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Seismic travel-time tomography of the mantle under SE Asia reveals patterns of subduction-related seismic P-
wave velocity anomalies that are of great value in helping to understand the region's tectonic development.
We discuss tomography and tectonic interpretations of an area centred on Indonesia and including Malaysia,
parts of the Philippines, New Guinea and northern Australia. We begin with an explanation of seismic tomogra-
phy and causes of velocity anomalies in the mantle, and discuss assessment of model quality for tomographic
models created from P-wave travel times. We then introduce the global P-wave velocity anomaly model UU-
P07 and the tectonic model used in this paper and give an overview of previous interpretations of mantle struc-
ture. The slab-related velocity anomalies we identify in the upper and lowermantle based on the UU-P07 model
are interpreted in terms of the tectonic model and illustrated with figures and movies. Finally, we discuss where
tomographic and tectonic models for SE Asia converge or diverge, and identify the most important conclusions
concerning the history of the region. The tomographic images of the mantle record subduction beneath the SE
Asian region to depths of approximately 1600 km. In the uppermantle anomalies mainly record subduction dur-
ing the last 10 to 25Ma, depending on the region considered. We interpret a vertical slab tear crossing the entire
upper mantle north of west Sumatra where there is a strong lateral kink in slab morphology, slab holes between
c.200–400 km below East Java and Sumbawa, and offer a new three-slab explanation for subduction in the North
Sulawesi region. There is a different structure in the lower mantle compared to the upper mantle and the deep
structure changes from west to east. What was imaged in earlier models as a broad and deep anomaly below
SE Asia has a clear internal structure and we argue that many features can be identified as older subduction
zones. We identify remnants of slabs that detached in the Early Miocene such as the Sula slab, now found in
the lower mantle north of Lombok, and the Proto-South China Sea slab now at depths below 700 km curving
from northern Borneo to the Philippines. Based on our tectonic model we interpret virtually all features seen
in upper mantle and lower mantle to depths of at least 1200 km to be the result of Cenozoic subduction.
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1. Introduction

In this paper our focus is an assessment of independent models of
tectonic evolution and mantle structure concerned with SE Asia. We
discuss tomography and tectonic interpretations of the region centred
on Indonesia and including Malaysia, parts of the Philippines, New
Guinea and northern Australia (Fig. 1).

At present much of the SE Asia region can be considered part of the
Eurasian plate, and for some a separate sub-plate, given various names
such as the SE Asia plate or the Sunda block, at a boundary that varies
in position according to author (e.g. Bird, 2003; McCaffrey, 1996;
Rangin et al., 1999; Simons et al., 2007). SE Asia is bounded largely by
subduction zones and is situated in a position where major plates are
converging from the south and east (India, Australia, Pacific, Philippine
Sea). Subducted slabs are mainly well defined by seismicity down to
depths of about 660 km (Fig. 1B) and by volcanoes (Fig. 1A). The region
has a particularly complicated geology and plate tectonic history which
has been dominated by subduction (e.g. Audley-Charles et al., 1988;
Haile, 1973; Hall, 1996, 2002, 2012; Hamilton, 1979; Hutchison, 1989;
Katili, 1973, 1975; Lee and Lawver, 1995; Metcalfe, 1990, 2011, 2013).
The SE Asian promontory has grown primarily as a result of subduction
and there have been thousands of kilometres of lithosphere subducted
during the Mesozoic as Tethyan oceans were subducted, and during
the Cenozoic as Australia moved northwards and the Pacific plates
moved westwards.

It is now accepted that the mantle contains a record of subduction
that can be imaged because subducted lithosphere produces a strong
temperature anomaly which allows slabs to be detected as regions
with relatively high seismic velocities. High-resolution (P-wave) seis-
mic tomography reveals such anomalies although the images are
blurred representations ofmantle structure. Interpretation of subducted
slabs is uncontroversial in regions which are seismically active and the
combination of seismicity and tomography can reveal details of slab
morphology and structure that may be used to understand the history
of subduction. Anomalies in aseismic regions can be more problematic
to interpret since they may result from processes, as yet unidentified,
other than subduction. Nonetheless, seismic tomography should be of
great value in helping to understand the tectonic development of SE
Asia because its active margins are characterised by intense seismicity
and volcanic activity and there are obvious, relatively simple, seismic
velocity anomalies in the upper mantle which are clearly subduction-
related.

Global Positioning System (GPS) measurements (Bock et al., 2003;
Simons et al., 2007) and other kinematic data (DeMets et al., 1990,
2010) indicate very high rates of relative motions between plates and
smaller tectonic fragments in the region. The rates of subduction at
the margins of SE Asia are high, typically between 5 and 10 cm/year,
and locally even higher. The lengths of slabs in the uppermantle identi-
fied by seismicity to depths of c. 660 km can therefore record only a
limited period of time, of the order of 10 to 25 Ma, depending on rates
of subduction. A longer subduction history may be recorded in the
lower mantle. Like many other workers, but not all (e.g. Anderson,
2007; Hamilton, 2007), we consider that parts, or all, of subducted
slabs often enter the lower mantle. Positive velocity anomalies below
660 km have been interpreted to record subduction that occurred as
early as ~250Ma (e.g. vanderMeer et al., 2010). A good example of sub-
duction history recorded in the lower mantle is seen in the Indonesian
region between Java and the Banda arc (Fig. 2). In the east none of the
slab subducted at the former Banda trench penetrates into the lower
mantle and there is a large flat lying portion of the slab resting on the
660-km discontinuity (Spakman and Hall, 2010), whereas further west
the subducted slab becomes almost vertical below about 300 km and
the positive velocity anomaly can be traced well into the lower mantle
to depths of c. 1500 km (Fukao et al., 1992; Puspito and Shimazaki,
1995; Widiyantoro and van der Hilst, 1997). This is not an artefact of to-
mographic methodology and we consider it to be lithosphere that was
subducted before the slab now imaged in the upper mantle.

Interpreting tectonic history from seismic tomography is not
straightforward, even for the upper mantle, and even if it is entirely
the result of subduction. Anomalies at the same depth may correspond
to subduction of lithosphere of different ages, at different rates, may
result from subduction oblique to the trench, and slabsmay deformdur-
ing subduction. Furthermore, we cannot exclude seismic heterogene-
ities resulting from other processes or inherited in different ways, and
some anomalies are simply artefacts of the tomographic imaging.
These problems become even greater for the lower mantle where the
interpreted subducted slabs are less plate-like and more amorphous,
perhaps owing to folding and thickening in the more viscous lower
mantle. Thus, linking imaged anomalies to past tectonic evolution be-
comes less well constrained. Despite the difficulties, there are now
many parts of the globe where imaged upper and lower mantle struc-
ture has been convincingly interpreted in terms of tectonic history. A
tectonic reconstructionmodel can be used to predict where lithosphere
has been subducted and howmuch has been consumed in plate conver-
gence zones. The predictions can be compared to the mantle structure
interpreted by seismic tomography and if the two are independent
(i.e. the tomographic model has not been used in making the recon-
struction) the tomography provides an independent test of the tectonic
reconstruction, and conversely the plate tectonicmodelmay suggest in-
terpretations of mantle structure. This analysis may then result in
changes of the tectonic reconstruction, particularly if remnants of pro-
posed subduction are not detected or if remnants of subduction are
found in a different location than predicted.

We begin with an explanation of seismic tomography, assessment
of tomographic model quality for tomography models created from
seismic P-wave travel times and causes of velocity anomalies in the
mantle. Thenwe introduce the detailed global P-wave velocity anomaly
model UU-P07 used in the paper and explain how the imaged mantle



Fig. 1.A.DEMof the region including SEAsia, theWestern Pacific, eastern IndianOcean and northernAustralia from satellite gravity-derived bathymetry combinedwith SRTM topography
(Sandwell and Smith, 2009). Red filled triangles are volcanoes from the Smithsonian Institution Global Volcanism Program (Siebert and Simkin, 2002). B. Seismicity in and around SE Asia
with hypocentre depths (Engdahl et al., 1998).
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structure of SE Asia mantle structure will be presented in figures and
movies, followed by an overview of previous interpretations of mantle
structure. Next we introduce the tectonic model used in this paper,
and continue with an assessment of velocity anomalies in the upper,
and then lower, mantle and our interpretation of them in terms of the
tectonic model. Finally, we discuss where tomographic and tectonic
models for SE Asia converge or diverge, and identify themost important
conclusions concerning the history of the region.

Image of Fig. 1
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2. Introduction to seismic tomographymodels based on travel-times

2.1. A summary of travel-time tomography

Most of the three-dimensional models of SE Asian mantle struc-
ture have been created with seismic travel-time tomography using
P-wave data and adopting the seismic ray approximation (e.g.
Fukao et al., 1992; Puspito et al., 1993; Widyantoro and van der
Hilst, 1996). Seismic travel-time tomography is a geophysical inver-
sion method that converts observed travel times of seismic waves
into a three-dimensional (3-D) model of the seismic velocity struc-
ture of the mantle (e.g. Spakman et al., 1993). Usually, tomographic
Fig. 2. Tomographic slices through model UU-P07 (Amaru, 2007) at selected depths. Colours in
Kennett et al. (1995). Notice that the limits of thewave-speed anomaly scale changewith depth
as used in Goes et al. (2005). Blue colours correspond to positive and red to negative wave-sp
colour contour limits by multiples of 1%. White dots denote earthquake hypocentres from the
depth of the tomographic slice are plotted. Small crosses denote the longitude–latitude grid at
ments in the region.
models are presented as colour maps displaying seismic velocity
anomalies as percentages of a used 1-D background, or reference
model, of seismic velocity (e.g. Fig. 2). Travel-time tomography de-
veloped from the pioneering work of Aki et al. (1977). Other devel-
opments have meanwhile led to many different tomographic
methods for different data extracted from seismograms such as clas-
sical travel-time picks of seismic waves, arrival times determined
from waveforms of body ways or surface waves, or even large por-
tions of a seismogram (e.g. Fichtner et al., 2013; Zhu et al., 2012).
For an overview of the various tomographic methods we refer to
Nolet (2008). A summary of travel-time tomography, particularly
relevant to most of the models shown here, follows below.
dicate the P-wave wave-speed anomalies relative to the radial reference model ak135 of
. This depth variation follows the scaling between temperature andwave-speed anomalies
eed anomalies. Extra contour lines indicate regions where anomalies are in excess of the
EHB data set (Engdahl et al., 1998) used in tomography. Only events within 5 km of the
5° intervals. Solid lines indicate coastlines, plate boundaries or other major tectonic linea-

Image of Fig. 2


Fig. 2 (continued).

18 R. Hall, W. Spakman / Tectonophysics 658 (2015) 14–45
Travel-time tomography based on the ray approximation combines
seismic rays with travel time picks of short-period (~1 s) P-waves. A
seismic ray is a high frequency representation of wave propagation
and constitutes the particular path through the mantle along which a
seismic wave travels from an earthquake hypocentre to a seismological
station. The ray geometry L is fully determined by the seismic velocity
structure v(r) of the mantle. The observed travel time T is interpreted
as an integrated measure of all seismic velocities encountered along
the ray path. Mathematically this is expressed as the integral T = ∫L1/
v(r)dl. This travel-time integral forms the basis of travel-time tomogra-
phy. Global travel-time tomography problems are based on a data
set consisting of many millions of these integral equations. The tomo-
graphic inversion focuses on estimating the 3-D seismic velocity anom-
aly field Δv(r) with respect to a laterally averaged seismic velocity vo(r)
such as the radial reference model ak135 of Kennett et al. (1995) which
is often used for global travel-time tomography.
A reference model plays an important role in the formulation of the
tomographic problem. It facilitates the computation of approximations
Lo of seismic rays L, of the estimation of earthquake hypocentres from

which Lo starts, and of reference model travel times To ¼ ∫Lo
1
vo

dlo. This

information is used to formulate a mathematical linearization of the

delay time integral equations d ¼ T−To ¼ ∫L
1

ðvo þ ΔvÞdl−∫Lo
1
vo

dlo

relative to these reference model quantities. The delay-time d is the
difference between observed travel time T, acquired along the true ray
L, and reference travel-time To computed along the reference model
ray geometry Lo.

As a next step towards inversion, the Earth's mantle is usually
subdivided into 3-D network of non-overlapping cells which can be of
variable size (e.g. Bijwaard et al., 1998; Fukao et al., 1992; Spakman
and Bijwaard, 2001; Widiyantoro and van der Hilst, 1997), or for

Image of Fig. 2
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instance a prescribed network of velocity nodes betweenwhich velocity
is interpolated (e.g. Montelli et al., 2006). The cell model is the basis of a
mathematical parameterization of the unknown seismic velocity anom-
aly structure Δv(r) of the mantle and is used to convert the integral
equations into a linear algebraic set of observation equations dobs =
Am + ϵ, which renders the tomographic inverse problem suitable for
solving on computers. dobs is the data vector consisting of millions of
delay times; m is the model vector from which all velocity anomaly
values in the cell model are obtained whilem also incorporates param-
eters associated with hypocentre mislocation and station corrections; A
is the matrix constructed from ray path intersections with cells and
from coefficients related to hypocentre mislocation and seismological
stations (e.g. Bijwaard et al., 1998; Spakman et al., 1993). The unknown
vector of errors ϵ absorbs all inconsistencies between the data dobs
and Am. Clearly, the solution sought is the true mantle model mtrue

constituting the true anomalous mantle cell structure. By writing
dobs = Amtrue + ϵ, the error vector ϵ can be interpreted to comprise not
only travel-time observation errors but also implicit errors due to using
approximate ray theory, due to linearization of the observation equation
relative to reference model quantities, and due to the approximation of
true anomalousmantle structure by the adoptedmodel parameterization.
There are several ways to minimize the different sources of implicit data
errors, for instance by using adaptive cell parameterization (Bijwaard
et al., 1998; Spakman and Bijwaard, 2001), by using iterative approaches
with repeated 3-D ray tracing and earthquake relocation (Bijwaard and
Spakman, 2000), or by starting from different 1-D reference models
(Spakman et al., 1993; van der Hilst and Spakman, 1989) or even from
3-D reference models (Amaru, 2007; Widiyantoro et al., 2000).

