-
sents a major source of non-marine
water, but its influence on the hydro-
logical budget and the MSC deposits
of the Mediterranean is still unknown,
mainly because of poor chronological
resolution. Recently, Messinian suc-
cessions in marginal settings in the
Dacian and Black Sea basins have
been correlated in detail to the MSC
deposits (Krijgsman et al., 2010; Vasi-
liev et al., 2011, 2013; Stoica et al.,
2013), but a deep Black Sea record
has not yet been resolved.
In 1975, DSDP Leg 42B drilled

several holes in the deep Black Sea

to study the interactions between the
Paratethys and Mediterranean
(Fig. 1). One of the most controver-
sial outcomes of this expedition was
the discovery of a pebbly mudstone
unit (unit IVd in Hole 380/380A),
found at a depth of 875 mbsf (Ross,
1978). This unit was interpreted as a
shallow water deposit and assumed
by some to represent the desiccation
of the Black Sea during the MSC
(Hs€u and Giovanoli, 1979). However,
sediments overlying unit IVd were
recently shown to be older than the
MSC (Grothe et al., 2014). This indi-
cates a time-equivalent record of the
MSC may be present in the overlying
deposits. To complicate matters,
recent seismic studies have found evi-
dence of large-scale mass transport
complexes in the region (Tari et al.,
2015).
The lack of independent age con-

straints in the DSDP Leg 42B cores
has long impeded the establishment
of a robust time frame for the deep
Black Sea deposits. Post-cruise mag-
netostratigraphic dating was hin-
dered by the little-understood
authigenic iron sulphide mineral
greigite (Fe3S4) being the main mag-
netic carrier (Giovanoli, 1979). In
recent years, the understanding of
greigite has significantly improved,
and this mineral can, under the right

circumstances, be considered a reli-
able magnetic carrier (Vasiliev et al.,
2008; Roberts et al., 2011; Chang
et al., 2014). Especially in the cir-
cum-Black Sea region, numerous
Late Miocene and Pliocene land-
based sections with greigite as the
magnetic carrier have been magne-
tostratigraphically dated (Vasiliev
et al., 2004, 2005, 2011; Krijgsman
et al., 2010; Van Baak et al., 2013).
Here, we provide independent age
constraints for Hole 380/380A of
DSDP Leg 42B and create an
improved time frame by magne-
tostratigraphically and radioisotopi-
cally dating the interval overlying
unit IVd. This allows us to plot pre-
viously published proxy records in
time to unravel the coevolution of
the Mediterranean and Black Sea
during the MSC.

Mediterranean-Paratethys co-
evolution

Paratethys-Mediterranean connectiv-
ity is determined by the interplay
between active tectonics in the
palaeo-Bosporus region and changes
in Mediterranean sea-level (Cagatay
et al., 2006). As a result, the Black
Sea experienced significant palaeoen-
vironmental changes in the Late
Miocene-Pliocene. During the early
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Messinian, the Paratethys experi-
enced both marine and fresh-water
conditions (Nevesskaya et al., 2003;
Popov et al., 2006; Radionova et al.,
2012). At ~6.1 Ma, prior to the onset
of the MSC, a connection was estab-
lished between the Mediterranean
and Paratethys (Krijgsman et al.,
2010; Chang et al., 2014). A sea-level
and salinity rise throughout the
Paratethys is evidenced by a brief
moment of full marine conditions
(Radionova and Golovina, 2011a;
Stoica et al., 2013). Highstand condi-
tions with a two-way connection
between the Mediterranean and
Paratethys continue throughout the
first gypsum stage of the MSC
(Vasiliev et al., 2013). At the Black
Sea margin, the acme of the MSC
coincides with a sea-level drop, with
the final marine deposit dated at
5.6 Ma (Krijgsman et al., 2010). To
better understand the Mediterranean-
Paratethys coevolution, a record
from the basinal part of the Black

Sea is required. DSDP Hole 380/
380A is located near the Bosporus
on the basin apron at a water depth
of 2107 m and may therefore record
deposition across the MSC in a deep
basinal setting. To understand Black
Sea evolution during the MSC, a
high-resolution time frame for this
site is of vital importance.