Due to insufficient data and data errors ϵ the linear equation dobs =
Am + ϵ has no unique solution and many different models may fit the
observations equally well. A general strategy towards determining
solutions is to find models m̂ with data predictions dpred ¼ Am̂ that
minimize the difference ϵ = dobs − dpred, e.g. by using least squares
methods, to some acceptable level guided by whatever is known, or
perceived, about error variances and error correlations. An additional
complicating factor is that there are usually insufficient data to uniquely
resolve mantle structure on the cell model. To find acceptable solutions
there are basically two strategies. The first is to search the model space
for suitable models, compute for each the data prediction dpred, and de-
vise search strategies to select the model best fitting the data using a
predefined data fit measure. This approach has so far only been applied
in mantle tomography using rather coarse model parameterizations in-
volving relatively few model parameters (e.g. Rawlinson et al., 2014;
Trampert et al., 2004). For obtaining detailedmantlemodels this strate-
gy is too demanding of computer time. The second strategy is based on
assuming additional information on general aspects ofmodel geometry,
for instance by putting restrictions on model amplitudes and/or requir-
ing themodel to be spatially flat and/or smooth. This can be implement-
ed in several ways depending on the inversion approach (e.g. Nolet,
2008) and regularises the inverse problem such that selected solutions
can be computed. The importance of these additional constraints for
selecting a solution can be tuned. Finding an acceptable model always
requires making a subjective choice between fitting the data and fitting
the additional constraints on model geometry.

Formally the entire data inversion step can be written, independent
of methodology, as m̂ ¼ G−d leading to the estimated tomographic
model m̂. The matrix G− is called the generalized inverse and is not
unique as it depends on the imposed model regularisation and on
estimates of data errors and their correlations. The generalized inverse
can be explicitly computed in small inverse problems, but for many
practical problemswith a large number of model parametersG− cannot
be computed explicitly. Instead, the multiplication G−d is implicitly
constructed by iterative solution techniques (e.g. Spakman and Nolet,
1988) leading to an approximated solution m̂ from which estimates of
the velocity anomaly in each cell, as well as hypocentre and station
parameters, can be readily obtained.
Due to the assumptions and approximationsdescribed above, the to-
mography model m̂ is obtained as an approximation of real mantle
structure mtrue and is usually presented in percentages Δv/vo(r) of the
reference velocity at radius r. The preference for a particular model m̂
created is that of the tomographer whomakes the choices of applicable
theory, reference model, model parameterisation, estimates of data
errors, and the inversion strategy, the latter being crucially based on
the adopted data fit measure and on the additional regularisation
constraints imposed.

2.2. Model quality assessment

Without measures of model quality a tomographic model cannot be
reasonably interpreted. For very large inverse problemswithmany tens
to hundreds of thousands of model parameters, assessment of the spa-
tial resolution and model amplitude errors is usually performed with
sensitivity analysis based on imaging synthetic seismic velocity models
m (Humphreys and Clayton, 1988; Rawlinson et al., 2014; Spakman and
Nolet, 1988). Synthetic data dsyn are first generated from a synthetic
seismic velocity model using the same ray paths as in the real data in-
version, i.e., by forward computation Amsyn = dsyn. A synthetic model
usually consists of an alternating pattern of negative and positive anom-
alies, e.g. isolated cells of different sizes (Spakman and Nolet, 1988) or
checkerboard structures of different cell sizes (Fukao et al., 1992). The
synthetic data are inverted in the same manner as the actual data. This
leads to the solution m̂syn ¼ G−dsyn by invoking the same generalized
inverse. Substituting dsyn = Amsyn into this equation leads to m̂syn ¼
G−Amsyn. Defining R = G−A gives m̂syn ¼ Rmsyn where R is called the
resolution matrix. The resolution matrix R explicitly describes in what
way the model value in a particular cell depends on the values in all
other cells; spatial resolution is a measure of the linear dependence be-
tweenmodel parameters. The resolutionmatrixR is exactly the same as
the one pertaining to the real data inversion. Starting from m̂ ¼ G−d
and substituting d = Amtrue + ϵ, leads to m̂ ¼ Rmtrue þ G−ε . The
term G−ε is caused by the effects of (unknown) data and theoretical er-
rors and explicitly shows that data error affects a solution apart from
resolution issues.

The resolution matrix R explicitly describes how the true mantle,
mtrue or msyn, is related to the tomographic model, m̂ or m̂syn ,
respectively. Clearly, a perfectly resolved model has R = I, where I is
the identity matrix. For large inverse problems the resolution matrix
cannot be computed and this is where sensitivity analysis proves its
value. By comparing m̂syn to msyn one can arrive at estimates regarding
spatial resolution and amplitude response. By adding synthetic noiseεsyn, i.e. solving dsyn = Am + ϵsyn, one can also assess the effect of
data noise on the solution by computing G−εsyn, or by comparing
sensitivity tests conducted with or without noise, leading to a more
integral assessment of how the mantle structure mtrue is mapped into
a preferred model m̂. Examples of sensitivity tests for combined esti-
mates of spatial resolution and noise are given in this paper (e.g. Fig. 3).

The choices made by the tomographer leading to a particular model
m̂cannot all be tested by inspecting the resolutionmatrix or by sensitiv-
ity analysis with synthetic models. Sensitivity analysis cannot test the
assumptions and approximations that lead to the equation d =
Am + ϵ. This equation can only be used to study error propagation
into the model and how well the preferred model is spatially resolved,
which depends on thematrixA, the assumptionsmade about the statis-
tics of data errors, and on the additional regularisation constraints im-
posed on the model geometry. Sensitivity analysis for estimating
image quality also has potential pitfalls if conclusions are drawn from
tests with only a single synthetic model (Lévěque et al., 1993) but the
risk of misinterpretation can be reduced considerably by analysing a
wide range of synthetic models (e.g. Bijwaard et al., 1998). The basic
requirement for a useful test is that a synthetic test model should
contain structure to which the data are insensitive; formally, contain



Fig. 3. Examples of sensitivity test results of imaging various synthetic block models. Black lines show coastlines and plate boundaries and the location of isolated synthetic blocks with
seismic wave-speed anomaly amplitudes of +5% or −5% with respect to the 1-D reference model ak135 of Kennett et al. (1995). The input blocks can have an irregular shape, which
is due to the parameterization of the tomographic model with cells of variable dimension. This is also the reason for the absence of synthetic blocks of a particular size in some parts of
the model. The colours show the tomographic image of the input model using the same procedure as when real data are input. Gaussian noise was added to the synthetic data prior to
tomographic inversion to attain a comparable similar variance reduction.More details can be found in Spakman et al. (1993) and Bijwaard et al. (1998). Comparison of ‘input’ and ‘output’
models leads to qualitative assessment of lack of spatial resolution. Lack of resolution can be detectedwhere large amplitudes occur between the blocks,where block anomalies smear into
themodel, or when block anomalies are not recovered at all. The eight panels illustrate results at different depths and for different input block-models. The last number in themodel label
at the lower left of each panel gives the characteristic lateral spatial dimension of the input blocks in degrees, i.e. 1.0° at 60 km, 5.0° at 1500 km. The thickness of the blocks is usually half of
this size. Note that a lateral distance of 5.0° at 1500 km depth (e.g., last panel) corresponds to ~400 km.
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structure that is in the null space of the inverse problem. In that case the
lack of resolution is always detected by sensitivity analysis. An obvious
example of lack of resolution are the cells, or mantle regions, in the
model that are not sampled by the seismic rays. More complex resolu-
tion artefacts lead to blurring of true mantle structure into larger
structures with a different geometry. Blurring can also occur in specific
directions only, i.e., smearing of true structure along a locally dominant
orientation of seismic ray paths such as along the dip direction of a
subducting slab. These resolution artefacts can all be detected by testing
with proper synthetic models.

Image of Fig. 3
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2.3. Seismic velocity anomalies

Seismic velocity is a material parameter depending on local elastic
properties and density, which in turn depend on temperature, pressure,
and composition (Cammarano et al., 2003; Deschamps and Trampert,
2003; Goes et al., 2000). Positive, or fast, velocity anomalies are often as-
sociated with the cold cratonic parts of continental lithosphere, with
oceanic lithosphere, or with subducted lithosphere in the mantle. Con-
ductive cooling of the lithosphere prior to subduction is themost impor-
tant cause of the observed velocity contrast between subducted slabs
and the ambient mantle. The low thermal conduction in the mantle ex-
plains why large volumes of subducted lithosphere remain detectable
using tomography long after the lithosphere entered the trench even
when subduction occurred hundreds of millions of years ago (e.g. van
der Meer et al., 2010). Negative velocity anomalies are often correlated
with higher temperatures in the mantle, which can be due to advective
temperature transport (e.g. hot mantle upwelling), or may be locally
generated (e.g. by partial melting in the mantle wedge above a
subducting slab). Compositional effects are still difficult to assess, but
play a role for the continental lithosphere (e.g. Lebedev and Nolet,
2003) and may be important for the deeper mantle (Trampert et al.,
2004). Compositional effects are not considered dominant for most of
the upper mantle above 400 km but can increase in importance below
that depth (Cammarano et al., 2003). Applications of predictions of
the effects of temperature and composition on seismic velocities to in-
terpretation of imaged seismic velocities are still strongly hampered
by the largely unknown error in the amplitudes of imaged seismic
velocity anomalies that results from data noise, assumptions and
approximations.

In this review paper, we are mostly concerned with the strong ther-
mal anomalies associated with subducted lithosphere. We interpret
positive velocity anomalies as images of subducted lithosphere, and
negative velocity anomalies as reflections of relatively warmer mantle.
P-wave velocity anomalies for the upper mantle vary from a few per
cent at the top, in the first few hundreds of kilometres, to c. 1% in the
transition zone, decreasing to c. 0.5% in the mid-mantle. According to
Goes et al. (2005) this could correspond to a thermal anomaly in the
range of 250°K (or 10–20% of ambient mantle temperature) for most
depth ranges. Tomographic models based on S-wave data typically
image velocity anomalies with amplitudes larger than those based on
P-wave data by a factor ~1.7–2.0 which is generally due to a different
dependence of S-waves on elastic parameters. The sensitivity of S-
wave velocity to temperature anomalies is of the same sign as that of
P-wave velocity. A discussion, pertaining to the SE Asian region, on the
effects on seismic velocities of temperature and other quantities, such
as composition, partial melting and volatiles, can be found in Lebedev
and Nolet (2003).

2.4. Global mantle model UU-P07

Many tomographic studies based on cell parameterization of the
mantle have been performed but differ in cell division, inversion and
regularisation method, data treatment, amount of data, reference
model, or in taking a regional or global approach. Rather than discussing
different models for SE Asia, we present mantle structure from a de-
tailed global mantle model which we use to illustrate mantle structure
imaged in other tomographic studies as well as for developing some
new interpretations of imaged structure. This model is the global P-
wave velocity anomaly model UU-P07 of Amaru (2007) from which
the evidence for subduction-related global lower mantle structure was
presented by van der Meer et al. (2010, 2012). Several authors (e.g.
Chertova et al., 2014; Schellart and Spakman, 2012; Schellart et al.,
2009; van Benthem et al., 2013; van Hinsbergen et al., 2012) have
used model UU-P07 in studies of regional mantle structure. It is the
successor to the BSE model of Bijwaard et al. (1998) and is based on a
similar treatment of travel-time data, mantle cell division and inversion
approach. The main differences are in the use of more than twice as
much data (c. 18million P-wave type travel times), in a denser cell divi-
sion of the mantle with lateral cell dimensions which are multiples of
0.5° with a minimum of 0.5° in regions of high ray sampling, and in
the use of CRUST2.0 (Laske et al., 2013) as a crustal correction model.
Details on how this model was constructed can be found in Amaru
(2007). The cell parameterization is dependent on the local ray density
with smaller cells placed in mantle volumes of higher ray density
(Spakman and Bijwaard, 2001). In the subducted slab regions of SE
Asia cell sizes are generally 0.5° or 1°. Cell dimensions also vary with
depth. Cell thickness varies from 10 km in the crust, and is 50 km
from the base of the crust down to 410 km, then 65 km down to
660 km, and then 100 km at the top of the lower mantle gradually
increasing to 200 km in the mid mantle.

2.5. Display of tomographic images

In this paper we concentrate on themantle structure of SE Asia asso-
ciated with subduction along the Sunda–Banda arc, subduction in the
region of Sulawesi, and on the origin of high velocity anomalies in the
lower mantle beneath SE Asia and parts of the west Pacific. The imaged
mantle structure of the region is presented in a number of figures and
movies as Supplementary Data. Fig. 2 showsmap view images at select-
ed depths of the tomographic model UU-P07 (Amaru, 2007) for the SE
Asian mantle. A complete sequence of such map view images is com-
piled as a movie file (SEA_UU-P07_mapview.mov; mmc1.mp4) show-
ing depth slices for UU-P07 in the folder Mapview_depth slices_UU-
P07. The P-wave velocity anomalies are plotted relative to the reference
model ak135 of Kennett et al. (1995). Negative and positive anomalies
correspond to regions where the seismic velocity is respectively lower
or higher than the reference model value at the corresponding depth.
Subducted slabs are marked by positive anomalies displayed with
blue-to-green colours.

As discussed above, image blurring is assessed with sensitivity tests
for spatial resolution with synthetic velocity models and examples
are given in Fig. 3 and movies in the folder Resolution_movies
(SVideo_Resolution_1.mov and SVideo_Resolution_2.mov; mmc2.mp4
and mmc3.mp4). The colour contouring in the figure and movies
shows how synthetic anomalies of variable dimensions (solid line con-
tours) andwith alternating velocity amplitudes of±5% are recovered in
the tomographic inversion. The input blocks are separated by 0% anom-
alies, and in depths laterally shifted, which facilitates detecting anomaly
smearing along locally dominant seismic ray orientations. Anomaly am-
plitudes are generally underestimated and local smearing effects illus-
trate limited resolution. These resolution tests also help identify larger
regionswhere the tomographicmodel is essentially unresolved because
of almost complete lack of data sampling the mantle, such as in the top
1000 km of the mantle under the Indian Ocean to the SW of Sumatra,
and in the top 400 km under the core of Sundaland (Borneo, the Thai–
Malay Peninsula and Indochina). Good spatial resolution at scales of
100 to 200 km is generally obtained in regions of the upper mantle
where there are subducted slabs. In the lowermantle, resolution is gen-
erally good for all length scales between 200 to 700 km and anomaly
smearing is mostly localised; where important for our analysis, we
comment on the local resolution.

3. Mantle structure of SE Asia: larger scale patterns and early
interpretations

The lithosphere of the continental region comprising the Sunda
Shelf, Malay Peninsula, Borneo and Java Sea, shows negative seismic
P-wave anomalies in all P-wave models. However, these negative
seismic velocity anomalies are poorly resolved due to lack of sampling
seismic rays. This region, inboard of the enclosing Sunda–Banda–
Philippines subduction systems, is essentially the Sundaland continent
(Hall and Morley, 2004) and is largely composed of continental
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fragments added to Asia from the Triassic to the Cretaceous (e.g. Hall,
2012; Metcalfe, 2011, 2013). The UU-P07 model shows predominantly
negative seismic anomalies in the top 100–150 km (Fig. 2 and
SEA_UU-P07_mapview.mov; mmc1.mp4) with very limited, or even
absent, spatial resolution under Sundaland (Fig. 3 and SVideo_
Resolution_1.mov and SVideo_Resolution_2.mov; mmc2.mp4 and
mmc3.mp4). Surface wave tomography studies have generally a better
sampling of the top 100–150 km of SE Asia and invariably show nega-
tive seismic S-wave velocities in the top 100–150 km (Ritzwoller
et al., 2002; Lebedev and Nolet, 2003; Shapiro et al., 2008; Ritsema
et al., 2011; Schaeffer and Lebedev, 2013) Several of the models are
shown in the movie Mapview_depth_slices_different_models/
SEA_mapv_4mod.mov (mmc4.mp4). Although S-wave and P-wave ve-
locities responddifferently to temperature, composition and density, el-
evated temperatures lower both P- and S-wave velocities as discussed
by Lebedev and Nolet (2003). Temperature effects are probably
greater than compositional effects for the lithosphere and other pos-
sible causes for lowered seismic velocities such as partial melting,
and presence of small amounts of volatiles such as water, or CO2

which can be significant in many SE Asia hydrocarbon basins and may
have amantle origin (Imbus et al., 1998). All would point to aweakened
continental lithosphere, or perhaps a partly absent lithospheric mantle.

Thermal weakening of the lithosphere may be a result of long-term
Cenozoic subduction beneath continental SE Asia (e.g. Hall, 2002, 2012;
Hamilton, 1979; Hutchison, 1989). Another local cause of thermal
weakening could be plumes such as the interpreted Hainan plume
(Lebedev and Nolet, 2003; Montelli et al., 2006) if the plume head had
spread under a large part of Indochina. Intraplate Cenozoic volcanism is
widespread in the Indochina–Hainan region (e.g. Barr and MacDonald,
1981; Hoang and Flower, 1998; Wang et al., 2001), particularly since
the Middle Miocene, and has also been associated with the existence
of the Hainan plume (e.g. Xu et al., 2012). Negative P-wave velocity
anomalies are found in UU-P07model under the Hainan region and In-
dochina to depths of 1900 km (Fig. 2 and SEA_UU-P07_mapview.mov;
mmc1.mp4). At greater depths the negative anomaly can be traced
ESE and it connects with the large low velocity region in the deepest
mantle under the SW Pacific, which has been proposed to be a major
plume generation region (Burke et al., 2008; Torsvik et al., 2006). A
third possible contribution to the observed negative seismic velocity
anomalies of the Sundaland lithosphere may result from the Triassic
to Cretaceous amalgamation of continental blocks that make up much
of SE Asia (Metcalfe, 2011, 2013; Hall, 2012; Hall and Sevastjanova,
2012). It is not clear whether these blocks retained their Gondwana
mantle lithosphere, or lost it during their movement across the Tethys,
during amalgamation with Asia, or perhaps shortly after.

Most of the earlier research focus in the region has been on the com-
plex subduction systems bordering SE Asia along the Andaman–Sunda–
Banda trench, along the eastern boundary with the Philippine Sea plate,
and subduction zones internal to the region, e.g. North Sulawesi. The
morphology of subducted slabs in the upper mantle around Indonesia
and the Philippines has been quite well known from seismicity for
many years (e.g. Cardwell and Isacks, 1978, 1981; Cardwell et al.,
1980; Chiu et al., 1991; Hamburger et al., 1983; Hamilton, 1974, 1979;
McCaffrey, 1988, 1989; Newcomb and McCann, 1987). Tomography
has provided additional important insights. The most obvious feature
of the upper mantle structure in the region is the prominent narrow
positive velocity anomaly that can be traced from the Andaman Sea to
the Banda Sea which is the product of subduction at the Sunda–Java
trench and the former Banda trench (Fig. 2; SEA_UU-P07_mapview.mov;
mmc1.mp4). In detail the structure of the subducted slab in the upper
mantle is complex. There are several gaps, and prominent bends at
depth, beneath Sumatra and the Banda region. Furthermore, there
have been a number of suggestions concerning what happens to
subducted slabs at the base of the upper mantle.

Fukao et al. (1992) used a global mantle approach focussed on the
West Pacific and Indonesian region. They showed that the Java slab
dips steeply in the lower part of the upper mantle and crosses the
660-km discontinuity into the lower mantle where the slab dips much
less steeply, spreads laterally, and reaches depths up to 1200 km. They
explained this using a model of Ringwood and Irifune (1988) by sug-
gesting the subducted slab thickened and buckled to form a megalith
above the 660-km discontinuity which then sank into the lower mantle
because of its higher density. A similar mechanism for slab thickening
was proposed by Das et al. (2000) in the Indonesian region although
in their model the thickened slab dips steeply.

Puspito et al. (1993) presented a P-wave travel-time tomography
model for the Indonesian region showing several of the main morpho-
logical features of slabs. They proposed that the western limb of the
inverted U-shaped Molucca Sea plate (Hatherton and Dickinson,
1969) may penetrate into the lower mantle whereas the eastern limb
beneath Halmahera reached a depth of about 400 km. They suggested
theremay be a remnant of an older subduction zone in the lowermantle
below theMolucca Sea which they interpreted to be related toMiocene
subduction below Sulawesi (Katili, 1978). Puspito et al. (1993) imaged
the horseshoe-shaped positive velocity anomaly in the Banda arc,
which Puspito and Shimazaki (1995) concluded did not penetrate into
the lower mantle in contrast to the subducted Indian ocean slab further
west beneath the eastern Sunda arc, which did. Puspito and Shimazaki
(1995) also observed that a slab under the Andaman–Sumatra region
could be traced deeper into the mantle (to 500 km) than indicated by
seismicity (to 250 km).

Widiyantoro and van der Hilst (1996, 1997) produced the first
model showing images of laterally continuous subduction along the en-
tire Andaman–Sunda–Banda arc, and to the north under the Molucca
Sea. Their major interpretation concerned the connection between the
Andaman–Sunda–Banda slab in the upper mantle and the large lower
mantle anomaly under SE Asiawhich they inferred to be one subducting
system. They associated the lower mantle part with a Tethyan subduc-
tion system that can be traced to the Eastern Mediterranean (Bijwaard
et al., 1998; Hafkenscheid et al., 2006; van der Hilst et al., 1997; van
der Voo et al., 1999). To the west, under Sumatra, the upper and lower
mantle anomalies appear disconnected in the transition zone, which
was interpreted as slab detachment. However, this image of slab de-
tachment in the transition zone under Sumatra has not been
reproduced in later work (e.g. Bijwaard et al., 1998; Li and van der
Hilst, 2010; Pesicek et al., 2008; Replumaz et al., 2004).

Widiyantoro and van der Hilst (1997) inferred an overall clockwise
rotation between the upper mantle slab and the lower mantle slab
which they linked to the Cenozoic northward advance of India, mid-
ocean ridge collision with western Indonesia arcs and escape tectonics
postulated for India–Asia collision. They suggested that this may also
have caused a southwardmigration of the eastern Sunda slab explaining
the observed kink between the upper and lower mantle Java slab. They
tentatively suggested that there is probably a continuous slab in the
seismic gap beneath East Java although they observed that the slab
could be thinned.

Like earlier workers, Widiyantoro and van der Hilst (1997)
contrasted penetration of the subducted slab beneath Java into the
lower mantle with a flattening of the subducted slab further east in
the transition zone to form a spoon-shape beneath the Banda arc.
Their explanation for the shape of the Banda slab followed the 180-
degree arc-bending hypothesis of Katili (1973, 1975) which they re-
lated to Pliocene collision of the Banda arc with Australia. They con-
firmed the inverted U-shape of subducted Molucca Sea lithosphere
and proposed a steeper dip for the western limb beneath the Sangihe
arc compared to the eastern limb below Halmahera, which they at-
tributed to a westward movement of the entire slab system in the
mantle.

Similar anomalies in the mantle under SE Asia are imaged in the
global mantle model of Bijwaard et al. (1998), as shown in Rangin
et al. (1999), Hafkenscheid et al. (2001) and Hall and Spakman
(2002). Other global models support slab penetration into the lower
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mantle under SE Asia (Fukao et al., 1992, 2001; Li and van der Hilst,
2010).

The morphology of the subducted slab below North Sumatra shows
a conspicuous kink (Fig. 2) that has been a topic of considerable interest
for many years. Page et al. (1979) and Fauzi et al. (1996) suggested
there may be a slab tear beneath Sumatra, possibly linked to the Inves-
tigator Fracture Zone, whichmay be related to the Toba volcanic centre
(Chesner, 1998, 2012; Chesner et al., 1991). Lange et al. (2010) also
suggested the Investigator Fracture Zone may influence seismicity and
presumably slab morphology. Widyantoro and van der Hilst (1996)
recognised that the space-time evolution of slab structure beneath
Sumatra was not understood and required further study. The Bijwaard
et al. (1998)model and subsequentmodels of the Utrecht group display
a clear lateral kink in the slab under NW Sumatra and several other
studies have observed changes in orientation and dip of the subducted
slabs between Sumatra and the Andaman segment (e.g. Kennett and
Cummins, 2005; Richards et al., 2007; Shapiro et al., 2008). Pesicek
et al. (2008, 2010) made a detailed study of this region and the lateral
kink for which they favoured folding of the slab as an explanation.
They also identified subducted slab material in the transition zone
below Indochina not imaged in earlier studies but also visible in
model UU-P07 (Fig. 2; SEA_UU-P07_mapview.mov; mmc1.mp4).

Hafkenscheid et al. (2001) and Gorbatov and Kennett (2003)
showed similar slab geometries at the western end of the Sunda arc
and they also showed the continuity of the Sumatra–Andaman slab.
From a comparison of bulk-sound and shear velocity anomalies in the
Sunda arc Gorbatov and Kennett (2003) interpreted an abrupt along-
strike change in age of subducted lithosphere in the upper mantle
below SE Sumatra whichmay also be reflected in a strong change in an-
isotropic directions mapped with SKS-splitting analysis (Hammond
et al., 2010).

Beneath the Sunda arc Replumaz et al. (2004) interpreted upper and
lower mantle anomalies based on a global tomography model by
Kárason (2002). This model shows fragmented weak upper mantle
slab anomalies delineating the Sunda arc and the Sumatra slab kink
(Bijwaard and Spakman, 2000; Bijwaard et al., 1998; Hafkenscheid
et al., 2001) although this is not discussed by Replumaz et al. (2004).
Like Widiyantoro and van der Hilst (1997) they interpreted the lower
mantle anomaly as having a Tethyan origin. They interpreted the strong
northward turn of the modern Sunda arc subduction systems towards
the Andaman region to be confined to the upper mantle, succeeding
an older NW–SE trend of the interpreted deeper Tethys anomaly, as a
development owing to the passage of India and concluded that the to-
mographyfits the extrusionmodel of Replumaz and Tapponnier (2003).

Richards et al. (2007) appear to make the interpretation that the
slabs imaged to great depth between western Indonesia and the
Philippine Sea were all originally part of one single slab north of India
and Australia and the slabs imaged now were all either torn from this
or deformed. For instance, they proposed tearing between the Molucca
Sea and Banda slabs as if these slabs had a common prior history. They
follow the earlier interpretations by Widiyantoro and van der Hilst
(1997) and Replumaz et al. (2004) that the deep Tethys anomaly is con-
tinuous with the deep mantle anomaly under SE Asia and tore at some
point from the Andaman–Sumatra upper segment owing to the passage
of the northward moving Indo–Australian plate, west of SE Asia. As
discussed below we interpret several of these features in a different
way.