Results

Magnetostratigraphy

We follow similar thermal demagne-
tization techniques on discrete speci-
mens to those previously described
by Vasiliev et al. (2007). 54 samples
were taken between 700 and 875 mb-
sf. Between 200 and 400 °C, these
samples show a consistent compo-
nent of normal or reverse polarity,
comparable to previously analysed
greigite-bearing Paratethys rocks
(Fig. 2). Between 700 and 780 mbsf,
three zones of both reverse and nor-

mal (N1, N2, N3) polarity are found.
Below 780 mbsf a long reverse-polar-
ity zone continues down to 845 mbsf,
where one sample has a clear normal
direction. Below 845 mbsf, in units
IVc and IVd, this temperature com-
ponent becomes weaker and difficult
to interpret, resulting in undeter-
mined polarities.

40Ar/39Ar dating

At 706.8 mbsf, a 2 cm thick dacitic
tuff layer is present (Shipboard Sci-
entific Staff, 1978). A feldspar frac-
tion with a grainsize between 90 and
250 lm and a density between 2.54
and 2.59 g cm�3 was isolated using
standard mineral separation tech-
niques. The sample was irradiated
for 18 h at the Petten High Flux
Reactor (The Netherlands) in the
Cd-shielded RODEO-P3 position.
40Ar/39Ar measurements were per-
formed on a Helix-MC noble gas
mass spectrometer. We calculated an
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age of 4.36 � 0.19 Ma (1r) (Fig. 3).
Relevant analytical data are summa-
rized in Table 1.

Calcareous nannofossils and diatoms

Time zonation based on microfossils is
problematic in the non-marine Black
Sea deposits (Percival, 1978; Ross,
1978). Among the more useful micro-
fossil groups studied for Hole 380A
are diatoms (Jous�e and Mukhina,
1978; Schrader, 1978; Khursevich and
Mukhina, 1995), which are very sensi-
tive to palaeoenvironmental changes
under non-marine conditions. Popescu
et al. (2010) reported, at 840 mbsf, the
occurrence of calcareous nannofossils
Triquetrorhabdulus rugosus and
Ceratolithus acutus and proposed an
age between 5.345 and 5.279 Ma.
However, this is inconsistent with the
proposed age of ~6.1 Ma based on the
first consistent occurrence of dinoflag-
ellate cysts Galeacysta etrusca
(841 mbsf) and Caspidinium rugosum
(850 mbsf) (Grothe et al., 2014).

Therefore, we resampled the interval
840–856 mbsf for nannofossil
assemblage analysis. Our results indi-
cate the entire interval is barren of
in situ nannofossils, lacking any taxon
ascribable to the Pliocene. The sup-
posed presence of the rare biostrati-
graphic markers T. rugosus and
C. acutus, as previously reported
(Popescu et al., 2010), should be
associated with other taxa constituting
the common component of a typical
lower Pliocene nannofossil assem-
blage. This is not the case in the
sample at 840 mbsf, in which only
rare long-range taxa and reworked
forms (e.g. Cyclicargolithus abisectus,
Cyclicargolithus spp.) are found.
Therefore, we correlate the 840–
850 mbsf interval using the tie point
provided by the dinoflagellate cyst
correlation of Grothe et al. (2014).

Messinian events in the Black Sea

Our 40Ar/39Ar-dated ash layer of
4.36 � 0.19 Ma at 706.8 mbsf con-

strains the age of the top of the stud-
ied interval. The base of the polarity
column is constrained at 851 mbsf
by the Caspidinium rugosum datum
of 6.12 Ma (Grothe et al., 2014).
Based on these tie points, the magne-
tostratigraphy provides a straightfor-
ward correlation, with N1, N2 and
N3 corresponding to chrons C3n.2n
(Nunivak), C3n.3n (Sidufjall) and
C3n.4n (Thvera) respectively (Fig. 4).
The long reverse interval between
780 and 845 mbsf correlates to chron
C3r.
The interpretation of a consistent