Subducted slabs may be expected to deform in the mantle and tear
(e.g. Chertova et al., 2014; Govers and Wortel, 2005; Lister et al., 2012;
Richards et al., 2007; Rosenbaum et al., 2008; Spakman and Hall,
2010; Spakman and Wortel, 2004; Wortel and Spakman, 2000), and
gaps or holes may be created in subducted slabs due to age differences
in subducting plates, or as a result of subduction of features such as
spreading centres or transform faults (e.g. Dickinson and Snyder,
1979; Thorkelson, 1996; van Wijk et al., 2001). Such features may be
identified on the basis of seismicity although seismic gaps may have
other causes. Several tears have been postulated in the SE Asian region,
as summarised above, below Sumatra and eastern Indonesia, and other
gaps in slabs have been suggested from distribution of seismicity or vol-
canic activity in the Banda region (e.g. Chamalaun andGrady, 1978;Das,
2004; McCaffrey, 1989; Sandiford, 2008), East Java (Hall et al., 2009;
Widiyantoro et al., 2011), and the Flores region (Ely and Sandiford,
2010; Wheller et al., 1987). These and other observations of more
regional nature are addressed further in the following sections.
4. Tectonic models

The geometry and position of plate boundaries is critical for
interpreting velocity anomalies in the upper mantle. However, even
for the present-day there is no agreement on how many plates there
are and where their boundaries are. Bird (2003) has recognised 14
large plates and 38 small plates, the majority of which are in SE Asia
and the western Pacific in the area of interest to this paper. At the
surface it is impossible to draw continuously connected boundaries
between major plates (India, Australia, Pacific, Philippine Sea)
surrounding SE Asia, for example to join the Java trench to the
Philippine trench, and the problem remains even if smaller and smaller
plates are postulated. Particularly around the Philippines and eastern
Indonesia trenches are shown on some tectonic maps where there is
ambiguous or no evidence for subduction (e.g. Negros, Sulu, New
Guinea trenches) and some trenches are often shown as connected
when they clearly are not (e.g. Philippine to New Guinea trench).
Much of the Banda–Molucca–Philippines–New Guinea region can be
considered as a very broad diffuse plate boundary zone (Gordon,
1998), suture zone (Hall and Wilson, 2000) or orogen (Bird, 2003) in
which there are no easily defined plateswith deformation concentrated
at plate boundaries.

If the present is complicated we can expect the past to have been
equally complex. Since plate tectonics became the accepted paradigm
there has been a myriad of reconstructions for the SE Asian region
(e.g. Hamilton, 1979, 1988; Holloway, 1982; Silver et al., 1983a,b,
1985; Taylor and Hayes, 1983; Hall, 1987, 1996, 2002, 2012;
Audley-Charles et al., 1988; Metcalfe, 1990, 2011, 2013; Smith and
Silver, 1991; Ricou, 1994; Rangin et al., 1997; Villeneuve et al., 1998,
2010; Charlton, 2000; Replumaz and Tapponnier, 2003; Heine et al.,
2004; Honza and Fujioka, 2004; Replumaz et al., 2004; Cloos et al.,
2005; Heine and Muller, 2005; Hinschberger et al., 2005; Quarles van
Ufford and Cloos, 2005; Hafkenscheid et al., 2006; Gaina and Muller,
2007; Whittaker et al., 2007; Keep and Haig, 2010; Harris, 2011;
Gibbons et al., 2012, 2013; Whittaker et al., 2013; Zahirovic et al.,
2014.) Relatively fewof these can be easily tested, becausemost provide
only a few maps, typically at widely spaced time intervals. Because of
the number of models and reconstructions we have not attempted to
compare different models. The reconstructions used in this paper are
from Hall (2012) and were made using the ATLAS computer program
(Cambridge Paleomap Services, 1993) and the plate motion model for
the major plates of Hall (2002). The model uses the Indian-Atlantic
hotspot frame of Müller et al. (1993) from 0 to 120 Ma and a
palaeomagnetic reference frame before 120 Ma using poles provided
by A.G. Smith (pers. comm., 2001). Information about the way in
which the model was developed can be found in Hall (1996, 2002,
2012). Animations of the reconstructions that accompany Hall (2012)
and Spakman and Hall (2010) can be downloaded from http://searg.
rhul.ac.uk/FTP/tecto_2012/ or from http://dx.doi.org/10.1016/j.tecto.
2012.04.021. Animations of earlier reconstructions from Hall (1996)
and Hall (2002) can be found at http://searg.rhul.ac.uk/current_
research/plate_tectonics/index.html.

We first describe the upper mantle structure, and then the lower
mantle structure, which we interpret in the context of our reconstruc-
tions. We then discuss the principal features in the tomography that
should be present or absent in different tectonic models.

http://searg.rhul.ac.uk/FTP/tecto_2012/
http://searg.rhul.ac.uk/FTP/tecto_2012/
http://dx.doi.org/10.1016/j.tecto.2012.04.021
http://dx.doi.org/10.1016/j.tecto.2012.04.021
http://searg.rhul.ac.uk/current_research/plate_tectonics/index.html
http://searg.rhul.ac.uk/current_research/plate_tectonics/index.html


Fig. 4. Simplified 3-D figures showing the form of the subducted slab from Sumatra to
Banda to depth of 600 km. Colour shades correspond to 50 km intervals. A. View looking
approximately eastwards from west of Sumatra. B. View looking approximately west-
wards from east of Halmahera.
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5. Anomalies: upper mantle

For the most part, as reviewed in Section 4, the upper mantle has a
relatively easily understood structure. There are several long linear high
velocity anomalies that are broadly parallel to modern subduction
zoneswhichmove away from the trenches ondeeper depth slices consis-
tent with subducted slabs dipping beneath over-riding plates. These are
seen in depth slices (Fig. 2; SEA_UU-P07_mapview.mov; mmc1.mp4)
and are also illustrated in movies showing Vertical_slices across the
whole region (Vertical_slices/Slices_Whole region; mmc7.mp4 and
mmc8.mp4) and in selected parts of the region in other subfolders in
the folder Vertical_slices (mmc9.mp4 to mmc18.mp4).

5.1. Java–Sumba

Themost obvious and longest feature in the uppermantle is the high
velocity anomaly that follows the trace of the subduction zone from
Sumatra to Banda (Figs. 2 and 4). Estimating the age at which the slab
at the base of the upper mantle began to subduct is important for
interpreting lowermantle structure but has some uncertainties. For ex-
ample, there could have been variations in rates of subduction, and the
very low dip of the slab between 0 and 100 km depth along the arc from
Sumatra to Java could reflect an increase in the width of the volcanic
arc-trench gap,meaning that the slab now at the base of the upperman-
tle passed the trench later than would be estimated from the total
length now observed. However, whatever assumptions are made, all
of the anomaly at the base of the upper mantle can be explained by
Neogene subduction since between 24 Ma and 13 Ma, depending on
location. Subduction has been active since the Eocene, from about
45 Ma, so this implies a significant length of lithosphere subducted in
the early Neogene and Paleogene must contribute to the high velocity
anomalies in the lower mantle.

The segment of the subduction zone from West Java to Sumba is
the simplest (Figs. 2 and 4; SEA_UU-P07_mapview.mov; mmc1.mp4).
Subduction is almost orthogonal, currently at a relative convergence
rate of c. 7 cm/year (7.1 cm/year—NUVEL-1A; 6.3mm/year—GPS ve-
locity from Prawirodirdjo et al., 2010), and the volcanic arc-trench gap
is about 300 km wide. The subducted slab dips north at about 20°
between the trench and the volcanic arc and then dips more steeply
at about 60–70° (Vertical_slices/Slices_Whole_regionSEA_UUP07_
Sunda_Banda_sli.mov; mmc7.mp4), and may be locally overturned in
the lowest part of the seismic zone (Schöffel and Das, 1999). Based on
the length of the seismically active slab, observed rates of convergence
at the Java trench, and plate reconstructions which imply similar
longer-term average rates, the slab now at depths of 660 km would
have passed the trench between 11 and 13 Ma (Fig. 5).

The steep dip of the slab from South Sumatra to Sumba may in part
reflect its age. There are no magnetic anomalies on the Indian plate
south of Java, probably because this part of the plate was formed during
the Cretaceousmagnetic quiet period. South of Bali the age of the ocean
crust is between 154–134Ma and south of South Sumatra is 100–78Ma,
and is overlain by a number of seamount provinces (Hoernle et al.,
2011). Based on joint bulk-sound and shear wave velocity anomalies
along the subducting slab Gorbatov and Kennett (2003) suggested an
abrupt change in its age midway between West Sumatra and Bali
(Fig. 6). This fits very well with the age change predicted by the recon-
struction at the position of an former India–Australia transform fault
(Hall, 2012).

Beneath East Java there is gap in seismicity between about 250 and
500 km. Although tomographic image resolution is not perfect, we
infer from the spatial resolution tests (Fig. 3; SVideo_Resolution_1.mov
and SVideo_Resolution_2.mov; mmc2.mp4 and mmc3.mp4) that
seismic anomalies on the scale of this gap (up to c. 200 km) would be
detectable which provides sufficient justification for exploring its
origin. Tomography slices suggest that the East Java gap is not
an aseismic section of the subduction zone but a hole in the slab
(Widiyantoro et al., 2011) which has an along-strike length of about
400 km (Figs. 4 and 5; Vertical_slices/Slices_Whole_region movies
SEA_UUP07_Sunda_Banda_sli.mov; mmc7.mp4). Further east, there is
a similar but smaller hole in the slab beneath east Sumbawa between
about 200 and 400 km with an along-strike length of about 150 km
long (Fig. 4). The cause of these features could be structural, e.g. a
local absence or considerable thinning of lithospheric mantle, either al-
ready present as a lithosphere heterogeneity prior to subduction or cre-
ated during subduction. It is less likely that lithospheric mantle with a
strongly different composition or only locally thermally weakened lith-
osphere entered the trench could be an explanation for the tomographic
images. Whatever the cause, they are interpreted to result from a posi-
tively buoyant crust/lithosphere that entered the trench and subducted
with consequences for the tectonic evolution of East Java. Here we ex-
plore the possibility of a hole created during subduction.

Hall et al. (2009) suggested a hole was produced by blocking of sub-
duction after buoyant thickened oceanic crust arrived at the trench
south of East Java (Fig. 5). This object may have resembled the Roo
Rise, which is beginning to subduct beneath East Java, and is currently
causing deformation of the forearc and shallowing of the trench (Kopp
et al., 2006; Shulgin et al., 2011). However, the object was not the Roo
Rise, as sometimes suggested (e.g. Garwin, 2002; Simandjuntak and
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sition of high-K volcanoes (HK volcanoes) north of the arc. F to I. Cartoons showing interpreted sequence of events as buoyant object (blue) arrived at trench, blocked subduction, leading
to deformation on land in Java and southward jump in position of trench. J toM. Cartoons showing interpreted sequence of events with upper plate removed as blocking of subduction by
buoyant object caused hole to form. As the hole passed beneath the volcanic arc normal calc-alkaline magmatism ceased as fluid flux from slab diminished and K-rich component was no
longer diluted resulting in short period of high-K magmatism behind former arc. After hole was subducted to greater depths normal calc-alkaline magmatism resumed.
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Barber, 1996; van der Werff et al., 1994), because the dimensions and
position of the hole imply that it was created at about 8 Ma. The esti-
mate of age is consistent with the timing of widespread thrusting in
Java (Cross, 2013; Lunt, 2013; Lunt et al., 2009), which was followed
by cessation of normal arc magmatism in East Java in the Late Miocene
and resumption in the Late Pliocene (Cross, 2013). We suggest that a
tear developed in the downgoing slab in front of the buoyant plateau
whichwas unable to subduct. However, along the rest of the arc normal
subduction continued, initiating the hole. This forced the plateau,
forearc and arc to deform causing contraction, producing folding and
thrusting in and south of Java island. Subduction later resumed behind
the plateau, leaving a hole in the subducting slab, and leaving the de-
formed lithosphere beneath thewidened forearc. The imaged depth ex-
tent of c. 200 km is likely to be an overestimate as local vertical sagging
of the slab accommodated by vertical slab tearing directly below the
hole may also have contributed to enlarging the hole and may have
thickened the slab in the mantle transition zone. As the hole passed be-
neath the arc, and fluid flux from the subducting slab diminished, nor-
mal calc-alkaline volcanism ceased. The passage of a hole beneath East
Java can explain the short-lived activity of K-rich volcanoes (Edwards
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et al., 1991, 1994), now inactive, to the north of the calc-alkaline volca-
noes of the modern arc and with greater depths to the Benioff zone.
With the mantle wedge melt component ‘switched off’, K-rich melts,
produced from a deeper mantle component that remained undiluted,
dominated arc volcanism. As the hole became deeper, normal calc-
alkaline volcanic activity resumed as the slab following the hole was
subducted, the fluid flux was restored, and K-rich volcanism ceased.
Reconstructing the entire slab (Fig. 4) shows that the slab hole is a rela-
tivelyminor feature compared to the length and depth of the subducted
slab from Sumatra to Sumbawhichmakes it easier to comprehend how
it formed and was subducted.

The Sumbawa hole may have developed in a similar way. There are
young K-rich volcanoes (Turner et al., 2003) in northern Sumbawa also
with greater depths to the Benioff zone than typical of the normal calc-
alkaline arc. The smaller size and shallow depth of this hole suggests it
was formed at about 4 Ma. The position of the volcanoes suggests that
the hole could be related to an object fully subducted or to arrival of
part of the Australian continental margin at the subduction zone.

There is a discontinuous zone of thrusts north of Wetar and Flores
identified from marine geophysics (Silver et al., 1983a,b,c) which is
often interpreted to mark a reversal of subduction polarity. A similar
thrust zone is seen on many oil company seismic lines further west, to
the north of Bali, that can be traced towards East Java. Widiyantoro
et al. (2011) show tomographic images interpreted to indicate south-
dipping back-arc lithosphere directly north of Bali. It is plausible that
this feature is related to the south-dipping thrusts observed at the sur-
face. However, although there is intense seismicity down to 100 km be-
neath the active arc in Flores and the inactive segment in Wetar, it is
diffuse and there is no clear indication of the slab shape nor any obvious
feature on the tomographic sections to show south-dipping subduction.
If this is the beginning of polarity reversal the discontinuity of the thrust
zone, and absence of a significant trench-like bathymetric feature,
suggest that subduction has been initiated only recently, and will not
continue for long since there is little oceanic lithosphere north of the
arc to be subducted. North of Bali, with the exception of an E–W trough
less than1.5 kmdeep, the sea bed ismostly shallower than0.5 kmand is
unlikely to be underlain by oceanic crust, and the deeper area north of
Flores (N4 km) is very narrow.We therefore prefer the alternative inter-
pretation offered by Widiyantoro and Fauzi (2005) that the seismicity
reflects backthrusting within a complex backarc region related to the
Pliocene collision of the Australian continental margin with SE Asia in
the south Banda region.
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5.2. Sumatra

Northwest of Java subduction becomes increasingly oblique beneath
Sumatra and India–SE Asia relative motion is partitioned into trench-
normal subduction and trench-parallel movement on the Sumatran
and other strike-slip faults. There are a few hypocentres between 300
and 500 km below South Sumatra but further northwest there are no
hypocentres below 300 km and therefore it is not possible to determine
the subducted slab shape and length from seismicity. Recent tomo-
graphic studies (Pesicek et al., 2008, 2010) have significantly improved
images of the subducted slab and beneath North Sumatra they interpret
the slab to have the form of a large NNE- to NE-plunging fold. Our
tomographic images (Vertical_slices/Slices_Whole_region movies
SEA_UUP07_Sunda_Banda_sli.mov and SEA_UUP07_regional_sli.mov;
mmc7.mp4 andmmc8.mp4) resemble those of Pesicek et al. (2008), al-
though we have drawn Benioff zone contours slightly differently to
them (Fig. 7). The tomographic slices show that the slab dip decreases
significantly at about 1°N. South of this latitude the slab dips steeply
and can be traced into the lowermantle but to the north the slab remains
in the transition zone and can be followed to the NE (Fig. 4). The slab dip
changes again north of 4°N. Fauzi et al. (1996) interpreted a bend in the
slab between 1°N and 4°N based on hypocentres shallower than 200 km.
This was interpreted as the northern limb of the fold by Pesicek et al.
(2008, 2010) who identified a slab to depths of at least 530 km from to-
mographic images (Fig. 8).

An alternative interpretation to a fold limb is that of a NNE-trending
tear in the slab (Fig. 8). We prefer this interpretation because west of
our proposed tear the slab dips more steeply and about 800 km of
subducted slab is imaged, whereas east of the tear the slab can be traced
to about 550 kmdepth andmuch further to theNE,with a total length of
about 1200 km. The tectonic reconstruction model suggests this length
of slab was subducted in about 22–23 Ma; NUVEL1-A velocities would
require 24 Ma and present-day GPS velocities of Prawirodirdjo et al.
(2010) would require 27 Ma. The position of the postulated tear
(Fig. 8) is now beneath the volcanic centre of Toba (Chesner, 1998,
2012; Chesner et al., 1991). Toba has been linked to subduction of the
Investigator Fracture Zone on the Indian plate (e.g. Page et al., 1979),
who suggested a tear at the fracture zone. Its cause could be aweakness
due to the fracture zone which is being subducted subparallel to the
postulated tear. In contrast, Fauzi et al. (1996) suggested there was no
conclusive evidence of a tear in the slab but that high seismicity along
the subducted portion of the Investigator Fracture Zone was the result
of the intersection of the fracture zone and the bend in the slab where
it is under compressive stress. Das et al. (2000) also suggested lateral
compression and thickening would be produced in the Sunda slab as it
subducts and encounters a barrier at the transition zone; beneath
Sumatra lateral compression could result from deformation caused by
the strong curvature of the subduction zone.

Whether or not a fold or tear interpretation is preferred there is an
offset in the linear anomaly at depth (Fig. 7) which suggests a north-
ward offset in the position of the Early Miocene trench from Central to
North Sumatra. Unfortunately, the geological record of subduction-
related volcanic activity (Crow, 2005) is not yet adequate to do more
than speculate on the former position of the trench andmore geological
investigations of North Sumatra are required to identify this.

We have deliberately chosen not to discuss themantle structure fur-
ther north, from the Andaman Sea to Burma, because of its complexity
which requires a more detailed analysis and longer discussion than
can be provided here.

5.3. Banda

Between South Sumatra and Sumba tomographic images show a
strong high velocity anomaly that can be traced from the seismically ac-
tive slab to depths of approximately 1000 km and we consider that the
subducted slab continues into the lower mantle. This is discussed
further below. East of about 118°E (Fig. 9) themantle structure changes.
The deep high velocity anomaly is absent and in the Banda region seis-
micity defines a strongly curved Benioff zone known for many years
(e.g. Bowin et al., 1980; Cardwell and Isacks, 1978; Hamilton, 1974,
1979). There have been two contrasting explanations for this seismicity:
deformation of a single subducted slab or two different slabs subducted
from north and south.

Tomographic images of the Banda slab show it is entirely confined to
the upper mantle, and there is a c. 300 kmwide flat-lying portion of the
slab at the bottomof the uppermantle (Fig. 10). The slab has the form of
a lithospheric fold that plunges west, that has been described as resem-
bling a spoon-shape (Widiyantoro and van der Hilst, 1997) or the prow
of a boat (Pownall et al., 2013). There is a prominent tear in the slab on
its north side, beneath Buru and west Seram, that narrows eastwards.
The contrast in mantle structure from west to east indicates a different
history of subduction in the Java and Banda segments with major slab
rollback in the Banda region. We have shown (Spakman and Hall,
2010) that the differences from east to west, and the shape of the
Banda slab, can be explained by long-term subduction at the Java trench
but that this subduction zone rolled back into a Jurassic oceanic embay-
ment within the Australian continental margin only from about 15 Ma
(Pownall et al., 2014) to form the Banda arc. We have a broadly similar
conception of the 3-D shape of the subducted lithosphere to many
others (e.g. Cardwell and Isacks, 1978; Das, 2004; McCaffrey, 1989;
Richards et al., 2007) and support those who have advocated subduc-
tion of a single slab (e.g. Charlton, 2000; Hamilton, 1979; Milsom,
2001) but we differ from them in several ways. We consider that the
Banda slab is not the simple continuation of a single long-lived subduc-
tion zone north of Australia, nor part of an even larger slab connected to
Pacific subduction. It is the result of rollback into the Banda embayment
locatedwithin theAustralian continentwhich beganwhen thenorthern
boundary of the embayment became aligned with the Java trench. The
lithospheric fold is not merely the result of rollback but has been tight-
ened in a N–S direction by slab-mantle coupling. The Timor–Tanimbar–
Seram Trough is not a subduction trench, nor a single continuous
feature, and has a complex origin. As suggested by others, it is in places
a flexural topographic expression of loading of the Australian continen-
tal margin during collision. Recent high resolution multibeam images
and seismic lines crossing the Aru and Tanimbar Troughs show that in
some places the trough is an inherited feature that pre-dates subduction
(Hall, 2014). In addition,we have shown (Spakman andHall, 2010) that
the size of the high velocity Banda anomaly is greater than the area of
the former Jurassic Banda embayment oceanic crust and we proposed
that the lithospheric fold in the mantle also includes delaminated sub-
continental lithosphere from the surrounding Australian margin. The
Seram and Timor Troughs are located at the limit of delamination of
the continental margin. Incidentally, although we consider that part of
the folded high velocity Banda anomaly is sub-continental lithosphere
we differ from some authors who have proposed that continental
crust has subducted beneath the volcanic arc (Elburg et al., 2004;
Fichtner et al., 2010; Hilton et al., 1992). In our view all of the chemical
features suggested to indicate continental crust subduction can be
accounted for by melting of continental crust basement of the Banda
volcanic arc.

Various active tears in the slab have been proposed in the slab
subducting under the Sumba–Aru segment from analysis of earthquake
focal mechanisms (e.g. Das, 2004; Ely and Sandiford, 2010; McCaffrey
et al., 1985; Sandiford, 2008) or tomography (Widiyantoro et al.,
2011). These inferred tear zones are beyond the local resolution of to-
mographic model UU-P07. Slab tearing in the southern limb of the
Banda slab may result from a combination of overriding motion of the
Australian plate and resistance of the mantle to northward movement
of the slab (Spakman and Hall, 2010). The complex spatial variation of
focal mechanisms along the entire slab under the Banda Sea has been
key information in developing arguments in support of the two-slab hy-
pothesis (Cardwell and Isacks, 1978; Das, 2004). Our 2010 paper



Fig. 7.A, B, C. Depth contours on subducted slab from Pesicek et al. (2008) overlain on depth slices at 200 km, 350 km and 500 km fromUU-P07. D, E, F. Our interpreted depth contours on
the subducted slab overlain on depth slices at 200 km, 350 km and 500 km from UU-P07.
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advocated the importance of slab folding resulting from the interplay
between regional plate motions, subduction, and slab-mantle coupling.
We suggest that a next step forward could be a reassessment of focal
mechanisms of the Banda slab based on a quantitative analysis of the
stress-field in the slab as a function of regional plate motion and slab-
mantle interaction by 3-D thermo-mechanical modelling. This may
shed new light on the forcing of inferred slab tears in the southern seg-
ment, the absence of seismicity between 100 and 300 km beneath East
Timor, and the complex seismicity elsewhere in the heavily deforming,
perhaps even disintegrating, slab.

5.4. Molucca Sea-Sangihe

The Molucca Sea region is famous as the only present-day example
of active arc–arc collision and the inverted U-shape of the subducted
plate has been known for many years (e.g. Cardwell et al., 1980; Hall,

Image of Fig. 7


Fig. 8. Simplified 3-D figures showing form of the subducted slab beneath Sumatra to
depth of 600 km viewed from the north. Colour shades correspond to 50 km intervals.
A. Interpreted fold in Sumatra slab based on contours from Pesicek et al. (2008).
B. Interpreted tears in Sumatra slab based on our depth contours from UU-P07.
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1987; Hamilton, 1979; Hatherton and Dickinson, 1969;McCaffrey et al.,
1980; Silver and Moore, 1978) with slabs dipping to west and east
under the two active volcanic arcs of Sangihe and Halmahera on the
west and east sides of the Molucca Sea. Although there are now no
clear subduction trenches in theMolucca Sea because there is an elevat-
ed collision complex produced by the two converging arcs, there are
two slabs subducting to west and east as explained above. We refer to
thewest-dipping part of theMolucca Sea plate traceable from seismicity
to the base of the upper mantle beneath the Celebes Sea, as the Sangihe
slab, and shorter east-dipping slab as the Halmahera slab (Fig. 11). The
tomography slices show that neither slab penetrates into the lower
mantle and the total length of subducted slab estimated from tomogra-
phy and seismicity is in good agreement (Vertical_slices/Slices_
Molucca_Sea/Molucca_sli.mov; mmc12.mp4). The Sangihe slab reaches
the base of the uppermantlewith an average dip of 45° indicating about
900–950 km of subducted slab. The Halmahera slab reaches 300 km
with a similar average dip and has a length of about 400–450 km.
Adding a flat section between the subduction hinges of 100–200 km in-
dicates a total length of subducted lithosphere of about 1500 to
1600 km.

The length of theMolucca Sea slabs is of importance in reconstructing
the Philippine Sea plate. TheMolucca Sea plate (Hamilton, 1979;Moore
and Silver, 1983) was once part of the Philippine Sea plate (Hall, 1987),
but the Philippine Sea plate is surrounded by subduction zones andwas
therefore for many years omitted from global plate models using plate
circuits with rotation poles determined by conventional methods
based on spreading centres and transform faults. A model based on
palaeomagnetic data from the Philippine Sea plate provided the basis
for reconstructing eastern Indonesia and the western Pacific (Hall,
1996; Hall et al., 1995a,b,c). Palaeomagnetic data allow an estimate of
rotation history and northward movement of the plate but these data
alone only identify a zone within which Euler poles can lie (Hall et al.,
1995a). Hall et al. (1995a,b,c) estimated a realistic position for the
pole based on one additional geological condition — collision of the
Halmahera arc with the Australian margin at about 25 Ma, after which
Halmahera arc moved west by subduction of the Molucca Sea. The
total amount of subduction was unknown and it was not expected
that present-day seismicity would record it. The Halmahera arc was
therefore reconstructed at the easternmost possible position on the
Australian margin. The tomography slices indicate that the length of
the seismically active slab is the total actually subducted, i.e. about
1500–1600 km, and is about 700 km less than postulated by Hall et al.
(1995a,b,c) and used in the Hall (1996, 2002) model. Those models
placed Halmahera at the eastern end of New Guinea in the Manus re-
gion at 25 Ma, whereas the length estimated from tomography indi-
cates a position closer to the Bird's shoulder of western New Guinea.
The 25 Ma reconstruction should thus look more like the Hall (1996,
2002) 15Ma reconstruction. As discussed below, this suggestion is sup-
ported by observations of the lower mantle.