lithological succession in the studied
interval does not necessarily contra-
dict the seismic interpretation of a
large mass transport complex in this
part of the core (Tari et al., 2015).
The seismic expression allows for the
possibility of very large blocks mov-
ing short distances as consolidated
blocks within the flow. In addition,
blocks exceeding 150 m in height are
known from similar deposits around
the world (Bull et al., 2009). Litho-
logically, this part of the core also
appears to be internally consistent
with, throughout the studied interval,
nicely laminated diatomaceous marls
and clays indicative of deep water,
low-energy depositional environ-
ments (Shipboard Scientific Staff,
1978; Khursevich and Mukhina,
1995).
The average sedimentation rate in

the upper half is ~8 cm ka�1, lower
than a recently modelled 20 cm ka�1

for a nearby site of similar age
(Maynard et al., 2012). Assuming
continuous deposition throughout
chron C3r results in a similar rate of
~8 cm ka�1. Therefore, we use this
constant sedimentation rate through-
out chron C3r to convert the previ-
ously published proxy records to the
new time frame (Table 2, Fig. 5).
This allows us to tentatively link
changes in the deep Black Sea to
events on the Black Sea coast of
Russia (Krijgsman et al., 2010;
Rostovtseva and Rybkina, 2014) and
to the Mediterranean MSC (Roveri
et al., 2014). A temperature index
given by the ratio between ther-
mophilous elements and steppe ele-
ments is used to investigate
continental climatic change (Tra-
verse, 1978; Popescu et al., 2010).
Halophyte pollen abundance repre-
sents the proximity of the coastline
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and therefore serves as a proxy for
relative sea-level (Popescu, 2006). In
addition to palynological records, we
use the original counts of diatom
species and calculated surface-water
salinity published as part of the post-
cruise studies by Schrader (1978).
Together, these records allow us to
subdivide the Messinian deposits of
DSDP Leg 42B into 4 intervals.

Interval A: Pre-evaporitic Messinian

Interval A corresponds to the pre-
evaporitic Messinian and the lower-
most Pontian between 6.1 Ma and
~6.0 Ma. Recovery in this part of
the core is poor, but the top of this
interval is located around 840 mbsf.
Lithologically, this interval is pre-
dominantly composed of diatoma-

ceous shales (Shipboard Scientific
Staff, 1978). Surface salinity and sea-
level are high, and temperature
increases gradually, reaching a maxi-
mum prior to the onset of the MSC.
The marine influx and high salinity
(25–30&) are recognized in several
fossil groups and can be correlated
to the so-called ‘Transitional Strata’
on the basin margin (Radionova and
Golovina, 2011a,b). The high salinity
indicates a two-way connection
between the Mediterranean and the
Black Sea.

Interval B: MSC Stage 1 (Primary
Lower Gypsum (PLG))

A distinct change occurs at the onset
of the MSC. Lithology changes, and
upwards the succession is character-
ized by alternations of diatomaceous
marls and lacustrine chalks. Palaeo-
environmental conditions change to
lower surface-water salinity (0.5–5&
or 5–18&); increasing amounts of
halophyte pollen indicate a more
proximal position of the coastline
(Fig. 5). During interval B, which
correlates in time to stage 1 of the
MSC (5.97–5.6 Ma), the palaeoenvi-
ronmental conditions remain rela-
tively stable. Temperature in interval
B is stable at a lower value than
prior to the MSC, and glacial peaks
TG20 and TG22 do not show up in
the record as changes in the conti-
nental climate.
Interval B correlates to the

Pontian highstand at the Taman
Peninsula in Russia (Krijgsman
et al., 2010; Chang et al., 2014). The
presence of marine alkenones in
these Pontian sediments argues for
highstand conditions and two-way
connectivity with the Mediterranean
(Vasiliev et al., 2013). In addition,
around 5.8 Ma, there is a switch
towards heavy dD values (Vasiliev
et al., 2013), which indicates a
change towards a negative hydrologi-
cal budget in the Black Sea or
increased inflow of heavy Mediter-
ranean waters. The lowering of salin-
ity in interval B may have occurred
under continued two-way connectiv-
ity to the Mediterranean Sea as a
result of stratified water conditions
in the Mediterranean during the
PLG. This could have prevented the
inflow of more saline water and low-
ered the salinity of the Black Sea.
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The observations in interval B indi-
cate that the Black Sea most likely
had a positive hydrological budget
during this time interval.