The position of the slabs in the mantle indicate that theMolucca Sea
has moved in the later part of its history as an independent plate
completely separate from all surrounding plates but subducting be-
neath both the Sangihe arc and the Halmahera arc. It is unlikely that
subduction would have occurred simultaneously over a long period on
both sides of the Molucca Sea. The simplest model that accounts for
the present configuration is as follows. Subduction began on the west
side under the Sangihe arc and was driven by Philippine Sea plate rota-
tion at about 20Ma.Up to 900 kmof slabwas subducted. At about 10Ma
subduction ceased on the Sangihe side and began on the Halmahera
side. Continued motion of the Philippine Sea plate initiated volcanic
activity in the Halmahera arc by 8 Ma (Baker and Malaihollo, 1996).
11–12 Ma volcanic rocks on Obi (Baker and Malaihollo, 1996; Ali et al.,
2001), in the Bird's Head (Pieters et al., 1983), and western New
Guinea (Weiland, 1999) are probably related tominor subductionwith-
in the northern New Guinea strike-slip zone. The Halmahera hinge
rolled back rapidly until about 2Mawhen the arcs began to collide. Dur-
ing this period the Molucca Sea plate moved northwards pushed by
Australia. Arc–arc collision has produced young volcanic activity from
the eastern tip of North Sulawesi through Sangihe to Mindanao.
5.5. North Sulawesi trench subduction

The configuration of subducting slabs in the North Sulawesi region
(Fig. 9) is possibly the most complex in the eastern Indonesian–
Philippines region; if not the most complex it is certainly the most
difficult to unravel. Movies that show different slices across the region
are in the folders Vertical_slices/Slices_North_Sulawesi, Vertical_slices/
Slices_Sula and Vertical_slices/Slices_Molucca_Sea (mmc13.mp4,
mmc16.mp4, mmc12.mp4).

On the west side of the Molucca Sea is the west-dipping Sangihe
slab (Fig. 11) traceable from seismicity to the base of the upper
mantle and imaged clearly beneath the Celebes Sea by tomography
(Vertical_slices/Slices_Molucca_Sea/Molucca_sli.mov; mmc12.mp4).
Seismicity and tomography show that at depths below 400 km this
slab is straight and strikes NNE. There is a second slab below the
North Arm of Sulawesi, which we term the Celebes slab, that subducts
Celebes Sea lithosphere southwards from the North Sulawesi trench
(Fig. 11). The geometry of this system has been interpreted to result
from rotation of the North Arm about a pole near the eastern end of
the arm (Hamilton, 1979; Silver et al., 1983a,b,c). The subduction trench
terminates at its eastern end, close to Manado, and at its western end
terminates at the offshore continuation of the Palu–Koru Fault. In the
central part of the subduction zone the subducted slab reaches a
depth of just over 200 km, based on seismicity (Fig. 12). Palaeomagnetic
evidence (Surmont et al., 1994) and GPS observations of rates ofmotion
on the Palu–Koro Fault (Socquet et al., 2006) suggest this has been
subducted in the last 5 Ma.

Image of Fig. 8


135°E130°E125°E120°E115°E
20°N

15°N

10°N

5°N

0°

5°S

10°S

ManilaManila
South
China
Sea

South
China
Sea

PhilippinePhilippine

CotobatoCotobato

JavaJava

ToloTolo

N SulawesiN Sulawesi

NegrosNegros

SuluSulu

Fig. 9.Major trenches and troughs in Philippines to east Indonesia region discussed in the text.

30 R. Hall, W. Spakman / Tectonophysics 658 (2015) 14–45
Running approximately E–W from the centralMolucca Sea ridge be-
neath the axis of Gorontalo Bay is a steep zone of earthquakes (Fig. 12).
Mapping the slabs and their geometry from earthquake hypocentres is
extremely difficult in this region because it is not possible to identify
hypocentres with specific slabs. East of 123°E the hypocentres can be
explained asmarking the edge of thewest-dipping Sangihe slab. Further
west relatively fewhypocentres are above the Sangihe slab. On different
N–S profiles the hypocentres appear to define a vertical slab, in the cen-
tral part of the bay near Una–Una the steep segment of a south-dipping
slab, and on some sections a north-dipping slab. Gudmundsson and
Sambridge (1998) produced a global regionalised mantle model by an
automated process and the results are portrayed by Di Leo et al.
(2012a,b) with slab identifications and contours in the Molucca Sea
and North Sulawesi region. They considered all hypocentres to result
from subduction of two slabs, the Sangihe slab and the Celebes slab,
both of which bend through about 90° in the upper 200 km of the
mantle beneathNorth Sulawesi. The Sangihe slabwas traced in a similar
way by Walpersdorf et al. (1998) and Kopp et al. (1999).

In the late 1990s almost nothing was known about Gorontalo Bay
(Fig. 11), the area between the North and East Arms of Sulawesi, but
in recent years a great deal has been learned from new fieldwork and
dating on land, and from offshore oil industry exploration seismic
and detailed multibeam bathymetric data. Based on these new
data, the previously proposed slab shapes are difficult to reconcile
with the geological observations. The 90° bend in the Celebes slab
interpreted by Gudmundsson and Sambridge (1998) implies
150 km of subduction from the west, from the Makassar Strait of
Palu–Koro Fault, for which there is no evidence. Seismicity indicates
subduction was from the North Sulawesi trench and shows that the
deepest seismicity of the Celebes slab is in its central part while sug-
gesting diminishing slab length to the east and west consistent with
the tomographic images.

Image of Fig. 9
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The almost 90° bend in Sangihe slab interpreted by Gudmundsson
and Sambridge (1998) is suggested by Walpersdorf et al. (1998) to
join the Sangihe slab subducted from the east to a north-dipping slab
joined to the northern edge of the Sula microcontinent. Based on
hypocentres this requires the slab to increase in strike length at
shallower depths, and be deformedmost strongly at shallowest depths.
Restoring the inferred subducted slab implies a major separation
between the North Arm and the Sula Spur in the Late Miocene and Pli-
ocene, whereas geological observations show they collided in the Early
Miocene, emplacing the ophiolite on the Sula Spur, and since then have
been close together. Recent studies of the offshore and onshore geology
show that during the Late Miocene and Pliocene this region has extend-
ed rather than contracted (Advokaat et al., 2014; Hennig et al., 2012,
2014, in press; Pezzati et al., 2014a,b; Spencer, 2010, 2011). The Early
Miocene suture zone is now overlain by a several kilometre thick se-
quence of almost undeformed sediments (Pholbud et al., 2012).

We suggest a new interpretation (Fig. 13) based on the earthquake
hypocentres and tomography slices that is consistent with the geologi-
cal observations. Rather than two slabs we explore the possibility of a
slab dipping northwards, as previously proposed by others, but which
we consider not to be part of the Sangihe slab but a separate third slab
whichwe name the Sula slab. Silver et al. (1983a) tentatively suggested
a north-dipping Benioff zone beneath Gorontalo Bay continuing north
from the Sula microcontinental block. The recently acquired industry
seismic lines support a north-dipping thrust interpretation north of
the Sula Islands (Ferdian et al., 2010; Watkinson et al., 2011). It is also
consistent with cross-sections drawn by Walpersdorf et al. (1998) al-
though we interpret differently their postulated continuity of the
Sangihe slab and our Sula slab. The Banda tectonic reconstruction
(Hall, 2012; Spakman and Hall, 2010) shows how this situation could
have evolved (http://dx.doi.org/10.1016/j.tecto.2012.04.021). Before
collision of the Sula Spur and the North Arm in the Early Miocene
therewas a north-dipping slab subducting below theNorth Armbound-
ed by slab tears at its east andwest ends (Fig. 14). The deeper part of this
slab broke off after collision and sank into the lower mantle (as
discussed below) leaving a short length of about 200 km still attached
(Fig. 15). The tear at the eastern end became a new subduction zone
at the west side of the Molucca Sea, and the Sangihe slab began to sub-
duct westwards. Interaction with the nearby NW-subducting Sangihe
slab (since c. 24 Ma) and S-subducting Celebes slab (since c. 5 Ma)
may have affected the morphology of the Sula slab leading to steeper
dips. At present, at shallow depths earthquakes could mark delamina-
tion of the lower continental lithosphere, as in the Banda arc. The
deeper, vertical part of the Sula slab imaged in the tomography slices
is currently almost aseismic.

The total length of the slab interpreted from the tomography slices is
about 400 km (Fig. 13), of which up to half may be continental litho-
sphere, suggested by the observation that the overthrust Sula Spur con-
tinental crust may extend as far north as the North Arm of Sulawesi,
based on zircon age data from young granites in the North Arm
(Rudyawan et al., 2014). Thus, although it may be unusual to find a
slab remnant still attached after collision, most of the slab did detach,
leaving only a short hanging length of a few hundred kilometres. Recent
slab detachmentmodelling (Duretz et al., 2011) shows that lithosphere
older than ~80 Ma, as is the case here, can detach below ~300 km.

Our proposition of a third slab is tentative but consistent with the
seismicity, recent geological evidence and the tectonic reconstruction.
Moving an inactive slab of c. 200 km length hundreds of kilometres to
the north in the last 20 Ma raises some geodynamic questions, although
themuch largerMolucca Sea platemust also havemoved north by a sim-
ilar amount as it subducted to the west and east. Thermo-mechanical
modelling of 3-D slab evolution has helped constrain tectonic evolution
models elsewhere (e.g. Chertova et al., 2014) and may contribute to
assessing this proposal.

5.6. Philippines

For reasons of lengthwe do not discuss the uppermantle structure of
the West Pacific further north and east of the Philippines. Lallemand
et al. (2001), Lin et al. (2004), Cheng (2009), Cheng et al. (2012), and
Huang et al. (2014) are among many authors who have discussed
tomography and complexities of reconstructions north of the
Philippines. For the Philippines themselves, the history of the
Philippine Sea plate is relevant, and modification of the reconstructions
have been suggested above in the light of tomographic images that
show the length of subducted Molucca Sea slabs. We consider that the
tomographic images of the West Pacific support models suggesting
Neogene rotation of the Philippine Sea plate (Mapview_movies/
Philip_Sea_Plate.mov; mmc5.mp4). The eastern boundary of the plate
is seen clearly tomigrate eastwards during the past 15Ma, the time cor-
responding to the depth of the slab imaged as far as the base of the
upper mantle, with a flat section interpreted to record subduction
since c. 20 Ma. The eastern and northern boundaries of the plate have
been discussed by Miller and Kennett (2006) and Miller et al. (2006)
who suggested modifications of previous reconstructions for the past
25Ma based on Euler poles estimated from earthquake slip vectors, ob-
served GPS velocities, and data from the NUVEL-1 and -1A global plate
motionmodels. It is difficult to see how such data can be usedmuch be-
yond the recent past as all are measurements of present-day plate
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motions, and it has been shown that the present-day Philippine Sea
plate rotation pole (Seno et al., 1993) cannot account for the motion
of the plate before 5 Ma recorded by palaeomagnetic data (Hall et al.,
1995a,b,c). Nonetheless Miller et al. (2006) concluded their reconstruc-
tion confirmed the basic characteristics of models by previous workers
(Hall, 2002; Hall et al., 1995b,c; Seno and Maruyama, 1984; Seno et al.,
1993) and used the rotation poles of Hall et al. (1995c) for their recon-
structions older than 5Ma.We suggest the history of the Philippine Sea
plate before c. 20 Ma is recorded in the lower mantle as discussed fur-
ther below.

None of the tomographic studies have been concerned with the
western boundary of the Philippine Sea plate in the Philippines and fur-
ther south in eastern Indonesia (Fig. 9). At the south of the Philippines
the Cotobato trench on the SW side of Mindanao has no clear tomo-
graphic expression, as expected from its short length and lack of seis-
micity below about 100 km, suggesting a trench that is just beginning.
The Negros trench, often shown on tectonic maps on the west side of
the central Philippines, has no tomographic or seismic expression. On
the east side of the Philippines there is little or no indication of a slab
subducting from the Philippine trench, again consistent with the lack
of a seismically well-defined slab and relatively recent (Pliocene or
younger) initiation of subduction. Cardwell et al. (1980) identified the
key features of subduction geometry, and larger and better located seis-
mic data sets (Engdahl et al., 1998; ISC, 2015) including events acquired
since their study have not changed the picture they interpreted. A slab
subducting from the Philippine trench can be traced to little more
than 100 km depth between 15°N and 3°N and cannot be identified
more clearly from the tomographic sections (Vertical_slices/Slices_
Philippines/Philippines_sli.mov; mmc14.mp4). This is surprising con-
sidering how well defined the Philippine trench is, and its great depth
of more than 9 km east of Mindanao. It is however, consistent with
absence of obvious volcanoes associated with subduction at the
Philippine trench; volcanoes in the southern and central Philippines ap-
pear to be associatedwith the Philippine fault, or have noobvious link to
any slabs subducting below the western Philippines, except in Luzon
(Fig. 9). Subduction at the Philippine trench is young and the
partitioning of oblique subduction into trench-normal subduction and
strike-slip motion on the Philippine fault may reflect re-use of a much
older strike-slip fault zone. Long lived strike-slip faulting in the
Philippines has been discussed by many authors (e.g. Karig, 1983;
Karig et al., 1986; Pubellier et al., 1991; Quebral et al., 1996; Rutland,
1968; Stephan et al., 1986; Yumul et al., 2004).

The northern part of the Sangihe slab is clearly identified from
hypocentres beneath Mindanao in a position consistent with the
tectonic reconstruction (Vertical_slices/Slices_Molucca_Sea/Molucca_
sli.mov and Mapview_movies/SEA_east_mapv.mov; mmc12.mp4 and
mmc6.mp4). At the north end of the Philippines, beneath Luzon, the
South China Sea slab subducted at the Manila trench can be identified
to about 300 km depth from seismicity and a little deeper from the to-
mography slices (Mapview_movies/Manila_sli.mov; mmc11.mp4). Be-
tween them, is a complex pattern of high velocity anomalies, which
are at different depths, mainly below 200 km, mostly aseismic, and
vary in their dip. There is a particularly large and strong steep-dipping
anomaly beneath the central Philippines at depths between 200 and
600 km (Mapview_movies/SEA_east_mapv.mov; mmc6.mp4). The tec-
tonic reconstruction simplifies this region and shows a number of differ-
ent subduction zones on the east andwest side of the Philippines linked
intermittently by strike-slip faults, in part reflecting the difficulty of un-
derstanding and reconstructing such a complex region (e.g. Queano
et al., 2007; Rangin, 1991; Rangin et al., 1991; Yumul et al., 2008,
2009) based on present knowledge. Tomographic models have not yet
provided the detail needed to help unravel this complexity but as they
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support models that include significant rotation of the Philippine Sea
plate, this implies a complex strike-slip dominated mobile belt at its
western side, rather than simple northward translation during the
Cenozoic.

Below the South China Sea and possibly traceable beneath the
northern Philippines is a broad flat lying high velocity anomaly in
the transition zone (Fig. 2; Mapview_movies/Philip_Sea_Plate.mov;
mmc5.mp4). There is nothing in our tectonic reconstruction, nor to
our knowledge in any other reconstruction, that accounts for this anom-
aly. Our tentative hypothesis is that this is an anomaly produced during
a much earlier episode of subduction than any other anomaly in the
upper mantle of the region, which can all be related to Cenozoic

Image of Fig. 12
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Image of Fig. 13


Fig. 14. A. Depth slice at 820 km from UU-P07 showing high velocity anomalies. Su is the
interpreted slab subducted beneath the North Arm of Sulawesi which broke off after col-
lision at c. 24 Ma between Sula Spur and North Arm. B. Reconstruction at 26 Ma for the
Banda region shortly before collision of Sula Spur and Sulawesi North Arm from Spakman
and Hall (2010).
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subduction. In a study of the SWPacific (Hall and Spakman, 2002, 2003)
we suggested that large flat anomalies that are identified there could
have been produced during major episodes of subduction rollback and
could remain in the transition zone for very longperiods before entering
the lower mantle. A candidate in the western Pacific for major rollback,
possibly associatedwith flat slab subduction, that could have left a wide
flat anomaly, is the west-directed Mesozoic subduction beneath the
Fig. 13. A. 3-D cartoon showing interpreted slabs in the North Sulawesi andMolucca Sea region
southern end of theMolucca Sea platewhichobliquely intersects the south-dipping Celebes slab
Sangihe and Halmahera slabs. D, E: NNW–SSE slices crossing Gorontalo Bay which cut the south
west and steeply north-dipping further east). The Sangihe slab is cut very obliquely in the tran
Asian margin. This subduction was marked by granite magmatism
from Vietnam to East China and terminated in the Cretaceous at about
80–90 Ma (e.g. Li and Li, 2007; Nguyen et al., 2004; Zhou and Li, 2000).

5.7. North Borneo to Sulu Sea

In the northern part of the area of interest of this paper, beneath the
South China Sea and its margins, there are no obvious anomalies in
the upper mantle at depths less than 500 km but this is an area with
very little resolution as indicated by the resolution tests (Fig. 3;
SVideo_Resolution_1.mov and SVideo_Resolution_2.mov; mmc2.mp4
and mmc3.mp4). However, based on the resolution tests it should be
possible to image subducted slabs in the upper parts of the upper man-
tle beneath the Sulu Sea from the Philippines as far west as northern
Borneo. There is a relatively large anomaly beneath northern Borneo
at depths between 100 and 250 km (Fig. 2) but this is on the edge of
the area with limited or inadequate resolution so this feature could be
an artefact. Regional surface wave tomography (Tang and Zheng,
2013) shows high velocities in the lithosphere suggesting the anomaly
is real. Assuming it is not an artefact, a possible explanation for this fea-
ture is a slab subducted northwards from the Celebes Sea in the Middle
and Late Miocene (c. 15 to 5 Ma), now broken off, which created the
Sulu arc (Cottam et al., 2013; Hall, 2013). However, if this was the
case it would be expected that the slab would be imaged beneath the
Sulu Sea and it is not (Vertical_slices/Slices_Sulu/Sulu_sli.mov and
Vertical_slices/Slices_Proto_SCS/Proto_SCS_sli.mov; mm17.mp4 and
mmc15.mp4). The anomaly is directly beneath Mt Kinabalu which is a
granite pluton emplaced between 8–7Ma (Cottam et al., 2010) and rap-
idly exhumed during the Late Miocene to Early Pliocene (Cottam et al.,
2013). An alternative explanation is that the anomaly represents a
thickened lithosphere beneath northern Borneo, formed during col-
lision of the Dangerous Grounds microcontinental block with the
Sabah–Cagayan volcanic arc,which has recently detached and is sinking
into the mantle below Mt Kinabalu (Cottam et al., 2013).

The absence of a high velocity anomaly beneath the Sulu Sea is sur-
prising since there is a volcanic arc, the Sulu arc, between Sabah and the
Zamboanga peninsula of Mindanao, although there is no seismicity and
little other geological or geophysical evidence to support active or re-
cent subduction. Hamilton (1979) suggested both south- and north-
directed subduction beneath the now inactive arc at different times
since the Oligocene, and many tectonic maps show a Sulu trench on
the north side of the Sulu arc. On Sabah, Middle to Upper Miocene vol-
canic rocks are typical calc-alkaline arc products (Chiang, 2002)
interpreted as the result of north-directed subduction. However, ODP
drilling results (Rangin and Silver, 1991; Silver and Rangin, 1991;
Silver et al., 1991) show no oceanic crust was produced in the Sulu
Sea inwhatwould have been the backarc of this north-directed subduc-
tion, and the maximum extension between Palawan and the Sulu arc
during theMiocene was less than 200 km. If this was entirely the result
of subduction rollback (Hall, 2013) the length of subducted slab could
have been very small, and would be no deeper than about 150 km.
Plio–Pleistocene volcanic rocks are chemically different from the Mio-
cene volcanics in Mindanao (Sajona et al., 1996, 2000), the Sulu arc
(Castillo and Solidum, 2002) and Sabah (Macpherson et al., 2010). The
differences have been attributed to melting of a subducted slab
(Sajona et al., 1996, 2000), an interpretation excluded by later workers.
Castillo and Solidum (2002) proposed that the mantle already
contained an enriched component that melted during later subduction
whereas Macpherson et al. (2010) suggested that Plio–Pleistocene
magmatism was not subduction-related but resulted from upwelling
. This portrays the upper surfaces of the three slabs. B: approximately E–W slice across the

. C: approximately E–Wslice across the northern part of theMolucca Sea plate showing the
-dipping Celebes slab and the sub-vertical Sula slab (south-dipping and overturned in the
sition zone.

Image of Fig. 14


Fig. 15. Inferred development of Sula slab following collision of Sula Spur and Sulawesi North Arm. By 20Ma oceanic lithosphere has broken off and at present day is in the lower mantle
(Fig. 14). Extension at 15Mawas associatedwith beginning of Banda rollback further SE. By 10Ma Sangihe slab is subducting from theMolucca Sea to the east into the plane of the section
and contributes to steepening of Sula slab. Subduction of Celebes Sea lithosphere beneath theNorth Arm and steepening of dip of Sula slab begins delamination of Sula Spur contributing to
extension and rapid subsidence of Gorontalo Bay, andmagmatism inNorth Arm. Celebes slab has now reached depth of c. 200 kmbeneath Gorontalo Bay, andUna–Una volcano is product
of localised melting accompanying crustal thinning and delamination of Sula Spur as Sula slab becomes vertical.
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of OIB-like domains in the upper mantle into lithospheric thin spots
formed during earlier Miocene subduction. Therefore, the absence of
any high velocity anomalies beneath the Sulu Sea is interpreted here
to reflect a very short length of slab subducted in the Miocene, with
younger volcanism unrelated to subduction, and possibly reflecting
extension (Hall, 2013). In passing it is also worth reiterating that the

Image of Fig. 15


Fig. 16. 1100 km depth slice of UU-P07 showing change in lowermantle structure fromwest to east. Linear anomalies west of 110°E recordMesozoic and early Cenozoic Tethyan subduc-
tion north of India, later overridden by India. Broad deep anomaly below Indonesia east of 110°E records Cenozoic subduction.
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so-called Negros and Sulu trenches often shown on the east and south-
east side of the Sulu Sea (Fig. 9) have no seismically-defined, nor
tomographically imaged, slab associated with them, and seismic lines
crossing them show nothing more than shallow thrusting.

6. Anomalies: lower mantle

Tomography studies showed some years ago that there is a different
structure in the lower mantle compared to the upper mantle beneath
SE Asia (e.g. Bijwaard et al., 1998; Hafkenscheid et al., 2001, 2006;
Widiyantoro and van der Hilst, 1997). Furthermore, the deep structure
changes from west to east (Fig. 16). Recent tomography models (UU-
P07 used here; Li et al., 2008) show that what was previously imaged
in earliermodels as a broad and deep anomaly belowSEAsia has a clear-
er internal structure and we argue below that many of the features can
be identified with older subduction zones recognised in the tectonic
reconstructions.

6.1. Sunda–Java–Banda

West of about 110°E there are several broadly NW–SE linear high
velocity anomalies interpreted first by van der Voo et al. (1999) as dif-
ferent subducted Tethyan slabs now over-ridden by India (Fig. 16)
trending roughly NW–SE. The prominent southern linear anomaly
is now accepted to mark an early Cenozoic India–arc collision (e.g.
Aitchison and Davis, 2004; Aitchison et al., 2007; Hall, 2012; Hall et al.,
2008; Jagoutz et al., 2015; van Hinsbergen et al., 2012). This anomaly
dips steeply southwards and can be traced eastwards beneath North
Sumatra, where it strikes approximately E–W, below the north-
dipping Sunda slab (Fig. 17).

East of about 110°E under SE Asia instead of linear anomalies there is
broad high velocity anomaly trending roughly NE–SWwhich is particu-
larly prominent between 800 and 1100 km. This anomaly can be seen
on lower mantle depth slices (Fig. 2; SEA_UU-P07_mapview.mov;
mmc1.mp4) to have an internal structure. We interpret there to be sev-
eral parts to this anomaly which represent different subduction zones
(Fig. 18). The first of these is north of Java where the anomaly strikes
E–W and can be traced with steep dip to about 900 km and then less
steeply to about 100 km below southern Borneo just south of the equa-
tor. Volcanic activity related to this subduction began at about 42 Ma in
East Java (Smyth et al., 2007, 2008) and West Java (Clements and Hall,
2011; Clements et al., 2012). The position of the deep anomaly is consis-
tent with the Java trench remaining relatively fixed in a mantle refer-
ence frame during the Cenozoic.

Further east, positive anomalies in the lower mantle between Timor
and Sulawesi at depths between c. 700 and 950 km are interpreted as
remnants of the slab that subducted under the North Arm of Sulawesi
prior to the Early Miocene collision with the Australian Sula Spur
(Fig. 14). Slab detachment and vertical sinking following this collision
fits the present-day lower mantle position of the slab remnant in the
reconstructions of Spakman and Hall (2010) and Hall (2012).
6.2. North Borneo–Proto-South China Sea

On the 800 km depth slice (Fig. 18) the two parts of the deep anom-
aly are separated but below 900 km to depths of about 1100 km they
merge (Fig. 2). The lower mantle anomaly north of the equator can be
traced from below central Borneo with a SW–NE strike to 15°N under
the central Philippines. We suggest this SW–NE striking anomaly is
the Proto-South China Sea which subducted SE-wards from 45 to
20Ma beneath North Borneo and the Cagayan arc, now southeast of Pa-
lawan. Subduction beneath Borneo, and rotation of Borneo, was sug-
gested many years ago based on pioneering palaeomagnetic studies
(Haile, 1979, 1981), and incorporated in the earliest plate tectonic
models for the South China Sea (Holloway, 1982; Taylor and Hayes,
1980, 1983) which also included a then unnamed Proto-South China
Sea. Fuller et al. (1999) reviewed the palaeomagnetic evidence and
concluded there had been rigid plate rotation of much of Kalimantan,
Sarawak and southern Sabah of about 50° CCW between 30 and 10 Ma,
and attributed this to convergence between Australia and SE Asia.