Interval C: Stages 2 (MSC acme) and
3.1 (Upper Evaporites)

The acme of the MSC is represented
sharply in the sea-level curve of
DSDP Hole 380/380A, where halo-
phytes show a rapid increase at
around 5.6 Ma (800 mbsf). This sea-
level drop is likely related to glacial
stages TG14 and TG12. The record
shows an increasingly more proximal
position of the coastline, but as it is
not an absolute sea-level indicator,
we refrain from interpreting these
data in terms of (dis)connection
between the Mediterranean and (the
water budget of) the Black Sea. The
temperature record does not show a
change in continental climate related
to glacial peaks TG14 and TG12.
Diatom diversity is minimal in this

interval, indicating stressed environ-
ments (Schrader, 1978). Surface
salinity does not change and stays
fresh. A short peak in salinity and
sea-level divides the lowstand into
two parts. Higher resolution studies
are necessary across this interval, but
this change may coincide with the
transgression in the Dacian basin at
the base of the Bosphorian stage at
~5.5 Ma (Stoica et al., 2013). After
this peak, a floral change occurs in
the diatom record, indicating a
change to higher trophic levels under
fresh-water salinities (Schrader,
1978).
The sea-level drop in Hole 380/

380A at 5.6 Ma coincides with the
sea-level drop at the onset of the
Kimmerian stage at the Taman
Peninsula (Krijgsman et al., 2010).
Interestingly, sea-level in our record
stays low until 5.4 Ma (792 mbsf),
rather than coming back up after the
two glacial peaks. A similar trend is
observed in the northern and western
basins in the Mediterranean, where
continental clastics are found
between stages 2 and 3.2 (Lago
Mare) (Roveri et al., 2014).

Interval D: Stage 3.2 (Lago Mare)
and Pliocene

Sea-level stays low until ~5.4 Ma
(790 mbsf), after which it rises to aTa
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similar level to interval B and there-
after remains stable into the Plio-
cene. The Mio-Pliocene boundary
(5.33 Ma) should be located at

around 785 mbsf (Fig. 4), but no
major change is observed. Diatom
diversity is low until 5.2 Ma, after
which a diverse, endemic fresh-water

fauna develops (Khursevich and
Mukhina, 1995).
The spread of Paratethyan species

across the Mediterranean during the
Lago Mare at 5.4 Ma occurs
roughly synchronously throughout
the basin and is thought to be
related to a more positive water bud-
get in the Paratethys (Gliozzi et al.,
2007). At the same time, our record
shows an increase in sea-level in the
Black Sea.

Conclusion

We present constraints on the coevo-
lution of the Mediterranean and
Black Sea during the MSC from a
basinal location in the Black Sea
(DSDP Site 380/380A). Across the
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tion record: closed circles: thermally demagnetized directions in the temperature range 200–400 °C used for the determination
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Table 2 Age–depth tie points for the interval 700–865 mbsf used to convert the

proxy records from the depth domain to the time domain. Between tie points, the

sedimentation rate is assumed to be constant.

Depth (mbsf) Age (Ma) Type

706 4.36 � 0.19 40Ar/39Ar

711.5 4.49 Magnetic reversal

720 4.63 Magnetic reversal

727.5 4.80 Magnetic reversal

745 4.9 Magnetic reversal

753 5 Magnetic reversal

778 5.24 Magnetic reversal

842 � 3 6.03 Magnetic reversal

851.5 6.12 Biostratigraphic
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MSC, the Black Sea changes from a
connected marine basin to a discon-
nected lake. During most of the
MSC, the Black Sea had a positive

hydrological budget, supplying
low-salinity water to the Mediter-
ranean. Between 5.6 and 5.4 Ma,
sea-level fell, but the data do not

conclusively show whether this was a
drop to the palaeo-Bosporus sill, or
below. Sea-level rose at around
5.4 Ma in the Black Sea, coinciding
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with the introduction of a diverse
Paratethyan fauna throughout the
Mediterranean Sea. No observable
change occurs in our basinal Black
Sea record across the Mio-Pliocene
boundary. Getting absolute con-
straints on sea-level, preferably from
an additional site, will be important
in unravelling the detail of Mediter-
ranean-Paratethys connectivity.
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