Nonetheless, the size and subduction history of the Proto-South
China Sea remain controversial (e.g. Cullen, 2010, 2014; Cullen et al.,
2010; Hall, 1996, 2002; Rangin et al., 1999; Replumaz and Tapponnier,
2003; Replumaz et al., 2004). Tang and Zheng (2013) interpreted
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Fig. 17. A. 3-D images showing the Tethyan slab at depth below the Sunda slab. Below Sumatra the Sunda slab is in the upper mantle but further SE below South Sumatra and Java the
subducted slab penetrates the lower mantle. Below Java and Sumatra the part of the slab at depths greater than 600 km is omitted for clarity. B. 1000 km depth slice of UU-P07 showing
the eastern end of the elongate Tethyan anomaly and the broad deep anomaly below Indonesia east of 110°E which is due to Cenozoic subduction.
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regional surfacewave tomography to showa Proto-South China Sea slab
of 500 km length in the uppermantle beneath northern Borneowhich is
longer than estimated by Rangin et al. (1999) but smaller than
interpreted by the Hall (1996, 2002, 2012) reconstructions. The P-
wave tomography has poor resolution in this region, as discussed
above, and we do not see this feature in the upper mantle (Vertical_
slices/Slices_Proto_SCS/Proto_SCS_sli.mov; mmc15.mp4). However,
we suggest that those looking for the Proto-South China Sea directly be-
neath Borneo are looking in the wrong place because of the rotation of
Borneo and SE margin of Sundaland. Fig. 18 shows a tectonic recon-
struction for 30 Ma compared to a tomography depth slice at 800 km.
In the lower mantle the P-wave tomography images show an anomaly
with a lateral extent consistent with a wide Proto-South China Sea in
the Paleogene which narrowed and terminated towards the SW, and a
position consistent with a large Neogene rotation of Borneo, all features
of the tectonic reconstructions (Hall, 1996, 2002, 2012).We suggest this
anomaly in the lower mantle, like almost all other velocity anomalies to
depths of c. 1200 km, is a slab subducted before subduction ceased at
about 20 Ma and represents the Proto-South China Sea.
6.3. Philippine Sea plate margins 40–25 Ma north and south sides

The anomalies in the lowermantle below the Philippines and south-
ern part of the Philippine Sea plate have a very different orientation and
position to inferred Neogene andmodern-day subduction zones. East of
the interpreted Proto-South China Sea discussed above, there are sever-
al broadly linear anomalies that strike ESE, most clearly seen at 800 km
but visible on depth slices from 760 to 900 km. On the other hand, these
anomalies are in a position consistent with subduction at themargins of
the Philippine Sea plate, and beneath the North Arm of Sulawesi. All of
the main subduction zones (Proto-South China Sea, North Arm of
Sulawesi, south side of Philippine Sea plate, north side of Philippine
Sea plate) were stationary during the interval between 40 and 25–
15 Ma which was a period of no rotation of the Philippine Sea plate,
based on palaeomagnetic data (Hall et al., 1995a,b,c). The tectonic
reconstruction for 30 Ma, in the middle of this period, is compared to
the tomography depth slice at 800 km in Fig. 18. Most anomalies are
in good agreement with the reconstructed positions of the major
subduction zones. There is one north-south anomaly beneath the
Philippines for which we currently have no explanation. It is parallel
to, and east of, the Proto-South China Sea slab and appears to be
traceable to greater depths (Fig. 18A). It suggests a more complex
subduction history at the Paleogene NW side of the Philippine Sea
plate, which could include either double or opposed subduction
zones, for which there may be evidence in complex geology of the
Philippines.

North of the Philippine Sea plate a subduction zone was
interpreted on the reconstructions (Fig. 18B) in the Paleogene from
approximately Luzon to Japan. There is no tomographic support for

Image of Fig. 17


Fig. 18. A. Depth slice at 800 km from UU-P07 showing high velocity anomalies. Tethyan linear anomaly marked with magenta line interpreted to record northward subduction north of
India in Late Cretaceous and early Cenozoic. Anomalies east of about 110°E are interpreted as the result of subduction since 45Ma. Symbol P? marks a linear feature in the deep anomaly
that could represent a subduction zone not in tectonic model. B. Reconstruction at 30 Ma from Hall (2012) showing interpreted subduction zones. Sunda-Java trench subduction, Proto-
South China Sea subduction, subduction belowNorth Sulawesi–East Philippines, and subduction belowNE side of Philippine Sea plate all fit wellwith position of high velocity anomalies in
lower mantle. There is no evidence from tomography to support the interpreted subduction at the east side of the Pacific, north of the Philippine Sea plate.
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this. West-directed subduction beneath Japan during the Paleogene
is commonly interpreted (e.g. Lewis and Byrne, 2003; Maruyama
et al., 1997; Taira, 2001) although it may have ceased at times (von
Huene et al., 1982) but where subduction boundaries were to the
south of Japan in unknown. Resolution in the mantle beneath the Pa-
cific is poor, but it is possible that the subduction boundary of the
Kula or Pacific plates continued southwards to join the east end of
the Philippine Sea plate where there is a weak high velocity anomaly
trending northwards (Fig. 18A).
7. Discussion: tomography and tectonic models

Based on the premise that positive seismic P-wave velocity anoma-
lies in the mantle are primarily the product of subduction, the tomo-
graphic images of the mantle from UU-P07 record subduction beneath
the SE Asian region to depths of approximately 1600 km. As explained
above the anomalies in the uppermantlemainly record subduction dur-
ing the last 10 to 25 Ma, depending on the region considered. Based on
our tectonic model we interpret virtually all features seen in upper
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mantle and lower mantle to depths of at least 1200 km to be the result
of Cenozoic subduction.

7.1. Upper mantle: results from tomography

In Section 3 we reviewed previous interpretations of tomographic
models. The quality and resolution of recent models has improved but
in general there are few significant differences between them and the
majority of high velocity anomalies in the upper mantle can be linked
to present subduction zones. We conclude that most anomalies record
Neogene subduction mostly younger than suggested by some previous
authors (e.g. Li and van der Hilst, 2010).

For the Sunda–Java subduction zone we postulate a tear rather than
a fold in the slab beneath Sumatra, and likeWidiyantoro et al. (2011)we
infer there are holes in the slab below East Java and Flores–Sumbawa
which are interpreted to result from buoyant obstacles on the
subducting plate. Our interpretation of slab geometry from Sunda to
Banda is similar to that of Richards et al. (2007), but we differ in partic-
ular from them and earlier workers in our interpretation of the develop-
ment of the Banda region. The crucial differences are the recognition
that the Banda subduction began only in the last 15 Ma, and the geom-
etry of the slab reflects the shape of the pre-existing Banda embayment,
and Neogene eastwards rollback into the embayment while the
Australian plate moved northward.

Beneath Sulawesi we propose a new interpretation of slab geometry
consistent with seismicity, tomographic images and recently acquired
geological observations that suggests a third slab. From the Molucca
Sea northwards into the Philippines region the subducted slabs are seg-
mented, and several subduction zones are not imaged because of the
short slab lengths consistent with their young age (Cotobato trench,
Philippine trench, Celebes Sea subduction beneath the Sulu arc). The
oldest subduction zone in the Philippines region that can be connected
to a modern trench is the slab subducting eastwards from the Manila
Trench. However, high velocity anomalies in lower part of the upper
mantle suggest a subduction history more complex than shown in
model reconstructions.

There is a broad positive velocity anomaly in the transition zone
(400–650 km) below the South China Sea with weak amplitudes
which is not explained by any tectonic model.We tentatively suggest
this could be a possible remnant of a flat slab section from a
westward-directed Cretaceous subduction zone at the Pacific margin.
If correct, this would imply this slab has been in themantle in this posi-
tion since about 80–90 Ma and would be the oldest subduction system
that is identifiable beneath SE Asia.

7.2. Lower mantle: results from tomography

The UU-P07model resolvesmore structure in the lowermantle than
seen in previous models. We suggest this can now identify subduction
zones which mainly pre-date about 15 Ma.

Previous interpretations of the lower mantle high velocity anomaly
beneath SE Asia have invariably proposed a single anomaly linked to
the Tethyan anomalieswhich can be traced to the EasternMediterranean.
We propose a separation of this huge SE Asia anomaly from the Tethys
anomaly. The most prominent, and southern, Tethyan linear anomaly
extends beneath Sumatra at depths below c. 850 km but only to about
110°E. To the east of this there are several parts to the broad anomaly
at depths from 800 to 1100 km. There is a Java trench-related part
(NE-directed subduction from 45 to 15 Ma), a Sula subduction zone,
subduction at the Philippine Sea plate margins, and a Proto-South
China slab which were subducted between 45 and 25 Ma.

Below Java the steep anomaly in the upper mantle passes through
and overlaps the deep flatter anomaly which extends further south.
This is what would be expected based on the tectonic model (Hall,
2012) which shows advance of the subduction hinge between 25 and
15 Ma as a result of Borneo (SE Sundaland) rotation. From about
1200 km to greater depths the anomaly becomes NE–SW oriented —
explained as NW-directed subduction from 65 to 50 Ma in the tectonic
model. This deep anomaly disappears by about 1500 km and suggests
that the oldest subduction being seen is latest Cretaceous (c. 65 Ma).
The tectonic model predicts no subduction beneath the region from
90 Ma so no high velocity anomaly is expected at depths greater than
about 1500 km.

As explained by Spakman andHall (2010) the deepmantle structure
changes further east below the Banda region where the folded slab in
the uppermantle cannot be traced into the lowermantle. Unlike several
previous authors we therefore do not identify Tethyan subduction
zones below the Banda region. In the lower mantle below the Banda
Sea and into the West Pacific north of New Guinea there are remnants
of 45 to 25 Ma subduction, including the broken off Sula slab, subduc-
tion below the East Philippines (Fig. 18) and Halmahera (Hall and
Spakman, 2002, 2003).

7.3. Key points concerning tectonic models

For the Neogene the tomographic images broadly confirm the sub-
duction history that is inferred frompresent trenches and geological ob-
servations. However, the improving resolution of the tomographic
models nowmakes it possible to link the subduction history to geolog-
ical observations of the upper crust. Thus, the holes interpreted in
subducted slabs, arc deformation, and changes in arc magma chemistry
can now be linked for areas like East Java, and plausibly interpreted in
other areas such as Sumbawa–Flores. Age variations in the subducted
slabs can be identified (Gorbatov and Kennett, 2003) and are consistent
with predictions of our tectonic model. The boundary between Creta-
ceous andmuch younger Cenozoic crust is nowbeneath SE Sumatra. To-
mography shows this iswhere slabdip begins to change fromvery steep
below Java (Cretaceous crust subducted) to much less steep below
Sumatra in areas where there are few hypocentres. The relative age of
the subducted slab may have contributed to the way in which the
subducted slab has deformed.

A significantly improved understanding of the Banda arc evolution
has been acquired with the aid of tomographic models, supporting the
one-slab model and deformation of the subducted slab in the upper
mantle first proposed byHamilton (1979), and linking surface deforma-
tion to slab-mantle interaction. In this region the resolution of the tomo-
graphic models can also exclude some tectonic interpretations, such as
the Miocene initiation of faulting at the Tarera–Aiduna fault, accompa-
nied by subduction of several hundred kilometres of oceanic lithosphere
(Hinschberger et al., 2005) which should be clearly visible in tomogra-
phy sections. Beneath Sulawesi, tomography can rule out suggestions
of major east-directed subduction on the east side of the Makassar
Straits and, as we have shown above, can also suggest new tectonic in-
terpretations in areas of complex seismicity and deformation.

For subduction before the Cenozoic the lower mantle tomography
does not greatly aid tectonic interpretation because most high velocity
anomalies are due to Cenozoic subduction. However, the change in
lower mantle structure west and east of 110°E implies a major change
in subduction history north of India compared to that north of
Australia. If subduction beneath Indonesia had been continuous during
the Mesozoic, as often suggested, we would expect the lower mantle
anomalies to be traceable to much greater depths. In our view, this
therefore favours the tectonic reconstruction (Hall, 2012) in which sub-
duction ceased for a period from about 90Ma to 45Ma and accounts for
the absence of a high velocity anomaly associated with subduction at
the Java trench deeper than about 1600 km.

We discussed various features of the SE Asia region, centred on Bor-
neo, in an earlier paper (Hall et al., 2008) and concluded that some
tectonic interpretations of the region could not be distinguished using
the tomographic images. However, the resolution of the tomographic
models has significantly improved since then and we have argued
above that lower mantle structure can now be interpreted in terms of
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several different subduction zones, including the Proto-South China Sea.
We therefore suggest that simplified models which include a single
rigid block for SE Asia, that rotated clockwise due to indentation of
Asia by India (e.g. Replumaz and Tapponnier, 2003; Replumaz et al.,
2004), do not account for the complexities of lower mantle structure
imaged by tomography under SE Asia. Furthermore, the identification
of the Proto-South China Sea subduction zone also supports the
counter-clockwise rotation of Borneo and the SE corner of Sundaland
following Australia–SE Asia collision in the Early Miocene.

8. Conclusions

SE Asia is geologically a particularly complex region and remains
relatively understudied because of difficulties of access, vegetation and
climate. It is important because it is a region inwhich the active tectonic
processes that are more advanced in older mountain belts can be ob-
served and for which numerous tectonic models have been proposed,
many ofwhich are speculative anddifficult to assess. The abundant seis-
micity of the region means that high-resolution tomographic models
can be developed and the subduction history of the region interpreted.
We have focused on assessment of independentmodels of tectonic evo-
lution andmantle structure concernedwith the region andwe conclude
that there is now significant convergence between them. The tectonic
model can explain many of the key features of the tomography, and
the tomography has in many parts of the region offered new insights
into tectonic interpretations.

The next steps are to modify the tectonic reconstructions in some
parts in the light of the tomographic models, and also to reconsider
some features that are unexplained (e.g. high velocity anomaly in the
transition zone below the South China Sea, details of upper and lower
mantle structure below the Philippines). In several areas improved res-
olution of the tomography would aid tectonic interpretation, and
thermo-mechanical modelling of 3-D slab evolutionmay help constrain
tectonic evolution models.
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